1
|
Abo Qoura L, Morozova E, Ramaa СS, Pokrovsky VS. Smart nanocarriers for enzyme-activated prodrug therapy. J Drug Target 2024; 32:1029-1051. [PMID: 39045650 DOI: 10.1080/1061186x.2024.2383688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Exogenous enzyme-activated prodrug therapy (EPT) is a potential cancer treatment strategy that delivers non-human enzymes into or on the surface of the cell and subsequently converts a non-toxic prodrug into an active cytotoxic substance at a specific location and time. The development of several pharmacological pairs based on EPT has been the focus of anticancer research for more than three decades. Numerous of these pharmacological pairs have progressed to clinical trials, and a few have achieved application in specific cancer therapies. The current review highlights the potential of enzyme-activated prodrug therapy as a promising anticancer treatment. Different microbial, plant, or viral enzymes and their corresponding prodrugs that advanced to clinical trials have been listed. Additionally, we discuss new trends in the field of enzyme-activated prodrug nanocarriers, including nanobubbles combined with ultrasound (NB/US), mesoscopic-sized polyion complex vesicles (PICsomes), nanoparticles, and extracellular vesicles (EVs), with special emphasis on smart stimuli-triggered drug release, hybrid nanocarriers, and the main application of nanotechnology in improving prodrugs.
Collapse
Affiliation(s)
- Louay Abo Qoura
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), Moscow, Russia
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elena Morozova
- Engelhardt Institute of Molecular Biology of the, Russian Academy of Sciences, Moscow, Russia
| | - С S Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Mumbai, India
| | - Vadim S Pokrovsky
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), Moscow, Russia
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
2
|
ZHANG G, XU X, XU C, LIAO G, XU H, LOU Z, ZHANG G. Actinidia chinensis polysaccharide interferes with the epithelial-mesenchymal transition of gastric cancer by regulating the nuclear transcription factor-κB pathway to inhibit invasion and metastasis. J TRADIT CHIN MED 2024; 44:896-905. [PMID: 39380220 PMCID: PMC11462538 DOI: 10.19852/j.cnki.jtcm.20240806.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2024]
Abstract
OBJECTIVE To investigate the mechanisms of the effect of Actinidia chinensis polysaccharide (ACPS) on the invasion and metastasis of gastric cancer cells. METHODS BGC-823-Luc gastric cancer cells stably transfected with a luciferase gene were used to establish an insitutransplanted tumor mouse model. A live mouse imaging system was used to observe tumor growth, and hematoxylin and eosin staining was applied to analyze tissue histopathology. Transwell and scratch wound assays were performed to examine the invasive and migratory ability of BGC-823 cells. Immunofluorescence, confocal microscopy, immunohistochemistry, and Western blot assays were used to analyze the expressions of the nuclear transcription factor-κB (NF-κB) signaling pathway and epithelial-mesenchymal transition (EMT)-related proteins. RESULTS ACPS significantly inhibited the growth of subcutaneously transplanted BGC-823-Luc gastric cancer tumors in nude mice and reduced inflammatory cell infiltration in tumor tissues. ACPS inhibited Epidermal Growth Factor-induced invasion, migration, and morphological changes in the cytoskeleton of BGC-823 cells. ACPS inhibited gastric cancer EMT and decreased the expression of matrix metallopeptidase 9, N-cadherin and p-NF-κB p65 in transplanted tumor tissues. ACPS inhibited the expression of matrix metalloproteinases and vascular adhesion factors in BGC-823 cells, promoted p65-NF-κB nuclear translocation, and regulated proteins associated with the NF-κB p65 pathway. CONCLUSIONS ACPS inhibited gastric cancer invasion and metastasis both in vivo and in vitro, which evidenced the inhibition of gastric cancer EMT viaregulating the NF-κB inflammatory pathway.
