1
|
Villani S, Calcagnile M, Demitri C, Alifano P. Galleria mellonella (Greater Wax Moth) as a Reliable Animal Model to Study the Efficacy of Nanomaterials in Fighting Pathogens. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:67. [PMID: 39791825 DOI: 10.3390/nano15010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
The spread of multidrug-resistant microbes has made it necessary and urgent to develop new strategies to deal with the infections they cause. Some of these are based on nanotechnology, which has revolutionized many fields in medicine. Evaluating the safety and efficacy of these new antimicrobial strategies requires testing in animal models before being tested in clinical trials. In this context, Galleria mellonella could represent a valid alternative to traditional mammalian and non-mammalian animal models, due to its low cost, ease of handling, and valuable biological properties to investigate host-pathogen interactions. The purpose of this review is to provide an updated overview of the literature concerning the use of G. mellonella larvae as an animal model to evaluate safety and efficacy of nanoparticles and nanomaterials, particularly, of those that are used or are under investigation to combat microbial pathogens.
Collapse
Affiliation(s)
- Stefania Villani
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Matteo Calcagnile
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Christian Demitri
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Pietro Alifano
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
2
|
Pretzler M, Rompel A. Tyrosinases: a family of copper-containing metalloenzymes. CHEMTEXTS 2024; 10:12. [PMID: 39624788 PMCID: PMC11608171 DOI: 10.1007/s40828-024-00195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/15/2024] [Indexed: 12/08/2024]
Abstract
Tyrosinases (TYRs) are a family of copper-containing metalloenzymes that are present in all domains of life. TYRs catalyze the reactions that start the biosynthesis of melanin, the main pigment of the animal kingdom, and are also involved in the formation of the bright colors seen on the caps of mushrooms and in the petals of flowers. TYRs catalyze the ortho-hydroxylation and oxidation of phenols and the oxidation of catechols to the respective o-quinones. They only need molecular oxygen to do that, and the products of TYRs-o-quinones-are highly reactive and will usually react with the next available nucleophile. This reactivity can be harnessed for pharmaceutical applications as well as in environmental and food biotechnology. The majority of both basic and applied research on TYRs utilizes "mushroom tyrosinase", a crude enzyme preparation derived from button mushroom (Agaricus bisporus) fruiting bodies. Access to pure TYR preparations comes almost exclusively from the production of recombinant TYRs as the purification of these enzymes from the natural source is usually very laborious and plagued by low yields. In this text an introduction into the biochemistry of the enzyme TYR will be given, followed by an overview of available structural data of TYRs, the current model for the catalytic mechanism, a survey of reports on the recombinant production of this important metalloenzyme family, and a review of the applications of TYRs for the synthesis of catechols, as biosensors, in bioremediation, for the cross-linking of proteins and medical hydrogels as well as for melanoma treatment. Graphical Abstract
Collapse
Affiliation(s)
- Matthias Pretzler
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Annette Rompel
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
3
|
de Miranda RPR, Soares TKDA, Castro DP, Genta FA. General aspects, host interaction, and application of Metarhizium sp. in arthropod pest and vector control. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1456964. [PMID: 39634290 PMCID: PMC11614621 DOI: 10.3389/ffunb.2024.1456964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024]
Abstract
The application of microorganisms as bio-control agents against arthropod populations is a need in many countries, especially in tropical, subtropical, and neotropical endemic areas. Several arthropod species became agricultural pests of paramount economic significance, and many methods have been developed for field and urban applications to prevent their, the most common being the application of chemical insecticides. However, the indiscriminate treatment based upon those substances acted as a selective pressure for upcoming resistant phenotype populations. As alternative tools, microorganisms have been prospected as complementary tools for pest and vectorial control, once they act in a more specific pattern against target organisms than chemicals. They are considered environmentally friendly since they have considerably less off-target effects. Entomopathogenic fungi are organisms capable of exerting pathogenesis in many vector species, thus becoming potential tools for biological management. The entomopathogenic fungi Metarhizium sp. have been investigated as a microbiological agent for the control of populations of insects in tropical regions. However, the development of entomopathogenic fungi as control tools depends on physiological studies regarding aspects such as mechanisms of pathogenicity, secreted enzymes, viability, and host-pathogen aspects. The following review briefly narrates current aspects of entomopathogenic fungi, such as physiology, cellular characteristics, host-pathogen interactions, and its previous applications against different insect orders with medical and economic importance. Approaches integrating new isolation, prospection, characterization, delivery strategies, formulations, and molecular and genetic tools will be decisive to elucidate the molecular mechanisms of EPFs and to develop more sustainable alternative pesticides.
