1
|
Suzuki D, Suzuki Y. Identifying and Analyzing Low Energy Availability in Athletes: The Role of Biomarkers and Red Blood Cell Turnover. Nutrients 2024; 16:2273. [PMID: 39064716 PMCID: PMC11279570 DOI: 10.3390/nu16142273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Low energy availability (LEA) is a growing concern that can lead to several problems for athletes. However, adaptation to LEA occurs to maintain balance over time, making diagnosis difficult. In this review, we categorize LEA into two phases: the initial phase leading to adaptation and the phase in which adaptation is achieved and maintained. We review the influence of LEA on sports performance and health and discuss biomarkers for diagnosing LEA in each phase. This review also proposes future research topics for diagnosing LEA, with an emphasis on the recently discovered association between red blood cell turnover and LEA.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Tokyo, Japan;
| | - Yoshio Suzuki
- Graduate School of Health and Sports Science, Juntendo University, Inzai 276-1695, Chiba, Japan
| |
Collapse
|
2
|
Arias CF, Valente-Leal N, Bertocchini F, Marques S, Acosta FJ, Fernandez-Arias C. A new role for erythropoietin in the homeostasis of red blood cells. Commun Biol 2024; 7:58. [PMID: 38191841 PMCID: PMC10774343 DOI: 10.1038/s42003-023-05758-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024] Open
Abstract
The regulation of red blood cell (RBC) homeostasis is widely assumed to rely on the control of cell production by erythropoietin (EPO) and the destruction of cells at a fixed, species-specific age. In this work, we show that such a regulatory mechanism would be a poor homeostatic solution to satisfy the changing needs of the body. Effective homeostatic control would require RBC lifespan to be variable and tightly regulated. We suggest that EPO may control RBC lifespan by determining CD47 expression in newly formed RBCs and SIRP-α expression in sinusoidal macrophages. EPO could also regulate the initiation and intensity of anti-RBC autoimmune responses that curtail RBC lifespan in some circumstances. These mechanisms would continuously modulate the rate of RBC destruction depending on oxygen availability. The control of RBC lifespan by EPO and autoimmunity emerges as a key mechanism in the homeostasis of RBCs.
Collapse
Affiliation(s)
- Clemente F Arias
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
| | - Nuno Valente-Leal
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | | | - Sofia Marques
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - Francisco J Acosta
- Departamento de Ecología, Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Fernandez-Arias
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal.
- Departamento de Immunología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
3
|
Fan X, Krzyzanski W, Liu D, Wong RSM, Yan X. Scaling Pharmacodynamics from Rats to Humans to Support Erythropoietin and Romiplostim Combination Therapy to Treat Erythropoietin-Resistant Anemia. Pharmaceutics 2023; 15:pharmaceutics15020344. [PMID: 36839666 PMCID: PMC9962863 DOI: 10.3390/pharmaceutics15020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Recombinant human erythropoietin (rHuEPO) is one of the most effective drugs for the treatment of anemia in patients with chronic kidney disease. However, EPO-resistance is an important contributor to the increased risk of adverse effects. We previously showed that EPO treatment could induce precursor cell depletion, resulting in EPO-resistance. We further found that the combination of EPO with romiplostim, a thrombopoietin receptor agonist that can stimulate the expansion of hematopoietic stem cells, can treat EPO-resistance. In this study, we performed interspecies pharmacodynamic (PD) scaling of this combination therapy for human dose prediction. The pharmacokinetic parameters of both rHuEPO and romiplostim in humans were obtained from previous studies. The PD parameters obtained in rats were scaled to humans using allometric equations. The relationship between PD parameters of the megakaryocyte lineage from rats, monkeys, and humans was in agreement with those from the literature on allometric scaling. The PD response was translated to humans based on allometric scaling and agreed with the observed data. These parameters were used to simulate hemoglobin and platelet response in humans. RHuEPO 50 IU/kg thrice weekly and romiplostim 1 μg/kg once every 4 weeks from the second week is the recommended combination dosing regimen according to the model prediction. Our work successfully scaled the PD of rHuEPO and romiplostim monotherapy from rats to humans. The predicted dosing regimen of each drug in the combination therapy is less intensive than the approved starting dose of each drug, which supports additional evaluations of the combination therapy in humans.
Collapse
Affiliation(s)
- Xiaoqing Fan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wojciech Krzyzanski
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China
| | - Raymond S. M. Wong
- Division of Hematology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaoyu Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Correspondence: ; Tel.: +852-34935012; Fax: +852-26035295
| |
Collapse
|
4
|
Minetti G, Bogdanova AY, Mairbäurl H, Kaestner L. Space anemia unexplained: Red blood cells seem to be space-proof. Am J Hematol 2022; 97:E365-E367. [PMID: 35836385 DOI: 10.1002/ajh.26663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/09/2022] [Indexed: 01/24/2023]
Affiliation(s)
- Giampaolo Minetti
- Department of Biology and Biotechnology "L. Spallanzani", Laboratories of Biochemistry, University of Pavia, Pavia, Italy
| | - Anna Yu Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, University of Zürich, Zürich, Switzerland
| | - Heimo Mairbäurl
- Translational Pneumology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lars Kaestner
- Experimental Physics, Dynamics of Fluids Group, Saarland University, Saarbrücken, Germany.,Theoretical Medicine and Biosciences, Campus University Hospital, Saarland University, Saarbrücken, Germany
| |
Collapse
|
5
|
Manis C, Manca A, Murgia A, Uras G, Caboni P, Congiu T, Faa G, Pantaleo A, Cao G. Understanding the Behaviour of Human Cell Types under Simulated Microgravity Conditions: The Case of Erythrocytes. Int J Mol Sci 2022; 23:ijms23126876. [PMID: 35743319 PMCID: PMC9224527 DOI: 10.3390/ijms23126876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 12/10/2022] Open
Abstract
Erythrocytes are highly specialized cells in human body, and their main function is to ensure the gas exchanges, O2 and CO2, within the body. The exposure to microgravity environment leads to several health risks such as those affecting red blood cells. In this work, we investigated the changes that occur in the structure and function of red blood cells under simulated microgravity, compared to terrestrial conditions, at different time points using biochemical and biophysical techniques. Erythrocytes exposed to simulated microgravity showed morphological changes, a constant increase in reactive oxygen species (ROS), a significant reduction in total antioxidant capacity (TAC), a remarkable and constant decrease in total glutathione (GSH) concentration, and an augmentation in malondialdehyde (MDA) at increasing times. Moreover, experiments were performed to evaluate the lipid profile of erythrocyte membranes which showed an upregulation in the following membrane phosphocholines (PC): PC16:0_16:0, PC 33:5, PC18:2_18:2, PC 15:1_20:4 and SM d42:1. Thus, remarkable changes in erythrocyte cytoskeletal architecture and membrane stiffness due to oxidative damage have been found under microgravity conditions, in addition to factors that contribute to the plasticity of the red blood cells (RBCs) including shape, size, cell viscosity and membrane rigidity. This study represents our first investigation into the effects of microgravity on erythrocytes and will be followed by other experiments towards understanding the behaviour of different human cell types in microgravity.
Collapse
Affiliation(s)
- Cristina Manis
- Department of Life and Environmental Sciences, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (C.M.); (A.M.); (P.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy
| | - Alessia Manca
- Department of Biomedical Science, University of Sassari, Viale San Pietro, 07100 Sassari, Italy;
| | - Antonio Murgia
- Department of Life and Environmental Sciences, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (C.M.); (A.M.); (P.C.)
| | - Giuseppe Uras
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University of College London, London NW3 2PF, UK;
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (C.M.); (A.M.); (P.C.)
| | - Terenzio Congiu
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato’s Campus, 09042 Monserrato, Italy; (T.C.); (G.F.)
| | - Gavino Faa
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato’s Campus, 09042 Monserrato, Italy; (T.C.); (G.F.)
| | - Antonella Pantaleo
- Department of Biomedical Science, University of Sassari, Viale San Pietro, 07100 Sassari, Italy;
- Correspondence: (A.P.); (G.C.)
| | - Giacomo Cao
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy
- Center of Advanced Studies, Research and Development in Sardinia (CRS4), Loc. Piscina Manna, Building 1, 09050 Pula, Italy
- Sardinia AeroSpace District (DASS), at Sardegna Ricerche, Via G. Carbonazzi 14, 09123 Cagliari, Italy
- Correspondence: (A.P.); (G.C.)