Collapse
Affiliation(s)
- Guangshun ZHANG
- 1 School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- 2 Key Labortary of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
| | - Xiaonan XU
- 3 School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- 4 Key Labortary of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
- 5 Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Hangzhou 310053, China
| | - Chuyun XU
- 6 the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guanghui LIAO
- 1 School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- 2 Key Labortary of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
| | - Hao XU
- 3 School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- 4 Key Labortary of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
- 5 Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Hangzhou 310053, China
| | - Zhaohuan LOU
- 1 School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- 2 Key Labortary of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
| | - Guangji ZHANG
- 3 School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- 4 Key Labortary of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
- 5 Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Hangzhou 310053, China
| |
Collapse
|
3
|
Li W, Liu X, Liu Z, Xing Q, Liu R, Wu Q, Hu Y, Zhang J. The signaling pathways of selected traditional Chinese medicine prescriptions and their metabolites in the treatment of diabetic cardiomyopathy: a review. Front Pharmacol 2024; 15:1416403. [PMID: 39021834 PMCID: PMC11251973 DOI: 10.3389/fphar.2024.1416403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a myocardial-specific microvascular disease caused by diabetes that affects the structure and function of the heart and is considered to be the leading cause of morbidity and death in patients with diabetes. Currently, there is no specific treatment or preventive drug for DCM, and there is an urgent need to develop new drugs to treat DCM. Traditional Chinese medicine (TCM) has rich experience in the treatment of DCM, and its characteristics of multi-target, multi-pathway, multi-component, and few side effects can effectively deal with the complexity and long-term nature of DCM. Growing evidence suggests that myocardial fibrosis, inflammation, oxidative stress, apoptosis, cardiac hypertrophy, and advanced glycation end product deposition were the main pathologic mechanisms of DCM. According to the pathological mechanism of DCM, this study revealed the potential of metabolites and prescriptions in TCM against DCM from the perspective of signaling pathways. The results showed that TGF-β/Smad, NF-κB, PI3K/AKT, Nrf2, AMPK, NLRP3, and Wnt/β-catenin signaling pathways were the key signaling pathways for TCM treatment of DCM. The aim of this study was to summarize and update the signaling pathways for TCM treatment of DCM, to screen potential targets for drug candidates against DCM, and to provide new ideas and more experimental evidence for the clinical use of TCM treatment of DCM.
Collapse
Affiliation(s)
- Wencan Li
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Zheng Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Qichang Xing
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Renzhu Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Qinxuan Wu
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, The “Double-First Class” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha, Hunan, China
| | - Yixiang Hu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Jiani Zhang
- Department of Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| |
Collapse
|
4
|
Shi G, Li X, Wang W, Hou L, Yin L, Wang L. Allicin Overcomes Doxorubicin Resistance of Breast Cancer Cells by Targeting the Nrf2 Pathway. Cell Biochem Biophys 2024; 82:659-667. [PMID: 38411783 DOI: 10.1007/s12013-024-01215-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/04/2024] [Indexed: 02/28/2024]
Abstract
Breast cancer (BC) is a lethal disorder that threatens the life safety of the majority of females globally, with rising morbidity and mortality year by year. Doxorubicin is a cytotoxic anthracycline antibiotic that is widely used as one of the first-line chemotherapy agents for patients with BC. However, the efficacy of doxorubicin in the clinic is largely limited by its serious side effects and acquired drug resistance. Allicin (diallyl thiosulfinate), as the major component and key active compound present in freshly crushed garlic, has shown potential effects in suppressing chemotherapy resistance in various cancers. Our research aimed to explore the relationship between allicin and doxorubicin resistance in BC. To generate doxorubicin-resistant BC cell lines (MCF-7/DOX and MDA-MB-231/DOX), doxorubicin-sensitive parental cell lines MCF-7 and MDA-MB-231 were continuously exposed to stepwise increased concentrations of doxorubicin over a period of 6 months. CCK-8, colony formation, flow cytometry, RT-qPCR, and western blotting assays were performed to investigate the effects of allicin and/or doxorubicin treatment on the viability, proliferation and apoptosis and the expression of Nrf2, HO-1, phosphate AKT and AKT in doxorubicin-resistant BC cells. Our results showed that combined treatment of allicin with doxorubicin exhibited better effects on inhibiting the proliferation and enhancing the apoptosis of doxorubicin-resistant BC cells than treatment with allicin or doxorubicin alone. Mechanistically, allicin suppressed the levels of Nrf2, HO-1, and phosphate AKT in doxorubicin-resistant BC cells. Collectively, allicin improves the doxorubicin sensitivity of BC cells by inactivating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Guojian Shi
- Department of Thyroid and Breast Surgery, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Xiaohua Li
- Department of Thyroid and Breast Surgery, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Weiping Wang
- Department of General Surgery, Kunshan Second People's Hospital, Suzhou, 215300, China
| | - Lili Hou
- Department of Thyroid and Breast Surgery, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Lei Yin
- Department of Thyroid and Breast Surgery, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Li Wang
- Department of Oncology, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, 215300, China.
