1
|
Gomez‐Cardona E, Dehkordi MH, Van Baar K, Vitkauskaite A, Julien O, Fearnhead HO. An atlas of caspase cleavage events in differentiating muscle cells. Protein Sci 2024; 33:e5156. [PMID: 39180494 PMCID: PMC11344277 DOI: 10.1002/pro.5156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/02/2024] [Accepted: 08/11/2024] [Indexed: 08/26/2024]
Abstract
Executioner caspases, such as caspase-3, are known to induce apoptosis, but in other contexts, they can control very different fates, including cell differentiation and neuronal plasticity. While hundreds of caspase substrates are known to be specifically targeted during cell death, we know very little about how caspase activity brings about non-apoptotic fates. Here, we report the first proteome identification of cleavage events in C2C12 cells undergoing myogenic differentiation and its comparison to undifferentiated or dying C2C12 cells. These data have identified new caspase substrates, including caspase substrates specifically associated with differentiation, and show that caspases are regulating proteins involved in myogenesis in myotubes, several days after caspase-3 initiated differentiation. Cytoskeletal proteins emerged as a major group of non-apoptotic caspase substrates. We also identified proteins with well-established roles in muscle differentiation as substrates cleaved in differentiating cells.
Collapse
Affiliation(s)
- Erik Gomez‐Cardona
- Department of Biochemistry, Faculty of Medicine and DentistryUniversity of AlbertaAlbertaCanada
| | - Mahshid H. Dehkordi
- Pharmacology and Therapeutics, School of MedicineUniversity of GalwayGalwayIreland
| | - Kolden Van Baar
- Department of Biochemistry, Faculty of Medicine and DentistryUniversity of AlbertaAlbertaCanada
| | - Aiste Vitkauskaite
- Pharmacology and Therapeutics, School of MedicineUniversity of GalwayGalwayIreland
| | - Olivier Julien
- Department of Biochemistry, Faculty of Medicine and DentistryUniversity of AlbertaAlbertaCanada
| | - Howard O. Fearnhead
- Pharmacology and Therapeutics, School of MedicineUniversity of GalwayGalwayIreland
| |
Collapse
|
2
|
Svandova E, Vesela B, Janeckova E, Chai Y, Matalova E. Exploring caspase functions in mouse models. Apoptosis 2024; 29:938-966. [PMID: 38824481 PMCID: PMC11263464 DOI: 10.1007/s10495-024-01976-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
Caspases are enzymes with protease activity. Despite being known for more than three decades, caspase investigation still yields surprising and fascinating information. Initially associated with cell death and inflammation, their functions have gradually been revealed to extend beyond, targeting pathways such as cell proliferation, migration, and differentiation. These processes are also associated with disease mechanisms, positioning caspases as potential targets for numerous pathologies including inflammatory, neurological, metabolic, or oncological conditions. While in vitro studies play a crucial role in elucidating molecular pathways, they lack the context of the body's complexity. Therefore, laboratory animals are an indispensable part of successfully understanding and applying caspase networks. This paper aims to summarize and discuss recent knowledge, understanding, and challenges in caspase knock-out mice.
Collapse
Affiliation(s)
- Eva Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic.
| | - Barbora Vesela
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic
| | - Eva Janeckova
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic
- Department of Physiology, University of Veterinary Sciences, Brno, Czech Republic
| |
Collapse
|
3
|
El-Masry TA, El-Nagar MMF, El Mahdy NA, Alherz FA, Taher R, Osman EY. Potential Antitumor Activity of Combined Lycopene and Sorafenib against Solid Ehrlich Carcinoma via Targeting Autophagy and Apoptosis and Suppressing Proliferation. Pharmaceuticals (Basel) 2024; 17:527. [PMID: 38675487 PMCID: PMC11055160 DOI: 10.3390/ph17040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
An FDA-approved kinase inhibitor called sorafenib (SOR) is used to treat primary kidney and liver cancer as well as to stop the spread of advanced breast cancer. Side effects from SOR, such as palmar-plantar erythrodysesthesia syndrome, can negatively impact an individual's quality of life. There are a lot of data supporting the importance of lycopene (LYC) in preventing cancer. The antitumor properties of the combination of sorafenib and lycopene were examined in this study. A viability test against MDA-MB-231 was used to assess the anticancer efficacy of sorafenib, lycopene, and their combination in vitro. Moreover, a cell cycle analysis and Annexin-V/PI double staining were performed by using flow cytometry. In addition, the protein level of JNK-1, ERK-1, Beclin-1, P38, and P53 of the MDA-MB-231 cell line was estimated using ELISA kits. In addition, mice with SEC were divided into four equal groups at random (n = 10) to investigate the possible processes underlying the in vivo antitumor effect. Group IV (SEC-SOR-LYC) received SOR (30 mg/kg/day, p.o.) and LYC (20 mg/kg/day, p.o.); Group I received the SEC control; Group II received SEC-SOR (30 mg/kg/day, p.o.); and Group III received SEC-LYC (20 mg/kg/day, p.o.). The findings demonstrated that the combination of sorafenib and lycopene was superior to sorafenib and lycopene alone in causing early cell cycle arrest, suppressing the viability of cancer cells, and increasing cell apoptosis and autophagy. Likewise, the combination of sorafenib and lycopene demonstrated inhibition of the levels of Bcl-2, Ki-67, VEGF, IL-1β, and TNF-α protein. Otherwise, the quantities of the proteins BAX, P53, and caspase 3 were amplified. Furthermore, the combined treatment led to a substantial increase in TNF-α, caspase 3, and VEGF gene expression compared to the equivalent dosages of monotherapy. The combination of sorafenib and lycopene enhanced apoptosis and reduced inflammation, as seen by the tumor's decreased weight and volume, hence demonstrating its potential anticancer effect.
Collapse
Affiliation(s)
- Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (N.A.E.M.); (R.T.); (E.Y.O.)
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (N.A.E.M.); (R.T.); (E.Y.O.)
| | - Nageh A. El Mahdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (N.A.E.M.); (R.T.); (E.Y.O.)
| | - Fatemah A. Alherz
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Reham Taher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (N.A.E.M.); (R.T.); (E.Y.O.)
| | - Enass Y. Osman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (N.A.E.M.); (R.T.); (E.Y.O.)
| |
Collapse
|
4
|
Eskandari E, Negri GL, Tan S, MacAldaz ME, Ding S, Long J, Nielsen K, Spencer SE, Morin GB, Eaves CJ. Dependence of human cell survival and proliferation on the CASP3 prodomain. Cell Death Discov 2024; 10:63. [PMID: 38321033 PMCID: PMC10847432 DOI: 10.1038/s41420-024-01826-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024] Open
Abstract
Mechanisms that regulate cell survival and proliferation are important for both the development and homeostasis of normal tissue, and as well as for the emergence and expansion of malignant cell populations. Caspase-3 (CASP3) has long been recognized for its proteolytic role in orchestrating cell death-initiated pathways and related processes; however, whether CASP3 has other functions in mammalian cells that do not depend on its known catalytic activity have remained unknown. To investigate this possibility, we examined the biological and molecular consequences of reducing CASP3 levels in normal and transformed human cells using lentiviral-mediated short hairpin-based knockdown experiments in combination with approaches designed to test the potential rescue capability of different components of the CASP3 protein. The results showed that a ≥50% reduction in CASP3 levels rapidly and consistently arrested cell cycle progression and survival in all cell types tested. Mass spectrometry-based proteomic analyses and more specific flow cytometric measurements strongly implicated CASP3 as playing an essential role in regulating intracellular protein aggregate clearance. Intriguingly, the rescue experiments utilizing different forms of the CASP3 protein showed its prosurvival function and effective removal of protein aggregates did not require its well-known catalytic capability, and pinpointed the N-terminal prodomain of CASP3 as the exclusive component needed in a diversity of human cell types. These findings identify a new mechanism that regulates human cell survival and proliferation and thus expands the complexity of how these processes can be controlled. The graphical abstract illustrates the critical role of CASP3 for sustained proliferation and survival of human cells through the clearance of protein aggregates.
Collapse
Affiliation(s)
- Ebrahim Eskandari
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Gian Luca Negri
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Susanna Tan
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Margarita E MacAldaz
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Shengsen Ding
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Justin Long
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Karina Nielsen
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Sandra E Spencer
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Gregg B Morin
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Cho UH, Hetzer MW. Caspase-mediated nuclear pore complex trimming in cell differentiation and endoplasmic reticulum stress. eLife 2023; 12:RP89066. [PMID: 37665327 PMCID: PMC10476967 DOI: 10.7554/elife.89066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
During apoptosis, caspases degrade 8 out of ~30 nucleoporins to irreversibly demolish the nuclear pore complex. However, for poorly understood reasons, caspases are also activated during cell differentiation. Here, we show that sublethal activation of caspases during myogenesis results in the transient proteolysis of four peripheral Nups and one transmembrane Nup. 'Trimmed' NPCs become nuclear export-defective, and we identified in an unbiased manner several classes of cytoplasmic, plasma membrane, and mitochondrial proteins that rapidly accumulate in the nucleus. NPC trimming by non-apoptotic caspases was also observed in neurogenesis and endoplasmic reticulum stress. Our results suggest that caspases can reversibly modulate nuclear transport activity, which allows them to function as agents of cell differentiation and adaptation at sublethal levels.
Collapse
Affiliation(s)
- Ukrae H Cho
- Molecular and Cell Biology Laboratory, Salk Institute for Biological StudiesLa JollaUnited States
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, Salk Institute for Biological StudiesLa JollaUnited States
- Institute of Science and Technology Austria (IST Austria)KlosterneuburgAustria
| |
Collapse
|
6
|
Brunette S, Sharma A, Bell R, Puente L, Megeney LA. Caspase 3 exhibits a yeast metacaspase proteostasis function that protects mitochondria from toxic TDP43 aggregates. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:157-169. [PMID: 37545643 PMCID: PMC10399456 DOI: 10.15698/mic2023.08.801] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023]
Abstract
Caspase 3 activation is a hallmark of cell death and there is a strong correlation between elevated protease activity and evolving pathology in neurodegenerative disease, such as amyotrophic lateral sclerosis (ALS). At the cellular level, ALS is characterized by protein aggregates and inclusions, comprising the RNA binding protein TDP-43, which are hypothesized to trigger pathogenic activation of caspase 3. However, a growing body of evidence indicates this protease is essential for ensuring cell viability during growth, differentiation and adaptation to stress. Here, we explored whether caspase 3 acts to disperse toxic protein aggregates, a proteostasis activity first ascribed to the distantly related yeast metacaspase ScMCA1. We demonstrate that human caspase 3 can functionally substitute for the ScMCA1 and limit protein aggregation in yeast, including TDP-43 inclusions. Proteomic analysis revealed that disrupting caspase 3 in the same yeast substitution model resulted in detrimental TDP-43/mitochondrial protein associations. Similarly, suppression of caspase 3, in either murine or human skeletal muscle cells, led to accumulation of TDP-43 aggregates and impaired mitochondrial function. These results suggest that caspase 3 is not inherently pathogenic, but may act as a compensatory proteostasis factor, to limit TDP-43 protein inclusions and protect organelle function in aggregation related degenerative disease.