| |
Collapse
|
6
|
Pavela J, Sargsyan A, Bedi D, Everson A, Charvat J, Mason S, Johansen B, Marshall-Goebel K, Mercaldo S, Shah R, Moll S. Surveillance for jugular venous thrombosis in astronauts. Vasc Med 2022; 27:365-372. [PMID: 35502899 DOI: 10.1177/1358863x221086619] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Thrombosis of the left internal jugular vein in an astronaut aboard the International Space Station was recently described, incidentally discovered during a research study of blood flow in neck veins in microgravity. Given this event, and the high incidence of flow abnormalities, the National Aeronautics and Space Administration (NASA) instituted an occupational surveillance program to evaluate astronauts for venous thrombosis. METHODS Duplex ultrasound of the bilateral internal jugular veins was conducted on all NASA astronauts terrestrially, and at three points during spaceflight. Respiratory maneuvers were performed. Images were analyzed for thrombosis and certain hemodynamic characteristics, including peak velocity and degree of echogenicity. RESULTS Eleven astronauts were evaluated with matching terrestrial and in-flight ultrasounds. No thrombosis was detected. Compared to terrestrial ultrasound measurements, in-flight peak velocity was reduced and lowest in the left. Six of 11 astronauts had mild-moderate echogenicity in the left internal jugular vein during spaceflight, but none had more than mild echogenicity in the right internal jugular vein. Two astronauts developed retrograde blood flow in the left internal jugular vein. CONCLUSIONS Abnormal flow characteristics in microgravity, most prominent in the left internal jugular vein, may signal an increased risk for thrombus formation in some individuals.
Collapse
Affiliation(s)
- James Pavela
- National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, TX, USA
| | | | - Deepak Bedi
- KBR, Houston, TX, USA.,Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | - Benjamin Johansen
- National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, TX, USA
| | | | | | - Ronak Shah
- National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, TX, USA
| | - Stephan Moll
- Department of Medicine, Division of Hematology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Simionato G, Rabe A, Gallego-Murillo JS, van der Zwaan C, Hoogendijk AJ, van den Biggelaar M, Minetti G, Bogdanova A, Mairbäurl H, Wagner C, Kaestner L, van den Akker E. In Vitro Erythropoiesis at Different pO 2 Induces Adaptations That Are Independent of Prior Systemic Exposure to Hypoxia. Cells 2022; 11:cells11071082. [PMID: 35406648 PMCID: PMC8997720 DOI: 10.3390/cells11071082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022] Open
Abstract
Hypoxia is associated with increased erythropoietin (EPO) release to drive erythropoiesis. At high altitude, EPO levels first increase and then decrease, although erythropoiesis remains elevated at a stable level. The roles of hypoxia and related EPO adjustments are not fully understood, which has contributed to the formulation of the theory of neocytolysis. We aimed to evaluate the role of oxygen exclusively on erythropoiesis, comparing in vitro erythroid differentiation performed at atmospheric oxygen, a lower oxygen concentration (three percent oxygen) and with cultures of erythroid precursors isolated from peripheral blood after a 19-day sojourn at high altitude (3450 m). Results highlight an accelerated erythroid maturation at low oxygen and more concave morphology of reticulocytes. No differences in deformability were observed in the formed reticulocytes in the tested conditions. Moreover, hematopoietic stem and progenitor cells isolated from blood affected by hypoxia at high altitude did not result in different erythroid development, suggesting no retention of a high-altitude signature but rather an immediate adaptation to oxygen concentration. This adaptation was observed during in vitro erythropoiesis at three percent oxygen by a significantly increased glycolytic metabolic profile. These hypoxia-induced effects on in vitro erythropoiesis fail to provide an intrinsic explanation of the concept of neocytolysis.
Collapse
Affiliation(s)
- Greta Simionato
- Department of Experimental Physics, University Campus, Building E2.6, Saarland University, 66123 Saarbrücken, Germany; (A.R.); (C.W.); (L.K.)
- Department of Experimental Surgery, Campus University Hospital, Building 65, Saarland University, 66421 Homburg, Germany
- Correspondence: (G.S.); (E.v.d.A.)
| | - Antonia Rabe
- Department of Experimental Physics, University Campus, Building E2.6, Saarland University, 66123 Saarbrücken, Germany; (A.R.); (C.W.); (L.K.)
| | - Joan Sebastián Gallego-Murillo
- Sanquin Research, Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands;
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Carmen van der Zwaan
- Sanquin Research, Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (C.v.d.Z.); (A.J.H.); (M.v.d.B.)
| | - Arie Johan Hoogendijk
- Sanquin Research, Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (C.v.d.Z.); (A.J.H.); (M.v.d.B.)
| | - Maartje van den Biggelaar
- Sanquin Research, Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (C.v.d.Z.); (A.J.H.); (M.v.d.B.)
| | - Giampaolo Minetti
- Department of Biology and Biotechnology “L. Spallanzani”, Laboratories of Biochemistry, University of Pavia, I-27100 Pavia, Italy;
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Heimo Mairbäurl
- University Hospital Heidelberg, Medical Clinic VII, Sports Medicine, 69120 Heidelberg, Germany;
- Translational Lung Research Centre Heidelberg (TLRC), Part of the German Centre for Lung Research (DZL), 69120 Heidelberg, Germany
- Translational Pneumology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Christian Wagner
- Department of Experimental Physics, University Campus, Building E2.6, Saarland University, 66123 Saarbrücken, Germany; (A.R.); (C.W.); (L.K.)
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Lars Kaestner
- Department of Experimental Physics, University Campus, Building E2.6, Saarland University, 66123 Saarbrücken, Germany; (A.R.); (C.W.); (L.K.)
- Theoretical Medicine and Biosciences, Campus University Hospital, Building 61.4, Saarland University, 66421 Homburg, Germany
| | - Emile van den Akker
- Sanquin Research, Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands;
- Correspondence: (G.S.); (E.v.d.A.)
| |
Collapse
|
8
|
Hyson BE, Wehbie RS, Haikal NA, Bishop-Freeman SC. Endogenous carbon monoxide due to hemolytic anemia: A forensic red herring. J Forensic Sci 2022; 67:1294-1299. [PMID: 35179233 DOI: 10.1111/1556-4029.15013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/27/2022]
Abstract
Carbon monoxide (CO) toxicity associated with exposure to an environmental, exogenous source, is routinely investigated in the field of forensics. Paramedics responded to the home of a 60-year-old woman who complained of persistent nausea, dizziness, and fatigue. Her initial carboxyhemoglobin (COHb) saturation was 25% as measured by paramedics in the field via pulse CO-oximetry (SpCO) and was, 2 hours later, confirmed by hospital laboratory spectrophotometric analysis to be 16% after initial treatment in the emergency department. The clinical presentation of environmental CO exposure and subsequent death notification to the North Carolina Office of the Chief Medical Examiner prompted an extensive investigation into the suspected residential source of CO, which ultimately ruled out all exogenous sources. The medicolegal death investigator later discovered an updated hematology consultation note, which determined the actual source of the CO to be endogenously produced from disease. Herein, we report an unusual fatality involving enhanced endogenous CO production caused by warm autoimmune hemolytic anemia. This unique case report and brief literature review of disease-related elevation of endogenous CO will shed light on this lesser-known phenomenon alerting the forensic community to its potential occurrence and need for consideration when sources of environmental exposure have been exhausted.
Collapse
Affiliation(s)
- Brian E Hyson
- North Carolina Office of the Chief Medical Examiner, Raleigh, North Carolina, USA
| | - Robert S Wehbie
- UNC Rex Healthcare, University of North Carolina, Raleigh, North Carolina, USA
| | - Nabila A Haikal
- North Carolina Office of the Chief Medical Examiner, Raleigh, North Carolina, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sandra C Bishop-Freeman
- North Carolina Office of the Chief Medical Examiner, Raleigh, North Carolina, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Juárez-Vela R, Andrés-Esteban EM, Gea-Caballero V, Sánchez-González JL, Marcos-Neira P, Serrano-Lázaro A, Tirado-Anglés G, Ruiz-Rodríguez JC, Durante Á, Santolalla-Arnedo I, García-Erce JA, Quintana-Díaz M. Related Factors of Anemia in Critically Ill Patients: A Prospective Multicenter Study. J Clin Med 2022; 11:jcm11041031. [PMID: 35207301 PMCID: PMC8878830 DOI: 10.3390/jcm11041031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
Anemia is common in critically ill patients; almost 95% of patients admitted to intensive care units (ICUs) have hemoglobin levels below normal. Several causes may explain this phenomenon as well as the tendency to transfuse patients without adequate cause: due to a lack of adherence to protocols, lack of supervision, incomplete transfusion request forms, or a lack of knowledge about the indications, risks, and costs of transfusions. Daily sampling to monitor the coagulation parameters and the acid-base balance can aggravate anemia as the main iatrogenic factor in its production. We studied the association and importance of iatrogenic blood loss and other factors in the incidence of anemia in ICUs. We performed a prospective, observational, multicenter study in five Spanish hospitals. A total of 142 patients with a median age of 58 years (IQI: 48-69), 71.83% male and 28.17% female, were admitted to ICUs without a diagnosis of iatrogenic anemia. During their ICU stay, anemia appeared in 66.90% of the sample, 95 patients, (95% CI: 58.51-74.56%). Risk factors associated with the occurrence of iatrogenic anemia were arterial catheter insertion (72.63% vs. 46.81%, p-value = 0.003), venous catheter insertion (87.37% vs. 72.34%, p-value = 0.023), drainages (33.68% vs. 12. 77%, p-value = 0.038), and ICU stay, where the longer the stay, the higher the rate of iatrogenic anemia (p-value < 0.001). We concluded that there was a statistical significance in the production of iatrogenic anemia due to the daily sampling for laboratory monitoring and critical procedures in intensive care units. The implementation of patient blood management programs could address these issues.
