1
|
Cook JB, Piatt R, Burgard E, Thor KB, Marson L. Rapid-Onset, Short-Duration Induction of Colorectal Contractions in Anesthetized, Adult, Male Rats. J Pharmacol Exp Ther 2024; 390:196-202. [PMID: 38719479 PMCID: PMC11264250 DOI: 10.1124/jpet.123.001989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/19/2024] [Indexed: 07/20/2024] Open
Abstract
Substantial clinical and preclinical evidence indicates that transient receptor potential vanilloid 1 (TRPV1) receptors are expressed on terminals of colorectal chemoreceptors and mechanoreceptors and are involved in various rectal hypersensitivity disorders with common features of colorectal overactivity. These stimulatory properties of TRPV1 receptors on colorectal function suggested that brief stimulation of TRPV1 might provide a means of pharmacologically activating the colorectum to induce defecation in patients with an "unresponsive" colorectum. The current studies explored the basic features of TRPV1 receptor-induced contractions of the colorectum in anesthetized rats with and without acute spinal cord injury (aSCI). Cumulative concentration-response curves to intrarectal (IR) capsaicin (CAP) solutions (0.003%-3.0%) were performed in anesthetized aSCI and spinal intact rats. CAP produced an "inverted U," cumulative concentration-response curve with a threshold for inducing colorectal contractions at 0.01% and a peak response at 0.1% and slight decreases in responses up to 3%. Decreases in responses with concentrations >0.1% are due to a rapid desensitization (i.e., ≤30 minutes) of TRPV1 receptors to each successive dose. Desensitization appeared fully recovered within 24 hours in spinal intact rats. Colorectal contractions were completely blocked by atropine, indicating a reflexogenic activation of parasympathetic neurons, and responses were completely unaffected by a neurokinin 2 receptor antagonist, indicating that release of neurokinin A from afferent terminals and subsequent direct contractions of the smooth muscle was not involved. IR administration of three other TRPV1 receptor agonists produced similar results as CAP. SIGNIFICANCE STATEMENT: Individuals with spinal cord injury often lose control of defecation. Time-consuming bowel programs using digital stimulation of the rectum are used to empty the bowel. This study shows that intrarectal administration of the transient receptor potential vanilloid 1 (TRPV1) receptor agonist, capsaicin, can induce rapid-onset, short-duration colorectal contractions capable of inducing defecation in spinal cord injured and intact rats. Therefore, TRPV1 agonists show promise as potential therapeutics to induce defecation in individuals with neurogenic bowel.
Collapse
Affiliation(s)
- Jason B Cook
- Dignify Therapeutics LLC, Research Triangle Park, North Carolina
| | - Raymond Piatt
- Dignify Therapeutics LLC, Research Triangle Park, North Carolina
| | - Edward Burgard
- Dignify Therapeutics LLC, Research Triangle Park, North Carolina
| | - Karl B Thor
- Dignify Therapeutics LLC, Research Triangle Park, North Carolina
| | - Lesley Marson
- Dignify Therapeutics LLC, Research Triangle Park, North Carolina
| |
Collapse
|
2
|
Ma L, Zhu C, Wei YF, Zhou JY, Chen M, Zhang X, Zhou P, Wang Y, Wang J, Chu C, Tang JY, Xu Y. Chronic chemogenetic inhibition of TRPV1 bladder afferent promotes micturition recovery post SCI. Exp Neurol 2024; 374:114686. [PMID: 38199507 DOI: 10.1016/j.expneurol.2024.114686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Spinal cord injury often results in chronic loss of micturition control, which is featured by bladder hyperreflexia and detrusor sphincter dyssynergia. Previous studies showed that treatment of capsaicin reduces non-voiding bladder contractions in multiple animal injury models and human patients. However, its underlying neural mechanisms remain largely unknown. Here, by injecting a RetroAAV into the bladder wall, we specifically targeted TRPV1+, a capsaicin receptor, bladder afferent neurons. Morphometric analysis revealed borderline increase of the soma size and significant spinal axon sprouting of TRPV1+ bladder afferent neurons post a complete T8 spinal cord crush. We further demonstrated that chronic chemogenetic inhibition of these DRG neurons improved micturition recovery after SCI by increasing voiding efficiency and alleviating bladder hyperreflexia, along with reduced morphological changes caused by injury. Our study provided novel insights into the structural and functional changes of TRPV1+ bladder afferent post SCI and further supports the clinical use of capsaicin as an effective treatment to improve bladder functions in patients with SCI.
Collapse
Affiliation(s)
- Long Ma
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Chen Zhu
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yun-Fei Wei
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jin-Yong Zhou
- Department of Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Min Chen
- General Internal Medicine Department, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Xin Zhang
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Ping Zhou
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yan Wang
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jian Wang
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Can Chu
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jing-Yuan Tang
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yan Xu
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
| |
Collapse
|
3
|
Calderón-Juárez M, Samejima S, Rempel L, Sachdeva R, Krassioukov A. Autonomic dysreflexia in urological practice: pathophysiology, prevention and treatment considerations. World J Urol 2024; 42:80. [PMID: 38358540 DOI: 10.1007/s00345-024-04781-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
PURPOSE Spinal cord injury (SCI) leads to sensorimotor impairments; however, it can also be complicated by significant autonomic dysfunction, including cardiovascular and lower urinary tract (LUT) dysfunctions. Autonomic dysreflexia (AD) is a dangerous cardiovascular complication of SCI often overlooked by healthcare professionals. AD is characterized by a sudden increase in blood pressure (BP) that can result in severe cardiovascular and cerebrovascular complications. In this review, we provide an overview on the clinical manifestations, risk factors, underlying mechanisms, and current approaches in prevention and management of AD. METHODS After conducting a literature research, we summarized relevant information regarding the clinical and pathophysiological aspects in the context of urological clinical practice CONCLUSIONS: The most common triggers of AD are those arising from LUT, such as bladder distention and urinary tract infections. Furthermore, AD is commonly observed in individuals with SCI during urological procedures, including catheterization, cystoscopy and urodynamics. Although significant progress in the clinical assessment of AD has been made in recent decades, effective approaches for its prevention and treatment are currently lacking.
Collapse
Affiliation(s)
- Martín Calderón-Juárez
- International Collaboration On Repair Discoveries, Faculty of Medicine, The University of British Columbia, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Soshi Samejima
- International Collaboration On Repair Discoveries, Faculty of Medicine, The University of British Columbia, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Lucas Rempel
- International Collaboration On Repair Discoveries, Faculty of Medicine, The University of British Columbia, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
- Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Rahul Sachdeva
- International Collaboration On Repair Discoveries, Faculty of Medicine, The University of British Columbia, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Andrei Krassioukov
- International Collaboration On Repair Discoveries, Faculty of Medicine, The University of British Columbia, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada.
- Division of Physical Medicine and Rehabilitation, Department of Medicine, The University of British Columbia, Vancouver, Canada.
- GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, BC, Canada.
| |
Collapse
|
4
|
Saunders MN, Griffin KV, Kalashnikova I, Kolpek D, Smith DR, Saito E, Cummings BJ, Anderson AJ, Shea LD, Park J. Biodegradable nanoparticles targeting circulating immune cells reduce central and peripheral sensitization to alleviate neuropathic pain following spinal cord injury. Pain 2024; 165:92-101. [PMID: 37463227 PMCID: PMC10787809 DOI: 10.1097/j.pain.0000000000002989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/26/2023] [Indexed: 07/20/2023]
Abstract
ABSTRACT Neuropathic pain is a critical source of comorbidity following spinal cord injury (SCI) that can be exacerbated by immune-mediated pathologies in the central and peripheral nervous systems. In this article, we investigate whether drug-free, biodegradable, poly(lactide- co -glycolide) (PLG) nanoparticle treatment mitigates the development of post-SCI neuropathic pain in female mice. Our results show that acute treatment with PLG nanoparticles following thoracic SCI significantly reduces tactile and cold hypersensitivity scores in a durable fashion. Nanoparticles primarily reduce peripheral immune-mediated mechanisms of neuropathic pain, including neuropathic pain-associated gene transcript frequency, transient receptor potential ankyrin 1 nociceptor expression, and MCP-1 (CCL2) chemokine production in the subacute period after injury. Altered central neuropathic pain mechanisms during this period are limited to reduced innate immune cell cytokine expression. However, in the chronic phase of SCI, nanoparticle treatment induces changes in both central and peripheral neuropathic pain signaling, driving reductions in cytokine production and other immune-relevant markers. This research suggests that drug-free PLG nanoparticles reprogram peripheral proalgesic pathways subacutely after SCI to reduce neuropathic pain outcomes and improve chronic central pain signaling.
Collapse
Affiliation(s)
- Michael N Saunders
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Kate V Griffin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Irina Kalashnikova
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY USA
| | - Daniel Kolpek
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY USA
| | - Dominique R Smith
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Eiji Saito
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Brian J Cummings
- Department of Anatomy and Neurobiology, University of California, Irvine, CA USA
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA USA
| | - Aileen J Anderson
- Department of Anatomy and Neurobiology, University of California, Irvine, CA USA
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Jonghyuck Park
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY USA
| |
Collapse
|
5
|
Ahn J, Ohk K, Won J, Choi DH, Jung YH, Yang JH, Jun Y, Kim JA, Chung S, Lee SH. Modeling of three-dimensional innervated epidermal like-layer in a microfluidic chip-based coculture system. Nat Commun 2023; 14:1488. [PMID: 36932093 PMCID: PMC10023681 DOI: 10.1038/s41467-023-37187-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Reconstruction of skin equivalents with physiologically relevant cellular and matrix architecture is indispensable for basic research and industrial applications. As skin-nerve crosstalk is increasingly recognized as a major element of skin physiological pathology, the development of reliable in vitro models to evaluate the selective communication between epidermal keratinocytes and sensory neurons is being demanded. In this study, we present a three-dimensional innervated epidermal keratinocyte layer as a sensory neuron-epidermal keratinocyte co-culture model on a microfluidic chip using the slope-based air-liquid interfacing culture and spatial compartmentalization. Our co-culture model recapitulates a more organized basal-suprabasal stratification, enhanced barrier function, and physiologically relevant anatomical innervation and demonstrated the feasibility of in situ imaging and functional analysis in a cell-type-specific manner, thereby improving the structural and functional limitations of previous coculture models. This system has the potential as an improved surrogate model and platform for biomedical and pharmaceutical research.