Collapse
Affiliation(s)
- Steve Brunette
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| | - Anupam Sharma
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ryan Bell
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| | - Lawrence Puente
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| | - Lynn A Megeney
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
Shen J, Si J, Wang Q, Mao Y, Gao W, Duan S. Current status and future perspectives in dysregulated miR-492. Gene 2023; 877:147518. [PMID: 37295631 DOI: 10.1016/j.gene.2023.147518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
MicroRNAs (miRNAs) are a class of single-stranded small non-coding RNAs with a length of 21-23 nucleotides. One such miRNA, miR-492, is located in the KRT19 pseudogene 2 (KRT19P2) of chromosome 12q22 and can also be generated from the processing of the KRT19 transcript at chromosome 17q21. Aberrant expression of miR-492 has been observed in cancers of various physiological systems. miR-492 has been shown to target at least 11 protein-coding genes, which are involved in the regulation of cellular behaviors such as growth, cell cycle, proliferation, epithelial- mesenchymal transition (EMT), invasion and migration. The expression of miR-492 can be regulated by both endogenous and exogenous factors. Furthermore, miR-492 is involved in the regulation of several signaling pathways including the PI3K/AKT signaling pathway, WNT/β-catenin signaling pathway, and MAPK signaling pathway. High expression of miR-492 has been closely associated with shorter overall survival in patients with gastric cancer, ovarian cancer, oropharyngeal carcinoma, colorectal cancer, and hepatocellular carcinoma. This study systematically summarizes the related research findings on miR-492, providing potential insights for future investigations.
Collapse
Affiliation(s)
- Jinze Shen
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| | - Jiahua Si
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| | - Qurui Wang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| | - Yunan Mao
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| | - Wei Gao
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| | - Shiwei Duan
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Benzon B, Marijan S, Pervan M, Čikeš Čulić V. Eta polycaprolactone (ε-PCL) implants appear to cause a partial differentiation of breast cancer lung metastasis in a murine model. BMC Cancer 2023; 23:343. [PMID: 37055783 PMCID: PMC10103376 DOI: 10.1186/s12885-023-10813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/05/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Cells in every epithelium can be roughly divided in three compartments: stem cell (SC) compartment, transient amplifying cell (TA) compartment and terminally differentiated (TD) compartment. Maturation of stem cells is characterized by epithelial stromal interaction and sequential maturational movement of stem cell's progeny through those compartments. In this work we hypothesize that providing an artificial stroma, which murine breast cancer metastatic cells can infiltrate, will induce their differentiation. METHODS BALB/c female mice were injected with 106 isogenic 4T1 breast cancer cells labeled with GFP. After 20 days primary tumors were removed, and artificial ε-PCL implants were implanted on the contralateral side. After 10 more days mice were sacrificed and implants along with lung tissue were harvested. Mice were divided in four groups: tumor removal with sham implantation surgery (n = 5), tumor removal with ε-PCL implant (n = 5), tumor removal with VEGF enriched ε-PCL implant (n = 7) and mice without tumor with VEGF enriched ε-PCL implant (n = 3). Differentiational status of GFP + cells was assessed by Ki67 and activated caspase 3 expression, thus dividing the population in SC like cells (Ki67+/dim aCasp3-), TA like cells (Ki67+/dim aCasp3+/dim) and TD like cells (Ki67- aCasp3+/dim) on flow cytometry. RESULTS Lung metastatic load was reduced by 33% in mice with simple ε-PCL implant when compared to tumor bearing group with no implant. Mice with VEGF enriched implants had 108% increase in lung metastatic load in comparison to tumor bearing mice with no implants. Likewise, amount of GFP + cells was higher in simple ε-PCL implant in comparison to VEGF enriched implants. Differentiation-wise, process of metastasizing to lungs reduces the average fraction of SC like cells when compared to primary tumor. This effect is made more uniform by both kinds of ε-PCL implants. The opposite process is mirrored in TA like cells compartment when it comes to averages. Effects of both types of implants on TD like cells were negligible. Furthermore, if gene expression signatures that mimic tissue compartments are analyzed in human breast cancer metastases, it turns out that TA signature is associated with increased survival probability. CONCLUSION ε-PCL implants without VEGF can reduce metastatic loads in lungs, after primary tumor removal. Both types of implants cause lung metastasis differentiation by shifting cancer cells from SC to TA compartment, leaving the TD compartment unaffected.
Collapse
Affiliation(s)
- Benjamin Benzon
- Department of Anatomy, Histology and Embryology, University of Split, School of Medicine, Split, Croatia.
| | - Sandra Marijan
- Department of Medical Chemistry and Biochemistry, University of Split, School of Medicine, Split, Croatia
| | - Matij Pervan
- Medical Studies Program, University of Split, School of Medicine, Split, Croatia
| | - Vedrana Čikeš Čulić
- Department of Medical Chemistry and Biochemistry, University of Split, School of Medicine, Split, Croatia
| |
Collapse
|
9
|
Shoshan-Barmatz V, Arif T, Shteinfer-Kuzmine A. Apoptotic proteins with non-apoptotic activity: expression and function in cancer. Apoptosis 2023; 28:730-753. [PMID: 37014578 PMCID: PMC10071271 DOI: 10.1007/s10495-023-01835-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
Apoptosis is a process of programmed cell death in which a cell commits suicide while maintaining the integrity and architecture of the tissue as a whole. Apoptosis involves activation of one of two major pathways: the extrinsic pathway, where extracellular pro-apoptotic signals, transduced through plasma membrane death receptors, activate a caspase cascade leading to apoptosis. The second, the intrinsic apoptotic pathway, where damaged DNA, oxidative stress, or chemicals, induce the release of pro-apoptotic proteins from the mitochondria, leading to the activation of caspase-dependent and independent apoptosis. However, it has recently become apparent that proteins involved in apoptosis also exhibit non-cell death-related physiological functions that are related to the cell cycle, differentiation, metabolism, inflammation or immunity. Such non-conventional activities were predominantly reported in non-cancer cells although, recently, such a dual function for pro-apoptotic proteins has also been reported in cancers where they are overexpressed. Interestingly, some apoptotic proteins translocate to the nucleus in order to perform a non-apoptotic function. In this review, we summarize the unconventional roles of the apoptotic proteins from a functional perspective, while focusing on two mitochondrial proteins: VDAC1 and SMAC/Diablo. Despite having pro-apoptotic functions, these proteins are overexpressed in cancers and this apparent paradox and the associated pathophysiological implications will be discussed. We will also present possible mechanisms underlying the switch from apoptotic to non-apoptotic activities although a deeper investigation into the process awaits further study.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
- National Institute for Biotechnology in the Negev, Beer Sheva, Israel.
| | - Tasleem Arif
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | |
Collapse
|
10
|
Häcker G, Haimovici A. Sub-lethal signals in the mitochondrial apoptosis apparatus: pernicious by-product or physiological event? Cell Death Differ 2023; 30:250-257. [PMID: 36131076 PMCID: PMC9490730 DOI: 10.1038/s41418-022-01058-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022] Open
Abstract
One of the tasks of mitochondria is the rule over life and death: when the outer membrane is permeabilized, the release of intermembrane space proteins causes cell death by apoptosis. For a long time, this mitochondrial outer membrane permeabilization (MOMP) has been accepted as the famous step from which no cell returns. Recent results have however shown that this quite plainly does not have to be the case. A cell can also undergo only a little MOMP, and it can efficiently repair damage it has incurred in the process. There is no doubt now that such low-scale permeabilization occurs. A major unclarified issue is the biological relevance. Is small-scale mitochondrial permeabilization an accident, a leakiness of the apoptosis apparatus, perhaps during restructuring of the mitochondrial network? Is it attempted suicide, where cell death by apoptosis is the real goal but the stimulus failed to reach the threshold? Or, more boldly, is there a true biological meaning behind the event of the release of low amounts of mitochondrial components? We will here explore this last possibility, which we believe is on one hand appealing, on the other hand plausible and supported by some evidence. Recent data are consistent with the view that sub-lethal signals in the mitochondrial apoptosis pathway can drive inflammation, the first step of an immune reaction. The apoptosis apparatus is almost notoriously easy to trigger. Sub-lethal signals may be even easier to set off. We suggest that the apoptosis apparatus is used in this way to sound the call when the first human cell is infected by a pathogen.
Collapse
Affiliation(s)
- Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Aladin Haimovici
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
11
|
Svandova E, Lesot H, Sharpe P, Matalova E. Making the head: Caspases in life and death. Front Cell Dev Biol 2023; 10:1075751. [PMID: 36712975 PMCID: PMC9880857 DOI: 10.3389/fcell.2022.1075751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
The term apoptosis, as a way of programmed cell death, was coined a half century ago and since its discovery the process has been extensively investigated. The anatomy and physiology of the head are complex and thus apoptosis has mostly been followed in separate structures, tissues or cell types. This review aims to provide a comprehensive overview of recent knowledge concerning apoptosis-related molecules involved in the development of structures of head with a particular focus on caspases, cysteine proteases having a key position in apoptotic pathways. Since many classical apoptosis-related molecules, including caspases, are emerging in several non-apoptotic processes, these were also considered. The largest organ of the head region is the brain and its development has been extensively investigated, including the roles of apoptosis and related molecules. Neurogenesis research also includes sensory organs such as the eye and ear, efferent nervous system and associated muscles and glands. Caspases have been also associated with normal function of the skin and hair follicles. Regarding mineralised tissues within craniofacial morphogenesis, apoptosis in bones has been of interest along with palate fusion and tooth development. Finally, the role of apoptosis and caspases in angiogenesis, necessary for any tissue/organ development and maintenance/homeostasis, are discussed. Additionally, this review points to abnormalities of development resulting from improper expression/activation of apoptosis-related molecules.
Collapse
Affiliation(s)
- Eva Svandova
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Herve Lesot
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Paul Sharpe
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral, and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Eva Matalova
- Department of Physiology, University of Veterinary Sciences, Brno, Czechia
| |
Collapse
|
12
|
Gureev AP, Sadovnikova IS, Popov VN. Molecular Mechanisms of the Neuroprotective Effect of Methylene Blue. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:940-956. [PMID: 36180986 DOI: 10.1134/s0006297922090073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 06/16/2023]
Abstract
Methylene blue (MB) is the first fully synthetic compound that had found its way into medicine over 120 years ago as a treatment against malaria. MB has been approved for the treatment of methemoglobinemia, but there are premises for its repurposing as a neuroprotective agent based on the efficacy of this compound demonstrated in the models of Alzheimer's, Parkinson's, and Huntington's diseases, traumatic brain injury, amyotrophic lateral sclerosis, depressive disorders, etc. However, the goal of this review was not so much to focus on the therapeutic effects of MB in the treatment of various neurodegeneration diseases, but to delve into the mechanisms of direct or indirect effect of this drug on the signaling pathways. MB can act as an alternative electron carrier in the mitochondrial respiratory chain in the case of dysfunctional electron transport chain. It also displays the anti-inflammatory and anti-apoptotic effects, inhibits monoamine oxidase (MAO) and nitric oxide synthase (NOS), activates signaling pathways involved in the mitochondrial pool renewal (mitochondrial biogenesis and autophagy), and prevents aggregation of misfolded proteins. Comprehensive understanding of all aspects of direct and indirect influence of MB, and not just some of its effects, can help in further research of this compound, including its clinical applications.