Collapse
Affiliation(s)
| | | | - Daniele Pereira Castro
- Laboratorio de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Fernando Ariel Genta
- Laboratorio de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Ma L, Wang H, Liu Y, Sun J, Yan X, Lu Z, Hao C, Qie X. Single von Willebrand factor C-domain protein-2 confers immune defense against bacterial infections in the silkworm, Bombyx mori. Int J Biol Macromol 2024; 279:135241. [PMID: 39233173 DOI: 10.1016/j.ijbiomac.2024.135241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Single-domain von Willebrand factor type C proteins (SVWCs), primarily found in arthropods, responds to infections caused by various pathogens. Three SVWCs have been identified in the silkworm and BmSVWC2 might play a crucial role in the immune system. However, the regulatory mechanism of BmSVWC2 remains largely unknown. This study aimed to investigate the biochemical functions of BmSVWC2 in the immune system of B. mori comprehensively. Phylogenetic analysis revealed that BmSVWC1, BmSVWC3, and BmSVWC2 were distributed in diverse groups, suggesting distinct biochemical functions. The mRNA and protein levels of BmSVWC2 increased significantly in response to bacterial infection. BmSVWC2 exhibited clear binding activity to the polysaccharide pathogen-associated molecular patterns of bacteria and fungi, enhancing bacterial clearance in vivo but not in vitro. RNA-sequencing assays of the fat body and hemocytes showed that numerous immune genes were markedly up-regulated with higher level of BmSVWC2, primarily affecting recognition, signaling, and response production of the Toll and immune deficiency (IMD) signaling pathways. This led to the production of various antimicrobial peptides and significant antibacterial activities in the hemolymph. BmSVWC2 up-regulated phagocytosis-related genes in the fat body and hemocytes, and phagocytosis assays confirmed that BmSVWC2 improved the phagocytic ability of hemocytes against bacteria. Additionally, BmSVWC2 induced the expression of nitric oxide synthetase (NOS) in the fat body, and bioassays confirmed that BmSVWC2 increased NOS activity in the fat body and hemolymph, resulting in nitric oxide accumulation. However, BmSVWC2 did not affect phenoloxidase activity, despite it caused differential expression of a few serine proteases and serine protease inhibitors. Co-immunoprecipitation and mass spectrometry assays showed that BmSVWC2 interacted with 30 K proteins, such as 30 K protein 2, 30 K pBmHPC-19, 30 K 19G1-like, 30 K protein 8, 30 K protein 7, 30 K pBmHPC-23, and low molecular mass lipoprotein 4-like. Our study provides a comprehensive characterization of BmSVWC2 and elucidates the mechanism underlying its regulation of immune responses activation.
Collapse
Affiliation(s)
- Li Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Han Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yaya Liu
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jing Sun
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xizhong Yan
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Chi Hao
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Xingtao Qie
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
5
|
Cao HH, Wang YL, Toufeeq S, Kong WW, Ayaz S, Liu SH, Wang J, Xu JP. Bombyx mori serpin 3 is involved in innate immunity by interacting with serine protease 7 to regulate prophenoloxidase activation. J Invertebr Pathol 2024; 207:108188. [PMID: 39245295 DOI: 10.1016/j.jip.2024.108188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
A subfamily of conserved proteins called serpins plays crucial roles in various physiological functions, particularly in the activation pathway of the serine protease cascade, an essential component of insect innate immunity. Here, we found Bombyx mori serpin 3 (BmSerpin3) was most highly expressed in the fat body, and was up-regulated after exposure to bacteria, fungus and virus. Further, the expression of BmSerpin3 in the hemocytes, fat body, midgut of silkworm larvae, and BmN cells was up-regulated upon Bombyx mori nucleopolyhedrovirus (BmNPV) infection. Through Bac-to-Bac expression system, we obtained the active protein of BmSerpin3, and the enzyme activity assay showed that BmSerpin3 significantly inhibited the activity of both subtilisin and trypsin. In addition, BmSerpin3 could inhibit the activation of prophenoloxidase (PPO) in larvae. The knockdown of BmSerpin3 showed increased phenoloxidase (PO) activity compared to control after BmNPV infection. Ultimately, we confirmed that BmSerpin3 interacts with B. mori Serine Protease 7 (BmSP7). Hence, we hypothesize that BmSerpin3 is involved in innate immunity by interacting with BmSP7 to regulate the PPO activation cascade. Taken together, these results showed that BmSerpin3 play a role in silkworm innate immunity and lay a foundation for studying its functions.
Collapse
Affiliation(s)
- Hui-Hua Cao
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; School of Bioengineering, Huainan Normal University, Huainan 232038, China
| | - Yu-Ling Wang
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; School of Bioengineering, Huainan Normal University, Huainan 232038, China
| | - Shahzad Toufeeq
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Wei-Wei Kong
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Sadaf Ayaz
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Shi-Huo Liu
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Jie Wang
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei 230061, China.
| | - Jia-Ping Xu
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China.
| |
Collapse
|
6
|
Liu X, Wang X, Zhang Q, Ze L, Zhang H, Lu M. Knockdown of tyrosine hydroxylase gene affects larval survival, pupation and adult eclosion in Plagiodera versicolora. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39470728 DOI: 10.1111/imb.12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024]
Abstract
In insects, tyrosine hydroxylase (TH) plays essential roles in cuticle tanning and cuticle pigmentation. Plagiodera versicolora (Coleoptera: Chrysomelidae) is a leaf-eating forest pest in salicaceous trees worldwide. However, the function of PverTH in P. versicolora is still unknown. In this study, we obtained a PverTH gene from transcriptome analysis. The expression analysis of PverTH showed that the highest expression was found in epidermis of larvae. In this study, we used RNA interference (RNAi) technology to knockdown the PverTH gene. The results showed that ingestion of dsTH led to cuticle coloration became lighter in larvae, pupae and adults. Knockdown of PverTH gene inhibited larval growth, and consequently caused higher mortality. In addition, RNAi of TH disrupted the cuticle tanning, caused lower pupation rate, lower eclosion rate and higher deformity rate. This study indicates that PverTH is vital for the cuticular pigments and cuticle tanning. Moreover, this research suggested that the development of PverTH gene as a potential target gene to control P. versicolora.