Collapse
Affiliation(s)
- Jinchul Ahn
- School of Mechanical Engineering, Korea University, Seoul, 02841, South Korea
- Next&Bio Inc., Seoul, 02841, South Korea
| | - Kyungeun Ohk
- R&D center, Humedix, Co., Ltd., Seongnam, 13201, South Korea
- Department of Bio-convergence Engineering, Korea University, Seoul, 02841, South Korea
| | - Jihee Won
- School of Mechanical Engineering, Korea University, Seoul, 02841, South Korea
- Next&Bio Inc., Seoul, 02841, South Korea
| | - Dong-Hee Choi
- School of Mechanical Engineering, Korea University, Seoul, 02841, South Korea
- Next&Bio Inc., Seoul, 02841, South Korea
| | - Yong Hun Jung
- School of Mechanical Engineering, Korea University, Seoul, 02841, South Korea
- Next&Bio Inc., Seoul, 02841, South Korea
| | | | - Yesl Jun
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
- Drug Discovery Platform Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | - Jin-A Kim
- School of Mechanical Engineering, Korea University, Seoul, 02841, South Korea.
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul, 02841, South Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea.
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea.
| | - Sang-Hoon Lee
- Department of Bio-convergence Engineering, Korea University, Seoul, 02841, South Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
6
|
Reedich EJ, Genry LT, Singer MA, Cavarsan CF, Mena Avila E, Boudreau DM, Brennan MC, Garrett AM, Dowaliby L, Detloff MR, Quinlan KA. Enhanced nociceptive behavior and expansion of associated primary afferents in a rabbit model of cerebral palsy. J Neurosci Res 2022; 100:1951-1966. [PMID: 35839339 PMCID: PMC9388620 DOI: 10.1002/jnr.25108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 11/07/2022]
Abstract
Spastic cerebral palsy (CP) is a movement disorder marked by hypertonia and hyperreflexia; the most prevalent comorbidity is pain. Since spinal nociceptive afferents contribute to both the sensation of painful stimuli as well as reflex circuits involved in movement, we investigated the relationship between prenatal hypoxia-ischemia (HI) injury which can cause CP, and possible changes in spinal nociceptive circuitry. To do this, we examined nociceptive afferents and mechanical and thermal sensitivity of New Zealand White rabbit kits after prenatal HI or a sham surgical procedure. As described previously, a range of motor deficits similar to spastic CP was observed in kits born naturally after HI (40 min at ~70%-80% gestation). We found that HI caused an expansion of peptidergic afferents (marked by expression of calcitonin gene-related peptide) in both the superficial and deep dorsal horn at postnatal day (P)5. Non-peptidergic nociceptive afferent arborization (labeled by isolectin B4) was unaltered in HI kits, but overlap of the two populations (peptidergic and non-peptidergic nociceptors) was increased by HI. Density of glial fibrillary acidic protein was unchanged within spinal cord white matter regions important in nociceptive transmission at P5. We found that mechanical and thermal nociception was enhanced in HI kits even in the absence of motor deficits. These findings suggest that prenatal HI injury impacts spinal sensory pathways in addition to the more well-established disruptions to descending motor circuits. In conclusion, changes to spinal nociceptive circuitry could disrupt spinal reflexes and contribute to pain experienced by individuals with CP.
Collapse
Affiliation(s)
- Emily J Reedich
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Landon T Genry
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, Rhode Island, USA
| | - Meredith A Singer
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Clarissa Fantin Cavarsan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Elvia Mena Avila
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Daphne M Boudreau
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Michael C Brennan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Alyssa M Garrett
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
- Rhode Island Institutional Development Award (IDeA) Network for Biomedical Research Excellence (INBRE) Summer Undergraduate Research Fellowship (SURF) Program, University of Rhode Island, Kingston, Rhode Island, USA
| | - Lisa Dowaliby
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Megan R Detloff
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Katharina A Quinlan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
7
|
Central Neuropathic Pain Syndromes: Current and Emerging Pharmacological Strategies. CNS Drugs 2022; 36:483-516. [PMID: 35513603 DOI: 10.1007/s40263-022-00914-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 12/31/2022]
Abstract
Central neuropathic pain is caused by a disease or lesion of the brain or spinal cord. It is difficult to predict which patients will develop central pain syndromes after a central nervous system injury, but depending on the etiology, lifetime prevalence may be greater than 50%. The resulting pain is often highly distressing and difficult to treat, with no specific treatment guidelines currently available. This narrative review discusses mechanisms contributing to central neuropathic pain, and focuses on pharmacological approaches for managing common central neuropathic pain conditions such as central post-stroke pain, spinal cord injury-related pain, and multiple sclerosis-related neuropathic pain. Tricyclic antidepressants, serotonin-norepinephrine reuptake inhibitors, and gabapentinoids have some evidence for efficacy in central neuropathic pain. Medications from other pharmacologic classes may also provide pain relief, but current evidence is limited. Certain non-pharmacologic approaches, neuromodulation in particular, may be helpful in refractory cases. Emerging data suggest that modulating the primary afferent input may open new horizons for the treatment of central neuropathic pain. For most patients, effective treatment will likely require a multimodal therapy approach.
Collapse
|
8
|
Harman KA, DeVeau KM, Squair JW, West CR, Krassioukov AV, Magnuson DSK. Effects of early exercise training on the severity of autonomic dysreflexia following incomplete spinal cord injury in rodents. Physiol Rep 2021; 9:e14969. [PMID: 34337884 PMCID: PMC8327165 DOI: 10.14814/phy2.14969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/04/2022] Open
Abstract
Hemodynamic instability and cardiovascular (CV) dysfunction are hallmarks of patients living with cervical and high thoracic spinal cord injuries (SCI). Individuals experience bouts of autonomic dysreflexia (AD) and persistent hypotension which hamper the activities of daily living. Despite the widespread use of exercise training to improve health and CV function after SCI, little is known about how different training modalities impact hemodynamic stability and severity of AD in a model of incomplete SCI. In this study, we used implantable telemetry devices to assess animals with T2 contusions following 3.5 weeks of exercise training initiated 8 days post-injury: passive hindlimb cycling (T2-CYC, n = 5) or active forelimb swimming (T2-SW, n = 6). Uninjured and non-exercised SCI control groups were also included (CON, n = 6; T2-CON, n = 7; T10-CON, n = 6). Five weeks post-injury, both T2-CON and T2-CYC presented with resting hypotension compared to uninjured CON and T10-CON groups; no differences were noted in resting blood pressure in T2-SW versus CON and T10-CON. Furthermore, pressor responses to colorectal distention (AD) were larger in all T2-injured groups compared to T10-CON, and were not attenuated by either form of exercise training. Interestingly, when T2-injured animals were re-stratified based on terminal BBB scores (regardless of training group), animals with limited hindlimb recovery (T2-LOW, n = 7) had more severe AD responses. Our results suggest that the spontaneous recovery of locomotor and autonomic function after severe but incomplete T2 SCI also influences the severity of AD, and that short periods (3.5 weeks) of passive hindlimb cycling or active forelimb swimming are ineffective in this model.
Collapse
Affiliation(s)
- Kathryn A. Harman
- Department of Health & Sport SciencesUniversity of LouisvilleLouisvilleKYUSA
- Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Kathryn M. DeVeau
- Department of Anatomy and Cell BiologyGeorge Washington UniversityWashingtonD.C.USA
| | - Jordan W. Squair
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaVancouverBCCanada
| | - Christopher R. West
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaVancouverBCCanada
| | - Andrei V. Krassioukov
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaVancouverBCCanada
- GF Strong Rehabilitation CentreVancouver Health AuthorityVancouverCanada
| | - David S. K. Magnuson
- Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKYUSA
- Department of Neurological SurgeryUniversity of LouisvilleLouisvilleKYUSA
| |
Collapse
|
9
|
Morrison D, Arcese AA, Parrish J, Gibbs K, Beaufort A, Herman P, Stein AB, Bloom O. Systemic gene expression profiles according to pain types in individuals with chronic spinal cord injury. Mol Pain 2021; 17:17448069211007289. [PMID: 33853401 PMCID: PMC8053765 DOI: 10.1177/17448069211007289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Pain affects most individuals with traumatic spinal cord injury (SCI). Major pain types after SCI are neuropathic or nociceptive, often experienced concurrently. Pain after SCI may be refractory to treatments and negatively affects quality of life. Previously, we analyzed whole blood gene expression in individuals with chronic SCI compared to able-bodied (AB) individuals. Most participants with SCI reported pain (N = 19/28). Here, we examined gene expression of participants with SCI by pain status. Compared to AB, participants with SCI with pain had 468 differentially expressed (DE) genes; participants without pain had 564 DE genes (FDR < 0.05). Among DE genes distinct to participants with SCI with pain, Gene Ontology Biological Process (GOBP) analysis showed upregulated genes were enriched in categories related to T cell activation or inflammation; downregulated genes were enriched in categories related to protein proteolysis and catabolism. Although most participants with pain reported multiple pain types concurrently, we performed a preliminary comparison of gene expression by worst pain problem type. Compared to AB, participants with SCI who ranked neuropathic (N = 9) as worst had one distinct DE gene (TMEM156); participants who ranked nociceptive (N = 10) as worst had 61 distinct DE genes (FDR < 0.05). In the nociceptive group, the GOBP category with the lowest P-value identified among upregulated genes was “positive regulation of T cell activation”; among downregulated genes it was “receptor tyrosine kinase binding”. An exploratory comparison of pain groups by principal components analysis also showed that the nociceptive group was enriched in T-cell related genes. A correlation analysis identified genes significantly correlated with pain intensity in the neuropathic or nociceptive groups (N = 145, 65, respectively, Pearson’s correlation r > 0.8). While this pilot study highlights challenges of identifying gene expression profiles that correlate with specific types of pain in individuals with SCI, it suggests that T-cell signaling should be further investigated in this context.
Collapse
Affiliation(s)
- Debra Morrison
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Anthony A Arcese
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Janay Parrish
- Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
| | - Katie Gibbs
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Department of Physical Medicine and Rehabilitation, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
| | - Andrew Beaufort
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Paige Herman
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Adam B Stein
- Department of Physical Medicine and Rehabilitation, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
| | - Ona Bloom
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Department of Physical Medicine and Rehabilitation, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
| |
Collapse
|
10
|
Minic Z, O’Leary DS, Reynolds CA. Purinergic receptor antagonism: A viable strategy for the management of autonomic dysreflexia? Auton Neurosci 2021; 230:102741. [PMID: 33220530 PMCID: PMC8855366 DOI: 10.1016/j.autneu.2020.102741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022]
Abstract
The purinergic receptor ligand, ATP, may participate in reflex induced vasoconstriction through sympathetic efferent and sensory afferent mechanisms. However, the role of the purinergic system in contributing to autonomic dysreflexia following spinal cord injury is unclear. The present study investigates the involvement of P2X receptors in contributing to pressor responses during autonomic dysreflexia. Twenty rats were subjected to spinal cord injury and 24 h later hemodynamic responses to colorectal distension were recorded. Animals were randomized to receive intravenous administration of the P2X receptor antagonist, NF023, or vehicle control. The data indicate that NF023 attenuates pressor responses to colorectal distension.