Collapse
Affiliation(s)
- Raúl Juárez-Vela
- Doctoral Program in Medicine and Surgery, Autonomous University of Madrid, 28049 Madrid, Spain;
- Research Institute Idi-Paz, PBM Group, 28046 Madrid, Spain; (E.M.A.-E.); (V.G.-C.); (M.Q.-D.)
- Department of Nursing, GRUPAC, University of La Rioja, 26004 Logroño, Spain;
| | - Eva María Andrés-Esteban
- Research Institute Idi-Paz, PBM Group, 28046 Madrid, Spain; (E.M.A.-E.); (V.G.-C.); (M.Q.-D.)
- Department of Business Economics and Applied Economy, Faculty of Legal and Economic Sciences, University Rey Juan Carlos, 28032 Madrid, Spain
| | - Vicente Gea-Caballero
- Research Institute Idi-Paz, PBM Group, 28046 Madrid, Spain; (E.M.A.-E.); (V.G.-C.); (M.Q.-D.)
- Faculty of Health Sciences, International University of Madrid, 46010 Valencia, Spain
| | | | - Pilar Marcos-Neira
- Intensive Care Unit, Germans Trial I Pujol Hospital, 08916 Badalona, Spain;
| | | | | | - Juan Carlos Ruiz-Rodríguez
- Shock, Organ Dysfunction and Resuscitation Research Group, Intensive Care Department, Vall d’Hebron University Hospital, Vall d’Hebron, 08035 Barcelona, Spain;
| | - Ángela Durante
- Department of Nursing, GRUPAC, University of La Rioja, 26004 Logroño, Spain;
| | - Iván Santolalla-Arnedo
- Department of Nursing, GRUPAC, University of La Rioja, 26004 Logroño, Spain;
- Correspondence: (I.S.-A.); (J.A.G.-E.)
| | - José Antonio García-Erce
- Research Institute Idi-Paz, PBM Group, 28046 Madrid, Spain; (E.M.A.-E.); (V.G.-C.); (M.Q.-D.)
- Blood and Tissue Bank of Navarra, Navarre Health Service, 31015 Pamplona, Spain
- Correspondence: (I.S.-A.); (J.A.G.-E.)
| | - Manuel Quintana-Díaz
- Research Institute Idi-Paz, PBM Group, 28046 Madrid, Spain; (E.M.A.-E.); (V.G.-C.); (M.Q.-D.)
- Intensive Care Unit, La Paz University Hospital, 28046 Madrid, Spain
| |
Collapse
|
10
|
Recktenwald SM, Kaestner L, Yu. Bogdanova A, Minetti G, Klein M, Mairbäurl H. "So is science …" 1 : No evidence for neocytolysis on descending the mountains (Response to Rice and Gunga). Acta Physiol (Oxf) 2021; 233:e13709. [PMID: 34197698 DOI: 10.1111/apha.13709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Lars Kaestner
- Experimental Physics Dynamics of Fluids Group Saarland University Saarbrücken Germany
- Theoretical Medicine and Biosciences Campus University HospitalSaarland University Saarbrücken Germany
| | - Anna Yu. Bogdanova
- Red Blood Cell Research Group Institute of Veterinary Physiology University of Zürich Zürich Switzerland
| | - Giampaolo Minetti
- Department of Biology and Biotechology "L Spallanzani", Laboratories of Biochemistry University of Pavia Pavia Italy
| | - Marie Klein
- Medical Clinic VII Sports Medicine University Hospital Heidelberg Heidelberg Germany
| | - Heimo Mairbäurl
- Translational Pneumology University Hospital Heidelberg Heidelberg Germany
| |
Collapse
|
11
|
Klein M, Kaestner L, Bogdanova AY, Minetti G, Rudloff S, Lundby C, Makhro A, Seiler E, Cromvoirt A, Fenk S, Simionato G, Hertz L, Recktenwald S, Schäfer L, Haider T, Fried S, Borsch C, Marti HH, Sander A, Mairbäurl H. Absence of neocytolysis in humans returning from a 3-week high-altitude sojourn. Acta Physiol (Oxf) 2021; 232:e13647. [PMID: 33729672 DOI: 10.1111/apha.13647] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/26/2022]
Abstract
AIMS Total haemoglobin mass (tot-Hb) increases during high-altitude acclimatization. Normalization of tot-Hb upon descent is thought to occur via neocytolysis, the selective destruction of newly formed erythrocytes. Because convincing experimental proof of neocytolysis is lacking, we performed a prospective study on erythrocyte survival after a stay at the Jungfraujoch Research Station (JFJRS; 3450 m). METHODS Newly formed erythrocytes of 12 male subjects (mean age 23.3 years) were age cohort labelled in normoxia (110 m) and during a 19-day high-altitude sojourn by ingestion of 13 C2- and 15 N-labelled glycine respectively. Elimination dynamics for erythrocytes produced in normoxia and at high altitude were measured by isotope ratio mass spectrometry of haem, by determining tot-Hb, reticulocyte counts, erythrocyte membrane protein 4.1a/4.1b ratio and by mathematical modelling. RESULTS Tot-Hb increased by 4.7% ± 2.7% at high altitude and returned to pre-altitude values within 11 days after descent. Elimination of 13 C- (normoxia) and 15 N- (high altitude) labelled erythrocytes was not different. Erythropoietin levels and counts of CD71-positive reticulocytes decreased rapidly after descent. The band 4.1a/4.1b ratio decreased at altitude and remained low for 3-4 days after descent and normalized slowly. There was no indication of haemolysis. CONCLUSION We confirm a rapid normalization of tot-Hb upon descent. Based on the lack of accelerated removal of age cohorts of erythrocytes labelled at high altitude, on patterns of changes in reticulocyte counts and of the band 4.1a/4.1b ratio and on modelling, this decrease did not occur via neocytolysis, but by a reduced rate of erythropoiesis along with normal clearance of senescent erythrocytes.