Collapse
Affiliation(s)
- Xiaolong Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xin Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Qi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Longji Ze
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Nanjing, China
| | - Hainan Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Min Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
7
|
Ran M, Yang W, Faryad Khan MU, Li T, Pan G. Microsporidia secretory effectors and their roles in pathogenesis. J Eukaryot Microbiol 2024; 71:e13046. [PMID: 39228342 DOI: 10.1111/jeu.13046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 09/05/2024]
Abstract
Microsporidia, a group of unicellular eukaryotic parasites, rely intensely on secretory effectors for successful invasion and proliferation within host cells. This review focuses on the identification, characterization, and functional roles of effectors, including secretory proteins and microRNAs. The adhesion proteins like the Ricin-B-lectin facilitate initial invasion, which binds to the host cell surface. Once inside, microsporidia deploy a range of effectors to modulate host immune responses, such as serpin proteins, and redirect host cell metabolism to meet the parasite's nutritional needs through hexokinase. Some effectors such as microRNAs, alter the host gene expression to create a more favorable intracellular parasitic environment. In conclusion, the secretory effectors of microsporidia play a pivotal role spanning from host cell invasion to intracellular establishment. In the future, more effectors secreted by microsporidia will be studied, which will not only help to elucidate the molecular mechanism of pathogenic manipulation of the host but also help to provide the potential targets for anti-parasitic treatments.
Collapse
Affiliation(s)
- Maoshuang Ran
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Wenxin Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Muhammad Usman Faryad Khan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Tian Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Strachecka A, Chęć M, Olszewski K, Staniszewska P, Dziechciarz P, Gagoś M. How does adulteration of wax foundation affect phenoloxidase and lysozyme activities as selected parameters of immunity in Apis mellifera? J Vet Res 2024; 68:395-400. [PMID: 39318515 PMCID: PMC11418384 DOI: 10.2478/jvetres-2024-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/24/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction The adulteration of wax foundation is, for many reasons, a growing problem of modern beekeeping not only in Europe but also around the world. Wax foundation contaminated with stearin addition leads to a brood die-off, while paraffin addition negatively affects the strength of combs. It is tenable that such adulterated wax foundation reduces bees' immunity. The aim of the study was to determine the activities of two bee immune enzymes, lysozyme and phenoloxidase, in the haemolymph of worker bees which had emerged from combs with wax foundations contaminated with stearin or paraffin. Material and Methods Combs built with stearin- or paraffin-adulterated wax (both adulterants at concentrations of 10%, 30% or 50%) or pure wax (0% adulterated) foundations were placed in the colonies, one for each adulterant and percentage. The workers were marked upon emergence from these combs and those bees were introduced into one strong colony per adulterant and percentage. Phenoloxidase and lysozyme activities were determined in the haemolymph of 1-, 7- and 14-day-old workers. Results The higher the concentrations of stearin and paraffin in the wax foundation, the lower the phenoloxidase activities were. These activities increased with the bee age. In contrast, the trends in lysozymes were opposite. Paraffin seems to be less toxic than stearin. Conclusion Adulteration of wax foundation with even a small amount of stearin or paraffin has negative effects on the functioning of the bee.
Collapse
Affiliation(s)
- Aneta Strachecka
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, 20-280Lublin, Poland
| | - Magdalena Chęć
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033Lublin, Poland
| | - Krzysztof Olszewski
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Patrycja Staniszewska
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, 20-280Lublin, Poland
| | - Piotr Dziechciarz
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033Lublin, Poland
| |
Collapse
|
9
|
Azizpor P, Okakpu OK, Parks SC, Chavez D, Eyabi F, Martinez-Beltran S, Nguyen S, Dillman AR. Polyunsaturated fatty acids stimulate immunity and eicosanoid production in Drosophila melanogaster. J Lipid Res 2024; 65:100608. [PMID: 39069231 PMCID: PMC11386307 DOI: 10.1016/j.jlr.2024.100608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Eicosanoids are a class of molecules derived from C20 polyunsaturated fatty acids (PUFAs) that play a vital role in mammalian and insect biological systems, including development, reproduction, and immunity. Recent research has shown that insects have significant but lower levels of C20 PUFAs in circulation in comparison to C18 PUFAs. It has been previously hypothesized in insects that eicosanoids are synthesized from C18 precursors, such as linoleic acid (LA), to produce downstream eicosanoids. In this study, we show that introduction of arachidonic acid (AA) stimulates production of cyclooxygenase, lipoxygenase, and cytochrome P450-derived eicosanoids. Downstream immune readouts showed that LA stimulates phagocytosis by hemocytes, while both LA and AA stimulate increased antimicrobial peptide production when D. melanogaster is exposed to a heat-killed bacterial pathogen. In totality, this work identifies PUFAs that are involved in insect immunity and adds evidence to the notion that Drosophila utilizes immunostimulatory lipid signaling to mitigate bacterial infections. Our understanding of immune signaling in the fly and its analogies to mammalian systems will increase the power and value of Drosophila as a model organism in immune studies.
Collapse
Affiliation(s)
- Pakeeza Azizpor
- Department of Nematology, University of California, Riverside, CA, USA
| | - Ogadinma K Okakpu
- Department of Nematology, University of California, Riverside, CA, USA
| | - Sophia C Parks
- Department of Nematology, University of California, Riverside, CA, USA
| | - Diego Chavez
- Department of Nematology, University of California, Riverside, CA, USA
| | - Fayez Eyabi
- Department of Nematology, University of California, Riverside, CA, USA
| | | | - Susan Nguyen
- Department of Nematology, University of California, Riverside, CA, USA
| | - Adler R Dillman
- Department of Nematology, University of California, Riverside, CA, USA.