Collapse
Affiliation(s)
- Artem P Gureev
- Voronezh State University, Voronezh, 394018, Russia.
- Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
| | | | - Vasily N Popov
- Voronezh State University, Voronezh, 394018, Russia
- Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
| |
Collapse
|
13
|
Eskandari E, Eaves CJ. Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J Cell Biol 2022; 221:213213. [PMID: 35551578 PMCID: PMC9106709 DOI: 10.1083/jcb.202201159] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 11/22/2022] Open
Abstract
Caspase-3 is a widely expressed member of a conserved family of proteins, generally recognized for their activated proteolytic roles in the execution of apoptosis in cells responding to specific extrinsic or intrinsic inducers of this mode of cell death. However, accumulating evidence indicates that caspase-3 also plays key roles in regulating the growth and homeostatic maintenance of both normal and malignant cells and tissues in multicellular organisms. Given that yeast possess an ancestral caspase-like gene suggests that the caspase-3 protein may have acquired different functions later during evolution to better meet the needs of more complex multicellular organisms, but without necessarily losing all of the functions of its ancestral yeast precursor. This review provides an update on what has been learned about these interesting dichotomous roles of caspase-3, their evolution, and their potential relevance to malignant as well as normal cell biology.
Collapse
Affiliation(s)
- Ebrahim Eskandari
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Connie J. Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada,School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada,Correspondence to Connie J. Eaves:
| |
Collapse
|
14
|
Zaghloul HAH, Hice R, Arensburger P, Federici BA. Early in vivo transcriptome of Trichoplusia ni ascovirus core genes. J Gen Virol 2022; 103. [PMID: 35441589 DOI: 10.1099/jgv.0.001737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ascoviruses are large double-stranded DNA insect viruses that destroy the nucleus and transform each cell into 20 or more viral vesicles for replication. In the present study we used RNA-sequencing to compare the expression of Trichoplusia ni ascovirus 6a1 (TnAV-6a1) core genes during the first week of infection, with emphasis on the first 48 h, comparing transcript levels in major somatic tissues (epidermis, tracheal matrix and fat body), the sites infected initially, with those of the haemolymph, where viral vesicles circulate and most replication occurs. By 48 h post-infection (p.i.), only 26 genes were expressed in somatic tissues at ≥5 log2 reads per kilobase per million, whereas in the haemolymph 48 genes were expressed at a similar level by the same time. Early and high expression of TnAV caspase-2-like gene occurred in all tissues, implying it is required for replication, but that it is probably not associated with apoptosis induction, which occurs in infections of Spodoptera frugiperda ascovirus 1 a (SfAV-1a), the ascovirus type species. Other highly expressed viral genes at 48 h p.i. in viral vesicles included a dynein-like beta chain and lipid-modifying enzymes, suggesting their importance to vesicle formation and growth as well as virion synthesis. Finally, as occurs in SfAV expression, we found bicistronic and tricistronic mRNA messages produced by TnAV.
Collapse
Affiliation(s)
- Heba A H Zaghloul
- Interdepartmental Graduate Program in Microbiology and Institute for Integrative Genome Biology, Riverside Country, CA, USA.,Department of Botany and Microbiology, Faculty of Science, Alexandria University, Egypt
| | - Robert Hice
- Interdepartmental Graduate Program in Microbiology and Institute for Integrative Genome Biology, Riverside Country, CA, USA
| | - Peter Arensburger
- Department of Biological Sciences, California State Polytechnic University, Pomona, 3801 West Temple Avenue, Pomona CA 91768, USA
| | - Brian A Federici
- Interdepartmental Graduate Program in Microbiology and Institute for Integrative Genome Biology, Riverside Country, CA, USA.,Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
15
|
Granqvist V, Holmgren C, Larsson C. The combination of TRAIL and the Smac mimetic LCL-161 induces an irreversible phenotypic change of MCF-7 breast cancer cells. Exp Mol Pathol 2022; 125:104739. [PMID: 35007560 DOI: 10.1016/j.yexmp.2021.104739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/22/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast cancer is the most common malignancy affecting women. Although the prognosis generally is good, a substantial number of patients still suffer from relapse, emphasizing the need for novel treatments. Smac mimetics were developed to facilitate cell death by blocking inhibitor of apoptosis proteins (IAPs). It has been suggested that TNF-related apoptosis inducing ligand (TRAIL) can be used together with Smac mimetics to induce cancer cell death. METHODS Cell viability was studied with Trypan blue staining and Annexin V assay, siRNA was used to downregulate specific proteins, protein levels were estimated with Western blot, and mRNA levels were analyzed with qPCR, microarray and RNA-seq. For global expression, groups were compared with principal component analysis and the limma package in R. Gene enrichment was analyzed with Fisher's test. For other experiments, significance of difference was tested by one-way ANOVA, followed by Tukey's HSD test. RESULTS The combination of Smac mimetic LCL-161 and TRAIL induces an irreversible change in phenotype, but not cell death, of luminal MCF-7 breast cancer cells. The cells become small and circular and dissociate from each other and the effect could not be reversed by returning the cells to regular growth medium. The morphology change could be prevented by caspase inhibition using z-VAD-FMK and downregulation of caspase-8. Caspase-7 is also indicated to be of importance since downregulation of this caspase resulted in fewer morphologically changed cells. Enrichment analyses of changes in global gene expression demonstrated that genes associated with estrogen receptor (ER) signaling are downregulated, whereas nuclear factor kappa B- (NF-κB) and interferon- (IFN) driven genes are upregulated in altered cells. However, inhibition of these pathways did not influence the change in morphology. Induction of IFN-induced genes were potentiated but NF-ĸB-driven genes were slightly suppressed by caspase inhibition. CONCLUSIONS The results demonstrate that LCL-161 and TRAIL can irreversibly alter the MCF-7 breast cancer cell phenotype. However, the changes in morphology and global gene expression are mediated via separate pathways.
Collapse
Affiliation(s)
- Victoria Granqvist
- Lund University, Translational Cancer Research, Medicon Village, Lund, Sweden
| | - Christian Holmgren
- Lund University, Translational Cancer Research, Medicon Village, Lund, Sweden
| | - Christer Larsson
- Lund University, Translational Cancer Research, Medicon Village, Lund, Sweden.
| |
Collapse
|
16
|
The role of caspases as executioners of apoptosis. Biochem Soc Trans 2021; 50:33-45. [PMID: 34940803 DOI: 10.1042/bst20210751] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
Caspases are a family of cysteine aspartyl proteases mostly involved in the execution of apoptotic cell death and in regulating inflammation. This article focuses primarily on the evolutionarily conserved function of caspases in apoptosis. We summarise which caspases are involved in apoptosis, how they are activated and regulated, and what substrates they target for cleavage to orchestrate programmed cell death by apoptosis.
Collapse
|
17
|
Asadi M, Taghizadeh S, Kaviani E, Vakili O, Taheri-Anganeh M, Tahamtan M, Savardashtaki A. Caspase-3: Structure, function, and biotechnological aspects. Biotechnol Appl Biochem 2021; 69:1633-1645. [PMID: 34342377 DOI: 10.1002/bab.2233] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/01/2021] [Indexed: 12/16/2022]
Abstract
Caspase-3, a cysteine-aspartic acid protease, has recently attracted much attention because of its incredible roles in tissue differentiation, regeneration, and neural development. This enzyme is a key zymogen in cell apoptosis and is not activated until it is cleaved by initiator caspases during apoptotic flux. Since caspase-3 has represented valuable capabilities in the field of medical research, biotechnological aspects of this enzyme, including the production of recombinant type, protein engineering, and designing delivery systems, have been considered as emerging therapeutic strategies in treating the apoptosis-related disorders. To date, several advances have been made in the therapeutic use of caspase-3 in the management of some diseases such as cancers, heart failure, and neurodegenerative disorders. In the current review, we intend to discuss the caspase-3's structure, functions, therapeutic applications, as well as its molecular cloning, protein engineering, and relevant delivery systems.
Collapse
Affiliation(s)
- Marzieh Asadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elina Kaviani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mortaza Taheri-Anganeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahshid Tahamtan
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
18
|
Castillo Ferrer C, Berthenet K, Ichim G. Apoptosis - Fueling the oncogenic fire. FEBS J 2021; 288:4445-4463. [PMID: 33179432 PMCID: PMC8451771 DOI: 10.1111/febs.15624] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Apoptosis, the most extensively studied form of programmed cell death, is essential for organismal homeostasis. Apoptotic cell death has widely been reported as a tumor suppressor mechanism. However, recent studies have shown that apoptosis exerts noncanonical functions and may paradoxically promote tumor growth and metastasis. The hijacking of apoptosis by cancer cells may arise at different levels, either via the interaction of apoptotic cells with their local or distant microenvironment, or through the abnormal pro-oncogenic roles of the main apoptosis effectors, namely caspases and mitochondria, particularly upon failed apoptosis. In this review, we highlight some of the recently described mechanisms by which apoptosis and these effectors may promote cancer aggressiveness. We believe that a better understanding of the noncanonical roles of apoptosis may be crucial for developing more efficient cancer therapies.
Collapse
Affiliation(s)
- Camila Castillo Ferrer
- Cancer Target and Experimental TherapeuticsInstitute for Advanced BiosciencesINSERM U1209CNRS UMR5309Grenoble Alpes UniversityFrance
- EPHEPSL Research UniversityParisFrance
| | - Kevin Berthenet
- Cancer Research Center of Lyon (CRCL) INSERM 1052CNRS 5286LyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCANUniversité de LyonFrance
| | - Gabriel Ichim
- Cancer Research Center of Lyon (CRCL) INSERM 1052CNRS 5286LyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCANUniversité de LyonFrance
| |
Collapse
|
19
|
Shteinfer-Kuzmine A, Verma A, Arif T, Aizenberg O, Paul A, Shoshan-Barmaz V. Mitochondria and nucleus cross-talk: Signaling in metabolism, apoptosis, and differentiation, and function in cancer. IUBMB Life 2021; 73:492-510. [PMID: 33179373 DOI: 10.1002/iub.2407] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022]
Abstract
The cross-talk between the mitochondrion and the nucleus regulates cellular functions, including differentiation and adaptation to stress. Mitochondria supply metabolites for epigenetic modifications and other nuclear-associated activities and certain mitochondrial proteins were found in the nucleus. The voltage-dependent anion channel 1 (VDAC1), localized at the outer mitochondrial membrane (OMM) is a central protein in controlling energy production, cell growth, Ca2+ homeostasis, and apoptosis. To alter the cross-talk between the mitochondria and the nucleus, we used specific siRNA to silence the expression of VDAC1 in glioblastoma (GBM) U87-MG and U118-MG cell-derived tumors, and then monitored the nuclear localization of mitochondrial proteins and the methylation and acetylation of histones. Depletion of VDAC1 from tumor cells reduced metabolism, leading to inhibition of tumor growth, and several tumor-associated processes and signaling pathways linked to cancer development. In addition, we demonstrate that certain mitochondrial pro-apoptotic proteins such as caspases 3, 8, and 9, and p53 were unexpectedly overexpressed in tumors, suggesting that they possess additional non-apoptotic functions. VDAC1 depletion and metabolic reprograming altered their expression levels and subcellular localization, specifically their translocation to the nucleus. In addition, VDAC1 depletion also leads to epigenetic modifications of histone acetylation and methylation, suggesting that the interchange between metabolism and cancer signaling pathways involves mitochondria-nucleus cross-talk. The mechanisms regulating mitochondrial protein trafficking into and out of the nucleus and the role these proteins play in the nucleus remain to be elucidated.