Collapse
Affiliation(s)
- Zeljka Minic
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA; Department of Physiology, Immunology and Pathophysiology, University of Rijeka Medical School, Rijeka, Croatia.
| | - Donal S. O’Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Christian A. Reynolds
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan, USA,Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
11
|
Bernal L, Cisneros E, Roza C. Activation of the regeneration-associated gene STAT3 and functional changes in intact nociceptors after peripheral nerve damage in mice. Eur J Pain 2021; 25:886-901. [PMID: 33345380 DOI: 10.1002/ejp.1718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND In the context of neuropathic pain, the contribution of regeneration to the development of positive symptoms is not completely understood. Several efforts have been done to described changes in axotomized neurons, however, there is scarce data on changes occurring in intact neurons, despite experimental evidence of functional changes. To address this issue, we analysed by immunohistochemistry the presence of phosphorylated signal transducer and activator of transcription 3 (pSTAT3), an accepted marker of regeneration, within DRGs where axotomized neurons were retrogradely labelled following peripheral nerve injury. Likewise, we have characterized abnormal electrophysiological properties in intact fibres after partial nerve injury. METHODS/RESULTS We showed that induction of pSTAT3 in sensory neurons was similar after partial or total transection of the sciatic nerve and to the same extent within axotomized and non-axotomized neurons. We also examined pSTAT3 presence on non-peptidergic and peptidergic nociceptors. Whereas the percentage of neurons marked by IB4 decrease after injury, the proportion of CGRP neurons did not change, but its expression switched from small- to large-diameter neurons. Besides, the percentage of CGRP+ neurons expressing pSTAT3 increased significantly 2.5-folds after axotomy, preferentially in neurons with large diameters. Electrophysiological recordings showed that after nerve damage, most of the neurons with ectopic spontaneous activity (39/46) were non-axotomized C-fibres with functional receptive fields in the skin far beyond the site of damage. CONCLUSIONS Neuronal regeneration after nerve injury, likely triggered from the site of injury, may explain the abnormal functional properties gained by intact neurons, reinforcing their role in neuropathic pain. SIGNIFICANCE Positive symptoms in patients with peripheral neuropathies correlate to abnormal functioning of different subpopulations of primary afferents. Peripheral nerve damage triggers regenerating programs in the cell bodies of axotomized but also in non-axotomized nociceptors which is in turn, develop abnormal spontaneous and evoked discharges. Therefore, intact nociceptors have a significant role in the development of neuropathic pain due to their hyperexcitable peripheral terminals. Therapeutical targets should focus on inhibiting peripheral hyperexcitability in an attempt to limit peripheral and central sensitization.
Collapse
Affiliation(s)
- Laura Bernal
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, Spain
| | - Elsa Cisneros
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, Spain.,Health Sciences School, Centro Universitario Internacional de Madrid (CUNIMAD), Madrid, Spain.,Health Sciences School, Universidad Internacional de La Rioja (UNIR), Logroño, Spain
| | - Carolina Roza
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, Spain
| |
Collapse
|
12
|
Zheng H, Lim JY, Seong JY, Hwang SW. The Role of Corticotropin-Releasing Hormone at Peripheral Nociceptors: Implications for Pain Modulation. Biomedicines 2020; 8:biomedicines8120623. [PMID: 33348790 PMCID: PMC7766747 DOI: 10.3390/biomedicines8120623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Peripheral nociceptors and their synaptic partners utilize neuropeptides for signal transmission. Such communication tunes the excitatory and inhibitory function of nociceptor-based circuits, eventually contributing to pain modulation. Corticotropin-releasing hormone (CRH) is the initiator hormone for the conventional hypothalamic-pituitary-adrenal axis, preparing our body for stress insults. Although knowledge of the expression and functional profiles of CRH and its receptors and the outcomes of their interactions has been actively accumulating for many brain regions, those for nociceptors are still under gradual investigation. Currently, based on the evidence of their expressions in nociceptors and their neighboring components, several hypotheses for possible pain modulations are emerging. Here we overview the historical attention to CRH and its receptors on the peripheral nociception and the recent increases in information regarding their roles in tuning pain signals. We also briefly contemplate the possibility that the stress-response paradigm can be locally intrapolated into intercellular communication that is driven by nociceptor neurons. Such endeavors may contribute to a more precise view of local peptidergic mechanisms of peripheral pain modulation.
Collapse
Affiliation(s)
- Haiyan Zheng
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (H.Z.); (J.Y.L.); (J.Y.S.)
| | - Ji Yeon Lim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (H.Z.); (J.Y.L.); (J.Y.S.)
| | - Jae Young Seong
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (H.Z.); (J.Y.L.); (J.Y.S.)
| | - Sun Wook Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (H.Z.); (J.Y.L.); (J.Y.S.)
- Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea
- Correspondence: ; Tel.: +82-2-2286-1204; Fax: +82-2-925-5492
| |
Collapse
|
13
|
O'Reilly ML, Tom VJ. Neuroimmune System as a Driving Force for Plasticity Following CNS Injury. Front Cell Neurosci 2020; 14:187. [PMID: 32792908 PMCID: PMC7390932 DOI: 10.3389/fncel.2020.00187] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Following an injury to the central nervous system (CNS), spontaneous plasticity is observed throughout the neuraxis and affects multiple key circuits. Much of this spontaneous plasticity can elicit beneficial and deleterious functional outcomes, depending on the context of plasticity and circuit affected. Injury-induced activation of the neuroimmune system has been proposed to be a major factor in driving this plasticity, as neuroimmune and inflammatory factors have been shown to influence cellular, synaptic, structural, and anatomical plasticity. Here, we will review the mechanisms through which the neuroimmune system mediates plasticity after CNS injury. Understanding the role of specific neuroimmune factors in driving adaptive and maladaptive plasticity may offer valuable therapeutic insight into how to promote adaptive plasticity and/or diminish maladaptive plasticity, respectively.
Collapse
Affiliation(s)
- Micaela L O'Reilly
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Veronica J Tom
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
14
|
Spinal cord injury leads to atrophy in pelvic ganglia neurons. Exp Neurol 2020; 328:113260. [PMID: 32109447 DOI: 10.1016/j.expneurol.2020.113260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/27/2020] [Accepted: 02/24/2020] [Indexed: 11/21/2022]
Abstract
Among the most devastating sequelae of spinal cord injury (SCI) are genitourinary and gastrointestinal dysfunctions. Post-ganglionic neurons in pelvic ganglia (PG) directly innervate and regulate the function of the lower urinary tract (LUT), bowel, and sexual organs. A better understanding of how SCI affects PG neurons is essential to develop therapeutic strategies for devastating gastrointestinal and genitourinary complications ensuing after injury. To evaluate the impact of SCI on the morphology of PG neurons, we used a well- characterized rat model of upper thoracic SCI (T3 transection) that causes severe autonomic dysfunction. Using immunohistochemistry for neuronal markers, the neuronal profile size frequency distribution was quantified at one-, four-, and eight-weeks post SCI using recursive translation. Our investigation revealed an SCI-dependent leftward shift in neuronal size (i.e. atrophy), observable as early as one-week post injury. However, this effect was more pronounced at four and eight-weeks post-SCI. These findings demonstrate the first characterization of SCI-associated temporal changes in morphology of PG neurons and warrant further investigation to facilitate development of therapeutic strategies for recovery of autonomic functions following SCI.
Collapse
|
15
|
Sarafis ZK, Monga AK, Phillips AA, Krassioukov AV. Is Technology for Orthostatic Hypotension Ready for Primetime? PM R 2019; 10:S249-S263. [PMID: 30269810 DOI: 10.1016/j.pmrj.2018.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 01/29/2023]
Abstract
Spinal cord injury (SCI) often results in the devastating loss of motor, sensory, and autonomic function. After SCI, the interruption of descending sympathoexcitatory pathways disrupts supraspinal control of blood pressure (BP). A common clinical consequence of cardiovascular dysfunction after SCI is orthostatic hypotension (OH), a debilitating condition characterized by rapid profound decreases in BP when assuming an upright posture. OH can result in a diverse array of insidious and pernicious health consequences. Acute effects of OH include decreased cardiac filling, cerebral hypoperfusion, and associated presyncopal symptoms such as lightheadedness and dizziness. Over the long term, repetitive exposure to OH is associated with a drastically increased prevalence of heart attack and stroke, which are leading causes of death in those with SCI. Current recommendations for managing BP after SCI primarily include pharmacologic interventions with prolonged time to effect. Because most episodes of OH occur in less than 3 minutes, this delay in action often renders most pharmacologic interventions ineffective. New innovative technologies such as epidural and transcutaneous spinal cord stimulation are being explored to solve this problem. It might be possible to electrically stimulate sympathetic circuitry caudal to the injury and elicit rapid modulation of BP to manage OH. This review describes autonomic control of the cardiovascular system before injury, resulting cardiovascular consequences after SCI such as OH, and the clinical assessment tools for evaluating autonomic dysfunction after SCI. In addition, current approaches for clinically managing OH are outlined, and new promising interventions are described for managing this condition.