| |
Collapse
|
10
|
Wang Y, Mbiza NIT, Liu T, Wang Y, Zhang Y, Luo X, Chu L, Li J, Yang Y, Wang X, Zhang J, Yu Y. SfREPAT38, a pathogen response gene (REPAT), is involved in immune response of Spodoptera frugiperda larvae through mediating Toll signalling pathway. INSECT MOLECULAR BIOLOGY 2024; 33:417-426. [PMID: 38549231 DOI: 10.1111/imb.12909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/06/2024] [Indexed: 07/10/2024]
Abstract
REPAT (response to pathogen) is an immune-associated gene family that plays important roles in insect immune response to pathogens. Although nine REPAT genes have been identified in Spodoptera frugiperda (Lepidoptera: Noctuidae) currently, their functions and mechanisms in the immune response to pathogens still remain unclear. Therefore, SfREPAT38, a pathogen response gene (REPAT) of S. frugiperda, was characterised and its function was analysed. The results showed that SfREPAT38 contains a signal peptide and a transcription activator MBF2 (multi-protein bridging factor 2) domain. Quantitative real-time polymerase chain reaction analysis showed that SfREPAT38 was highly expressed in the sixth-instar larvae (L6) and was the highest in expression in the midgut of L6. We found that the expression of SfREPAT38 could be activated by challenge with four microbial pathogens (Bacillus thuringiensis, Metarhizium anisopliae, Spodoptera exigua nuclearpolyhedrosis and Escherichia coli), except 12 h after E. coli infection. Furthermore, the SfREPAT38 expression levels significantly decreased at 24, 48 and 72 h after SfREPAT38 dsRNA injection or feeding. Feeding with SfREPAT38 dsRNA significantly decreased the weight gain of S. frugiperda, and continuous feeding led to the death of S. frugiperda larvae from the fourth day. Moreover, SfREPAT38 dsRNA injection resulted in a significant decrease of weight gain on the fifth day. Silencing SfREPAT38 gene down-regulated the expression levels of immune genes belonging to the Toll pathway, including SPZ, Myd88, DIF, Cactus, Pell and Toll18W. After treatment with SfREPAT38 dsRNA, S. frugiperda became extremely sensitive to the B. thuringiensis infection, and the survival rate dramatically increased, with 100% mortality by the eighth day. The weight of S. frugiperda larvae was also significantly lower than that of the control groups from the second day onwards. In addition, the genes involved in the Toll signalling pathway and a few antibacterial peptide related genes were down-regulated after treatment. These results showed that SfREPAT38 is involved in the immune response of S. frugiperda larvae through mediating Toll signalling pathway.
Collapse
Affiliation(s)
- Yuxue Wang
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, College of Life Sciences, Yangtze University, Jingzhou, Hubei Province, China
| | - Natasha Isabel Tanatsiwa Mbiza
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, College of Life Sciences, Yangtze University, Jingzhou, Hubei Province, China
| | - Ting Liu
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, College of Life Sciences, Yangtze University, Jingzhou, Hubei Province, China
| | - Yi Wang
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, College of Life Sciences, Yangtze University, Jingzhou, Hubei Province, China
| | - Yi Zhang
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, College of Life Sciences, Yangtze University, Jingzhou, Hubei Province, China
| | - Xincheng Luo
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, College of Life Sciences, Yangtze University, Jingzhou, Hubei Province, China
| | - Longyan Chu
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, College of Life Sciences, Yangtze University, Jingzhou, Hubei Province, China
| | - Jianping Li
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, College of Life Sciences, Yangtze University, Jingzhou, Hubei Province, China
| | - Yazhen Yang
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, College of Life Sciences, Yangtze University, Jingzhou, Hubei Province, China
| | - Xiangping Wang
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, College of Life Sciences, Yangtze University, Jingzhou, Hubei Province, China
| | - Jianmin Zhang
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, College of Life Sciences, Yangtze University, Jingzhou, Hubei Province, China
| | - Yonghao Yu
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi Province, China
| |
Collapse
|
11
|
Fan J, Jiang S, Zhang T, Gao H, Chang BH, Qiao X, Han P. Sgabd-2 plays specific role in immune response against biopesticide Metarhizium anisopliae in Aphis citricola. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106003. [PMID: 39084799 DOI: 10.1016/j.pestbp.2024.106003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024]
Abstract
Metarhizium anisopliae is an effective biopesticide for controlling Aphis citricola, which has developed resistance to many chemical pesticides. However, the powerful immune system of A. citricola has limited the insecticidal efficacy of M. anisopliae. The co-evolution between insects and entomogenous fungi has led to emergence of new antifungal immune genes, which remain incompletely understood. In this study, an important immune gene Sgabd-2 was identified from A. citricola through transcriptome analysis. Sgabd-2 gene showed high expression in the 4th instar nymph and adult stages, and was mainly distributed in the abdominal region of A. citricola. The recombinant protein (rSgabd-2) exhibited no antifungal activity but demonstrated clear agglutination activity towards the conidia of M. anisopliae. RNA interference of Sgabd-2 by dsRNA feeding resulted in decreased phenoloxidase (PO) activity and weakened defense for A. citricola against M. anisopliae. Simultaneous silence of GNBP-1 and Sgabd-2 effectively reduced the immunity of A. citricola against M. anisopliae more than the individual RNAi of GNBP-1 or Sgabd-2. Furthermore, a genetically engineered M. anisopliae expressing double-stranded RNA (dsSgabd-2) targeting Sgabd-2 in A. citricola successfully suppressed the expression of Sgabd-2 and demonstrated increased virulence against A. citricola. Our findings elucidated Sgabd-2 as a critical new antifungal immune gene and proposed a genetic engineering strategy to enhance the insecticidal virulence of entomogenous fungi through RNAi-mediated inhibition of pest immune genes.