Collapse
Affiliation(s)
- Anna Shteinfer-Kuzmine
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Beersheba, Israel
| | - Ankit Verma
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Beersheba, Israel
| | - Tasleem Arif
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Beersheba, Israel
- Department of Cell, Developmental, & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Or Aizenberg
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Beersheba, Israel
| | - Avijit Paul
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Beersheba, Israel
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Varda Shoshan-Barmaz
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Beersheba, Israel
| |
Collapse
|
20
|
Slobodkina E, Boldyreva M, Karagyaur M, Eremichev R, Alexandrushkina N, Balabanyan V, Akopyan Z, Parfyonova Y, Tkachuk V, Makarevich P. Therapeutic Angiogenesis by a "Dynamic Duo": Simultaneous Expression of HGF and VEGF165 by Novel Bicistronic Plasmid Restores Blood Flow in Ischemic Skeletal Muscle. Pharmaceutics 2020; 12:E1231. [PMID: 33353116 PMCID: PMC7766676 DOI: 10.3390/pharmaceutics12121231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
Therapeutic angiogenesis is a promising strategy for relief of ischemic conditions, and gene delivery was used to stimulate blood vessels' formation and growth. We have previously shown that intramuscular injection of a mixture containing plasmids encoding vascular endothelial growth factor (VEGF)165 and hepatocyte growth factor (HGF) leads to restoration of blood flow in mouse ischemic limb, and efficacy of combined delivery was superior to each plasmid administered alone. In this work, we evaluated different approaches for co-expression of HGF and VEGF165 genes in a panel of candidate plasmid DNAs (pDNAs) with internal ribosome entry sites (IRESs), a bidirectional promoter or two independent promoters for each gene of interest. Studies in HEK293T culture showed that all plasmids provided synthesis of HGF and VEGF165 proteins and stimulated capillary formation by human umbilical vein endothelial cells (HUVEC), indicating the biological potency of expressed factors. Tests in skeletal muscle explants showed a dramatic difference and most plasmids failed to express HGF and VEGF165 in a significant quantity. However, a bicistronic plasmid with two independent promoters (cytomegalovirus (CMV) for HGF and chicken b-actin (CAG) for VEGF165) provided expression of both grow factors in skeletal muscle at an equimolar ratio. Efficacy tests of bicistronic plasmid were performed in a mouse model of hind limb ischemia. Intramuscular administration of plasmid induced significant restoration of perfusion compared to an empty vector and saline. These findings were supported by increased CD31+ capillary density in animals that received pHGF/VEGF. Overall, our study reports a first-in-class candidate gene therapy drug to deliver two pivotal angiogenic growth factors (HGF and VEGF165) with properties that provide basis for future development of treatment for an unmet medical need-peripheral artery disease and associated limb ischemia.
Collapse
Affiliation(s)
- Ekaterina Slobodkina
- Faculty of Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia; (M.K.); (N.A.); (V.B.); (Z.A.); (Y.P.); (V.T.); (P.M.)
- Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Maria Boldyreva
- National Medical Research Center of Cardiology Russian Ministry of Health, 121552 Moscow, Russia;
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics (HSE), 109028 Moscow, Russia
| | - Maxim Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia; (M.K.); (N.A.); (V.B.); (Z.A.); (Y.P.); (V.T.); (P.M.)
- Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Roman Eremichev
- Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Natalia Alexandrushkina
- Faculty of Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia; (M.K.); (N.A.); (V.B.); (Z.A.); (Y.P.); (V.T.); (P.M.)
- Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Vadim Balabanyan
- Faculty of Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia; (M.K.); (N.A.); (V.B.); (Z.A.); (Y.P.); (V.T.); (P.M.)
- Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Zhanna Akopyan
- Faculty of Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia; (M.K.); (N.A.); (V.B.); (Z.A.); (Y.P.); (V.T.); (P.M.)
- Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Yelena Parfyonova
- Faculty of Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia; (M.K.); (N.A.); (V.B.); (Z.A.); (Y.P.); (V.T.); (P.M.)
- National Medical Research Center of Cardiology Russian Ministry of Health, 121552 Moscow, Russia;
| | - Vsevolod Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia; (M.K.); (N.A.); (V.B.); (Z.A.); (Y.P.); (V.T.); (P.M.)
- Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, 119192 Moscow, Russia;
- National Medical Research Center of Cardiology Russian Ministry of Health, 121552 Moscow, Russia;
| | - Pavel Makarevich
- Faculty of Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia; (M.K.); (N.A.); (V.B.); (Z.A.); (Y.P.); (V.T.); (P.M.)
- Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, 119192 Moscow, Russia;
| |
Collapse
|
21
|
Vrolyk V, Desmarais MJ, Lambert D, Haruna J, Benoit-Biancamano MO. Neonatal and Juvenile Ocular Development in Göttingen Minipigs and Domestic Pigs: A Histomorphological and Immunohistochemical Study. Vet Pathol 2020; 57:889-914. [PMID: 33021158 DOI: 10.1177/0300985820954551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pigs are considered one of the relevant animal models for ocular research as they share several histological and anatomical similarities with the human eye. With the increasing interest in juvenile animal models, this study aimed to describe the postnatal development of ocular structures in 16 Göttingen minipigs and 25 F2 domestic pigs, between birth and 6 months of age, using histopathology and immunohistochemistry against Ki-67, caspase-3, calbindin, glial fibrillary acidic protein, rhodopsin, and synaptophysin. All ocular structures in both pig breeds were incompletely developed at birth and for variable periods postnatally. Noteworthy histological features of immaturity included vascularization in the corneal stroma in neonatal Göttingen minipigs, increased cellularity in different substructures, remnants of the hyaloid vasculature, short and poorly ramified ciliary body processes, and a poorly developed cone inner segment. Increased cellular proliferation, highlighted by abundant Ki-67 immunolabeling, was observed in almost all developing structures of the pig eye for variable periods postnatally. Apoptosis, highlighted with caspase-3 immunolabeling, was observed in the retinal inner nuclear layer at birth and in the regressing hyaloid vasculature remnants. Immunohistochemistry against rhodopsin, synaptophysin, and calbindin demonstrated the short size of the developing photoreceptors and the immature cone inner segment morphology. Calbindin labeling revealed significant differences in the amount of positively labeled cone nuclei between the retinal area centralis and the non-area centralis regions. The elongation of Müller cell processes in the developing retina was shown with glial fibrillary acidic protein. In both pig breeds, the eyes reached histomorphological and immunohistochemical maturity at 6 months of age.
Collapse
Affiliation(s)
- Vanessa Vrolyk
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Faculty of Veterinary Medicine, 70354Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- 67115Charles River Laboratories Montreal ULC, Laval, Quebec, Canada
| | | | - Daniel Lambert
- 67115Charles River Laboratories Montreal ULC, Laval, Quebec, Canada
| | - Julius Haruna
- 67115Charles River Laboratories Montreal ULC, Laval, Quebec, Canada
| | - Marie-Odile Benoit-Biancamano
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Faculty of Veterinary Medicine, 70354Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
22
|
Connolly P, Garcia-Carpio I, Villunger A. Cell-Cycle Cross Talk with Caspases and Their Substrates. Cold Spring Harb Perspect Biol 2020; 12:a036475. [PMID: 31727679 PMCID: PMC7263087 DOI: 10.1101/cshperspect.a036475] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Caspases play central roles in mediating both cell death and inflammation. It has more recently become evident that caspases also drive other biological processes. Most prominently, caspases have been shown to be involved in differentiation. Several stem and progenitor cell types rely on caspases to initiate and execute their differentiation processes. These range from neural and glial cells, to skeletal myoblasts and osteoblasts, and several cell types of the hematopoietic system. Beyond differentiation, caspases have also been shown to play roles in other "noncanonical" processes, including cell proliferation, arrest, and senescence, thereby contributing to the mechanisms that regulate tissue homeostasis at multiple levels. Remarkably, caspases directly influence the course of the cell cycle in both a positive and negative manner. Caspases both cleave elements of the cell-cycle machinery and are themselves substrates of cell-cycle kinases. Here we aim to summarize the breadth of interactions between caspases and cell-cycle regulators. We also highlight recent developments in this area.
Collapse
Affiliation(s)
- Patrick Connolly
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Irmina Garcia-Carpio
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| |
Collapse
|
23
|
Sladky VC, Villunger A. Uncovering the PIDDosome and caspase-2 as regulators of organogenesis and cellular differentiation. Cell Death Differ 2020; 27:2037-2047. [PMID: 32415279 PMCID: PMC7308375 DOI: 10.1038/s41418-020-0556-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023] Open
Abstract
The PIDDosome is a multiprotein complex that drives activation of caspase-2, an endopeptidase originally implicated in apoptosis. Yet, unlike other caspases involved in cell death and inflammation, caspase-2 seems to exert additional versatile functions unrelated to cell death. These emerging roles range from control of transcription factor activity to ploidy surveillance. Thus, caspase-2 and the PIDDosome act as a critical regulatory unit controlling cellular differentiation processes during organogenesis and regeneration. These newly established functions of the PIDDosome and its downstream effector render its components attractive targets for drug-development aiming to prevent fatty liver diseases, neurodegenerative disorders or osteoporosis. ![]()
Collapse
Affiliation(s)
- Valentina C Sladky
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria. .,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090, Vienna, Austria. .,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
| |
Collapse
|
24
|
Cytoprotective Effects of Natural Highly Bio-Available Vegetable Derivatives on Human-Derived Retinal Cells. Nutrients 2020; 12:nu12030879. [PMID: 32214021 PMCID: PMC7146218 DOI: 10.3390/nu12030879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 01/02/2023] Open
Abstract
Retinal pigment epithelial cells are crucial for retina maintenance, making their cytoprotection an excellent way to prevent or slow down retinal degeneration. In addition, oxidative stress, inflammation, apoptosis, neovascularization, and/or autophagy are key pathways involved in degenerative mechanisms. Therefore, here we studied the effects of curcumin, lutein, and/or resveratrol on human retinal pigment epithelial cells (ARPE-19). Cells were incubated with individual or combined agent(s) before induction of (a) H2O2-induced oxidative stress, (b) staurosporin-induced apoptosis, (c) CoCl2-induced hypoxia, or (d) a LED-autophagy perturbator. Metabolic activity, cellular survival, caspase 3/7 activity (casp3/7), cell morphology, VEGF levels, and autophagy process were assessed. H2O2 provoked a reduction in cell survival, whereas curcumin reduced metabolic activity which was not associated with cell death. Cell death induced by H2O2 was significantly reduced after pre-treatment with curcumin and lutein, but not resveratrol. Staurosporin increased caspase-3/7 activity (689%) and decreased cell survival by 32%. Curcumin or lutein protected cells from death induced by staurosporin. Curcumin, lutein, and resveratrol were ineffective on the increase of caspase 3/7 induced by staurosporin. Pre-treatment with curcumin or lutein prevented LED-induced blockage of autophagy flux. Basal-VEGF release was significantly reduced by lutein. Therefore, lutein and curcumin showed beneficial protective effects on human-derived retinal cells against several insults.