Collapse
Affiliation(s)
- Zoe K Sarafis
- ICORD-BSCC, University of British Columbia, Vancouver, BC, Canada(∗)
| | - Aaron K Monga
- ICORD-BSCC, University of British Columbia, Vancouver, BC, Canada(†)
| | - Aaron A Phillips
- Departments of Physiology and Pharmacology, Clinical Neurosciences, Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada(‡)
| | - Andrei V Krassioukov
- ICORD-BSCC; Experimental Medicine Program; Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia; GF Strong Rehabilitation Center, Vancouver Coastal Health; 818 West 10th Avenue, Vancouver, BC, Canada, V5Z1M9(§).
| |
Collapse
|
16
|
Katzelnick CG, Weir JP, Jones A, Galea M, Dyson-Hudson TA, Kirshblum SC, Wecht JM. Blood Pressure Instability in Persons With SCI: Evidence From a 30-Day Home Monitoring Observation. Am J Hypertens 2019; 32:938-944. [PMID: 31125393 DOI: 10.1093/ajh/hpz089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND To determine the degree of blood pressure instability over a 30-day home observation in participants with spinal cord injury grouped by level of injury pertaining to cardiovascular autonomic regulation. METHODS This is an observational study completed at the Kessler Foundation and James J. Peters Veterans Medical Center. Seventy-two participants with tetraplegia (C1-T1), 13 with high thoracic (T2-T4), and 28 with low thoracic (T5-T12) injury participated in this study. Participants were asked to record their blood pressure using an ambulatory blood pressure monitor three times a day for 30 days. RESULTS The number of blood pressure fluctuations was significantly increased in the tetraplegia group compared with the paraplegia groups. Age and duration of injury contributed to an increase in the observation of 30-day blood pressure instability; however, completeness of injury did not. CONCLUSION The data indicate significant blood pressure instability that may not be exclusive to persons with tetraplegia; in fact, individuals with low thoracic injuries demonstrated severe blood pressure fluctuations. The use of a monitor at home for an extended period may help document dangerous and extreme fluctuations in blood pressure and should be considered an important adjunctive clinical practice for tracking of the secondary consequences in the spinal cord injury population.
Collapse
Affiliation(s)
- Caitlyn G Katzelnick
- Spinal Cord Injury Research, James J Peters VA Medical Center, Bronx, New York, USA
- Kessler Foundation, West Orange, New Jersey, USA
| | - Joseph P Weir
- Department of Health, Sport, and Exercise Science, University of Kansas, Lawrence, Kansas, USA
| | - April Jones
- Spinal Cord Injury Research, James J Peters VA Medical Center, Bronx, New York, USA
| | - Marinella Galea
- Spinal Cord Injury Research, James J Peters VA Medical Center, Bronx, New York, USA
- Department of Rehabilitation Medicine, the Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Trevor A Dyson-Hudson
- Kessler Foundation, West Orange, New Jersey, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Steven C Kirshblum
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Spinal Cord Injury Rehabilitation, Kessler Institute for Rehabilitation, West Orange, New Jersey, USA
| | - Jill M Wecht
- Spinal Cord Injury Research, James J Peters VA Medical Center, Bronx, New York, USA
- Department of Rehabilitation Medicine, the Icahn School of Medicine, Mount Sinai, New York, New York, USA
| |
Collapse
|
17
|
Reynolds CA, O'Leary DS, Ly C, Smith SA, Minic Z. Development of a decerebrate model for investigating mechanisms mediating viscero-sympathetic reflexes in the spinalized rat. Am J Physiol Heart Circ Physiol 2019; 316:H1332-H1340. [PMID: 30875256 DOI: 10.1152/ajpheart.00724.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autonomic dysreflexia (AD) often occurs in individuals living with spinal cord injury (SCI) and is characterized by uncontrolled hypertension in response to otherwise innocuous stimuli originating below the level of the spinal lesion. Visceral stimulation is a predominant cause of AD in humans and effectively replicates the phenotype in rodent models of SCI. Direct assessment of sympathetic responses to viscerosensory stimulation in spinalized animals is challenging and requires invasive surgical procedures necessitating the use of anesthesia. However, administration of anesthesia markedly affects viscerosensory reactivity, and the effects are exacerbated following spinal cord injury (SCI). Therefore, the major goal of the present study was to develop a decerebrate rodent preparation to facilitate quantification of sympathetic responses to visceral stimulation in the spinalized rat. Such a preparation enables the confounding effect of anesthesia to be eliminated. Sprague-Dawley rats were subjected to SCI at the fourth thoracic segment. Four weeks later, renal sympathetic nerve activity (RSNA) responses to visceral stimuli were quantified in urethane/chloralose-anesthetized and decerebrate preparations. Visceral stimulation was elicited via colorectal distension (CRD) for 1 min. In the decerebrate preparation, CRD produced dose-dependent increases in mean arterial pressure (MAP) and RSNA and dose-dependent decreases in heart rate (HR). These responses were significantly greater in magnitude among decerebrate animals when compared with urethane/chloralose-anesthetized controls and were markedly attenuated by the administration of urethane/chloralose anesthesia after decerebration. We conclude that the decerebrate preparation enables high-fidelity quantification of neuronal reactivity to visceral stimulation in spinalized rats. NEW & NOTEWORTHY In animal models commonly used to study spinal cord injury, quantification of sympathetic responses is particularly challenging due to the increased susceptibility of spinal reflex circuits to the anesthetic agents generally required for experimentation. This constitutes a major limitation to understanding the mechanisms mediating regionally specific neuronal responses to visceral activation in chronically spinalized animals. In the present study, we describe a spinalized, decerebrate rodent preparation that facilitates quantification of sympathetic reactivity in response to visceral stimuli following spinal cord injury. This preparation enables reliable and reproducible quantification of viscero-sympathetic reflex responses resembling those elicited in conscious animals and may provide added utility for preclinical evaluation of neuropharmacological agents for the management of autonomic dysreflexia.
Collapse
Affiliation(s)
- Christian A Reynolds
- Department of Emergency Medicine, Wayne State University School of Medicine , Detroit, Michigan.,Cardiovascular Research Institute, Wayne State University School of Medicine , Detroit, Michigan
| | - Donal S O'Leary
- Cardiovascular Research Institute, Wayne State University School of Medicine , Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan
| | - Cheng Ly
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University , Richmond, Virginia
| | - Scott A Smith
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas.,Department of Health Care Sciences, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Zeljka Minic
- Department of Emergency Medicine, Wayne State University School of Medicine , Detroit, Michigan.,Cardiovascular Research Institute, Wayne State University School of Medicine , Detroit, Michigan
| |
Collapse
|
18
|
Hunter DV, Holland SD, Ramer MS. Preserved Adrenal Function After Lumbar Spinal Cord Transection Augments Low Pressure Bladder Activity in the Rat. Front Physiol 2018; 9:1239. [PMID: 30233411 PMCID: PMC6130007 DOI: 10.3389/fphys.2018.01239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/15/2018] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) disconnects supraspinal micturition centers from the lower urinary tract resulting in immediate and long-term changes in bladder structure and function. While cervical and high thoracic SCI have a greater range of systemic effects, clinical data suggest that those with lower (suprasacral) injuries develop poorer bladder outcomes. Here we assess the impact of SCI level on acute changes in bladder activity. We used two SCI models, T3 and L2 complete transections in male Wistar rats, and compared bladder pressure fluctuations to those of naïve and bladder-denervated animals. By 2 days after L2 transection, but not T3 transection or bladder denervation, small amplitude rhythmic contractions (1 mmHg, 0.06 Hz) were present at low intravesical pressures (<6 mmHg); these were still present 1 month following injury, and at 3 months, bladders from L2 SCI animals were significantly larger than those from T3 SCI or naïve animals. Low-pressure contractions were unaffected by blocking ganglionic signaling or bladder denervation at the time of measurements. L2 (and sham surgery) but not T3 transection preserves supraspinal adrenal control, and by ELISA we show lower plasma adrenal catecholamine concentration in the latter. When an adrenalectomy preceded the L2 transection, the aberrant low-pressure contractions more closely resembled those after T3 transection, indicating that the increased bladder activity after lumbar SCI is mediated by preserved adrenal function. Since ongoing low-pressure contractions may condition the detrusor and exacerbate detrusor-sphincter dyssynergia, moderating bladder catecholamine signaling may be a clinically viable intervention strategy.
Collapse
Affiliation(s)
- Diana V Hunter
- International Collaboration on Repair Discoveries, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Seth D Holland
- International Collaboration on Repair Discoveries, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Matt S Ramer
- International Collaboration on Repair Discoveries, Department of Zoology, Faculty of Science, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Wang Y, Ye F, Huang C, Xue F, Li Y, Gao S, Qiu Z, Li S, Chen Q, Zhou H, Song Y, Huang W, Tan W, Wang Z. Bioinformatic Analysis of Potential Biomarkers for Spinal Cord-injured Patients with Intractable Neuropathic Pain. Clin J Pain 2018; 34:825-830. [PMID: 29547407 PMCID: PMC6078488 DOI: 10.1097/ajp.0000000000000608] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 10/05/2017] [Accepted: 10/22/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Neuropathic pain is one of the common complications after spinal cord injury (SCI), affecting individuals' quality of life. The molecular mechanism for neuropathic pain after SCI is still unclear. We aimed to discover potential genes and microRNAs (miRNAs) related to neuropathic pain by the bioinformatics method. METHODS Microarray data of GSE69901 were obtained from Gene Expression Omnibus (GEO) database. Peripheral blood samples from individuals with or without neuropathic pain after SCI were collected. Twelve samples from individuals with neuropathic pain and 13 samples from individuals without pain as controls were included in the downloaded microarray. Differentially expressed genes (DEGs) between the neuropathic pain group and the control group were detected using the GEO2R online tool. Functional enrichment analysis of DEGs was performed using the DAVID database. Protein-protein interaction network was constructed from the STRING database. MiRNAs targeting these DEGs were obtained from the miRNet database. A merged miRNA-DEG network was constructed and analyzed with Cytoscape software. RESULTS In total, 1134 DEGs were identified between individuals with or without neuropathic pain (case and control), and 454 biological processes were enriched. We identified 4 targeted miRNAs, including mir-204-5p, mir-519d-3p, mir-20b-5p, mir-6838-5p, which may be potential biomarkers for SCI patients. CONCLUSION Protein modification and regulation of the biological process of the central nervous system may be a risk factor in SCI. Certain genes and miRNAs may be potential biomarkers for the prediction of and potential targets for the prevention and treatment of neuropathic pain after SCI.