Collapse
Affiliation(s)
- Marie Klein
- Medical Clinic VII Sports Medicine University Hospital Heidelberg Heidelberg Germany
- Translational Pneumology University Hospital Heidelberg Heidelberg Germany
| | - Lars Kaestner
- Experimental Physics Dynamics of Fluids Group Saarland University Saarbrücken Germany
- Theoretical Medicine and Biosciences Campus University HospitalSaarland University Homburg Germany
| | - Anna Y. Bogdanova
- Red Blood Cell Research Group Institute of Veterinary Physiology University of Zürich Zürich Switzerland
| | - Giampaolo Minetti
- Department of Biology and Biotechnology "L Spallanzani" Laboratories of Biochemistry University of Pavia Pavia Italy
| | - Silvia Rudloff
- Analytical Platform Stable Isotopes, and Cell Biology Institute of Nutritional Sciences Justus Liebig University Giessen Giessen Germany
| | - Carsten Lundby
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research Rigshospitalet University of Copenhagen Hillerød Denmark
- Inland Norway University of Applied Sciences Lillehammer Norway
| | - Asya Makhro
- Red Blood Cell Research Group Institute of Veterinary Physiology University of Zürich Zürich Switzerland
| | - Elena Seiler
- Red Blood Cell Research Group Institute of Veterinary Physiology University of Zürich Zürich Switzerland
| | - Ankie Cromvoirt
- Red Blood Cell Research Group Institute of Veterinary Physiology University of Zürich Zürich Switzerland
| | - Simone Fenk
- Red Blood Cell Research Group Institute of Veterinary Physiology University of Zürich Zürich Switzerland
| | - Greta Simionato
- Experimental Physics Dynamics of Fluids Group Saarland University Saarbrücken Germany
- Theoretical Medicine and Biosciences Campus University HospitalSaarland University Homburg Germany
- Institute for Clinical and Experimental Surgery Saarland UniversityCampus University Hospital Homburg Germany
| | - Laura Hertz
- Experimental Physics Dynamics of Fluids Group Saarland University Saarbrücken Germany
| | - Steffen Recktenwald
- Experimental Physics Dynamics of Fluids Group Saarland University Saarbrücken Germany
| | - Larissa Schäfer
- Department of Anaesthesiology and Intensive Care Medicine University Hospital SalzburgParacelsus Medical University Salzburg Austria
| | - Thomas Haider
- Department of Cardiology University Hospital Zürich Zürich Switzerland
| | - Sebastian Fried
- Department of Anaesthesiology University Hospital Heidelberg Heidelberg Germany
| | - Christian Borsch
- Analytical Platform Stable Isotopes, and Cell Biology Institute of Nutritional Sciences Justus Liebig University Giessen Giessen Germany
| | - Hugo H. Marti
- Institute of Physiology and Pathophysiology University of Heidelberg Heidelberg Germany
| | - Anja Sander
- Institute of Medical Biometry and Informatics University Hospital Heidelberg Heidelberg Germany
| | - Heimo Mairbäurl
- Medical Clinic VII Sports Medicine University Hospital Heidelberg Heidelberg Germany
- Translational Pneumology University Hospital Heidelberg Heidelberg Germany
- Translational Lung Research Centre Heidelberg (TLRC) Part of the German Centre for Lung Research (DZL) Heidelberg Germany
| |
Collapse
|
12
|
Nguyen LM, Li Z, Yan X, Krzyzanski W. A quantitative systems pharmacology model of hyporesponsiveness to erythropoietin in rats. J Pharmacokinet Pharmacodyn 2021; 48:687-710. [PMID: 34100188 DOI: 10.1007/s10928-021-09762-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/04/2021] [Indexed: 12/29/2022]
Abstract
Recombinant human erythropoietin (rHuEPO) is effective in managing chronic kidney disease and chemotherapy-induced anemia. However, hyporesponsiveness to rHuEPO treatment was reported in about 10% of the patients. A decreased response in rats receiving a single or multiple doses of rHuEPO was also observed. In this study, we aimed to develop a quantitative systems pharmacology (QSP) model to examine hyporesponsiveness to rHuEPO in rats. Pharmacokinetic (PK) and pharmacodynamic (PD) data after a single intravenous dose of rHuEPO (100 IU/kg) was obtained from a previous study (Yan et al. in Pharm Res, 30:1026-1036, 2013) including rHuEPO plasma concentrations, erythroid precursors counts in femur bone marrow and spleen, reticulocytes (RETs), red blood cells (RBCs), and hemoglobin (HGB) in circulation. Parameter values were obtained from literature or calibrated with experimental data. Global sensitivity analysis and model-based simulations were performed to assess parameter sensitivity and hyporesponsiveness. The final QSP model adequately characterizes time courses of rHuEPO PK and nine PD endpoints in both control and treatment groups simultaneously. The model indicates that negative feedback regulation, neocytolysis, and depletion of erythroid precursors are major factors leading to hyporesponsiveness to rHuEPO treatment in rats.
Collapse
Affiliation(s)
- Ly Minh Nguyen
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, 370 Pharmacy Building, New York, 14214, USA
| | - Zhichuan Li
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, 370 Pharmacy Building, New York, 14214, USA
| | - Xiaoyu Yan
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Wojciech Krzyzanski
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, 370 Pharmacy Building, New York, 14214, USA.
| |
Collapse
|
13
|
Culliton K, Louati H, Laneuville O, Ramsay T, Trudel G. Six degrees head-down tilt bed rest caused low-grade hemolysis: a prospective randomized clinical trial. NPJ Microgravity 2021; 7:4. [PMID: 33589644 PMCID: PMC7884785 DOI: 10.1038/s41526-021-00132-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/13/2021] [Indexed: 01/31/2023] Open
Abstract
This study aimed to measure hemolysis before, during and after 60 days of the ground-based spaceflight analog bed rest and the effect of a nutritional intervention through a prospective randomized clinical trial. Twenty male participants were hospitalized for 88 days comprised of 14 days of ambulatory baseline, 60 days of 6° head-down tilt bed rest and 14 days of reambulation. Ten participants each received a control diet or daily polyphenol associated with omega-3, vitamin E, and selenium supplements. The primary outcome was endogenous carbon monoxide (CO) elimination measured by gas chromatography. Hemolysis was also measured with serial bilirubin, iron, transferrin saturation blood levels and serial 3-day stool collections were used to measure urobilinoid excretion using photometry. Total hemoglobin mass (tHb) was measured using CO-rebreathing. CO elimination increased after 5, 11, 30, and 57 days of bed rest: +289 ppb (95% CI 101-477 ppb; p = 0.004), +253 ppb (78-427 ppb; p = 0.007), +193 ppb (89-298 ppb; p = 0.001) and +858 ppb (670-1046 ppb; p < 0.000), respectively, compared to baseline. Bilirubin increased after 20 and 49 days of bed rest +0.8 mg/l (p = 0.013) and +1.1 mg/l (p = 0.012), respectively; and iron increased after 20 days of bed rest +10.5 µg/dl (p = 0.032). The nutritional intervention did not change CO elimination. THb was lower after 60 days of bed rest -0.9 g/kg (p = 0.001). Bed rest enhanced hemolysis as measured through all three by-products of heme oxygenase. Ongoing enhanced hemolysis over 60 days contributed to a 10% decrease in tHb mass. Modulation of red blood cell control towards increased hemolysis may be an important mechanism causing anemia in astronauts.
Collapse
Affiliation(s)
- Kathryn Culliton
- grid.412687.e0000 0000 9606 5108Department of Medicine, Division of Physical Medicine and Rehabilitation, Ottawa Hospital Research Institute, Ottawa, ON Canada
| | - Hakim Louati
- grid.412687.e0000 0000 9606 5108Department of Medicine, Division of Physical Medicine and Rehabilitation, Ottawa Hospital Research Institute, Ottawa, ON Canada
| | - Odette Laneuville
- grid.28046.380000 0001 2182 2255Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON Canada
| | - Tim Ramsay
- grid.28046.380000 0001 2182 2255School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON Canada
| | - Guy Trudel
- grid.412687.e0000 0000 9606 5108Department of Medicine, Division of Physical Medicine and Rehabilitation, Ottawa Hospital Research Institute, Ottawa, ON Canada ,grid.28046.380000 0001 2182 2255Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
14
|
Madu AJ, Ugwu AO, Efobi C. Hyperhaemolytic Syndrome in Sickle Cell Disease: Clearing the Cobwebs. Med Princ Pract 2021; 30:236-243. [PMID: 33176303 PMCID: PMC8280419 DOI: 10.1159/000512945] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/10/2020] [Indexed: 12/23/2022] Open
Abstract
Sickle cell disease (SCD) presents with a dynamic background of haemolysis and deepening anaemia. This increases the demand for transfusion if any additional strain on haemopoiesis is encountered due to any other physiological or pathological causes. Patients with cerebrovascular accidents are placed on chronic blood transfusion; those with acute sequestration and acute chest syndrome are likewise managed with blood transfusion. These patients are prone to develop complications of blood transfusion including alloimmunization and hyperhaemolytic syndrome (HHS). This term is used to describe haemolysis of both transfused and "own" red cells occurring during or post-transfusion in sickle cell patients. Hyperhaemolysis results in worsening post-transfusion haemoglobin due attendant haemolysis of both transfused and autologous red cells. The mechanism underlying this rare and usually fatal complication of SCD has been thought to be secondary to changes in the red cell membrane with associated immunological reactions against exposed cell membrane phospholipids. The predisposition to HHS in sickle cell is also varied and the search for a prediction pattern or value has been evasive. This review discusses the pathogenesis, risk factors and treatment of HHS, elaborating on what is known of this rare condition.