| |
Collapse
|
5
|
Gong Q, Wang X, Liu Y, Yuan H, Ge Z, Li Y, Huang J, Liu Y, Chen M, Xiao W, Liu R, Shi R, Wang L. Potential Hepatoprotective Effects of Allicin on Carbon Tetrachloride-Induced Acute Liver Injury in Mice by Inhibiting Oxidative Stress, Inflammation, and Apoptosis. TOXICS 2024; 12:328. [PMID: 38787107 PMCID: PMC11126064 DOI: 10.3390/toxics12050328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024]
Abstract
The global burden of liver disease is enormous, which highlights the need for effective hepatoprotective agents. It was reported that allicin exhibits protective effects against a range of diseases. In this study, we further evaluated allicin's effect and mechanism in acute hepatic injury. Liver injury in mice was induced by intraperitoneal injection with 1% CCl4 (10 mL/kg/day). When the first dose was given, CCl4 was given immediately after administration of different doses of allicin (40, 20, and 10 mg/kg/day) as well as compound glycyrrhizin (CGI, 80 mg/kg/day), and then different doses of allicin (40, 20, and 10 mg/kg/day) as well as compound glycyrrhizin (CGI, 80 mg/kg/day) were administrated every 12 h. The animals were dissected 24 h after the first administration. The findings demonstrated a significant inhibition of CCl4-induced acute liver injury following allicin treatment. This inhibition was evidenced by notable reductions in serum levels of transaminases, specifically aspartate transaminase, along with mitigated histological damage to the liver. In this protective process, allicin plays the role of reducing the amounts or the expression levels of proinflammatory cytokines, IL-1β, IL-6. Furthermore, allicin recovered the activities of the antioxidant enzyme catalase (CAT) and reduced the production of malondialdehyde (MDA) in a dose-dependent manner, and also reduced liver Caspase 3, Caspase 8, and BAX to inhibit liver cell apoptosis. Further analysis showed that the administration of allicin inhibited the increased protein levels of Nuclear factor-erythroid 2-related factor 2 (Nrf2) and NAD(P)H:quinone oxidoreductase 1 (NQO1), which is related to inflammation and oxidative stress. The in vitro study of the LPS-induced RAW264.7 inflammatory cell model confirmed that allicin can inhibit important inflammation-related factors and alleviate inflammation. This research firstly clarified that allicin has a significant protective effect on CCl4-induced liver injury via inhibiting the inflammatory response and hepatocyte apoptosis, alleviating oxidative stress associated with the progress of liver damage, highlighting the potential of allicin as a hepatoprotective agent.
Collapse
Affiliation(s)
- Qianmei Gong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoming Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongshi Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Heling Yuan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zifeng Ge
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuzhou Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinhu Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufan Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjun Xiao
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Ruiting Liu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Rongmei Shi
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Liping Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Yifan M, Rui X, Yuan L, Feiyun J. Allicin inhibits the biological activities of cervical cancer cells by suppressing circEIF4G2. Food Sci Nutr 2024; 12:2523-2536. [PMID: 38628206 PMCID: PMC11016449 DOI: 10.1002/fsn3.3935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 04/19/2024] Open
Abstract
Allicin is a safe herbal extract believed to have antitumor effects, which, however, remain unclear. The aim of the present work was to discuss Allicin antitumor effects on cervical cancer using cell experiments. Using Hela and Siha to our research objectives in our study, first step, difference concentration of Allicin (20, 40, and 80 μM) treated Hela and Siha cell lines, and next step, discuss circEIF4G2 effects in Allicin antitumor effects in Hela and Siha cell lines; the cell proliferation and EdU-positive cell number by CCK-8 and EdU staining; cell apoptosis rate by flow cytometry; invasion cell number by transwell assay; wound healing rate by wound healing assay; and relative mRNA and protein levels using qRT-PCR and WB assay. With Allicin supplement, the cell proliferation and EdU-positive cell number were significantly depressed with cell apoptosis rate significantly increasing; invasion cell number and wound healing rate significantly suppressed with circEIF4G2 mRNA expression significantly down-regulation (p < .05, respectively). However, there was no significant difference among Allicin, si-circEIF4G2, and Allicin+si-circEIF4G2 in cell biological activities including cell proliferation, apoptosis, invasion and migration, and relative gene and protein expression. Allicin depresses biological activities of cervical cancer cells through down-regulating circEIF4G2/HOXA1/AKT/mTOR.