Collapse
|
25
|
Suresh K, Carino K, Johnston L, Servinsky L, Machamer CE, Kolb TM, Lam H, Dudek SM, An SS, Rane MJ, Shimoda LA, Damarla M. A nonapoptotic endothelial barrier-protective role for caspase-3. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1118-L1126. [PMID: 30908935 PMCID: PMC6620669 DOI: 10.1152/ajplung.00487.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/26/2019] [Accepted: 03/17/2019] [Indexed: 12/25/2022] Open
Abstract
Noncanonical roles for caspase-3 are emerging in the fields of cancer and developmental biology. However, little is known of nonapoptotic functions of caspase-3 in most cell types. We have recently demonstrated a disassociation between caspase-3 activation and execution of apoptosis with accompanying cytoplasmic caspase-3 sequestration and preserved endothelial barrier function. Therefore, we tested the hypothesis that nonapoptotic caspase-3 activation promotes endothelial barrier integrity. Human lung microvascular endothelial cells were exposed to thrombin, a nonapoptotic stimulus, and endothelial barrier function was assessed using electric cell-substrate impedance sensing. Actin cytoskeletal rearrangement and paracellular gap formation were assessed using phalloidin staining. Cell stiffness was evaluated using magnetic twisting cytometry. In addition, cell lysates were harvested for protein analyses. Caspase-3 was inhibited pharmacologically with pan-caspase and a caspase-3-specific inhibitor. Molecular inhibition of caspase-3 was achieved using RNA interference. Cells exposed to thrombin exhibited a cytoplasmic activation of caspase-3 with transient and nonapoptotic decrease in endothelial barrier function as measured by a drop in electrical resistance followed by a rapid recovery. Inhibition of caspases led to a more pronounced and rapid drop in thrombin-induced endothelial barrier function, accompanied by increased endothelial cell stiffness and paracellular gaps. Caspase-3-specific inhibition and caspase-3 knockdown both resulted in more pronounced thrombin-induced endothelial barrier disruption. Taken together, our results suggest cytoplasmic caspase-3 has nonapoptotic functions in human endothelium and can promote endothelial barrier integrity.
Collapse
Affiliation(s)
- Karthik Suresh
- Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Kathleen Carino
- Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Laura Johnston
- Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Laura Servinsky
- Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Carolyn E Machamer
- Department of Cell Biology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Todd M Kolb
- Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Hong Lam
- Department of Environmental Health and Engineering, Johns Hopkins University School of Public Health , Baltimore, Maryland
| | - Steven M Dudek
- Department of Medicine, College of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Steven S An
- Department of Environmental Health and Engineering, Johns Hopkins University School of Public Health , Baltimore, Maryland
| | - Madhavi J Rane
- Department of Medicine, School of Medicine, University of Louisville , Louisville, Kentucky
| | - Larissa A Shimoda
- Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Mahendra Damarla
- Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| |
Collapse
|
26
|
Wang L, Chung J, Gill SE, Mehta S. Quantification of adherens junction disruption and contiguous paracellular protein leak in human lung endothelial cells under septic conditions. Microcirculation 2019; 26:e12528. [PMID: 30636088 DOI: 10.1111/micc.12528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/12/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Sepsis is associated with dysfunction of MVEC resulting in organ edema and inflammation. VE-cadherin, a component of MVEC adherens junctions, may be disrupted in sepsis. However, the direct connection between individual MVEC VE-cadherin disruption and increased paracellular permeability is uncertain. METHODS Human pulmonary MVEC were cultured on a biotin matrix and treated with cytomix, as a model of sepsis, vs PBS. MVEC permeability was assessed by trans-MVEC monolayer leak of Oregon green 488-conjugated avidin, which bound subcellular biotin to localize sites of paracellular leak. Leak was correlated with individual cell-specific MVEC surface VE-cadherin continuity by fluorescence microscopy. RESULTS Cytomix treatment reduced total MVEC VE-cadherin density, disrupted surface VE-cadherin continuity, was associated with intercellular gap formation, and enhanced paracellular avidin leak. Cytomix-induced MVEC paracellular avidin leak was strongly correlated temporally and was highly contiguous with focal MVEC surface VE-cadherin disruption. Total cellular VE-cadherin density was less strongly correlated with MVEC paracellular avidin leak and individual cell-specific focal surface VE-cadherin discontinuity. CONCLUSIONS These data support a mechanistic link between septic human lung MVEC VE-cadherin disruption and contiguous paracellular protein leak, and will permit more detailed assessment of individual cell-specific mechanisms of septic MVEC barrier dysfunction.
Collapse
Affiliation(s)
- Lefeng Wang
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - Justin Chung
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| |
Collapse
|
27
|
Two Sides of the Same Coin - Compensatory Proliferation in Regeneration and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:65-85. [PMID: 31520349 DOI: 10.1007/978-3-030-23629-8_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis has long been regarded as a tumor suppressor mechanism and evasion from apoptosis is considered to be one hallmark of cancer. However, this principle is not always consistent with clinical data which often illustrate a correlation between apoptosis and poor prognosis. Work in the last 15 years has provided an explanation for this apparent paradox. Apoptotic cells communicate with their environment and can produce signals which promote compensatory proliferation of surviving cells. This behavior of apoptotic cells is important for tissue regeneration in several model organisms, ranging from hydra to mammals. However, it may also play an important feature for tumorigenesis and tumor relapse. Several distinct forms of apoptosis-induced compensatory proliferation (AiP) have been identified, many of which involve reactive oxygen species (ROS) and immune cells. One type of AiP, "undead" AiP, in which apoptotic cells are kept in an immortalized state and continuously divide, may have particular relevance for tumorigenesis. Furthermore, given that chemo- and radiotherapy often aim to kill tumor cells, an improved understanding of the effects of apoptotic cells on the tumor and the tumor environment is of critical importance for the well-being of the patient. In this review, we summarize the current knowledge of AiP and focus our attention on recent findings obtained in Drosophila and other model organisms, and relate them to tumorigenesis.
Collapse
|
28
|
Su TT. Cellular plasticity, caspases and autophagy; that which does not kill us, well, makes us different. Open Biol 2018; 8:rsob.180157. [PMID: 30487302 PMCID: PMC6282069 DOI: 10.1098/rsob.180157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023] Open
Abstract
The ability to regenerate is a fundamental requirement for tissue homeostasis. Regeneration draws on three sources of cells. First and best-studied are dedicated stem/progenitor cells. Second, existing cells may proliferate to compensate for the lost cells of the same type. Third, a different cell type may change fate to compensate for the lost cells. This review focuses on regeneration of the third type and will discuss the contributions by post-transcriptional mechanisms including the emerging evidence for cell-autonomous and non-lethal roles of cell death pathways.
Collapse
Affiliation(s)
- Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO 80309-0347, USA .,University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, 13001 E. 17th Pl., Aurora, CO 80045, USA
| |
Collapse
|
29
|
Porte Alcon S, Gorojod RM, Kotler ML. Regulated Necrosis Orchestrates Microglial Cell Death in Manganese-Induced Toxicity. Neuroscience 2018; 393:206-225. [PMID: 30316909 DOI: 10.1016/j.neuroscience.2018.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022]
Abstract
Microglia, the brain resident immune cells, play prominent roles in immune surveillance, tissue repair and neural regeneration. Despite these pro-survival actions, the relevance of these cells in the progression of several neuropathologies has been established. In the context of manganese (Mn) overexposure, it has been proposed that microglial activation contributes to enhance the neurotoxicity. However, the occurrence of a direct cytotoxic effect of Mn on microglial cells remains controversial. In the present work, we investigated the potential vulnerability of immortalized mouse microglial cells (BV-2) toward Mn2+, focusing on the signaling pathways involved in cell death. Evidence obtained showed that Mn2+ induces a decrease in cell viability which is associated with reactive oxygen species (ROS) generation. In this report we demonstrated, for the first time, that Mn2+ triggers regulated necrosis (RN) in BV-2 cells involving two central mechanisms: parthanatos and lysosomal disruption. The occurrence of parthanatos is supported by several cellular and molecular events: (i) DNA damage; (ii) AIF translocation from mitochondria to the nucleus; (iii) mitochondrial membrane permeabilization; and (iv) PARP1-dependent cell death. On the other hand, Mn2+ induces lysosomal membrane permeabilization (LMP) and cathepsin D (CatD) release into the cytosol supporting the lysosomal disruption. Pre-incubation with CatB and D inhibitors partially prevented the Mn2+-induced cell viability decrease. Altogether these events point to lysosomes as players in the execution of RN. In summary, our results suggest that microglial cells could be direct targets of Mn2+ damage. In this scenario, Mn2+ triggers cell death involving RN pathways.
Collapse
Affiliation(s)
- Soledad Porte Alcon
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| | - Roxana Mayra Gorojod
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| | - Mónica Lidia Kotler
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| |
Collapse
|
30
|
Spead O, Verreet T, Donelson CJ, Poulain FE. Characterization of the caspase family in zebrafish. PLoS One 2018; 13:e0197966. [PMID: 29791492 PMCID: PMC5965869 DOI: 10.1371/journal.pone.0197966] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/13/2018] [Indexed: 12/21/2022] Open
Abstract
First discovered for their role in mediating programmed cell death and inflammatory responses, caspases have now emerged as crucial regulators of other cellular and physiological processes including cell proliferation, differentiation, migration, and survival. In the developing nervous system, for instance, the non-apoptotic functions of caspases have been shown to play critical roles in the formation of neuronal circuits by regulating axon outgrowth, guidance and pruning. How caspase activity is spatially and temporally maintained at sub-lethal levels within cells remains however poorly understood, especially in vivo. Thanks to its transparency and accessibility, the zebrafish offers the unique ability to directly visualize caspase activation in vivo. Yet, detailed information about the caspase family in zebrafish is lacking. Here, we report the identification and characterization of 19 different caspase genes in zebrafish, and show that caspases have diverse expression profiles from cleavage to larval stages, suggesting highly specialized and/or redundant functions during embryonic development.