Collapse
Affiliation(s)
- Anazoeze Jude Madu
- Department of Haematology and Immunology, University of Nigeria Ituku-Ozalla Campus, Ituku-Ozalla, Nigeria,
| | - Angela Ogechukwu Ugwu
- Department of Haematology and Immunology, University of Nigeria Ituku-Ozalla Campus, Ituku-Ozalla, Nigeria
| | - Chilota Efobi
- Department of Haematology, Nnamdi Azikiwe University, Nnewi, Nigeria
| |
Collapse
|
15
|
Nay K, Koechlin-Ramonatxo C, Rochdi S, Island ML, Orfila L, Treffel L, Bareille MP, Beck A, Gauquelin-Koch G, Ropert M, Loréal O, Derbré F. Simulated microgravity disturbs iron metabolism and distribution in humans: Lessons from dry immersion, an innovative ground-based human model. FASEB J 2020; 34:14920-14929. [PMID: 32918768 DOI: 10.1096/fj.202001199rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 01/16/2023]
Abstract
The objective of the present study was to determine the effects of dry immersion, an innovative ground-based human model of simulated microgravity and extreme physical inactivity, on iron homeostasis and distribution. Twenty young healthy men were recruited and submitted to 5 days of dry immersion (DI). Fasting blood samples and MRI were performed before and after DI exposure to assess iron status, as well as hematological responses. DI increased spleen iron concentrations (SIC), whereas hepatic iron store (HIC) was not affected. Spleen iron sequestration could be due to the concomitant increase in serum hepcidin levels (P < .001). Increased serum unconjugated bilirubin, as well as the rise of serum myoglobin levels support that DI may promote hemolysis and myolysis. These phenomena could contribute to the concomitant increase of serum iron and transferrin saturation levels (P < .001). As HIC remained unchanged, increased serum hepcidin levels could be due both to higher transferrin saturation level, and to low-grade pro-inflammatory as suggested by the significant rise of serum ferritin and haptoglobin levels after DI (P = .003 and P = .003, respectively). These observations highlight the need for better assessment of iron metabolism in bedridden patients, and an optimization of the diet currently proposed to astronauts.
Collapse
Affiliation(s)
- Kévin Nay
- Laboratory "Movement Sport and Health Sciences" EA7470, University of Rennes/ENS Rennes, Bruz, France.,DMEM, University of Montpellier, INRAE, Montpellier, France.,Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | | | - Sarah Rochdi
- Laboratory "Movement Sport and Health Sciences" EA7470, University of Rennes/ENS Rennes, Bruz, France
| | - Marie-Laure Island
- INSERM, University of Rennes, INRAE, UMR 1241, AEM2 Platform, Nutrition Metabolisms and Cancer (NuMeCan) Institute, Rennes, France.,Department of Biochemistry, CHU Rennes, France
| | - Luz Orfila
- Laboratory "Movement Sport and Health Sciences" EA7470, University of Rennes/ENS Rennes, Bruz, France
| | - Loïc Treffel
- Institut NeuroMyoGène, Faculté de Médecine Lyon Est, Lyon, France
| | | | - Arnaud Beck
- Institute for Space Medicine and Physiology (MEDES), Toulouse, France
| | | | - Martine Ropert
- INSERM, University of Rennes, INRAE, UMR 1241, AEM2 Platform, Nutrition Metabolisms and Cancer (NuMeCan) Institute, Rennes, France.,Department of Biochemistry, CHU Rennes, France
| | - Olivier Loréal
- INSERM, University of Rennes, INRAE, UMR 1241, AEM2 Platform, Nutrition Metabolisms and Cancer (NuMeCan) Institute, Rennes, France
| | - Frédéric Derbré
- Laboratory "Movement Sport and Health Sciences" EA7470, University of Rennes/ENS Rennes, Bruz, France
| |
Collapse
|
16
|
Zhang H, Rzechorzek W, Aghajanian A, Faber JE. Hypoxia induces de novo formation of cerebral collaterals and lessens the severity of ischemic stroke. J Cereb Blood Flow Metab 2020; 40:1806-1822. [PMID: 32423327 PMCID: PMC7430105 DOI: 10.1177/0271678x20924107] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pial collaterals provide protection in stroke. Evidence suggests their formation late during gestation (collaterogenesis) is driven by reduced oxygen levels in the cerebral watersheds. The purpose of this study was to determine if collaterogenesis can be re-activated in the adult to induce formation of additional collaterals ("neo-collateral formation", NCF). Mice were gradually acclimated to reduced inspired oxygen (FIO2) and maintained at 12, 10, 8.5 or 7% for two-to-eight weeks. Hypoxemia induced "dose"-dependent NCF and remodeling of native collaterals, and decreased infarct volume after permanent MCA occlusion. In contrast, no formation occurred of addition collateral-like intra-tree anastomoses, PComs, or branches within the MCA tree. Hypoxic NCF, remodeling and infarct protection were durable, i.e. retained for at least six weeks after return to normoxia. Hypoxia increased expression of Hif2α, Vegfa, Rabep2, Angpt2, Tie2 and Cxcr4. Neo-collateral formation was abolished in mice lacking Rabep2, a novel gene involved in VEGFA→Flk1 signaling and required for formation of collaterals during development, and inhibited by knockdown of Vegfa, Flk1 and Cxcr4. Rabep2-dependent NCF was also induced by permanent MCA occlusion. This is the first report that hypoxia induces new pial collaterals to form. Hypoxia- and occlusion-induced neo-collateral formation provide models to study collaterogenesis in the adult.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Cell Biology and Physiology, McAllister Heart Institute, Curriculum in Neurobiology, University of North Carolina at Chapel Hill, NC, USA
| | - Wojciech Rzechorzek
- Department of Cell Biology and Physiology, McAllister Heart Institute, Curriculum in Neurobiology, University of North Carolina at Chapel Hill, NC, USA
| | - Amir Aghajanian
- Department of Cell Biology and Physiology, McAllister Heart Institute, Curriculum in Neurobiology, University of North Carolina at Chapel Hill, NC, USA
| | - James E Faber
- Department of Cell Biology and Physiology, McAllister Heart Institute, Curriculum in Neurobiology, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
17
|
Mujika I, Sharma AP, Stellingwerff T. Contemporary Periodization of Altitude Training for Elite Endurance Athletes: A Narrative Review. Sports Med 2020; 49:1651-1669. [PMID: 31452130 DOI: 10.1007/s40279-019-01165-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Since the 1960s there has been an escalation in the purposeful utilization of altitude to enhance endurance athletic performance. This has been mirrored by a parallel intensification in research pursuits to elucidate hypoxia-induced adaptive mechanisms and substantiate optimal altitude protocols (e.g., hypoxic dose, duration, timing, and confounding factors such as training load periodization, health status, individual response, and nutritional considerations). The majority of the research and the field-based rationale for altitude has focused on hematological outcomes, where hypoxia causes an increased erythropoietic response resulting in augmented hemoglobin mass. Hypoxia-induced non-hematological adaptations, such as mitochondrial gene expression and enhanced muscle buffering capacity may also impact athletic performance, but research in elite endurance athletes is limited. However, despite significant scientific progress in our understanding of hypobaric hypoxia (natural altitude) and normobaric hypoxia (simulated altitude), elite endurance athletes and coaches still tend to be trailblazers at the coal face of cutting-edge altitude application to optimize individual performance, and they already implement novel altitude training interventions and progressive periodization and monitoring approaches. Published and field-based data strongly suggest that altitude training in elite endurance athletes should follow a long- and short-term periodized approach, integrating exercise training and recovery manipulation, performance peaking, adaptation monitoring, nutritional approaches, and the use of normobaric hypoxia in conjunction with terrestrial altitude. Future research should focus on the long-term effects of accumulated altitude training through repeated exposures, the interactions between altitude and other components of a periodized approach to elite athletic preparation, and the time course of non-hematological hypoxic adaptation and de-adaptation, and the potential differences in exercise-induced altitude adaptations between different modes of exercise.
Collapse
Affiliation(s)
- Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Odontology, University of the Basque Country, Leioa, Basque Country, Spain. .,Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile.
| | - Avish P Sharma
- Griffith Sports Physiology and Performance, School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,Triathlon Australia, Burleigh Heads, QLD, Australia
| | - Trent Stellingwerff
- Canadian Sport Institute-Pacific, Victoria, BC, Canada.,Department of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
18
|
Trudel G, Shafer J, Laneuville O, Ramsay T. Characterizing the effect of exposure to microgravity on anemia: more space is worse. Am J Hematol 2020; 95:267-273. [PMID: 31816115 DOI: 10.1002/ajh.25699] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022]
Abstract
The effects of space travel have renewed importance with space tourism and plans for long-term missions to the moon and Mars. The study of space anemia is limited by the availability of subjects and extreme conditions. An approach using the accumulated data on human space flight may characterize space anemia. A total of 17 336 hemoglobin (Hb) concentration measures from 721 space missions and controls were used to study acute and long-term effects of duration of exposure to space on Hb decrement. Nearly half of astronauts (48%) landing after long duration missions were anemic. Returning to Earth revealed Hb decrements whose magnitude and time to recover were dependent on exposure to space: -0.61 g/dL (4%), -0.82 g/dL (5%) and -1.66 g/dL (11%) of preflight Hb for mean exposure to space of 5.4, 11.5, and 145 days, respectively. Astronauts returning from a mean 5.4 days in space took 24 days to return to preflight Hb while astronauts 11.5 to 145 days in space took 49 days. Negative effects of microgravity on Hb persisted throughout female and male astronauts' terrestrial lives (-0.001 and -0.002 mg/dL Hb respectively) for every day spent in space (both P < .05). The negative effect of exposure to space was not overcome by a statistically significant effect of being an astronaut compared to controls. Exposure to space showed a dose-response relationship with acute and chronic Hb decrements. Space anemia contributes to the deconditioning of astronauts returning to Earth, and needs to be considered for space travel to other planets, space tourism and for the care of bedridden patients who present similar changes as astronauts.