Collapse
Affiliation(s)
- Mao Yifan
- Gynecology of the Second People's Hospital of Wuhu CityWuhuChina
| | - Xu Rui
- Gynecology of the Second People's Hospital of Wuhu CityWuhuChina
| | - Li Yuan
- Department of GeriatricsThe First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Jiang Feiyun
- Gynecology of the Second People's Hospital of Wuhu CityWuhuChina
- Department of GynecologyWuhu City Second People's HospitalWuhuChina
| |
Collapse
|
7
|
Zhang H, Wang H, Qin L, Lin S. Garlic-derived compounds: Epigenetic modulators and their antitumor effects. Phytother Res 2024; 38:1329-1344. [PMID: 38194996 DOI: 10.1002/ptr.8108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/26/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024]
Abstract
Cancer is a highly heterogeneous disease that poses a serious threat to human health worldwide. Despite significant advances in the diagnosis and treatment of cancer, the prognosis and survival rate of cancer remain poor due to late diagnosis, drug resistance, and adverse reactions. Therefore, it is very necessary to study the development mechanism of cancer and formulate effective therapeutic interventions. As widely available bioactive substances, natural products have shown obvious anticancer potential, especially by targeting abnormal epigenetic changes. The main active part of garlic is organic sulfur compounds, of which diallyl trisulfide (DATS) content is the highest, accounting for more than 40% of the total composition. The garlic-derived compounds have been recognized as an antioxidant for cancer prevention and treatment. However, the molecular mechanism of the antitumor effect of garlic-derived compounds remains unclear. Recent studies have identified garlic-derived compound DATS that plays critical roles in enhancing CpG demethylation or promoting histone acetylation as an epigenetic inhibitor. Here, we review the therapeutic progress of garlic-derived compounds against cancer through epigenetic pathways.
Collapse
Affiliation(s)
- Huan Zhang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Haichao Wang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, China
| | - Lin Qin
- Department of Endoscopic Diagnosis and Treatment, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
8
|
Zivković J, Kumar KA, Rushendran R, Ilango K, Fahmy NM, El-Nashar HAS, El-Shazly M, Ezzat SM, Melgar-Lalanne G, Romero-Montero A, Peña-Corona SI, Leyva-Gomez G, Sharifi-Rad J, Calina D. Pharmacological properties of mangiferin: bioavailability, mechanisms of action and clinical perspectives. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:763-781. [PMID: 37658210 DOI: 10.1007/s00210-023-02682-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
This review aims to provide an in-depth analysis of the pharmacological properties of mangiferin, focusing primarily on its bioavailability and mechanisms of action, and its potential therapeutic applications, especially in the context of chronic diseases. We conducted a comprehensive examination of in vitro and in vivo studies, as well as clinical trials involving mangiferin or plant extracts containing mangiferin. The primary source of mangiferin is Mangifera indica, but it's also found in other plant species from the families Anacardiaceae, Gentianaceae, and Iridaceae. Mangiferin has exhibited a myriad of therapeutic properties, presenting itself as a promising candidate for treating various chronic conditions including neurodegenerative disorders, cardiovascular diseases, renal and pulmonary diseases, diabetes, and obesity. Despite the promising results showcased in many in vitro studies and certain animal studies, the application of mangiferin has been limited due to its poor solubility, absorption, and overall bioavailability. Mangiferin offers significant therapeutic potential in treating a spectrum of chronic diseases, as evidenced by both in vitro and clinical trials. However, the challenges concerning its bioavailability necessitate further research, particularly in optimizing its delivery and absorption, to harness its full medicinal potential. This review serves as a comprehensive update on the health-promoting and therapeutic activities of mangiferin.