Collapse
Affiliation(s)
- Jiqiao Fan
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Nucleic Acid Biopesticide, 030006, China
| | - Shirong Jiang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticide, 030006, China
| | - Tao Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticide, 030006, China
| | - Huiyan Gao
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticide, 030006, China
| | - Babar Hussain Chang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticide, 030006, China
| | - Xiongwu Qiao
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, China.
| | - Pengfei Han
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticide, 030006, China.
| |
Collapse
|
12
|
Chen X, Wang F, Guo H, Liu X, Wu S, Lv L, Tang T. Uncovering hidden dangers: The combined toxicity of abamectin and lambda-cyhalothrin on honey bees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173126. [PMID: 38734105 DOI: 10.1016/j.scitotenv.2024.173126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Studying the toxic effects of pesticides on bees has consistently been a prominent area of interest for researchers. Nonetheless, existing research has predominantly concentrated on individual toxicity assessments, leaving a gap in our understanding of mixed toxicity. This study delves into the individual and combined toxic effects of abamectin (ABA) and lambda-cyhalothrin (LCY) on honey bees (Apis mellifera) in laboratory settings. We discovered that ABA (96 h-LC50 value of 0.079 mg/L) exhibited greater acute toxicity to honey bees compared to LCY (96 h-LC50 value of 9.177 mg/L). Moreover, the mixture of ABA and LCY presented an acute antagonistic effect on honey bees. Additionally, our results indicated that exposure to LCY, at medium concentration, led to a reduction in the abundance of gut core bacterium Snodgrassella. However, an increase in the abundance of Bifidobacterium was noted when exposed to a medium concentration of LCY and its mixture with ABA. Transcriptomic analysis revealed significant regulation of certain genes in the medium concentration of all three treatments compared to the control group, primarily enriching in metabolism and immune-related pathways. Following chronic exposure to field-relevant concentrations of ABA, LCY, and their mixture, there were significant alterations in the activities of immunity-related enzyme polyphenol oxidase (PPO) and detoxification enzymes glutathione S-transferase (GST) and carboxylesterase (CarE). Additionally, the expression of four genes (abaecin, cyp9e2, cyp302a1, and GstD1) associated with immune and detoxification metabolism was significantly altered. These findings suggest a potential health risk posed by the insecticides ABA and LCY to honey bees. Despite exhibiting acute antagonistic effect, mixed exposure still induced damage to bees at all levels. This study advances our knowledge of the potential adverse effects of individual or combined exposure to these two pesticides on non-target pollinators and offers crucial guidance for the use of insecticides in agricultural production.
Collapse
Affiliation(s)
- Xiaozhen Chen
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Feidi Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haikun Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xinju Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
13
|
Matsumoto Y, Sato E, Sugita T. Induction of acute silkworm hemolymph melanization by Staphylococcus aureus treated with peptidoglycan-degrading enzymes. Drug Discov Ther 2024; 18:194-198. [PMID: 38925960 DOI: 10.5582/ddt.2024.01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Staphylococcus aureus, a Gram-positive bacterium, causes inflammatory skin diseases, such as atopic dermatitis, and serious systemic diseases, such as sepsis. In the skin and nasal environment, peptidoglycan (PGN)-degrading enzymes, including lysozyme and lysostaphin, affects S. aureus PGN. However, the effects of PGN-degrading enzymes on the acute innate immune-inducing activity of S. aureus have not yet been investigated. In this study, we demonstrated that PGN-degrading enzymes induce acute silkworm hemolymph melanization by S. aureus. Insoluble fractions of S. aureus treated with lysozyme, lysostaphin, or both enzymes, were prepared. Melanization of the silkworm hemolymph caused by the injection of these insoluble fractions was higher than that of S. aureus without enzyme treatment. These results suggest that structural changes in S. aureus PGN caused by PGN-degrading enzymes affect the acute innate immune response in silkworms.
Collapse
Affiliation(s)
- Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, 204-8588, Japan
| | - Eri Sato
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, 204-8588, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, 204-8588, Japan
| |
Collapse
|
14
|
Shin M, Chang E, Lee D, Kim N, Cho B, Cha N, Koranteng F, Song JJ, Shim J. Drosophila immune cells transport oxygen through PPO2 protein phase transition. Nature 2024; 631:350-359. [PMID: 38926577 PMCID: PMC11236712 DOI: 10.1038/s41586-024-07583-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Insect respiration has long been thought to be solely dependent on an elaborate tracheal system without assistance from the circulatory system or immune cells1,2. Here we describe that Drosophila crystal cells-myeloid-like immune cells called haemocytes-control respiration by oxygenating Prophenoloxidase 2 (PPO2) proteins. Crystal cells direct the movement of haemocytes between the trachea of the larval body wall and the circulation to collect oxygen. Aided by copper and a neutral pH, oxygen is trapped in the crystalline structures of PPO2 in crystal cells. Conversely, PPO2 crystals can be dissolved when carbonic anhydrase lowers the intracellular pH and then reassembled into crystals in cellulo by adhering to the trachea. Physiologically, larvae lacking crystal cells or PPO2, or those expressing a copper-binding mutant of PPO2, display hypoxic responses under normoxic conditions and are susceptible to hypoxia. These hypoxic phenotypes can be rescued by hyperoxia, expression of arthropod haemocyanin or prevention of larval burrowing activity to expose their respiratory organs. Thus, we propose that insect immune cells collaborate with the tracheal system to reserve and transport oxygen through the phase transition of PPO2 crystals, facilitating internal oxygen homeostasis in a process that is comparable to vertebrate respiration.