Collapse
Affiliation(s)
- Guy Trudel
- Department of Medicine, Division of Physical Medicine and Rehabilitation, Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa Ottawa Ontario Canada
- Ottawa Hospital Research Institute Ottawa Canada
| | - Jessica Shafer
- MEI Technologies, Lifetime Surveillance of Astronaut Health Houston Texas
| | - Odette Laneuville
- Department of Biology, Faculty of ScienceUniversity of Ottawa Ottawa Ontario Canada
| | - Tim Ramsay
- Ottawa Hospital Research Institute Ottawa Canada
- School of Epidemiology and Public HealthUniversity of Ottawa Ottawa Canada
| |
Collapse
|
19
|
Shahin N, Louati H, Trudel G. Measuring Human Hemolysis Clinically and in Extreme Environments Using Endogenous Carbon Monoxide Elimination. Ann Biomed Eng 2020; 48:1540-1550. [PMID: 32034608 DOI: 10.1007/s10439-020-02473-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/30/2020] [Indexed: 11/25/2022]
Abstract
The measure of hemolysis in humans is clinically important. Here we describe methods using a gas chromatograph equipped with a reduction gas detector to detect the human analyte carbon monoxide (CO) that were developed for the extreme environment of the International Space Station. These methods can be adapted to in-hospital use for clinical care with characteristics that may surpass existing measures of hemolysis. We demonstrate improved performance over previous-generation methods in terms of reproducibility, accuracy, control for physical and intervening factors to quantitatively assess hemolysis rates at unprecedented levels. The presented measure of hemolysis using CO elimination is based on a different physiological approach that can complement and augment existing detection tools. In addition to their suitability for extreme environments, the methods present distinctive advantages over existing markers for the diagnosis, monitoring and response to treatment of hemolytic anemia. These methods have the potential to fulfill a wide range of research and clinical applications.
Collapse
Affiliation(s)
- Nibras Shahin
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 5M2, Canada
| | - Hakim Louati
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 5M2, Canada
| | - Guy Trudel
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 5M2, Canada.
- Division of Physical Medicine and Rehabilitation, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
20
|
Mairbäurl H. Kinetics of Changes in Hemoglobin After Ascent to and Return from High Altitude. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42978-019-00044-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Pretini V, Koenen MH, Kaestner L, Fens MHAM, Schiffelers RM, Bartels M, Van Wijk R. Red Blood Cells: Chasing Interactions. Front Physiol 2019; 10:945. [PMID: 31417415 PMCID: PMC6684843 DOI: 10.3389/fphys.2019.00945] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Human red blood cells (RBC) are highly differentiated cells that have lost all organelles and most intracellular machineries during their maturation process. RBC are fundamental for the nearly all basic physiologic dynamics and they are key cells in the body's respiratory system by being responsible for the oxygen transport to all cells and tissues, and delivery of carbon dioxide to the lungs. With their flexible structure RBC are capable to deform in order to travel through all blood vessels including very small capillaries. Throughout their in average 120 days lifespan, human RBC travel in the bloodstream and come in contact with a broad range of different cell types. In fact, RBC are able to interact and communicate with endothelial cells (ECs), platelets, macrophages, and bacteria. Additionally, they are involved in the maintenance of thrombosis and hemostasis and play an important role in the immune response against pathogens. To clarify the mechanisms of interaction of RBC and these other cells both in health and disease as well as to highlight the role of important key players, we focused our interest on RBC membrane components such as ion channels, proteins, and phospholipids.
Collapse
Affiliation(s)
- Virginia Pretini
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Mischa H. Koenen
- Department of Laboratory of Translational Immunology and Department of Pediatric Immunology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Marcel H. A. M. Fens
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Raymond M. Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marije Bartels
- Paediatric Haematology Department, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Richard Van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
22
|
Trudel G, Uhthoff HK, Laneuville O. Hemolysis during and after 21 days of head-down-tilt bed rest. Physiol Rep 2018; 5:5/24/e13469. [PMID: 29263114 PMCID: PMC5742697 DOI: 10.14814/phy2.13469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 12/22/2022] Open
Abstract
Hemoconcentration is observed in bed rest studies, descent from altitude, and exposure to microgravity. Hemoconcentration triggers erythrocyte losses to subsequently normalize erythrocyte concentration. The mechanisms of erythrocyte loss may involve enhanced hemolysis, but has never been measured directly in bed rest studies. Steady‐state hemolysis was evaluated by measuring two heme degradation products, endogenous carbon monoxide concentration [CO] and urobilinogen in feces, in 10 healthy men, before, during, and after two campaigns of 21 days of 6° head‐down‐tilt (HDT) bed rest. The subjects were hemoconcentrated at 10 and 21 days of bed rest: mean concentrations of hemoglobin (15.0 ± 0.2 g/L and 14.6 ± 0.1 g/L, respectively) and erythrocytes (5.18 ± 0.06E6/μL and 5.02 ± 0.06E6/μL, respectively) were increased compared to baseline (all Ps < 0.05). In contrast, mean hemoglobin mass (743 ± 19 g) and number of erythrocytes (2.56 ± 0.07E13) were decreased at 21 days of bed rest (both Ps < 0.05). Indicators of hemolysis mean [CO] (1660 ± 49 ppb and 1624 ± 48 ppb, respectively) and fecal urobilinogen concentration (180 ± 23 mg/day and 199 ± 22 mg/day, respectively) were unchanged at 10 and 21 days of bed rest compared to baseline (both Ps > 0.05). A significant decrease in [CO] (−505 ppb) was measured at day 28 after bed rest. HDT bed rest caused hemoconcentration in parallel with lower hemoglobin mass. Circulating indicators of hemolysis remained unchanged throughout bed rest supporting that enhanced hemolysis did not contribute significantly to erythrocyte loss during the hemoconcentration of bed rest. At day 28 after bed rest, decreased hemolysis accompanied the recovery of erythrocytes, a novel finding.
Collapse
Affiliation(s)
- Guy Trudel
- The Ottawa Hospital Rehabilitation Centre, Ottawa, Ontario, Canada .,University of Ottawa, Faculty of Medicine, Department of Medicine, Ottawa, Ontario, Canada.,Ottawa Hospital Research Institute, Clinical Epidemiology Program, Ottawa, Ontario, Canada
| | - Hans K Uhthoff
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Odette Laneuville
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
23
|
Bogdanova A, Kaestner L. The Red Blood Cells on the Move! Front Physiol 2018; 9:474. [PMID: 29765336 PMCID: PMC5938364 DOI: 10.3389/fphys.2018.00474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/16/2018] [Indexed: 02/02/2023] Open
Affiliation(s)
- Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg/Saar and Experimental Physics, Saarland University, Saarbruecken, Germany
| |
Collapse
|
24
|
Mairbäurl H. Neocytolysis: How to Get Rid of the Extra Erythrocytes Formed by Stress Erythropoiesis Upon Descent From High Altitude. Front Physiol 2018; 9:345. [PMID: 29674976 PMCID: PMC5896414 DOI: 10.3389/fphys.2018.00345] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/20/2018] [Indexed: 01/18/2023] Open
Abstract
Neocytolysis is the selective destruction of those erythrocytes that had been formed during stress-erythropoiesis in hypoxia in order to increase the oxygen transport capacity of blood. Neocytolysis likely aims at decreasing this excess amount of erythrocytes and hemoglobin (Hb) when it is not required anymore and to decrease blood viscosity. Neocytolysis seems to occur upon descent from high altitude. Similar processes seem to occur in microgravity, and are also discussed to mediate the replacement of erythrocytes containing fetal hemoglobin (HbF) with those having adult hemoglobin (HbA) after birth. This review will focus on hypoxia at high altitude. Hemoglobin concentration and total hemoglobin in blood increase by 20-50% depending on the altitude (i.e., the degree of hypoxia) and the duration of the sojourn. Upon return to normoxia hemoglobin concentration, hematocrit, and reticulocyte counts decrease faster than expected from inhibition of stress-erythropoiesis and normal erythrocyte destruction rates. In parallel, an increase in haptoglobin, bilirubin, and ferritin is observed, which serve as indirect markers of hemolysis and hemoglobin-breakdown. At the same time markers of progressing erythrocyte senescence appear even on reticulocytes. Unexpectedly, reticulocytes from hypoxic mice show decreased levels of the hypoxia-inducible factor HIF-1α and decreased activity of the BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), which results in elevated mitochondrial activity in these cells. Furthermore, hypoxia increases the expression of miR-21, which inhibits the expression of catalase and thus decreases one of the most important mechanisms protecting against oxygen free radicals in erythrocytes. This unleashes a series of events which likely explain neocytolysis, because upon re-oxygenation systemic and mitochondrial oxygen radical formation increases and causes the selective destruction of those erythrocytes having impaired anti-oxidant capacity.