Collapse
Affiliation(s)
- Yimin Wang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
- Department of Anesthesiology, Guangdong Second Provincial General Hospital, Guangzhou
| | - Fang Ye
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
| | - Chanyan Huang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
| | - Faling Xue
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
| | - Yingyuan Li
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
| | - Shaowei Gao
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
| | - Zeting Qiu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Si Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Qinchang Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Huaqiang Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Yiyan Song
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
| | - Wulin Tan
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
| | - Zhongxing Wang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
| |
Collapse
|
20
|
Shiao R, Lee-Kubli CA. Neuropathic Pain After Spinal Cord Injury: Challenges and Research Perspectives. Neurotherapeutics 2018; 15:635-653. [PMID: 29736857 PMCID: PMC6095789 DOI: 10.1007/s13311-018-0633-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuropathic pain is a debilitating consequence of spinal cord injury (SCI) that remains difficult to treat because underlying mechanisms are not yet fully understood. In part, this is due to limitations of evaluating neuropathic pain in animal models in general, and SCI rodents in particular. Though pain in patients is primarily spontaneous, with relatively few patients experiencing evoked pains, animal models of SCI pain have primarily relied upon evoked withdrawals. Greater use of operant tasks for evaluation of the affective dimension of pain in rodents is needed, but these tests have their own limitations such that additional studies of the relationship between evoked withdrawals and operant outcomes are recommended. In preclinical SCI models, enhanced reflex withdrawal or pain responses can arise from pathological changes that occur at any point along the sensory neuraxis. Use of quantitative sensory testing for identification of optimal treatment approach may yield improved identification of treatment options and clinical trial design. Additionally, a better understanding of the differences between mechanisms contributing to at- versus below-level neuropathic pain and neuropathic pain versus spasticity may shed insights into novel treatment options. Finally, the role of patient characteristics such as age and sex in pathogenesis of neuropathic SCI pain remains to be addressed.
Collapse
Affiliation(s)
- Rani Shiao
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines, La Jolla, California, 92073, USA
| | - Corinne A Lee-Kubli
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines, La Jolla, California, 92073, USA.
| |
Collapse
|
21
|
Botulinum Toxin for Central Neuropathic Pain. Toxins (Basel) 2018; 10:toxins10060224. [PMID: 29857568 PMCID: PMC6024683 DOI: 10.3390/toxins10060224] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 11/17/2022] Open
Abstract
Botulinum toxin (BTX) is widely used to treat muscle spasticity by acting on motor neurons. Recently, studies of the effects of BTX on sensory nerves have been reported and several studies have been conducted to evaluate its effects on peripheral and central neuropathic pain. Central neuropathic pain includes spinal cord injury-related neuropathic pain, post-stroke shoulder pain, multiple sclerosis-related pain, and complex regional pain syndrome. This article reviews the mechanism of central neuropathic pain and assesses the effect of BTX on central neuropathic pain.
Collapse
|
22
|
Biering-Sørensen F, Biering-Sørensen T, Liu N, Malmqvist L, Wecht JM, Krassioukov A. Alterations in cardiac autonomic control in spinal cord injury. Auton Neurosci 2018; 209:4-18. [DOI: 10.1016/j.autneu.2017.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 01/30/2017] [Accepted: 02/14/2017] [Indexed: 01/22/2023]
|
23
|
Phillips AA, Squair JW, Sayenko DG, Edgerton VR, Gerasimenko Y, Krassioukov AV. An Autonomic Neuroprosthesis: Noninvasive Electrical Spinal Cord Stimulation Restores Autonomic Cardiovascular Function in Individuals with Spinal Cord Injury. J Neurotrauma 2017; 35:446-451. [PMID: 28967294 PMCID: PMC5793952 DOI: 10.1089/neu.2017.5082] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite autonomic dysfunction after spinal cord injury (SCI) being the major cause of death and a top health priority, the clinical management options for these conditions are limited to drugs with delayed onset and nonpharmacological interventions with equivocal effectiveness. We tested the capacity of electrical stimulation, applied transcutaneously over the spinal cord, to manage autonomic dysfunction in the form of orthostatic hypotension after SCI. We assessed beat-by-beat blood pressure (BP), stroke volume, and cardiac contractility (dP/dt; Finometer), as well as cerebral blood flow (transcranial Doppler) in 5 individuals with motor-complete SCI (4 cervical, 1 thoracic) during an orthostatic challenge with and without transcutaneous electrical stimulation applied at the TVII level. During the orthostatic challenge, all individuals experienced hypotension characterized by a 37 ± 4 mm Hg decrease in systolic BP, a 52 ± 10% reduction in cardiac contractility, and a 23 ± 6% reduction in cerebral blood flow (all p < 0.05), along with severe self-reported symptoms. Electrical stimulation completely normalized BP, cardiac contractility, cerebral blood flow, and abrogated all symptoms. Noninvasive transcutaneous electrical spinal cord stimulation may be a viable therapy for restoring autonomic cardiovascular control after SCI.
Collapse
Affiliation(s)
- Aaron A Phillips
- 1 ICORD-BSCC, University of British Columbia , Vancouver, British Columbia, Canada
| | - Jordan W Squair
- 1 ICORD-BSCC, University of British Columbia , Vancouver, British Columbia, Canada
| | - Dimitry G Sayenko
- 2 Department of Integrative Biology and Physiology, University of California , Los Angeles, Los Angeles, California
| | - V Reggie Edgerton
- 2 Department of Integrative Biology and Physiology, University of California , Los Angeles, Los Angeles, California.,3 Neurobiology, University of California , Los Angeles, Los Angeles, California.,4 Department of Neurosurgery, David Geffen School of Medicine, University of California , Los Angeles, Los Angeles, California.,5 Brain Research Institute, University of California , Los Angeles, Los Angeles, California
| | - Yury Gerasimenko
- 2 Department of Integrative Biology and Physiology, University of California , Los Angeles, Los Angeles, California.,6 Pavlov Institute of Physiology , Saint-Petersburg, Russia
| | - Andrei V Krassioukov
- 1 ICORD-BSCC, University of British Columbia , Vancouver, British Columbia, Canada
| |
Collapse
|
24
|
Keller A, Rees K, Prince D, Morehouse J, Shum-Siu A, Magnuson D. Dynamic "Range of Motion" Hindlimb Stretching Disrupts Locomotor Function in Rats with Moderate Subacute Spinal Cord Injuries. J Neurotrauma 2017; 34:2086-2091. [PMID: 28288544 DOI: 10.1089/neu.2016.4951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Joint contractures and spasticity are two common secondary complications of a severe spinal cord injury (SCI), which can significantly reduce quality of life, and stretching is one of the top strategies for rehabilitation of these complications. We have previously shown that a daily static stretching protocol administered to rats at either acute or chronic time points after a moderate or moderate-severe T10 SCI significantly disrupts their hindlimb locomotor function. The objective of the current study was to examine the effects of dynamic range of motion (ROM) stretching on the locomotor function of rats with SCI as an alternative to static stretching. Starting at 6 weeks post-injury (T10 moderate contusion) eight adult Sprague-Dawley rats were subjected to hindlimb stretching for 4 weeks. Our standard stretching protocol (six maneuvers to stretch the major hindlimb muscle groups) was modified from 1 min static stretch-and-hold at the end ROM of each stretch position to a dynamic 2 sec hold, 1 sec release rhythm repeated for a duration of 1 min. Four weeks of daily (5 days/week) dynamic stretching led to significant disruption of locomotor function as assessed by the Basso, Beattie, Bresnahan (BBB) Open Field Locomotor Scale and three-dimensional (3D) kinematic and gait analyses. In addition, we identified and analyzed an apparently novel hindlimb response to dynamic stretch that resembles human clonus. The results of the current study extend the observation of the stretching phenomenon to a new modality of stretching that is also commonly used in SCI rehabilitation. Although mechanisms and clinical relevance still need to be established, our findings continue to raise concerns that stretching as a therapy can potentially hinder aspects of locomotor recovery.
Collapse
Affiliation(s)
- Anastasia Keller
- 1 Department of Physiology, University of Louisville , Louisville, Kentucky.,2 Kentucky Spinal Cord Injury Research Center, University of Louisville , Louisville, Kentucky
| | - Kathlene Rees
- 3 J.B. Speed School of Engineering, Department of Bioengineering, University of Louisville , Louisville, Kentucky
| | - Daniella Prince
- 2 Kentucky Spinal Cord Injury Research Center, University of Louisville , Louisville, Kentucky.,4 Department of Neurological Surgery, University of Louisville , Louisville, Kentucky
| | - Johnny Morehouse
- 2 Kentucky Spinal Cord Injury Research Center, University of Louisville , Louisville, Kentucky.,4 Department of Neurological Surgery, University of Louisville , Louisville, Kentucky
| | - Alice Shum-Siu
- 2 Kentucky Spinal Cord Injury Research Center, University of Louisville , Louisville, Kentucky.,4 Department of Neurological Surgery, University of Louisville , Louisville, Kentucky
| | - David Magnuson
- 2 Kentucky Spinal Cord Injury Research Center, University of Louisville , Louisville, Kentucky.,4 Department of Neurological Surgery, University of Louisville , Louisville, Kentucky
| |
Collapse
|
25
|
Kadekawa K, Yoshizawa T, Wada N, Shimizu T, Majima T, Tyagi P, de Groat WC, Sugaya K, Yoshimura N. Effects of liposome-based local suppression of nerve growth factor in the bladder on autonomic dysreflexia during urinary bladder distention in rats with spinal cord injury. Exp Neurol 2017; 291:44-50. [PMID: 28174025 DOI: 10.1016/j.expneurol.2017.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/11/2017] [Accepted: 01/31/2017] [Indexed: 12/26/2022]
Abstract
PURPOSE To examine (1) whether spinal cord injury (SCI) time-dependently increases the severity of autonomic dysreflexia (AD) and expression levels of bladder nerve growth factor (NGF) protein, and (2) whether local suppression of NGF in the bladder improves SCI-induced AD in rats. MATERIALS AND METHODS SCI was produced by the transection of the T2/3 spinal cord in female Sprague-Dawley rats. At 4 or 8weeks after SCI, differences in the mean arterial blood pressure (ΔMAP) and heart rate (ΔMHR) during graded increases in intravesical pressure to 20, 40 and 60cm H2O from those before bladder distention and NGF protein levels in the bladder wall were evaluated in spinal intact and SCI rats under urethane anesthesia. Seven weeks after SCI liposome-NGF antisense conjugates were administered intravesically to the animals. At 1week after intravesical treatment (8weeks after SCI), ΔMAP and ΔMHR during bladder distention and bladder NGF protein expression were evaluated. RESULTS The ΔMAP and ΔMHR were increased in a graded manner in response to bladder distention at intravesical pressures of 20, 40 and 60cm H2O in SCI rats. These AD-like cardiovascular responses and NGF protein expression in the bladder mucosal and muscle layers were increased after SCI in a time-dependent manner. The liposome-NGF antisense treatment significantly reduced the NGF protein overexpression in the mucosal layer of SCI rat bladder and reduced ΔMAP and ΔMHR elicited by bladder distention. CONCLUSIONS These results indicate that the duration of the post-SCI recovery period affects the severity of AD induced by bladder distention as well as the level of bladder NGF protein, and that local suppression of NGF expression in the bladder reduces SCI-induced AD. Thus, Intravesical application of liposome-NGF antisense conjugates can be a new effective therapy for bladder distention-induced AD after SCI.