Collapse
Affiliation(s)
- Jelena Zivković
- Institute for Medicinal Plants Research "Dr. Josif Pančić", Tadeuša Košćuška 1, Belgrade, Serbia.
| | - Kammala Ananth Kumar
- Department of Obstetrics and Gynecology, Division of Basic Sciences and Translational Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Rapuru Rushendran
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Kattankulatur, 603203, Tamil Nadu, India
| | - Kaliappan Ilango
- School of Pharmacy, Hindustan Institute Technology and Science, Padur, Chennai, 603 103, India
| | - Nouran M Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
- Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
- Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
- Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Guiomar Melgar-Lalanne
- Instituto de Ciencias Básicas, Universidad Veracruzana, Avda. Castelazo Ayala S/N, 91190, Xalapa, Veracruz, Mexico
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Gerardo Leyva-Gomez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
9
|
Bala R, Madaan R, Chauhan S, Gupta M, Dubey AK, Zahoor I, Brijesh H, Calina D, Sharifi-Rad J. Revitalizing allicin for cancer therapy: advances in formulation strategies to enhance bioavailability, stability, and clinical efficacy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:703-724. [PMID: 37615709 DOI: 10.1007/s00210-023-02675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
The main objective of this review is to highlight the therapeutic potential of allicin, a defense molecule in garlic known for its diverse health benefits, and address the key challenges of its bioavailability and stability. The research further aims to evaluate various formulation strategies and nanotechnology-based delivery systems that can resolve these issues and improve allicin's clinical efficacy, especially in cancer therapy. We conducted a comprehensive review of the available literature and previous studies, focusing on the therapeutic properties of allicin, its bioavailability, stability issues, and novel formulation strategies. We assessed the mechanism of action of allicin in cancer, including its effects on signaling pathways, cell cycle, apoptosis, autophagy, and tumor development. We also evaluated the outcomes of both in vitro and in vivo studies on different types of cancers, such as breast, cervical, colon, lung, and gastric cancer. Despite allicin's significant therapeutic benefits, including cardiovascular, antihypertensive, cholesterol-lowering, antimicrobial, antifungal, anticancer, and immune-modulatory activity, its clinical utility is limited due to poor stability and unpredictable bioavailability. Allicin's bioavailability in the gastrointestinal tract is dependent on the activity of the enzyme alliinase, and its stability can be affected by various conditions like gastric acid and intestinal enzyme proteases. Recent advances in formulation strategies and nanotechnology-based drug delivery systems show promise in addressing these challenges, potentially improving allicin's solubility, stability, and bioavailability. Allicin offers substantial potential for cancer therapy, yet its application is hindered by its instability and poor bioavailability. Novel formulation strategies and nanotechnology-based delivery systems can significantly overcome these limitations, enhancing the therapeutic efficacy of allicin. Future research should focus on refining these formulation strategies and delivery systems, ensuring the safety and efficacy of these new allicin formulations. Clinical trials and long-term studies should be carried out to determine the optimal dosage, assess potential side effects, and evaluate their real-world applicability. The comparative analysis of different drug delivery approaches and the development of targeted delivery systems can also provide further insight into enhancing the therapeutic potential of allicin.
Collapse
Affiliation(s)
- Rajni Bala
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Malika Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ankit Kumar Dubey
- iGlobal Research and Publishing Foundation, New Delhi, India
- Institute of Scholars, Chikmagalur, India
| | - Ishrat Zahoor
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India
| | - Hemavathi Brijesh
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|
10
|
Li XJ, Liu T, Wang Y. Allicin ameliorates sepsis-induced acute kidney injury through Nrf2/HO-1 signaling pathway. J Nat Med 2024; 78:53-67. [PMID: 37668824 PMCID: PMC10764392 DOI: 10.1007/s11418-023-01745-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Acute kidney injury (AKI) is a complication that can be induced by different factors. Allicin is a class of organic sulfur compounds with anticancer and antibacterial effects, and has not been reported in sepsis-induced AKI (S-AKI). S-AKI was induced in c57BL/6 mice by cecal ligation puncture. In response to the treatment of allicin, the survival rate of mice with S-AKI was increased. Reduced levels of serum creatinine, blood urea nitrogen, UALB, KIM-1 and NGAL indicated an improvement in renal function of S-AKI mice. Allicin inhibited the inflammation and cell apoptosis, which evidenced by decreased levels of inflammatory cytokines and apoptosis-related proteins. Oxidative stress was evaluated by the levels of oxidative stress biomarkers, and suppressed by allicin. In addition, allicin-alleviated mitochondrial dysfunction was characterized by decreased JC-1 green monomer. These effects of allicin were also evidenced in HK2 cells primed with lipopolysaccharide (LPS). Both in vivo and in vitro experiments showed that the nuclear translocation of Nrf2 and the expression of HO-1 increased after allicin treatment, which was confirmed by ML385 and CDDO-Me. In summary, this study revealed the alleviating effect of allicin on S-AKI and demonstrated the promotive effect of allicin on nuclear translocation of Nrf2 for the first time. It was inferred that allicin inhibited the progression of S-AKI through Nrf2/HO-1 signaling pathway. This study makes contributions to the understanding of the roles of allicin in S-AKI.