Collapse
Affiliation(s)
- Olivia Spead
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Tine Verreet
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Cory J. Donelson
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Fabienne E. Poulain
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| |
Collapse
|
31
|
Xu DC, Arthurton L, Baena-Lopez LA. Learning on the Fly: The Interplay between Caspases and Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5473180. [PMID: 29854765 PMCID: PMC5949197 DOI: 10.1155/2018/5473180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/14/2018] [Indexed: 02/07/2023]
Abstract
The ease of genetic manipulation, as well as the evolutionary conservation of gene function, has placed Drosophila melanogaster as one of the leading model organisms used to understand the implication of many proteins with disease development, including caspases and their relation to cancer. The family of proteases referred to as caspases have been studied over the years as the major regulators of apoptosis: the most common cellular mechanism involved in eliminating unwanted or defective cells, such as cancerous cells. Indeed, the evasion of the apoptotic programme resulting from caspase downregulation is considered one of the hallmarks of cancer. Recent investigations have also shown an instrumental role for caspases in non-lethal biological processes, such as cell proliferation, cell differentiation, intercellular communication, and cell migration. Importantly, malfunction of these essential biological tasks can deeply impact the initiation and progression of cancer. Here, we provide an extensive review of the literature surrounding caspase biology and its interplay with many aspects of cancer, emphasising some of the key findings obtained from Drosophila studies. We also briefly describe the therapeutic potential of caspase modulation in relation to cancer, highlighting shortcomings and hopeful promises.
Collapse
Affiliation(s)
- Derek Cui Xu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
- Cell Biology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lewis Arthurton
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
| | | |
Collapse
|
32
|
Olimpio RMC, de Oliveira M, De Sibio MT, Moretto FCF, Deprá IC, Mathias LS, Gonçalves BM, Rodrigues BM, Tilli HP, Coscrato VE, Costa SMB, Mazeto GMFS, Fernandes CJC, Zambuzzi WF, Saraiva PP, Maria DA, Nogueira CR. Cell viability assessed in a reproducible model of human osteoblasts derived from human adipose-derived stem cells. PLoS One 2018; 13:e0194847. [PMID: 29641603 PMCID: PMC5895002 DOI: 10.1371/journal.pone.0194847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/09/2018] [Indexed: 01/04/2023] Open
Abstract
Human adipose tissue-derived stem cells (hASCs) have been subjected to extensive investigation because of their self-renewal properties and potential to restore damaged tissues. In the literature, there are several protocols for differentiating hASCs into osteoblasts, but there is no report on the control of cell viability during this process. In this study, we used osteoblasts derived from hASCs of patients undergoing abdominoplasty. The cells were observed at the beginning and end of bone matrix formation, and the expression of proteins involved in this process, including alkaline phosphatase and osteocalcin, was assessed. RANKL, Osterix, Runx2, Collagen3A1, Osteopontin and BSP expression levels were analyzed using real-time PCR, in addition to a quantitative assessment of protein levels of the markers CD45, CD105, STRO-1, and Nanog, using immunofluorescence. Rhodamine (Rho123), cytochrome-c, caspase-3, P-27, cyclin D1, and autophagy cell markers were analyzed by flow cytometry to demonstrate potential cellular activity and the absence of apoptotic and tumor cell processes before and after cell differentiation. The formation of bone matrix, along with calcium nodules, was observed after 16 days of osteoinduction. The gene expression levels of RANKL, Osterix, Runx2, Collagen3A1, Osteopontin, BSP and alkaline phosphatase activity were also elevated after 16 days of osteoinduction, whereas the level of osteocalcin was higher after 21 days of osteoinduction. Our data also showed that the cells had a high mitochondrial membrane potential and a low expression of apoptotic and tumor markers, both before and after differentiation. Cells were viable after the different phases of differentiation. This proposed methodology, using markers to evaluate cell viability, is therefore successful in assessing different phases of stem cell isolation and differentiation.
Collapse
Affiliation(s)
- Regiane M. C. Olimpio
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
- * E-mail:
| | - Miriane de Oliveira
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Maria T. De Sibio
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Fernanda C. F. Moretto
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Igor C. Deprá
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Lucas S. Mathias
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Bianca M. Gonçalves
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Bruna M. Rodrigues
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Helena P. Tilli
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Virgínia E. Coscrato
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Sarah M. B. Costa
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Gláucia M. F. S. Mazeto
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Célio J. C. Fernandes
- Institute of Biosciences, Department of Chemistry and Biochemistry, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Willian F. Zambuzzi
- Institute of Biosciences, Department of Chemistry and Biochemistry, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Patrícia P. Saraiva
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Durvanei A. Maria
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, São Paulo, Brazil
| | - Célia R. Nogueira
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| |
Collapse
|
33
|
Svandova E, Vesela B, Tucker AS, Matalova E. Activation of Pro-apoptotic Caspases in Non-apoptotic Cells During Odontogenesis and Related Osteogenesis. Front Physiol 2018; 9:174. [PMID: 29563882 PMCID: PMC5845891 DOI: 10.3389/fphys.2018.00174] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Caspases are well known proteases in the context of inflammation and apoptosis. Recently, novel roles of pro-apoptotic caspases have been reported, including findings related to the development of hard tissues. To further investigate these emerging functions of pro-apoptotic caspases, the in vivo localisation of key pro-apoptotic caspases (-3,-6,-7,-8, and -9) was assessed, concentrating on the development of two neighbouring hard tissues, cells participating in odontogenesis (represented by the first mouse molar) and intramembranous osteogenesis (mandibular/alveolar bone). The expression of the different caspases within the developing tissues was correlated with the apoptotic status of the cells, to produce a picture of whether different caspases have potentially distinct, or overlapping non-apoptotic functions. The in vivo investigation was additionally supported by examination of caspases in an osteoblast-like cell line in vitro. Caspases-3,-7, and -9 were activated in apoptotic cells of the primary enamel knot of the first molar; however, caspase-7 and -8 activation was also associated with the non-apoptotic enamel epithelium at the same stage and later with differentiating/differentiated odontoblasts and ameloblasts. In the adjacent bone, active caspases-7 and -8 were present abundantly in the prenatal period, while the appearance of caspases-3,-6, and -9 was marginal. Perinatally, caspases-3 and -7 were evident in some osteoclasts and osteoblastic cells, and caspase-8 was abundant mostly in osteoclasts. In addition, postnatal activation of caspases-7 and -8 was retained in osteocytes. The results provide a comprehensive temporo-spatial pattern of pro-apoptotic caspase activation, and demonstrate both unique and overlapping activation in non-apoptotic cells during development of the molar tooth and mandibular/alveolar bone. The importance of caspases in osteogenic pathways is highlighted by caspase inhibition in osteoblast-like cells, which led to a significant decrease in osteocalcin expression, supporting a role in hard tissue cell differentiation.
Collapse
Affiliation(s)
- Eva Svandova
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czechia.,Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Barbora Vesela
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czechia.,Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Abigail S Tucker
- Department of Craniofacial Development and Stem Cell Research, King's College London, London, United Kingdom
| | - Eva Matalova
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czechia.,Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
34
|
Caspase-8 function, and phosphorylation, in cell migration. Semin Cell Dev Biol 2018; 82:105-117. [PMID: 29410361 DOI: 10.1016/j.semcdb.2018.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 11/22/2022]
Abstract
Caspase-8 is involved in a number of cellular functions, with the most well established being the control of cell death. Yet caspase-8 is unique among the caspases in that it acts as an environmental sensor, transducing a range of signals to cells, modulating responses that extend far beyond simple survival. Ranging from the control of apoptosis and necroptosis and gene regulation to cell adhesion and migration, caspase-8 uses proteolytic and non-proteolytic functions to alter cell behavior. Novel interacting partners provide mechanisms for caspase-8 to position itself at signaling nodes that affect a variety of signaling pathways. Here, we examine the catalytic and noncatalytic modes of action by which caspase-8 influences cell adhesion and migration. The mechanisms vary from post-cleavage remodeling of the cytoskeleton to signaling elements that control focal adhesion turnover. This is facilitated by caspase-8 interaction with a host of cell proteins ranging from the proteases caspase-3 and calpain-2 to adaptor proteins such as p85 and Crk, to the Src family of tyrosine kinases.
Collapse
|
35
|
Liu Q, Zhang H, Xu J, Zhao D. Neuritin provides neuroprotection against experimental traumatic brain injury in rats. Int J Neurosci 2018; 128:811-820. [PMID: 29334295 DOI: 10.1080/00207454.2018.1424155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Neuritin is a neurotrophic factor that regulates neural growth and development. However, the role of neuritin in alleviating TBI has not been investigated. METHODS In this study, Sprague Dawley rats (n = 144) weighing 300 ± 50 g were categorized into control, sham, TBI and TBI + neuritin groups. The neurological scores and the ultrastructure of cortical neurons, apoptotic cells and caspase-3 were measured by using Garcia scoring system, transmission electron microscopy, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, Western blot analysis and real-time RT-PCR at various time points post-TBI. CONCLUSIONS Our findings indicated that neuritin plays a protective role in TBI by improving neurological scores, repairing injured neurons and protecting the cortical neurons against apoptosis through inhibition of caspase-3 expression. Further investigation of the molecular mechanisms underlying caspase-3 inhibition by neuritin will provide a research avenue for potential TBI therapeutics.
Collapse
Affiliation(s)
- Qi Liu
- a Department of Neurosurgery , First Affiliated Hospital of Medical College, Shihezi University , Shihezi , Xinjiang , China.,b The Key Laboratory of Xinjiang Endemic and Ethnic Diseases , Medical College of Shihezi University , Shihezi , Xinjiang , China
| | - Hang Zhang
- a Department of Neurosurgery , First Affiliated Hospital of Medical College, Shihezi University , Shihezi , Xinjiang , China.,b The Key Laboratory of Xinjiang Endemic and Ethnic Diseases , Medical College of Shihezi University , Shihezi , Xinjiang , China
| | - Jian Xu
- a Department of Neurosurgery , First Affiliated Hospital of Medical College, Shihezi University , Shihezi , Xinjiang , China.,b The Key Laboratory of Xinjiang Endemic and Ethnic Diseases , Medical College of Shihezi University , Shihezi , Xinjiang , China
| | - Dong Zhao
- a Department of Neurosurgery , First Affiliated Hospital of Medical College, Shihezi University , Shihezi , Xinjiang , China.,b The Key Laboratory of Xinjiang Endemic and Ethnic Diseases , Medical College of Shihezi University , Shihezi , Xinjiang , China
| |
Collapse
|
36
|
When dying is not the end: Apoptotic caspases as drivers of proliferation. Semin Cell Dev Biol 2017; 82:86-95. [PMID: 29199139 DOI: 10.1016/j.semcdb.2017.11.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022]
Abstract
Caspases are well known for their role as executioners of apoptosis. However, recent studies have revealed that these lethal enzymes also have important mitogenic functions. Caspases can promote proliferation through autonomous regulation of the cell cycle, as well as by induction of secreted signals, which have a profound impact in neighboring tissues. Here, I review the proliferative role of caspases during development and homeostasis, in addition to their key regenerative function during tissue repair upon injury. Furthermore, the emerging properties of apoptotic caspases as drivers of carcinogenesis are discussed, as well as their involvement in other diseases. Finally, I examine further effects of caspases regulating death and survival in a non-autonomous manner.