Collapse
Affiliation(s)
- Katsumi Kadekawa
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Southern Knights' Laboratory, Okinawa, Japan; Okinawa Kyodo Hospital, Okinawa, Japan
| | - Tsuyoshi Yoshizawa
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Naoki Wada
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Takahiro Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tsuyoshi Majima
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William C de Groat
- Department of Pharmacology & Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Pharmacology & Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
26
|
Walters ET. How is chronic pain related to sympathetic dysfunction and autonomic dysreflexia following spinal cord injury? Auton Neurosci 2017; 209:79-89. [PMID: 28161248 DOI: 10.1016/j.autneu.2017.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/29/2022]
Abstract
Autonomic dysreflexia (AD) and neuropathic pain occur after severe injury to higher levels of the spinal cord. Mechanisms underlying these problems have rarely been integrated in proposed models of spinal cord injury (SCI). Several parallels suggest significant overlap of these mechanisms, although the relationships between sympathetic function (dysregulated in AD) and nociceptive function (dysregulated in neuropathic pain) are complex. One general mechanism likely to be shared is central sensitization - enhanced responsiveness and synaptic reorganization of spinal circuits that mediate sympathetic reflexes or that process and relay pain-related information to the brain. Another is enhanced sensory input to spinal circuits caused by extensive alterations in primary sensory neurons. Both AD and SCI-induced neuropathic pain are associated with spinal sprouting of peptidergic nociceptors that might increase synaptic input to the circuits involved in AD and SCI pain. In addition, numerous nociceptors become hyperexcitable, hypersensitive to chemicals associated with injury and inflammation, and spontaneously active, greatly amplifying sensory input to sensitized spinal circuits. As discussed with the aid of a preliminary functional model, these effects are likely to have mutually reinforcing relationships with each other, and with consequences of SCI-induced interruption of descending excitatory and inhibitory influences on spinal circuits, with SCI-induced inflammation in the spinal cord and in DRGs, and with activity in sympathetic fibers within DRGs that promotes local inflammation and spontaneous activity in sensory neurons. This model suggests that interventions selectively targeting hyperactivity in C-nociceptors might be useful for treating chronic pain and AD after high SCI.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
27
|
Popok DW, West CR, Hubli M, Currie KD, Krassioukov AV. Characterizing the Severity of Autonomic Cardiovascular Dysfunction after Spinal Cord Injury Using a Novel 24 Hour Ambulatory Blood Pressure Analysis Software. J Neurotrauma 2016; 34:559-566. [PMID: 27573583 DOI: 10.1089/neu.2016.4573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease is one of the leading causes of morbidity and mortality in the spinal cord injury (SCI) population. SCI may disrupt autonomic cardiovascular homeostasis, which can lead to persistent hypotension, irregular diurnal rhythmicity, and the development of autonomic dysreflexia (AD). There is currently no software available to perform automated detection and evaluation of cardiovascular autonomic dysfunction(s) such as those generated from 24 h ambulatory blood pressure monitoring (ABPM) recordings in the clinical setting. The objective of this study is to compare the efficacy of a novel 24 h ABPM Autonomic Dysfunction Detection Software against manual detection and to use the software to demonstrate the relationships between level of injury and the degree of autonomic cardiovascular impairment in a large cohort of individuals with SCI. A total of 46 individuals with cervical (group 1, n = 37) or high thoracic (group 2, n = 9) SCI participated in the study. Outcome measures included the frequency and severity of AD, frequency of hypotensive events, and diurnal variations in blood pressure and heart rate. There was good agreement between the software and manual detection of AD events (Bland-Altman limits of agreement = ±1.458 events). Cervical SCI presented with more frequent (p = 0.0043) and severe AD (p = 0.0343) than did high thoracic SCI. Cervical SCI exhibited higher systolic and diastolic blood pressure during the night and lower heart rate during the day than high thoracic SCI. In conclusion, our ABPM AD Detection Software was equally as effective in detecting the frequency and severity of AD and hypotensive events as manual detection, suggesting that this software can be used in the clinical setting to expedite ABPM analyses.
Collapse
Affiliation(s)
- David W Popok
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Christopher R West
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada .,2 School of Kinesiology, Faculty of Education, University of British Columbia , Vancouver, British Columbia, Canada
| | - Michele Hubli
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Katharine D Currie
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada .,3 Faculty of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia , Vancouver, British Columbia, Canada .,4 GF Strong Rehabilitation Centre , Vancouver Coastal Health, Vancouver, British Columbia, Canada
| |
Collapse
|
28
|
Kramer JLK, Minhas NK, Jutzeler CR, Erskine ELKS, Liu LJW, Ramer MS. Neuropathic pain following traumatic spinal cord injury: Models, measurement, and mechanisms. J Neurosci Res 2016; 95:1295-1306. [PMID: 27617844 DOI: 10.1002/jnr.23881] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023]
Abstract
Neuropathic pain following spinal cord injury (SCI) is notoriously difficult to treat and is a high priority for many in the SCI population. Resolving this issue requires animal models fidelic to the clinical situation in terms of injury mechanism and pain phenotype. This Review discusses the means by which neuropathic pain has been induced and measured in experimental SCI and compares these with human outcomes, showing that there is a substantial disconnection between experimental investigations and clinical findings in a number of features. Clinical injury level is predominantly cervical, whereas injury in the laboratory is modeled mainly at the thoracic cord. Neuropathic pain is primarily spontaneous or tonic in people with SCI (with a relatively smaller incidence of allodynia), but measures of evoked responses (to thermal and mechanical stimuli) are almost exclusively used in animals. There is even the question of whether pain per se has been under investigation in most experimental SCI studies rather than simply enhanced reflex activity with no affective component. This Review also summarizes some of the problems related to clinical assessment of neuropathic pain and how advanced imaging techniques may circumvent a lack of patient/clinician objectivity and discusses possible etiologies of neuropathic pain following SCI based on evidence from both clinical studies and animal models, with examples of cellular and molecular changes drawn from the entire neuraxis from primary afferent terminals to cortical sensory and affective centers. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- John L K Kramer
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nikita K Minhas
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine R Jutzeler
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Erin L K S Erskine
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa J W Liu
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Matt S Ramer
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
29
|
Emerging Role of Spinal Cord TRPV1 in Pain Exacerbation. Neural Plast 2016; 2016:5954890. [PMID: 26885404 PMCID: PMC4738952 DOI: 10.1155/2016/5954890] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/20/2015] [Accepted: 08/12/2015] [Indexed: 12/25/2022] Open
Abstract
TRPV1 is well known as a sensor ion channel that transduces a potentially harmful environment into electrical depolarization of the peripheral terminal of the nociceptive primary afferents. Although TRPV1 is also expressed in central regions of the nervous system, its roles in the area remain unclear. A series of recent reports on the spinal cord synapses have provided evidence that TRPV1 plays an important role in synaptic transmission in the pain pathway. Particularly, in pathologic pain states, TRPV1 in the central terminal of sensory neurons and interneurons is suggested to commonly contribute to pain exacerbation. These observations may lead to insights regarding novel synaptic mechanisms revealing veiled roles of spinal cord TRPV1 and may offer another opportunity to modulate pathological pain by controlling TRPV1. In this review, we introduce historical perspectives of this view and details of the recent promising results. We also focus on extended issues and unsolved problems to fully understand the role of TRPV1 in pathological pain. Together with recent findings, further efforts for fine analysis of TRPV1's plastic roles in pain synapses at different levels in the central nervous system will promote a better understanding of pathologic pain mechanisms and assist in developing novel analgesic strategies.
Collapse
|
30
|
Detloff MR, Quiros-Molina D, Javia AS, Daggubati L, Nehlsen AD, Naqvi A, Ninan V, Vannix KN, McMullen MK, Amin S, Ganzer PD, Houlé JD. Delayed Exercise Is Ineffective at Reversing Aberrant Nociceptive Afferent Plasticity or Neuropathic Pain After Spinal Cord Injury in Rats. Neurorehabil Neural Repair 2015; 30:685-700. [PMID: 26671215 DOI: 10.1177/1545968315619698] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neuropathic pain is a debilitating consequence of spinal cord injury (SCI) that correlates with sensory fiber sprouting. Recent data indicate that exercise initiated early after SCI prevents the development of allodynia and modulated nociceptive afferent plasticity. This study determined if delaying exercise intervention until pain is detected would similarly ameliorate established SCI-induced pain. Adult, female Sprague-Dawley rats with a C5 unilateral contusion were separated into SCI allodynic and SCI non-allodynic cohorts at 14 or 28 days postinjury when half of each group began exercising on automated running wheels. Allodynia, assessed by von Frey testing, was not ameliorated by exercise. Furthermore, rats that began exercise with no allodynia developed paw hypersensitivity within 2 weeks. At the initiation of exercise, the SCI Allodynia group displayed marked overlap of peptidergic and non-peptidergic nociceptive afferents in the C7 and L5 dorsal horn, while the SCI No Allodynia group had scant overlap. At the end of 5 weeks of exercise both the SCI Allodynia and SCI No Allodynia groups had extensive overlap of the 2 c-fiber types. Our findings show that exercise therapy initiated at early stages of allodynia is ineffective at attenuating neuropathic pain, but rather that it induces allodynia-aberrant afferent plasticity in previously pain-free rats. These data, combined with our previous results, suggest that there is a critical therapeutic window when exercise therapy may be effective at treating SCI-induced allodynia and that there are postinjury periods when exercise can be deleterious.
Collapse
Affiliation(s)
| | | | - Amy S Javia
- Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | | - Ali Naqvi
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Vinu Ninan
- Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | | - Sheena Amin
- Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - John D Houlé
- Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
31
|
Capsaicin 8% Patch for Central and Peripheral Neuropathic Pain of Persons with Incomplete Spinal Cord Injury: Two Case Reports. Am J Phys Med Rehabil 2015; 94:e66-72. [PMID: 26035723 DOI: 10.1097/phm.0000000000000301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neuropathic pain after spinal cord injury is common and often refractory to standard treatments. The capsaicin 8% patch is a Food and Drug Administration-approved treatment of neuropathic pain in postherpetic neuralgia and has demonstrated significant efficacy in human immunodeficiency virus-autonomic neuropathy. The patch defunctionalizes transient receptor potential vanilloid 1 receptors, impairing cutaneous nociceptors for a prolonged period (i.e., 8-12 wks) with no systemic side effects. A retrospective review was conducted on the effects of the patch in two patients with spinal cord injury and neuropathic pain refractory to standard treatments. Two weeks after application, both patients reported complete pain relief. Average onset of relief of 4 days and average duration of relief of 197 days, requiring only one to four applications per year, paralleled findings reported in postherpetic neuralgia and human immunodeficiency virus-autonomic neuropathy trials. Upregulation of capsaicin-sensitive transient receptor potential vanilloid 1 receptors after spinal cord injury has been reported. The capsaicin 8% patch is a promising therapeutic agent for neuropathic pain in spinal cord injury.