Collapse
Affiliation(s)
- Xiao-Jun Li
- Department of Nephrology, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China
| | - Ting Liu
- Department of General Practice, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China
| | - Yuan Wang
- Department of Nephrology, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China.
| |
Collapse
|
11
|
Andrés CMC, Pérez de la Lastra JM, Andrés Juan C, Plou FJ, Pérez-Lebeña E. Chemistry of Hydrogen Sulfide-Pathological and Physiological Functions in Mammalian Cells. Cells 2023; 12:2684. [PMID: 38067112 PMCID: PMC10705518 DOI: 10.3390/cells12232684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Hydrogen sulfide (H2S) was recognized as a gaseous signaling molecule, similar to nitric oxide (-NO) and carbon monoxide (CO). The aim of this review is to provide an overview of the formation of hydrogen sulfide (H2S) in the human body. H2S is synthesized by enzymatic processes involving cysteine and several enzymes, including cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE), cysteine aminotransferase (CAT), 3-mercaptopyruvate sulfurtransferase (3MST) and D-amino acid oxidase (DAO). The physiological and pathological effects of hydrogen sulfide (H2S) on various systems in the human body have led to extensive research efforts to develop appropriate methods to deliver H2S under conditions that mimic physiological settings and respond to various stimuli. These functions span a wide spectrum, ranging from effects on the endocrine system and cellular lifespan to protection of liver and kidney function. The exact physiological and hazardous thresholds of hydrogen sulfide (H2S) in the human body are currently not well understood and need to be researched in depth. This article provides an overview of the physiological significance of H2S in the human body. It highlights the various sources of H2S production in different situations and examines existing techniques for detecting this gas.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain;
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain;
| | | |
Collapse
|
12
|
Yang X, Xie X, Liu S, Ma W, Zheng Z, Wei H, Yu CY. Engineered Exosomes as Theranostic Platforms for Cancer Treatment. ACS Biomater Sci Eng 2023; 9:5479-5503. [PMID: 37695590 DOI: 10.1021/acsbiomaterials.3c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Tremendous progress in nanotechnology and nanomedicine has made a significant positive effect on cancer treatment by integrating multicomponents into a single multifunctional nanosized delivery system for combinatorial therapies. Although numerous nanocarriers developed so far have achieved excellent therapeutic performance in mouse models via elegant integration of chemotherapy, photothermal therapy, photodynamic therapy, sonodynamic therapy, and immunotherapy, their synthetic origin may still cause systemic toxicity, immunogenicity, and preferential detection or elimination by the immune system. Exosomes, endogenous nanosized particles secreted by multiple biological cells, could be absorbed by recipient cells to facilitate intercellular communication and content delivery. Therefore, exosomes have emerged as novel cargo delivery tools and attracted considerable attention for cancer diagnosis and treatment due to their innate stability, biological compatibility, and biomembrane penetration capacity. Exosome-related properties and functions have been well-documented; however, there are few reviews, to our knowledge, with a focus on the combination of exosomes and nanotechnology for the development of exosome-based theranostic platforms. To make a timely review on this hot subject of research, we summarize the basic information, isolation and functionalization methodologies, diagnostic and therapeutic potential of exosomes in various cancers with an emphasis on the description of exosome-related nanomedicine for cancer theranostics. The existing appealing challenges and outlook in exosome clinical translation are finally introduced. Advanced biotechnology and nanotechnology will definitely not only promote the integration of intrinsic advantages of natural nanosized exosomes with traditional synthetic nanomaterials for modulated precise cancer treatment but also contribute to the clinical translations of exosome-based nanomedicine as theranostic nanoplatforms.