Collapse
|
37
|
Vrolyk V, Haruna J, Benoit-Biancamano MO. Neonatal and Juvenile Ocular Development in Sprague-Dawley Rats: A Histomorphological and Immunohistochemical Study. Vet Pathol 2017; 55:310-330. [DOI: 10.1177/0300985817738098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
As in many altricial species, rats are born with fused eyelids and markedly underdeveloped eyes. While the normal histology of the eyes of mature rats is known, the histomorphological changes occurring during postnatal eye development in this species remain incompletely characterized. This study was conducted to describe the postnatal development of ocular structures in Sprague-Dawley (SD) rats during the first month of age using histology and immunohistochemistry (IHC). Both eyes were collected from 51 SD rats at 13 time points between postnatal day (PND)1 and PND30. Histologic examination of hematoxylin and eosin-stained sections was performed, as well as IHC for cleaved-caspase-3 and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) to evaluate apoptosis, and IHC for Ki-67 and phospho-histone-H3 to evaluate cell proliferation. Extensive ocular tissue remodeling occurred prior to the eyelid opening around PND14 and reflected the interplay between apoptosis and cell proliferation. Apoptosis was particularly remarkable in the maturing subcapsular anterior epithelium of the lens, the inner nuclear and ganglion cell layers of the developing retina, and the Harderian gland, and was involved in the regression of the hyaloid vasculature. Nuclear degradation in the newly formed secondary lens fibers was noteworthy after birth and was associated with TUNEL-positive nuclear remnants lining the lens organelle-free zone. Cell proliferation was marked in the developing retina, cornea, iris, ciliary body and Harderian gland. The rat eye reached histomorphological maturity at PND21 after a rapid phase of morphological changes characterized by the coexistence of cell death and proliferation.
Collapse
Affiliation(s)
- Vanessa Vrolyk
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | | | - Marie-Odile Benoit-Biancamano
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
- Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Faculty of Veterinary Medicne University of Montreal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
38
|
Executioner caspases and CAD are essential for mutagenesis induced by TRAIL or vincristine. Cell Death Dis 2017; 8:e3062. [PMID: 28981092 PMCID: PMC5680576 DOI: 10.1038/cddis.2017.454] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/27/2022]
Abstract
Chemotherapy drugs interfere with cellular processes to generate genotoxic lesions that activate cell death pathways. Sustained DNA damage induced by these drugs can provoke mutations in surviving non-cancerous cells, potentially increasing the risk of therapy-related cancers. Ligation of death receptors by ligands such as TRAIL, and subsequent activation of extrinsic apoptotic pathways, also provokes mutations. In this study, we show that executioner caspase activation of the apoptotic nuclease CAD/DFF40 is essential for TRAIL-induced mutations in surviving cells. As exposure to chemotherapy drugs also activates apoptotic caspases and presumably CAD, we hypothesized that these pathways may also contribute to the mutagenesis induced by conventional chemotherapy drugs, perhaps augmenting the mutations that arise from direct DNA damage provoked by these agents. Interestingly, vincristine-mediated mutations were caspase and CAD dependent. Executioner caspases accounted for some of the mutations caused by the topoisomerase poisons doxorubicin and SN38, but were dispensable for mutagenesis following treatment with cisplatin or temozolomide. These data highlight a non-apoptotic role of caspases in mutagenesis mediated by death receptor agonists, microtubule poisons and topoisomerase inhibitors, and provide further evidence for a potential carcinogenic consequence of sublethal apoptotic signaling stimulated by anticancer therapies.
Collapse
|
39
|
SipA Activation of Caspase-3 Is a Decisive Mediator of Host Cell Survival at Early Stages of Salmonella enterica Serovar Typhimurium Infection. Infect Immun 2017. [PMID: 28630067 PMCID: PMC5563584 DOI: 10.1128/iai.00393-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Salmonella invasion protein A (SipA) is a dual-function effector protein that plays roles in both actin polymerization and caspase-3 activation in intestinal epithelial cells. To date its function in other cell types has remained largely unknown despite its expression in multiple cell types and its extracellular secretion during infection. Here we show that in macrophages SipA induces increased caspase-3 activation early in infection. This activation required a threshold level of SipA linked to multiplicity of infection and may be a limiting factor controlling bacterial numbers in infected macrophages. In polymorphonuclear leukocytes, SipA or other Salmonella pathogenicity island 1 effectors had no effect on induction of caspase-3 activation either alone or in the presence of whole bacteria. Tagging of SipA with the small fluorescent phiLOV tag, which can pass through the type three secretion system, allowed visualization and quantification of caspase-3 activation by SipA-phiLOV in macrophages. Additionally, SipA-phiLOV activation of caspase-3 could be tracked in the intestine through multiphoton laser scanning microscopy in an ex vivo intestinal model. This allowed visualization of areas where the intestinal epithelium had been compromised and demonstrated the potential use of this fluorescent tag for in vivo tracking of individual effectors.
Collapse
|
40
|
Connolly PF, Fearnhead HO. Viral hijacking of host caspases: an emerging category of pathogen-host interactions. Cell Death Differ 2017; 24:1401-1410. [PMID: 28524855 PMCID: PMC5520459 DOI: 10.1038/cdd.2017.59] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/14/2017] [Accepted: 03/27/2017] [Indexed: 02/07/2023] Open
Abstract
Viruses co-evolve with their hosts, and many viruses have developed mechanisms to suppress or modify the host cell apoptotic response for their own benefit. Recently, evidence has emerged for the opposite strategy. Some viruses have developed the ability to co-opt apoptotic caspase activity to facilitate their own proliferation. In these strategies, viral proteins are cleaved by host caspases to create cleavage products with novel activities which facilitate viral replication. This represents a novel and interesting class of viral-host interactions, and also represents a new group of non-apoptotic roles for caspases. Here we review the evidence for such strategies, and discuss their origins and their implications for our understanding of the relationship between viral pathogenesis and programmed cell death.
Collapse
Affiliation(s)
- Patrick F Connolly
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Howard O Fearnhead
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
41
|
Theilen NT, Kunkel GH, Tyagi SC. The Role of Exercise and TFAM in Preventing Skeletal Muscle Atrophy. J Cell Physiol 2017; 232:2348-2358. [PMID: 27966783 DOI: 10.1002/jcp.25737] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 12/31/2022]
Abstract
Skeletal muscle atrophy is the consequence of protein degradation exceeding protein synthesis. This arises for a multitude of reasons including the unloading of muscle during microgravity, post-surgery bedrest, immobilization of a limb after injury, and overall disuse of the musculature. The development of therapies prior to skeletal muscle atrophy settings to diminish protein degradation is scarce. Mitochondrial dysfunction is associated with skeletal muscle atrophy and contributes to the induction of protein degradation and cell apoptosis through increased levels of ROS observed with the loss of organelle function. ROS binds mtDNA, leading to its degradation and decreasing functionality. Mitochondrial transcription factor A (TFAM) will bind and coat mtDNA, protecting it from ROS and degradation while increasing mitochondrial function. Exercise stimulates cell signaling pathways that converge on and increase PGC-1α, a well-known activator of the transcription of TFAM and mitochondrial biogenesis. Therefore, in the present review we are proposing, separately, exercise and TFAM treatments prior to atrophic settings (muscle unloading or disuse) alleviate skeletal muscle atrophy through enhanced mitochondrial adaptations and function. Additionally, we hypothesize the combination of exercise and TFAM leads to a synergistic effect in targeting mitochondrial function to prevent skeletal muscle atrophy. J. Cell. Physiol. 232: 2348-2358, 2017. © 2016 The Authors. Journal of Cellular Physiology Published by © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicholas T Theilen
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - George H Kunkel
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
42
|
Luzi C, Brisdelli F, Iorio R, Bozzi A, Carnicelli V, Di Giulio A, Lizzi AR. Apoptotic effects of bovine apo-lactoferrin on HeLa tumor cells. Cell Biochem Funct 2017; 35:33-41. [PMID: 28052347 DOI: 10.1002/cbf.3242] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/15/2016] [Accepted: 11/20/2016] [Indexed: 12/22/2022]
Abstract
Lactoferrin (Lf), a cationic iron-binding glycoprotein of 80 kDa present in body secretions, is known as a compound with marked antimicrobial activity. In the present study, the apoptotic effect of iron-free bovine lactoferrin (apo-bLf) on human epithelial cancer (HeLa) cells was examined in association with reactive oxygen species and glutathione (GSH) levels. Apoptotic effect of iron-free bovine lactoferrin inhibited the growth of HeLa cells after 48 hours of treatment while the diferric-bLf was ineffective in the concentration range tested (from 1 to 12.5 μM). Western blot analysis showed that key apoptotic regulators including Bax, Bcl-2, Sirt1, Mcl-1, and PARP-1 were modulated by 1.25 μM of apo-bLf. In the same cell line, apo-bLf induced apoptosis together with poly (ADP-ribose) polymerase cleavage, caspase activation, and a significant drop of NAD+ . In addition, apo-bLf-treated HeLa cells showed a marked increase of reactive oxygen species level and a significant GSH depletion. On the whole, apo-bLf triggered apoptosis of HeLa cells upon oxygen radicals burst and GSH decrease.
Collapse
Affiliation(s)
- Carla Luzi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Fabrizia Brisdelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Roberto Iorio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Argante Bozzi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Veronica Carnicelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonio Di Giulio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Anna Rita Lizzi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
43
|
Larsen BD, Sørensen CS. The caspase-activated DNase: apoptosis and beyond. FEBS J 2016; 284:1160-1170. [PMID: 27865056 DOI: 10.1111/febs.13970] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/04/2016] [Accepted: 11/17/2016] [Indexed: 01/13/2023]
Abstract
Organismal development and function requires multiple and accurate signal transduction pathways to ensure that proper balance between cell proliferation, differentiation, inactivation, and death is achieved. Cell death via apoptotic caspase signal transduction is extensively characterized and integral to this balance. Importantly, the view of apoptotic signal transduction has expanded over the previous decades. Subapoptotic caspase signaling has surfaced as mechanism that can promote the adoption of a range of cellular fates. An emerging mechanism of subapoptotic caspase signaling is the activation of the caspase-activated DNase (CAD) through controlled cleavage of the inhibitor of CAD (ICAD). CAD-induced DNA breaks incite a DNA damage response, frequently invoking p53 signaling, that transduces a change in cell fate. Cell differentiation and senescence are fates demonstrated to arise from CAD-induced DNA breaks. Furthermore, an apparent consequence of CAD activity is also emerging, as a potential source of oncogenic mutations. This review will discuss the mechanisms underlying CAD-induced DNA breaks and highlight how CAD activity promotes diverse cell fates.