Collapse
Affiliation(s)
- Mingyu Shin
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Eunji Chang
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Daewon Lee
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Nayun Kim
- Department of Biological Sciences, KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Bumsik Cho
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Nuri Cha
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Ferdinand Koranteng
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jiwon Shim
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea.
- Research Institute for Natural Science, Hanyang University, Seoul, Republic of Korea.
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea.
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Luschnig S. Flies use blood cells to take a deep breath. Nature 2024; 631:281-283. [PMID: 38926555 DOI: 10.1038/d41586-024-01649-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
|
16
|
Mehmood N, Hassan A, Zhong X, Zhu Y, Ouyang G, Raza T, Zia S, Chen X, Huang Q. Entomopathogenic fungi-based silver nanoparticles: a potential substitute of synthetic insecticides to counter behavioral and physiological immunity in Aedes aegypti mosquito (Diptera: Culicidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30793-30805. [PMID: 38613759 DOI: 10.1007/s11356-024-33292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Excessive use of synthetic insecticides has resulted in environmental contamination and adverse effects on humans and other non-target organisms. Entomopathogenic fungi offer eco-friendly alternatives; however, their application for pest control requires significant advancement owing to limitations like slow killing time and effectiveness only when applied in higher amounts, whereas exposure to UV radiation, high temperature, and humidity can also reduce their viability and shelf-life. The nanoparticles synthesized using fungal extracellular extracts provide a new approach to use fungal pathogens. Our study focused on the synthesis of Metarhizium anisopliae-based silver nanoparticles (AgNPs) and evaluation of their efficiency on various physiological and behavioral parameters of the mosquito Aedes aegypti. The synthesis, size (27.6 d.nm, PDI = 0.209), zeta potential (- 24.3 mV), and shape of the AgNPs were determined through dynamic light scattering, scanning and transmission electron microscopic, and UV-visual spectroscopic analyses (432 nm). Our results showed significantly reduced survival (100% decrease in case of 3.2 and 1.8 μL/cm2 volumes, and 60% decrease in case of 0.8 μL/cm2 volume), phenoloxidase activity (t = 39.91; p = 0.0001), and gut microbiota, with increased oxidative stress and cell apoptosis in AgNPs-challenged mosquitoes. Furthermore, the AgNPs-exposed mosquitoes presented a concentration-specific decrease in flight locomotor activity (F = 17.312; p < 0.0001), whereas no significant changes in antifungal activity, self-grooming frequencies, or time spent were found. These findings enhance our understanding of mosquito responses to AgNPs exposure, and offer a more efficient mosquito control strategy using entomopathogenic fungi.
Collapse
Affiliation(s)
- Nasir Mehmood
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ali Hassan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueshan Zhong
- Yuexiu Center for Disease Control and Prevention, Guangzhou, 510055, Guangdong Province, China
| | - Yongzhang Zhu
- Guangzhou Yongliang Environmental Protection Technology Service CO., LTD, Guangzhou, 510405, Guangdong Province, China
| | - Guang Ouyang
- Guangzhou Yongliang Environmental Protection Technology Service CO., LTD, Guangzhou, 510405, Guangdong Province, China
| | - Taqi Raza
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Samta Zia
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaomin Chen
- Wuhan Center for Disease Control and Prevention, Wuhan, 430070, Hubei Province, China
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
17
|
Shi D, Yang Z, Liao W, Liu C, Zhao L, Su H, Wang X, Mei H, Chen M, Song Y, de Hoog S, Deng S. Galleria mellonella in vitro model for chromoblastomycosis shows large differences in virulence between isolates. IMA Fungus 2024; 15:5. [PMID: 38454527 PMCID: PMC10921731 DOI: 10.1186/s43008-023-00134-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/22/2023] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Chromoblastomycosis is the World Health Organization (WHO)-recognized fungal implantation disease that eventually leads to severe mutilation. Cladophialophora carrionii (C. carrionii) is one of the agents. However, the pathogenesis of C. carrionii is not fully investigated yet. METHODS We investigated the pathogenic potential of the fungus in a Galleria mellonella (G. mellonella) larvae infection model. Six strains of C. carrionii, and three of its environmental relative C. yegresii were tested. The G. mellonella model was also applied to determine antifungal efficacy of amphotericin B, itraconazole, voriconazole, posaconazole, and terbinafine. RESULTS All strains were able to infect the larvae, but virulence potentials were strain-specific and showed no correlation with clinical background of the respective isolate. Survival of larvae also varied with infection dose, and with growth speed and melanization of the fungus. Posaconazole and voriconazole exhibited best activity against Cladophialophora, followed by itraconazole and terbinafine, while limited efficacy was seen for amphotericin B. CONCLUSION Infection behavior deviates significantly between strains. In vitro antifungal susceptibility of tested strains only partly explained the limited treatment efficacy in vivo.
Collapse
Affiliation(s)
- Dongmei Shi
- Department of Dermatology & Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Shandong, China
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Shandong, China
| | - Zhiya Yang
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Shandong, China
| | - Wanqing Liao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Shanghai, China
| | - Chen Liu
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Shandong, China
| | - Liang Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Guizhou Talent Base for Microbiology and Human Health, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Huilin Su
- Department of Dermatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaodong Wang
- Department of Dermatology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Huan Mei
- Institute of Dermatology, Chinese Academy of Medical Science, Nanjing, China
| | - Min Chen
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Shanghai, China
| | - Yinggai Song
- Department of Dermatology and Venereology, First Hospital in Peking University, Beijing, China
| | - Sybren de Hoog
- Center of Expertise in Mycology of Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.