Collapse
Affiliation(s)
- Xu Yang
- Postdoctoral Research Station of Basic Medicine, Hengyang Medical College, College of Chemistry and Chemical Engineering, Hunan Province Cooperative, Hengyang, Hunan 421001, China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Xiangyu Xie
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Songbin Liu
- Postdoctoral Research Station of Basic Medicine, Hengyang Medical College, College of Chemistry and Chemical Engineering, Hunan Province Cooperative, Hengyang, Hunan 421001, China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Wei Ma
- Postdoctoral Research Station of Basic Medicine, Hengyang Medical College, College of Chemistry and Chemical Engineering, Hunan Province Cooperative, Hengyang, Hunan 421001, China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Zhi Zheng
- Postdoctoral Research Station of Basic Medicine, Hengyang Medical College, College of Chemistry and Chemical Engineering, Hunan Province Cooperative, Hengyang, Hunan 421001, China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Hua Wei
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Cui-Yun Yu
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
13
|
Vivanco PG, Taboada P, Coelho A. The Southern European Atlantic Diet and Its Supplements: The Chemical Bases of Its Anticancer Properties. Nutrients 2023; 15:4274. [PMID: 37836558 PMCID: PMC10574233 DOI: 10.3390/nu15194274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Scientific evidence increasingly supports the strong link between diet and health, acknowledging that a well-balanced diet plays a crucial role in preventing chronic diseases such as obesity, diabetes, cardiovascular issues, and certain types of cancer. This perspective opens the door to developing precision diets, particularly tailored for individuals at risk of developing cancer. It encompasses a vast research area and involves the study of an expanding array of compounds with multilevel "omics" compositions, including genomics, transcriptomics, proteomics, epigenomics, miRNomics, and metabolomics. We review here the components of the Southern European Atlantic Diet (SEAD) from both a chemical and pharmacological standpoint. The information sources consulted, complemented by crystallographic data from the Protein Data Bank, establish a direct link between the SEAD and its anticancer properties. The data collected strongly suggest that SEAD offers an exceptionally healthy profile, particularly due to the presence of beneficial biomolecules in its foods. The inclusion of olive oil and paprika in this diet provides numerous health benefits, and scientific evidence supports the anticancer properties of dietary supplements with biomolecules sourced from vegetables of the brassica genus. Nonetheless, further research is warranted in this field to gain deeper insights into the potential benefits of the SEAD's bioactive compounds against cancer.
Collapse
Affiliation(s)
- Pablo García Vivanco
- Spanish Academy of Nutrition and Dietetics, 31006 Pamplona, Spain
- Nutrition and Digestive Working Group, Spanish Society of Clinical, Family, and Community Pharmacy (SEFAC), 28045 Madrid, Spain
| | - Pablo Taboada
- Department of Condensed Matter Physics, Faculty of Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Institute of Materials-USC (IMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alberto Coelho
- Institute of Materials-USC (IMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
14
|
Arellano Buendia AS, Juárez Rojas JG, García-Arroyo F, Aparicio Trejo OE, Sánchez-Muñoz F, Argüello-García R, Sánchez-Lozada LG, Bojalil R, Osorio-Alonso H. Antioxidant and anti-inflammatory effects of allicin in the kidney of an experimental model of metabolic syndrome. PeerJ 2023; 11:e16132. [PMID: 37786577 PMCID: PMC10541809 DOI: 10.7717/peerj.16132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/28/2023] [Indexed: 10/04/2023] Open
Abstract
Background Recent studies have suggested that metabolic syndrome (MS) encompasses a group of risk factors for developing chronic kidney disease (CKD). This work aimed to evaluate the antioxidant and anti-inflammatory effects of allicin in the kidney from an experimental model of MS. Methods Male Wistar rats (220-250 g) were used, and three experimental groups (n = 6) were formed: control (C), metabolic syndrome (MS), and MS treated with allicin (16 mg/Kg/day, gastric gavage) (MS+A). MS was considered when an increase of 20% in at least three parameters (body weight, systolic blood pressure (SBP), fasting blood glucose (FBG), or dyslipidemia) was observed compared to the C group. After the MS diagnosis, allicin was administered for 30 days. Results Before the treatment with allicin, the MS group showed more significant body weight gain, increased SBP, and FBG, glucose intolerance, and dyslipidemia. In addition, increased markers of kidney damage in urine and blood. Moreover, the MS increased oxidative stress and inflammation in the kidney compared to group C. The allicin treatment prevented further weight gain, reduced SBP, FBG, glucose intolerance, and dyslipidemia. Also, markers of kidney damage in urine and blood were decreased. Further, the oxidative stress and inflammation were decreased in the renal cortex of the MS+A compared to the MS group. Conclusion Allicin exerts its beneficial effects on the metabolic syndrome by considerably reducing systemic and renal inflammation as well as the oxidative stress. These effects were mediated through the Nrf2 pathway. The results suggest allicin may be a therapeutic alternative for treating kidney injury induced by the metabolic syndrome risk factors.