Collapse
Affiliation(s)
- Heimo Mairbäurl
- Medical Clinic VII, Sports Medicine, Translational Lung Research Center, German Center for Lung Research, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
25
|
Kunz H, Quiriarte H, Simpson RJ, Ploutz-Snyder R, McMonigal K, Sams C, Crucian B. Alterations in hematologic indices during long-duration spaceflight. BMC HEMATOLOGY 2017; 17:12. [PMID: 28904800 PMCID: PMC5590186 DOI: 10.1186/s12878-017-0083-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/08/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Although a state of anemia is perceived to be associated with spaceflight, to date a peripheral blood hematologic assessment of red blood cell (RBC) indices has not been performed during long-duration space missions. METHODS This investigation collected whole blood samples from astronauts participating in up to 6-months orbital spaceflight, and returned those samples (ambient storage) to Earth for analysis. As samples were always collected near undock of a returning vehicle, the delay from collection to analysis never exceeded 48 h. As a subset of a larger immunologic investigation, a complete blood count was performed. A parallel stability study of the effect of a 48 h delay on these parameters assisted interpretation of the in-flight data. RESULTS We report that the RBC and hemoglobin were significantly elevated during flight, both parameters deemed stable through the delay of sample return. Although the stability data showed hematocrit to be mildly elevated at +48 h, there was an in-flight increase in hematocrit that was ~3-fold higher in magnitude than the anticipated increase due to the delay in processing. CONCLUSIONS While susceptible to the possible influence of dehydration or plasma volume alterations, these results suggest astronauts do not develop persistent anemia during spaceflight.
Collapse
Affiliation(s)
- Hawley Kunz
- KBRwyle, 2400 NASA Parkway, Houston, TX 77058 USA
| | | | | | - Robert Ploutz-Snyder
- University of Michigan School of Nursing, 400 North Ingalls Building, Ann Arbor, MI 48109 USA
| | | | - Clarence Sams
- NASA Johnson Space Center, 2101 E NASA Parkway, Houston, TX 77058 USA
| | - Brian Crucian
- NASA Johnson Space Center, 2101 E NASA Parkway, Houston, TX 77058 USA
| |
Collapse
|
26
|
Affiliation(s)
- Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, 66421 Germany.,Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrücken, 66041, Germany
| | - Giampaolo Minetti
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
27
|
Gridley DS, Pecaut MJ. Changes in the distribution and function of leukocytes after whole-body iron ion irradiation. JOURNAL OF RADIATION RESEARCH 2016; 57:477-491. [PMID: 27380804 PMCID: PMC5045078 DOI: 10.1093/jrr/rrw051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/11/2016] [Accepted: 04/03/2016] [Indexed: 06/06/2023]
Abstract
High-energy particle radiation could have a considerable impact on health during space missions. This study evaluated C57BL/6 mice on Day 40 after total-body 56Fe26+ irradiation at 0, 1, 2 and 3 gray (Gy). Radiation consistently increased thymus mass (one-way ANOVA: P < 0.005); spleen, liver and lung masses were similar among all groups. In the blood, there was no radiation effect on the white blood cell (WBC) count or major leukocyte types. However, the red blood cell count, hemoglobin, hematocrit and the CD8+ T cytotoxic (Tc) cell count and percentage all decreased, while both the CD4:CD8 (Th:Tc) cell ratio and spontaneous blastogenesis increased, in one or more irradiated groups compared with unirradiated controls (P < 0.05 vs 0 Gy). In contrast, splenic WBC, lymphocyte, B cell and T helper (Th) counts, %B cells and the CD4:CD8 ratio were all significantly elevated, while Tc percentages decreased, in one or more of the irradiated groups compared with controls (P < 0.05 vs 0 Gy). Although there were trends for minor, radiation-induced increases in %CD11b+ granulocytes in the spleen, cells double-labeled with adhesion markers (CD11b+CD54+, CD11b+CD62E+) were normal. Splenocyte spontaneous blastogenesis and that induced by mitogens (PHA, ConA, LPS) was equivalent to normal. In bone marrow, the percentage of cells expressing stem cell markers, Sca-1 and CD34/Sca-1, were low in one or more of the irradiated groups (P < 0.05 vs 0 Gy). Collectively, the data indicate that significant immunological abnormalities still exist more than a month after 56Fe irradiation and that there are differences dependent upon body compartment.
Collapse
Affiliation(s)
- Daila S Gridley
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University School of Medicine, Chan Shun Pavilion, 11175 Campus Street, Loma Linda, CA 92354, USA
| | - Michael J Pecaut
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University School of Medicine, Chan Shun Pavilion, 11175 Campus Street, Loma Linda, CA 92354, USA
| |
Collapse
|
28
|
[Hospital-acquired anemia: Facts, consequences and prevention]. Transfus Clin Biol 2016; 23:185-191. [PMID: 27562519 DOI: 10.1016/j.tracli.2016.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 12/31/2022]
Abstract
Hospital-acquired anemia is common, especially in the most critically ill patients. It may be associated with poor patient outcomes. It may result from increased blood loss, impaired red cell production or reduced red cell life span. Multiple associated factors may contribute simultaneously or sequentially to the decrease in hemoglobin level. Some of them are related to the underlying disease and others are iatrogenic. Clinicians should be aware of the importance and consequences of iatrogenic anemia caused by diagnostic blood sampling. Strategies and measures to minimize iatrogenic blood loss should be prioritized. They may reduce the risk of developing anemia and then red blood cells transfusion requirement.
Collapse
|
29
|
Ryan BJ, Goodrich JA, Schmidt WF, Stothard ER, Wright KP, Byrnes WC. Haemoglobin mass alterations in healthy humans following four-day head-down tilt bed rest. Exp Physiol 2016; 101:628-40. [PMID: 26914389 PMCID: PMC4851582 DOI: 10.1113/ep085665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/19/2016] [Indexed: 02/01/2023]
Abstract
NEW FINDINGS What is the central question of this study? Is haemoglobin mass (Hbmass) decreased following 4 days of head-down tilt bed rest (HDTBR), and does increased red blood cell (RBC) destruction mediate this adaptation? What is the main finding and its importance? Haemoglobin mass was increased immediately following HDTBR, before decreasing below baseline 5 days after return to normal living conditions. The transient increase in Hbmass might be the result of decreased RBC destruction, but it is also possible that spleen contraction after HDTBR contributed to this adaptation. Our data suggest that the decreased Hbmass 5 days following HDTBR resulted from decreased RBC production, not increased RBC destruction. Rapid decreases in haemoglobin mass (Hbmass) have been reported in healthy humans following spaceflight and descent from high altitude. It has been proposed that a selective increase in the destruction of young red blood cells (RBCs) mediates these decreases, but conclusive evidence demonstrating neocytolysis in humans is lacking. Based on the proposed triggers and time course of adaptation during spaceflight, we hypothesized that Hbmass would be reduced after 4 days of -6 deg head-down tilt bed rest (HDTBR) and that this would be associated with evidence for increased RBC destruction. We assessed Hbmass in seven healthy, recreationally active men before (PRE), 5 h after (POST) and 5 days after (POST5) 4 days of HDTBR. The concentration of erythropoietin decreased from 7.1 ± 1.8 mIU ml(-1) at PRE to 5.2 ± 2.8 mIU ml(-1) at POST (mean ± SD; P = 0.028). Contrary to our hypothesis, Hbmass was increased from 817 ± 135 g at PRE to 849 ± 141 g at POST (P = 0.014) before decreasing below PRE to 789 ± 139 g at POST5 (P = 0.027). From PRE to POST, the concentration of haptoglobin increased from 0.54 ± 0.32 to 0.68 ± 0.28 g l(-1) (P = 0.013) and the concentration of bilirubin decreased from 0.50 ± 0.24 to 0.32 ± 0.11 mg dl(-1) (P = 0.054), suggesting that decreased RBC destruction might have contributed to the increased Hbmass. However, it is possible that spleen contraction following HDTBR also played a role in the increase in Hbmass at POST, but as the transient increase in Hbmass was unexpected, we did not collect data that would provide direct evidence for or against spleen contraction. From PRE to POST5, the concentration of soluble transferrin receptor decreased from 20.7 ± 3.9 to 17.1 ± 3.3 nmol l(-1) (P = 0.018) but the concentrations of ferritin, haptoglobin and bilirubin were not significantly altered, suggesting that the decrease in Hbmass was mediated by decreased RBC production rather than increased RBC destruction. Peak oxygen uptake decreased by 0.31 ± 0.16 l min(-1) from PRE to POST (P = 2 × 10(-4) ) but was not significantly altered at POST5 compared with PRE. Overall, these findings indicate that 4 days of HDTBR does not increase RBC destruction and that re-examination of the time course and mechanisms of Hbmass alterations following short-term spaceflight and simulated microgravity is warranted.