- Department of Medical Microbiology, The People's Hospital of Suzhou New District, Suzhou, Jiangsu, China.
| | - Shuwen Deng
- Department of Medical Microbiology, The People's Hospital of Suzhou New District, Suzhou, Jiangsu, China.
| |
Collapse
|
18
|
García-Saldaña EA, Cerqueda-García D, Ibarra-Laclette E, Aluja M. Insights into the differences related to the resistance mechanisms to the highly toxic fruit Hippomane mancinella (Malpighiales: Euphorbiaceae) between the larvae of the sister species Anastrepha acris and Anastrepha ludens (Diptera: Tephritidae) through comparative transcriptomics. Front Physiol 2024; 15:1263475. [PMID: 38304114 PMCID: PMC10830740 DOI: 10.3389/fphys.2024.1263475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
The Manchineel, Hippomane mancinella ("Death Apple Tree") is one of the most toxic fruits worldwide and nevertheless is the host plant of the monophagous fruit fly species Anastrepha acris (Diptera: Tephritidae). Here we aimed at elucidating the detoxification mechanisms in larvae of A. acris reared on a diet enriched with the toxic fruit (6% lyophilizate) through comparative transcriptomics. We compared the performance of A. acris larvae with that of the sister species A. ludens, a highly polyphagous pest species that is unable to infest H. mancinella in nature. The transcriptional alterations in A. ludens were significantly greater than in A. acris. We mainly found two resistance mechanisms in both species: structural, activating cuticle protein biosynthesis (chitin-binding proteins likely reducing permeability to toxic compounds in the intestine), and metabolic, triggering biosynthesis of serine proteases and xenobiotic metabolism activation by glutathione-S-transferases and cytochrome P450 oxidoreductase. Some cuticle proteins and serine proteases were not orthologous between both species, suggesting that in A. acris, a structural resistance mechanism has been selected allowing specialization to the highly toxic host plant. Our results represent a nice example of how two phylogenetically close species diverged over recent evolutionary time related to resistance mechanisms to plant secondary metabolites.
Collapse
Affiliation(s)
- Essicka A. García-Saldaña
- Clúster Científico y Tecnológico BioMimic, Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A C–INECOL, Xalapa, Veracruz, Mexico
| | - Daniel Cerqueda-García
- Clúster Científico y Tecnológico BioMimic, Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A C–INECOL, Xalapa, Veracruz, Mexico
| | - Enrique Ibarra-Laclette
- Clúster Científico y Tecnológico BioMimic, Red de Estudios Moleculares Avanzados, Instituto de Ecología, A C–INECOL, Xalapa, Veracruz, Mexico
| | - Martín Aluja
- Clúster Científico y Tecnológico BioMimic, Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A C–INECOL, Xalapa, Veracruz, Mexico
| |
Collapse
|
19
|
Zhang XF, Cui W, Wang MJ, Zhou Y, Fu TT, Jiang K, Hou YM, Tang BZ. Role of prophenoloxidase 1 from the beetle Octodonta nipae in melanized encapsulation of a wasp egg. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 150:105082. [PMID: 37858613 DOI: 10.1016/j.dci.2023.105082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Exploring the function of the host immune system can help to understand the host-parasitoid interaction. Prophenoloxidase (PPO) is crucial in defensive melanization during the encapsulation of wasp eggs. However, the existence of multiple PPO sequences increases the difficulty of exploring the specific functions of individual PPOs. We previously identified three PPOs in the nipa palm hispid beetle, Octodonta nipae. Our current work showed that OnPPO1 and OnPPO2 possessed the typical characteristics of the type III copper family, but OnPPO3 lacked the conserved histidine residues, and its active sites were substituted with Gln. OnPPOs showed the highest expression in hemocytes, but OnPPO3 presented extremely low abundance compared with that of OnPPO1 and OnPPO2, and only OnPPO1 showed a quick response after wasp infection. OnPPO1 knockdown decreased the encapsulation index and inhibited melanization, whereas silencing of OnPPO3 appeared to have no adverse effect on encapsulation and melanization, and silencing of OnPPO2 presented low RNAi efficiency. Moreover, the cleavage of recombinant OnPPO1 produced a 62 kDa fragment with high PO activity. OnPPO1 could be produced by oenocytoids, granulocytes and plasmatocytes, and was distributed around wasp eggs during capsule formation. Overall, our results indicate that proteolytic cleavage of OnPPO1 plays key roles in the melanized encapsulation of wasp eggs. This finding illuminates the mechanism of PPO activation in this invasive beetle and provides guidance for its biological control.
Collapse
Affiliation(s)
- Xia-Fang Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wen Cui
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mou-Jun Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yan Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ting-Ting Fu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kun Jiang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bao-Zhen Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
20
|
Du Q, Shan Y, Hu H, Wu C, Wang D, Song X, Ma Y, Xi J, Ren X, Ma X, Ma Y. Fitness effect and transcription profile reveal sublethal effect of nitenpyram on the predator Chrysopa pallens (Neuroptera: Chrysopidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22073. [PMID: 38288485 DOI: 10.1002/arch.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024]
Abstract
Although neonicotinoids are widely used and important insecticide, there are growing concerns about their effect on nontarget insects and other organisms. Moreover, the effects of nitenpyram (NIT), a second generation of neonicotinoid insecticides, on Chrysopa pallens are still unclear. Therefore, this study purposed to investigate the acute toxicity of NIT to C. pallens using the spotting method. To examine the potential effects of a sublethal dose of NIT (LD30 , 1.85 ng of active ingredient per insect) on C. pallens, we constructed the life tables and analyzed the transcriptome data. The life table results showed that the period of second instar larvae, adult pre-oviposition period and total pre-oviposition period were significantly prolonged after exposure to sublethal dose of NIT, but had no significant effects on the other instars, longevity, oviposition days, and fecundity. The population parameters, including the preadult survival rate, gross reproduction rate, net reproductive rate, the intrinsic rate of increase, and finite rate of increase, were not significantly affected, and only the mean generation time was significantly prolonged by NIT. Transcriptome analysis showed that there were 68 differentially expressed genes (DEGs), including 50 upregulated genes and 18 downregulated genes. Moreover, 13 DEGs related to heat shock protein, nose resistant to fluoxetine protein 6, and prophenoloxidas were upregulated. This study showed the potential effects of sublethal doses of NIT on C. pallens and provided a theoretical reference for the comprehensive application of chemical and biological control in integrated pest management.