Collapse
Affiliation(s)
- Brian D Larsen
- Biotech Research and Innovation Centre, University of Copenhagen, Denmark
| | - Claus S Sørensen
- Biotech Research and Innovation Centre, University of Copenhagen, Denmark
| |
Collapse
|
44
|
The Apaf-1 apoptosome induces formation of caspase-9 homo- and heterodimers with distinct activities. Nat Commun 2016; 7:13565. [PMID: 27882936 PMCID: PMC5123071 DOI: 10.1038/ncomms13565] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/14/2016] [Indexed: 02/07/2023] Open
Abstract
According to dogma, initiator caspases are activated through proximity-induced homodimerization, but some studies infer that during apoptosis caspase-9 may instead form a holoenzyme with the Apaf-1 apoptosome. Using several biochemical approaches, including a novel site-specific crosslinking technique, we provide the first direct evidence that procaspase-9 homodimerizes within the apoptosome, markedly increasing its avidity for the complex and inducing selective intramolecular cleavage at Asp-315. Remarkably, however, procaspase-9 could also bind via its small subunit to the NOD domain in Apaf-1, resulting in the formation of a heterodimer that more efficiently activated procaspase-3. Following cleavage, the intersubunit linker (and associated conformational changes) in caspase-9-p35/p12 inhibited its ability to form homo- and heterodimers, but feedback cleavage by caspase-3 at Asp-330 removed the linker entirely and partially restored activity to caspase-9-p35/p10. Thus, the apoptosome mediates the formation of caspase-9 homo- and heterodimers, both of which are impacted by cleavage and contribute to its overall function. Apoptotic initiator caspases are thought to be activated through homodimerization but this remains controversial. Here the authors demonstrate that caspase-9 can adopt two distinct conformations within the Apaf-1 apoptosome, each with distinct properties that contribute to the overall function of the complex.
Collapse
|
45
|
Connolly PF, Fearnhead HO. DNA-PK activity is associated with caspase-dependent myogenic differentiation. FEBS J 2016; 283:3626-3636. [DOI: 10.1111/febs.13832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 07/27/2016] [Accepted: 08/10/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Patrick F. Connolly
- Pharmacology and Therapeutics; School of Medicine; National University of Ireland Galway; Ireland
| | - Howard O. Fearnhead
- Pharmacology and Therapeutics; School of Medicine; National University of Ireland Galway; Ireland
| |
Collapse
|
46
|
Carrillo I, Droguett D, Castillo C, Liempi A, Muñoz L, Maya JD, Galanti N, Kemmerling U. Caspase-8 activity is part of the BeWo trophoblast cell defense mechanisms against Trypanosoma cruzi infection. Exp Parasitol 2016; 168:9-15. [DOI: 10.1016/j.exppara.2016.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/17/2016] [Indexed: 02/08/2023]
|
47
|
Arif T, Krelin Y, Shoshan-Barmatz V. Reducing VDAC1 expression induces a non-apoptotic role for pro-apoptotic proteins in cancer cell differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1228-1242. [PMID: 27080741 DOI: 10.1016/j.bbabio.2016.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 12/30/2022]
Abstract
Proteins initially identified as essential for apoptosis also mediate a wide range of non-apoptotic functions that include cell cycle progression, differentiation and metabolism. As this phenomenon was mostly reported with non-cancer cells, we considered non-conventional roles for the apoptotic machinery in the cancer setting. We found that treating glioblastoma (GBM) tumors with siRNA against VDAC1, a mitochondrial protein found at the crossroads of metabolic and survival pathways and involved in apoptosis, inhibited tumor growth while leading to differentiation of tumor cells into neuronal-like cells, as reflected in the expression of specific markers. Although VDAC1 depletion did not induce apoptosis, the expression levels of several pro-apoptotic regulatory proteins were changed. Specifically, VDAC1 deletion led to up-regulation of caspases, p53, cytochrome c, and down-regulation of SMAC/Diablo, AIF and TSPO. The down-regulated group was highly expressed in U-87MG xenografts, as well as in GBMs from human patients. We also showed that the rewired cancer-cell metabolism resulting from VDAC1 depletion reinforced cell growth arrest and differentiation via alterations in the transcription factors p53, c-Myc, HIF-1α and NF-κB. The decrease in c-Myc, HIF-1α and NF-κB levels was in accord with reduced cell proliferation, whereas increased p53 expression promoted differentiation. Thus, upon metabolic re-programing induced by VDAC1 depletion, the levels of pro-apoptotic proteins associated with cell growth decreased, while those connected to cell differentiation increased, converting GBM cells into astrocyte- and neuron-like cells. The results reveal that in tumors, pro-apoptotic proteins can perform non-apoptotic functions, acting as regulators of cell growth and differentiation, making these molecules potential new targets for cancer therapy. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Tasleem Arif
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yakov Krelin
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
48
|
Ding AX, Sun G, Argaw YG, Wong JO, Easwaran S, Montell DJ. CasExpress reveals widespread and diverse patterns of cell survival of caspase-3 activation during development in vivo. eLife 2016; 5. [PMID: 27058168 PMCID: PMC4865370 DOI: 10.7554/elife.10936] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 04/08/2016] [Indexed: 02/06/2023] Open
Abstract
Caspase-3 carries out the executioner phase of apoptosis, however under special circumstances, cells can survive its activity. To document systematically where and when cells survive caspase-3 activation in vivo, we designed a system, CasExpress, which drives fluorescent protein expression, transiently or permanently, in cells that survive caspase-3 activation in Drosophila. We discovered widespread survival of caspase-3 activity. Distinct spatial and temporal patterns emerged in different tissues. Some cells activated caspase-3 during their normal development in every cell and in every animal without evidence of apoptosis. In other tissues, such as the brain, expression was sporadic both temporally and spatially and overlapped with periods of apoptosis. In adults, reporter expression was evident in a large fraction of cells in most tissues of every animal; however the precise patterns varied. Inhibition of caspase activity in wing discs reduced wing size demonstrating functional significance. The implications of these patterns are discussed. DOI:http://dx.doi.org/10.7554/eLife.10936.001 Every day, individual cells in our body actively decide whether to live or die. There are enzymes called executioner caspases that help cells to die in a carefully controlled process called apoptosis. Although the activation of executioner caspases generally leads to apoptosis, there are some circumstances in which cells are able to survive. Fruit flies are often used in research as models of how animals grow and develop. Ding, Sun et al. set out to find out more about the circumstances in which cells manage to survive caspase activation in fruit flies. The experiments used a new method that results in cells that survive caspase activity producing a fluorescent marker protein. This allowed Ding, Sun et al. to track when and where these events occurred in the flies. Few cells in fruit fly embryos survive the activation of executioner caspase. However, in later stages of development, more and more cells survive this process. Cells in different parts of the body responded differently. For some types of cells, every cell seemed to survive caspase activity with no evidence of apoptosis. In other tissues like the central brain, in which a few cells normally choose to die, some cells occasionally managed to survive the activation of caspases. This rescue from the brink of death was more common than Ding, Sun et al. had anticipated. The next step will be to uncover the molecular mechanisms that enable the cells to survive caspase activity. This knowledge may help us to develop treatments that can promote the survival of useful cells like heart muscle cells and brain cells, or trigger the death of cancer cells. DOI:http://dx.doi.org/10.7554/eLife.10936.002
Collapse
Affiliation(s)
- Austin Xun Ding
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, United States.,Department of Biological Chemistry, Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, United States
| | - Gongping Sun
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, United States
| | - Yewubdar G Argaw
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, United States
| | - Jessica O Wong
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, United States
| | - Sreesankar Easwaran
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, United States
| | - Denise J Montell
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, United States.,Department of Biological Chemistry, Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, United States
| |
Collapse
|
49
|
Assessment of expressions of Bcl-XL, b-FGF, Bmp-2, Caspase-3, PDGFR-α, Smad1 and TGF-β1 genes in a rat model of lung ischemia/reperfusion. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:209-14. [PMID: 27081467 PMCID: PMC4818370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Ischemia is described as organs and tissues are destitute of oxygen due to decreased arterial or venous blood flow. Many mechanisms play role in cell death happened as a consequence of a new blood flow is needed for both cell regeneration and to clean toxic metabolites during ischemia and later. Lung damage induced by ischemia/reperfusion (I/R) is a frequent problem in lung transplantation. Apoptosis (programmed cell death) is known as cell suicide, and plays a key role in embryonic developmental and in maintain adult tissue's life. MATERIALS AND METHODS It is investigated expressions of Smad1, Bmp-2, Bcl-XL, b-FGF, Caspase-3, TGF-β1, PDGFR-α genes for molecular changes in lung tissues, after I/R is formed, in this study. For this, we included 40 Wistar albino rats to this study and divided 4 groups (n=10). The Groups were determined as Control (C), Group 1= 1 hr ischemia (I), Group 2= 1 hr ischemia+2 hr reperfusion (I+2R), Group 3= 1 hr ischemia+4 hr reperfusion (I+4R). Besides, molecular analysis and histopathologic examinations of tissues were performed, and the results were evaluated by normalization and statistics analysis. RESULTS We have found a significant increase in expression of Bcl-XL (P=0.046) and Caspase-3 (P=0.026) genes of group 1, and it was not monitored any significant difference in Group 2 and Group 3. In all groups, the changes in b-FGF (P=0.087), Bmp-2 (P=0.457), TGF-β1 (P=0.201) and PDGFR-α (P=0.116) were not significant compared to control group. We did not see any mRNA expression of Smad1 gene in all groups include control. CONCLUSION These findings suggest that I/R injury may trigger apoptotic mechanism in lung.
Collapse
|
50
|
Abstract
The role of caspase proteases in regulated processes such as apoptosis and inflammation has been studied for more than two decades, and the activation cascades are known in detail. Apoptotic caspases also are utilized in critical developmental processes, although it is not known how cells maintain the exquisite control over caspase activity in order to retain subthreshold levels required for a particular adaptive response while preventing entry into apoptosis. In addition to active site-directed inhibitors, caspase activity is modulated by post-translational modifications or metal binding to allosteric sites on the enzyme, which stabilize inactive states in the conformational ensemble. This review provides a comprehensive global view of the complex conformational landscape of caspases and mechanisms used to select states in the ensemble. The caspase structural database provides considerable detail on the active and inactive conformations in the ensemble, which provide the cell multiple opportunities to fine tune caspase activity. In contrast, the current database on caspase modifications is largely incomplete and thus provides only a low-resolution picture of global allosteric communications and their effects on the conformational landscape. In recent years, allosteric control has been utilized in the design of small drug compounds or other allosteric effectors to modulate caspase activity.
Collapse
Affiliation(s)
- A Clay Clark
- Department of Biology, University of Texas at Arlington , Arlington, Texas 76019, United States
| |
Collapse
|