Collapse
Affiliation(s)
- Abraham Said Arellano Buendia
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico, Xochimilco, Mexico
- Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico, Tlalpan, México
| | | | - Fernando García-Arroyo
- Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico, Tlalpan, México
| | | | - Fausto Sánchez-Muñoz
- Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico, Tlalpan, México
| | - Raúl Argüello-García
- Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, Gustavo A. Madero, México
| | | | - Rafael Bojalil
- Atención a la Salud, Universidad Autónoma Metropolitana, Mexico, Xochimilco, México
| | - Horacio Osorio-Alonso
- Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico, Tlalpan, México
| |
Collapse
|
15
|
Guillamón E, Mut-Salud N, Rodríguez-Sojo MJ, Ruiz-Malagón AJ, Cuberos-Escobar A, Martínez-Férez A, Rodríguez-Nogales A, Gálvez J, Baños A. In Vitro Antitumor and Anti-Inflammatory Activities of Allium-Derived Compounds Propyl Propane Thiosulfonate (PTSO) and Propyl Propane Thiosulfinate (PTS). Nutrients 2023; 15:nu15061363. [PMID: 36986093 PMCID: PMC10058678 DOI: 10.3390/nu15061363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Increasing rates of cancer incidence and the side-effects of current chemotherapeutic treatments have led to the research on novel anticancer products based on dietary compounds. The use of Allium metabolites and extracts has been proposed to reduce the proliferation of tumor cells by several mechanisms. In this study, we have shown the in vitro anti-proliferative and anti-inflammatory effect of two onion-derived metabolites propyl propane thiosulfinate (PTS) and propyl propane thiosulfonate (PTSO) on several human tumor lines (MCF-7, T-84, A-549, HT-29, Panc-1, Jurkat, PC-3, SW-837, and T1-73). We observed that this effect was related to their ability to induce apoptosis regulated by oxidative stress. In addition, both compounds were also able to reduce the levels of some pro-inflammatory cytokines, such as IL-8, IL-6, and IL-17. Therefore, PTS and PTSO may have a promising role in cancer prevention and/or treatment.
Collapse
Affiliation(s)
| | | | - María Jesús Rodríguez-Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM), Instituto de Investigacion Biosanitaria de Granada (ibs.GRANADA), University of Granada, 18071 Granada, Spain
| | - Antonio Jesús Ruiz-Malagón
- Department of Pharmacology, Center for Biomedical Research (CIBM), Instituto de Investigacion Biosanitaria de Granada (ibs.GRANADA), University of Granada, 18071 Granada, Spain
| | | | - Antonio Martínez-Férez
- Chemical Engineering Department, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), Instituto de Investigacion Biosanitaria de Granada (ibs.GRANADA), University of Granada, 18071 Granada, Spain
- Correspondence: (A.R.-N.); (J.G.)
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), Instituto de Investigacion Biosanitaria de Granada (ibs.GRANADA), University of Granada, 18071 Granada, Spain
- CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (A.R.-N.); (J.G.)
| | | |
Collapse
|