Collapse
|
32
|
Phillips AA, Krassioukov AV. Contemporary Cardiovascular Concerns after Spinal Cord Injury: Mechanisms, Maladaptations, and Management. J Neurotrauma 2015; 32:1927-42. [PMID: 25962761 DOI: 10.1089/neu.2015.3903] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular (CV) issues after spinal cord injury (SCI) are of paramount importance considering they are the leading cause of death in this population. Disruption of autonomic pathways leads to a highly unstable CV system, with impaired blood pressure (BP) and heart rate regulation. In addition to low resting BP, on a daily basis the majority of those with SCI suffer from transient episodes of aberrantly low and high BP (termed orthostatic hypotension and autonomic dysreflexia, respectively). In fact, autonomic issues, including resolution of autonomic dysreflexia, are frequently ranked by individuals with high-level SCI to be of greater priority than walking again. Owing to a combination of these autonomic disturbances and a myriad of lifestyle factors, the pernicious process of CV disease is accelerated post-SCI. Unfortunately, these secondary consequences of SCI are only beginning to receive appropriate clinical attention. Immediately after high-level SCI, major CV abnormalities present in the form of neurogenic shock. After subsiding, new issues related to BP instability arise, including orthostatic hypotension and autonomic dysreflexia. This review describes autonomic control over the CV system before injury and the mechanisms underlying CV abnormalities post-SCI, while also detailing the end-organ consequences, including those of the heart, as well as the systemic and cerebral vasculature. The tertiary impact of CV dysfunction will also be discussed, such as the potential impediment of rehabilitation, and impaired cognitive function. In the recent past, our understanding of autonomic dysfunctions post-SCI has been greatly enhanced; however, it is vital to further develop our understanding of the long-term consequences of these conditions, which will equip us to better manage CV disease morbidity and mortality in this population.
Collapse
Affiliation(s)
- Aaron A Phillips
- 1 Center for Heart, Lung, and Vascular Health, Faculty of Health and Social Development, University of British Columbia , Kelowna, British Columbia, Canada .,2 Experimental Medicine Program, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia, Canada .,3 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- 2 Experimental Medicine Program, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia, Canada .,3 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada .,4 Department of Physical Medicine and Rehabilitation, University of British Columbia , Vancouver, British Columbia, Canada
| |
Collapse
|
33
|
Wecht JM, La Fountaine MF, Handrakis JP, West CR, Phillips A, Ditor DS, Sharif H, Bauman WA, Krassioukov AV. Autonomic Nervous System Dysfunction Following Spinal Cord Injury: Cardiovascular, Cerebrovascular, and Thermoregulatory Effects. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2015. [DOI: 10.1007/s40141-015-0093-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
West CR, Crawford MA, Laher I, Ramer MS, Krassioukov AV. Passive Hind-Limb Cycling Reduces the Severity of Autonomic Dysreflexia After Experimental Spinal Cord Injury. Neurorehabil Neural Repair 2015; 30:317-27. [DOI: 10.1177/1545968315593807] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. Spinal cord injury (SCI) induces alterations in cardio-autonomic control of which autonomic dysreflexia (AD), a condition characterized by life-threatening hypertension, is arguably the most insidious. Passive hind-limb cycling represents a low-cost therapeutic intervention with demonstrable cardiovascular, sensory, and motor benefits. Objective. To investigate the effect of passive hind-limb cycling on AD in rodents with T3 SCI. Methods. Forty-five male Wistar rats were evenly assigned to either uninjured control (CON), SCI, or SCI plus hind-limb cycling exercise (SCI-EX). At the end of the experimental period (day 32), rats were randomly assigned to stream 1 (n = 24) or stream 2 (n = 21). Stream 1 rats were assessed for AD severity (pressor response to colorectal distension) and were then perfused for tissue dissection and immunohistochemistry. Stream 2 rats underwent excision of the superior mesenteric artery for in vitro myography assessments. Results. From 2 weeks post-SCI onwards, SCI-EX rats exhibited a significant reduction in the pressor response to colorectal distension versus SCI ( P < .001). Reduced AD severity in SCI-EX rats was accompanied by a prevention of the SCI-induced increase in density of CGRP+ afferents in the dorsal horn ( P = .001). Conversely, both SCI and SCI-EX rats exhibited a similar degree of mesenteric endothelial dysfunction and α-adrenoceptor hypersensitivity versus CON. Conclusion. Passive hind-limb cycling reduces the severity of AD in SCI, and is correlated with changes in primary afferent morphology, but has limited effects on the peripheral vasculature.
Collapse
Affiliation(s)
| | - Mark A. Crawford
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Ismail Laher
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Matt S. Ramer
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V. Krassioukov
- University of British Columbia, Vancouver, British Columbia, Canada
- GF Strong Rehabilitation Centre, Vancouver Health Authority, British Columbia, Canada
| |
Collapse
|
35
|
Jerić M, Vuica A, Borić M, Puljak L, Jeličić Kadić A, Grković I, Filipović N. Diabetes mellitus affects activity of calcium/calmodulin-dependent protein kinase II alpha in rat trigeminal ganglia. J Chem Neuroanat 2015; 64-65:12-9. [DOI: 10.1016/j.jchemneu.2015.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/07/2015] [Accepted: 02/10/2015] [Indexed: 12/31/2022]
|
36
|
Mechanisms inducing autonomic dysreflexia during urinary bladder distention in rats with spinal cord injury. Spinal Cord 2014; 53:190-194. [PMID: 25535154 DOI: 10.1038/sc.2014.233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/29/2014] [Accepted: 11/19/2014] [Indexed: 12/30/2022]
Abstract
OBJECTIVES This study investigated the mechanisms inducing autonomic dysreflexia due to enhanced bladder-to-vascular reflexes in rats with spinal cord injury (SCI). METHODS SCI was produced by the transection of the Th4-5 spinal cord in female Sprague-Dawley rats. At 4 weeks after SCI, changes in blood pressure during graded increases in intravesical pressure (20-60 cm H2O) were measured in spinal-intact (SI) and SCI rats under urethane anesthesia. In five animals, effects of C-fiber desensitization induced by intravesical application of resiniferatoxin (RTX), a TRPV1 agonist, on the bladder-to-vascular reflex were also examined. Nerve growth factor (NGF) levels of mucosa and detrusor muscle layers of the bladder were measured by enzyme-linked immunosorbent assay. The expression levels of TRPV1 and TRPA1 channels were also examined in laser captured bladder afferent neurons obtained from L6 DRG, which were labeled by DiI injected into the bladder wall. RESULTS In SI and SCI rats, systemic arterial blood pressure was increased in a pressure-dependent manner during increases in the intravesical pressure, with significantly higher blood pressure elevation at the intravesical pressure of 20 cm H2O in SCI rats vs SI rats. The arterial blood pressure responses to bladder distention were significantly reduced by RTX-induced desensitization of C-fiber bladder afferent pathways. SCI rats had higher NGF protein levels in the bladder and higher TRPV1 and TRPA1 mRNA levels in bladder afferent neurons compared with SI rats. CONCLUSIONS The bladder-to-vascular reflex induced by TRPV1-expressing C-fiber afferents during bladder distention is enhanced after SCI in association with increased expression of NGF in the bladder and TRP channels in bladder afferent neurons.
Collapse
|
37
|
Walters ET. Neuroinflammatory contributions to pain after SCI: roles for central glial mechanisms and nociceptor-mediated host defense. Exp Neurol 2014; 258:48-61. [PMID: 25017887 DOI: 10.1016/j.expneurol.2014.02.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/23/2014] [Accepted: 02/02/2014] [Indexed: 12/30/2022]
Abstract
Neuropathic pain after spinal cord injury (SCI) is common, often intractable, and can be severely debilitating. A number of mechanisms have been proposed for this pain, which are discussed briefly, along with methods for revealing SCI pain in animal models, such as the recently applied conditioned place preference test. During the last decade, studies of animal models have shown that both central neuroinflammation and behavioral hypersensitivity (indirect reflex measures of pain) persist chronically after SCI. Interventions that reduce neuroinflammation have been found to ameliorate pain-related behavior, such as treatment with agents that inhibit the activation states of microglia and/or astroglia (including IL-10, minocycline, etanercept, propentofylline, ibudilast, licofelone, SP600125, carbenoxolone). Reversal of pain-related behavior has also been shown with disruption by an inhibitor (CR8) and/or genetic deletion of cell cycle-related proteins, deletion of a truncated receptor (trkB.T1) for brain-derived neurotrophic factor (BDNF), or reduction by antisense knockdown or an inhibitor (AMG9810) of the activity of channels (TRPV1 or Nav1.8) important for electrical activity in primary nociceptors. Nociceptor activity is known to drive central neuroinflammation in peripheral injury models, and nociceptors appear to be an integral component of host defense. Thus, emerging results suggest that spinal and systemic effects of SCI can activate nociceptor-mediated host defense responses that interact via neuroinflammatory signaling with complex central consequences of SCI to drive chronic pain. This broader view of SCI-induced neuroinflammation suggests new targets, and additional complications, for efforts to develop effective treatments for neuropathic SCI pain.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, TX, USA.
| |
Collapse
|
38
|
|
39
|
Faaborg PM, Christensen P, Krassioukov A, Laurberg S, Frandsen E, Krogh K. Autonomic dysreflexia during bowel evacuation procedures and bladder filling in subjects with spinal cord injury. Spinal Cord 2014; 52:494-8. [PMID: 24777164 DOI: 10.1038/sc.2014.45] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/27/2014] [Accepted: 02/03/2014] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Randomized, controlled clinical trial. OBJECTIVES Bladder and bowel management may cause serious autonomic dysreflexia (AD) in subjects with high spinal cord injury (SCI). We aimed at investigating autonomic responses to digital rectal evacuation (DE), transanal irrigation (TAI) with 500 ml and filling cystometry (FC) in SCI. SETTING Aarhus University Hospital, Denmark. METHODS Eight subjects with SCI (AIS A) at or above T6 (high SCI) and a previous history of AD were compared with three subjects with SCI (AIS A) between T10 and L2 (low SCI). In randomized order, DE, TAI and FC were performed. AD was defined as an acute rise in systolic blood pressure (sBP) of ⩾30 mm Hg above baseline. Blood levels of norepinephrine and epinephrine were determined before and shortly after the procedures. RESULTS During all three procedures, AD occurred in all patients with high SCI but not in those with low SCI. In high SCI subjects, DE increased median sBP from 127 (range: 86-154) to 188 (range: 140-206) mm Hg (P<0.02), TAI from 126 (range: 91-146) to 163 (range: 130-188) mm Hg (P<0.02) and FC from 125 (range: 106-149) to 200 (range: 179-220) mm Hg (P<0.01). The sBP increase was lower during TAI than during DE (P<0.05) or FC (P<0.02). In high SCI subjects, the blood levels of norepinephrine, but not those of epinephrine, increased significantly during all three stimuli (all P<0.05). CONCLUSION Bowel and bladder management caused AD in high SCI. The response is less severe during TAI than during FC or DE.