Collapse
Affiliation(s)
- Benjamin J. Ryan
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Jesse A. Goodrich
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Walter F. Schmidt
- Department of Sports Medicine/Sports Physiology, University of Bayreuth, Bayreuth, Germany
| | - Ellen R. Stothard
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Kenneth P. Wright
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - William C. Byrnes
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
30
|
Divoky V, Song J, Horvathova M, Kralova B, Votavova H, Prchal JT, Yoon D. Delayed hemoglobin switching and perinatal neocytolysis in mice with gain-of-function erythropoietin receptor. J Mol Med (Berl) 2015; 94:597-608. [PMID: 26706855 DOI: 10.1007/s00109-015-1375-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 11/18/2015] [Accepted: 11/24/2015] [Indexed: 11/26/2022]
Abstract
UNLABELLED Mutations of the truncated cytoplasmic domain of human erythropoietin receptor (EPOR) result in gain-of-function of erythropoietin (EPO) signaling and a dominantly inherited polycythemia, primary familial and congenital polycythemia (PFCP). We interrogated the unexplained transient absence of perinatal polycythemia observed in PFCP patients using an animal model of PFCP to examine its erythropoiesis during embryonic, perinatal, and early postnatal periods. In this model, we replaced the murine EpoR gene (mEpoR) with the wild-type human EPOR (wtHEPOR) or mutant human EPOR gene (mtHEPOR) and previously reported that the gain-of-function mtHEPOR mice become polycythemic at 3~6 weeks of age, but not at birth, similar to the phenotype of PFCP patients. In contrast, wtHEPOR mice had sustained anemia. We report that the mtHEPOR fetuses are polycythemic, but their polycythemia is abrogated in the perinatal period and reappears again at 3 weeks after birth. mtHEPOR fetuses have a delayed switch from primitive to definitive erythropoiesis, augmented erythropoietin signaling, and prolonged Stat5 phosphorylation while the wtHEPOR fetuses are anemic. Our study demonstrates the in vivo effect of excessive EPO/EPOR signaling on developmental erythropoiesis switch and describes that fetal polycythemia in this PFCP model is followed by transient correction of polycythemia in perinatal life associated with low Epo levels and increased exposure of erythrocytes' phosphatidylserine. We suggest that neocytolysis contributes to the observed perinatal correction of polycythemia in mtHEPOR newborns as embryos leaving the hypoxic uterus are exposed to normoxia at birth. KEY MESSAGE Human gain-of-function EPOR (mtHEPOR) causes fetal polycythemia in knock-in mice. Wild-type human EPOR causes fetal anemia in knock-in mouse model. mtHEPOR mice have delayed switch from primitive to definitive erythropoiesis. Polycythemia of mtHEPOR mice is transiently corrected in perinatal life. mtHEPOR newborns have low Epo and increased exposure of erythrocytes' phosphatidylserine.
Collapse
Affiliation(s)
- Vladimir Divoky
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, 775 15, Olomouc, Czech Republic
| | - Jihyun Song
- Hematology Division, Department of Medicine, University of Utah and VAH, Salt Lake City, UT, 84132, USA
| | - Monika Horvathova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, 775 15, Olomouc, Czech Republic
| | - Barbora Kralova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, 775 15, Olomouc, Czech Republic
| | - Hana Votavova
- Institute of Hematology and Blood Transfusion, 12820, Prague, Czech Republic
| | - Josef T Prchal
- Hematology Division, Department of Medicine, University of Utah and VAH, Salt Lake City, UT, 84132, USA.
| | - Donghoon Yoon
- Hematology Division, Department of Medicine, University of Utah and VAH, Salt Lake City, UT, 84132, USA
- Myeloma Institute University of Arkansas for Medical Science, Little Rock, AR, USA
| |
Collapse
|
31
|
Ryan BJ, Wachsmuth NB, Schmidt WF, Byrnes WC, Julian CG, Lovering AT, Subudhi AW, Roach RC. AltitudeOmics: rapid hemoglobin mass alterations with early acclimatization to and de-acclimatization from 5260 m in healthy humans. PLoS One 2014; 9:e108788. [PMID: 25271637 PMCID: PMC4182755 DOI: 10.1371/journal.pone.0108788] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/26/2014] [Indexed: 01/09/2023] Open
Abstract
It is classically thought that increases in hemoglobin mass (Hbmass) take several weeks to develop upon ascent to high altitude and are lost gradually following descent. However, the early time course of these erythropoietic adaptations has not been thoroughly investigated and data are lacking at elevations greater than 5000 m, where the hypoxic stimulus is dramatically increased. As part of the AltitudeOmics project, we examined Hbmass in healthy men and women at sea level (SL) and 5260 m following 1, 7, and 16 days of high altitude exposure (ALT1/ALT7/ALT16). Subjects were also studied upon return to 5260 m following descent to 1525 m for either 7 or 21 days. Compared to SL, absolute Hbmass was not different at ALT1 but increased by 3.7±5.8% (mean ± SD; n = 20; p<0.01) at ALT7 and 7.6±6.6% (n = 21; p<0.001) at ALT16. Following descent to 1525 m, Hbmass was reduced compared to ALT16 (−6.0±3.7%; n = 20; p = 0.001) and not different compared to SL, with no difference in the loss in Hbmass between groups that descended for 7 (−6.3±3.0%; n = 13) versus 21 days (−5.7±5.0; n = 7). The loss in Hbmass following 7 days at 1525 m was correlated with an increase in serum ferritin (r = −0.64; n = 13; p<0.05), suggesting increased red blood cell destruction. Our novel findings demonstrate that Hbmass increases within 7 days of ascent to 5260 m but that the altitude-induced Hbmass adaptation is lost within 7 days of descent to 1525 m. The rapid time course of these adaptations contrasts with the classical dogma, suggesting the need to further examine mechanisms responsible for Hbmass adaptations in response to severe hypoxia.
Collapse
Affiliation(s)
- Benjamin J. Ryan
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States of America
- * E-mail:
| | - Nadine B. Wachsmuth
- Department of Sports Medicine/Sports Physiology, University of Bayreuth, Bayreuth, Germany
| | - Walter F. Schmidt
- Department of Sports Medicine/Sports Physiology, University of Bayreuth, Bayreuth, Germany
| | - William C. Byrnes
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Colleen G. Julian
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Andrew T. Lovering
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States of America
| | - Andrew W. Subudhi
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado, United States of America
| | - Robert C. Roach
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
32
|
Kaestner L, Bogdanova A. Regulation of red cell life-span, erythropoiesis, senescence, and clearance. Front Physiol 2014; 5:269. [PMID: 25101005 PMCID: PMC4102833 DOI: 10.3389/fphys.2014.00269] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 06/28/2014] [Indexed: 11/23/2022] Open
Affiliation(s)
- Lars Kaestner
- Research Center for Molecular Imaging and Screening, Medical School, Institute for Molecular Cell Biology, Saarland University Homburg/Saar, Germany
| | - Anna Bogdanova
- Vetsuisse Faculty, and the Zurich Center for Integrative Human Physiology, Institute of Veterinary Physiology, University of Zurich Zurich, Switzerland
| |
Collapse
|