Collapse
Affiliation(s)
- P M Faaborg
- 1] Pelvic Floor Unit, Department of Surgery P, Aarhus University Hospital, Aarhus, Denmark [2] Neurogastroenterology Unit, Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - P Christensen
- Pelvic Floor Unit, Department of Surgery P, Aarhus University Hospital, Aarhus, Denmark
| | - A Krassioukov
- Division of Physical Medicine and Rehabilitation, ICORD, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - S Laurberg
- Pelvic Floor Unit, Department of Surgery P, Aarhus University Hospital, Aarhus, Denmark
| | - E Frandsen
- Department of Clinical Physiology and Nuclear Medicine, Glostrup University Hospital, Copenhagen, Denmark
| | - K Krogh
- Neurogastroenterology Unit, Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
40
|
Peters JH, Gallaher ZR, Ryu V, Czaja K. Withdrawal and restoration of central vagal afferents within the dorsal vagal complex following subdiaphragmatic vagotomy. J Comp Neurol 2014; 521:3584-99. [PMID: 23749657 DOI: 10.1002/cne.23374] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/19/2013] [Accepted: 05/23/2013] [Indexed: 12/21/2022]
Abstract
Vagotomy, a severing of the peripheral axons of the vagus nerve, has been extensively utilized to determine the role of vagal afferents in viscerosensory signaling. Vagotomy is also an unavoidable component of some bariatric surgeries. Although it is known that peripheral axons of the vagus nerve degenerate and then regenerate to a limited extent following vagotomy, very little is known about the response of central vagal afferents in the dorsal vagal complex to this type of damage. We tested the hypothesis that vagotomy results in the transient withdrawal of central vagal afferent terminals from their primary central target, the nucleus of the solitary tract (NTS). Sprague-Dawley rats underwent bilateral subdiaphragmatic vagotomy and were sacrificed 10, 30, or 60 days later. Plastic changes in vagal afferent fibers and synapses were investigated at the morphological and functional levels by using a combination of an anterograde tracer, synapse-specific markers, and patch-clamp electrophysiology in horizontal brain sections. Morphological data revealed that numbers of vagal afferent fibers and synapses in the NTS were significantly reduced 10 days following vagotomy and were restored to control levels by 30 days and 60 days, respectively. Electrophysiology revealed transient decreases in spontaneous glutamate release, glutamate release probability, and the number of primary afferent inputs. Our results demonstrate that subdiaphragmatic vagotomy triggers transient withdrawal and remodeling of central vagal afferent terminals in the NTS. The observed vagotomy-induced plasticity within this key feeding center of the brain may be partially responsible for the response of bariatric patients following gastric bypass surgery.
Collapse
Affiliation(s)
- James H Peters
- Program in Neuroscience, Integrative Physiology and Neuroscience (IPN), College of Veterinary Medicine, Washington State University, Pullman, Washington, 99164
| | | | | | | |
Collapse
|
41
|
Hubli M, Krassioukov AV. Ambulatory blood pressure monitoring in spinal cord injury: clinical practicability. J Neurotrauma 2014; 31:789-97. [PMID: 24175653 DOI: 10.1089/neu.2013.3148] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Trauma to the spinal cord often results not only in sensorimotor but also autonomic impairments. The loss of autonomic control over the cardiovascular system can cause profound blood pressure (BP) derangements in subjects with spinal cord injury (SCI) and may therefore lead to increased cardiovascular disease (CVD) risk in this population. The use of ambulatory blood pressure monitoring (ABPM) allows insights into circadian BP profiles, which have been shown to be of good prognostic value for cardiovascular morbidity and mortality in able-bodied subjects. Past studies in SCI subjects using ABPM have shown that alterations in circadian BP patterns are dependent on the spinal lesion level. Tetraplegic subjects with sensorimotor complete lesions have a decreased daytime arterial BP, loss of the physiological nocturnal BP dip, and higher circadian BP variability, including potentially life-threatening hypertensive episodes known as autonomic dysreflexia (AD), compared with paraplegic and able-bodied subjects. The proposed underlying mechanisms of these adverse BP alterations mainly are attributed to a lost or decreased central drive to sympathetic spinal preganglionic neurons controlling the heart and blood vessels. In addition, several maladaptive anatomical changes within the spinal cord and the periphery, as well as the general decrease of physical daily activity in SCI subjects, account for adverse BP changes. ABPM enables the identification of adverse BP profiles and the associated increased risk for CVD in SCI subjects. Concurrently, it also might provide a useful clinical tool to monitor improvements of AD and lost nocturnal dip after appropriate treatments in the SCI population.
Collapse
Affiliation(s)
- Michèle Hubli
- 1 International Collaboration on Repair Discoveries, Blusson Spinal Cord Centre, University of British Columbia , Vancouver, British Columbia, Canada
| | | |
Collapse
|
42
|
Autonomic dysreflexia severity during urodynamics and cystoscopy in individuals with spinal cord injury. Spinal Cord 2013; 51:863-7. [PMID: 24060768 DOI: 10.1038/sc.2013.113] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 11/08/2022]
Abstract
STUDY DESIGN Retrospective chart review. OBJECTIVE To compare autonomic dysreflexia (AD) severity during urodynamics and cystoscopy in individuals with spinal cord injury (SCI). SETTING Outpatient urological clinic. METHODS Demographic and clinical data were collected from charts of individuals with SCI who had blood pressure (BP) monitoring during urological procedures. Cardiovascular parameters were collected at baseline and during the various stages of two examinations. RESULTS A total of 21 SCI individuals (mean age 49.4 years) who underwent both procedures developed episodes of AD. The majority of individuals had cervical SCI (85.7%). The median duration of injury was 183 months (ranging from 3 to 530 months). There was statistically more of an increase (P=0.039) in systolic BP during cystoscopy (67.1±33.8 mm Hg) in comparison with urodynamics (51.8±21.8 mm Hg). The BP response during episodes of AD was more pronounced in individuals with more than 2 years post SCI than with less than 2 years post SCI during both urodynamics and cystoscopy (P=0.047 and P=0.010, respectively). CONCLUSION Even though cystoscopy filled the bladder to lesser volumes than did urodynamics (150 ml vs 500 ml), during cystoscopy the individuals developed greater changes in systolic BP, indicating that stimulation of the urethra/prostate/internal sphincter region probably is a more potent stimulus of AD than just the filling of the bladder. The severity of AD also increased with time post SCI during both procedures. Considering the high incidence of silent episodes of AD during the urological procedures, it is recommended that monitoring of cardiovascular parameters during these procedures be routinely performed.
Collapse
|
43
|
Petruska JC, Hubscher CH, Rabchevsky AG. Challenges and opportunities of sensory plasticity after SCI. Front Physiol 2013; 4:231. [PMID: 23986722 PMCID: PMC3753431 DOI: 10.3389/fphys.2013.00231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/07/2013] [Indexed: 12/30/2022] Open
Affiliation(s)
- Jeffrey C Petruska
- Department of Anatomical Sciences and Neurobiology, Kentucky Spinal Cord Injury Research Center, University of Louisville Louisville, KY, USA
| | | | | |
Collapse
|
44
|
Wu Z, Yang Q, Crook RJ, O'Neil RG, Walters ET. TRPV1 channels make major contributions to behavioral hypersensitivity and spontaneous activity in nociceptors after spinal cord injury. Pain 2013; 154:2130-2141. [PMID: 23811042 DOI: 10.1016/j.pain.2013.06.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/18/2013] [Accepted: 06/24/2013] [Indexed: 12/27/2022]
Abstract
Chronic neuropathic pain is often a severe and inadequately treated consequence of spinal cord injury (SCI). Recent findings suggest that SCI pain is promoted by spontaneous activity (SA) generated chronically in cell bodies of primary nociceptors in dorsal root ganglia (DRG). Many nociceptors express transient receptor potential V1 (TRPV1) channels, and in a preceding study most dissociated DRG neurons exhibiting SA were excited by the TRPV1 activator, capsaicin. The present study investigated roles of TRPV1 channels in behavioral hypersensitivity and nociceptor SA after SCI. Contusive SCI at thoracic segment T10 increased expression of TRPV1 protein in lumbar DRG 1 month after injury and enhanced capsaicin-evoked ion currents and Ca2+ responses in dissociated small DRG neurons. A major role for TRPV1 channels in pain-related behavior was indicated by the ability of a specific TRPV1 antagonist, AMG9810, to reverse SCI-induced hypersensitivity of hind limb withdrawal responses to mechanical and thermal stimuli at a dose that did not block detection of noxious heat. Similar reversal of behavioral hypersensitivity was induced by intrathecal oligodeoxynucleotides antisense to TRPV1, which knocked down TRPV1 protein and reduced capsaicin-evoked currents. TRPV1 knockdown also decreased the incidence of SA in dissociated nociceptors after SCI. Prolonged application of very low concentrations of capsaicin produced nondesensitizing firing similar to SA, and this effect was enhanced by prior SCI. These results show that TRPV1 makes important contributions to pain-related hypersensitivity long after SCI, and suggest a role for TRPV1-dependent enhancement of nociceptor SA that offers a promising target for treating chronic pain after SCI.
Collapse
Affiliation(s)
- Zizhen Wu
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
45
|
Macefield VG, Bornstein JC. Autonomic Neuroscience: articles of interest appearing in other Frontiers journals. Front Neurosci 2012; 6:184. [PMID: 23267313 PMCID: PMC3527993 DOI: 10.3389/fnins.2012.00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 12/04/2012] [Indexed: 11/13/2022] Open
|