Collapse
Affiliation(s)
- Qiankun Du
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yongpan Shan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hongyan Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Changcai Wu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Dan Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xianpeng Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yajie Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jianping Xi
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiangliang Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Xiaoyan Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Yan Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
21
|
Hu H, Hu Q, Weng Q, Wang J. Hemocytin, the special aggregation factor connecting insect hemolymph immunity, a potential target of insecticidal immunosuppresant. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105704. [PMID: 38225099 DOI: 10.1016/j.pestbp.2023.105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024]
Abstract
Insects possess an effective innate immunity that enables them to adapt to their intricate living environment and fend off various pathogens (or parasites). This innate immunity comprises both humoral and cellular immunity, which synergistically orchestrate immune responses. Hemocytin, a lectin with a distinctive structure, plays a crucial role in insect hemolymph immunity. Hemocytin is involved in the early immune response, facilitating processes such as coagulation, nodulation, and encapsulation in the hemolymph. It prevents hemolymph overflow and microbial pathogens invasion resulting from epidermal damage, and also aids in the recognition and elimination of invaders. However, the research on hemocytin is still limited. Our previous findings demonstrated that destruxin A effectively inhibits insect hemolymph immunity by interacting with hemocytin, suggesting that hemocytin could be a potential target for insecticides development. Therefore, it is crucial to gain a deeper understanding of hemocytin. This review integrates recent advancements in the study of the structure and function of insect hemocytin and also explores the potential of hemocytin as a target for insecticides. This review aims to enhance our comprehension of insect innate immunity and provide innovative ideas for the development of environmentally friendly pesticides.
Collapse
Affiliation(s)
- Hongwang Hu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Qiongbo Hu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Qunfang Weng
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Jingjing Wang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
22
|
Qie X, Yan X, Wang W, Liu Y, Zhang L, Hao C, Lu Z, Ma L. Serpin-4 Negatively Regulates Prophenoloxidase Activation and Antimicrobial Peptide Synthesis in the Silkworm, Bombyx mori. Int J Mol Sci 2023; 25:313. [PMID: 38203484 PMCID: PMC10778760 DOI: 10.3390/ijms25010313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The prophenoloxidase (PPO) activation and Toll antimicrobial peptide synthesis pathways are two critical immune responses in the insect immune system. The activation of these pathways is mediated by the cascade of serine proteases, which is negatively regulated by serpins. In this study, we identified a typical serpin, BmSerpin-4, in silkworms, whose expression was dramatically up-regulated in the fat body and hemocytes after bacterial infections. The pre-injection of recombinant BmSerpin-4 remarkably decreased the antibacterial activity of the hemolymph and the expression of the antimicrobial peptides (AMPs) gloverin-3, cecropin-D, cecropin-E, and moricin in the fat body under Micrococcus luteus and Yersinia pseudotuberculosis serotype O: 3 (YP III) infection. Meanwhile, the inhibition of systemic melanization, PO activity, and PPO activation by BmSerpin-4 was also observed. Hemolymph proteinase 1 (HP1), serine protease 2 (SP2), HP6, and SP21 were predicted as the candidate target serine proteases for BmSerpin-4 through the analysis of residues adjacent to the scissile bond and comparisons of orthologous genes in Manduca sexta. This suggests that HP1, SP2, HP6, and SP21 might be essential in the activation of the serine protease cascade in both the Toll and PPO pathways in silkworms. Our study provided a comprehensive characterization of BmSerpin-4 and clues for the further dissection of silkworm PPO and Toll activation signaling.
Collapse
Affiliation(s)
- Xingtao Qie
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (X.Q.); (X.Y.); (W.W.); (Y.L.); (L.Z.); (C.H.)
| | - Xizhong Yan
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (X.Q.); (X.Y.); (W.W.); (Y.L.); (L.Z.); (C.H.)
| | - Wentao Wang
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (X.Q.); (X.Y.); (W.W.); (Y.L.); (L.Z.); (C.H.)
| | - Yaya Liu
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (X.Q.); (X.Y.); (W.W.); (Y.L.); (L.Z.); (C.H.)
| | - Lijun Zhang
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (X.Q.); (X.Y.); (W.W.); (Y.L.); (L.Z.); (C.H.)
| | - Chi Hao
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (X.Q.); (X.Y.); (W.W.); (Y.L.); (L.Z.); (C.H.)
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Li Ma
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (X.Q.); (X.Y.); (W.W.); (Y.L.); (L.Z.); (C.H.)
| |
Collapse
|
23
|
Khan SA, Kojour MAM, Han YS. Recent trends in insect gut immunity. Front Immunol 2023; 14:1272143. [PMID: 38193088 PMCID: PMC10773798 DOI: 10.3389/fimmu.2023.1272143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
The gut is a crucial organ in insect defense against various pathogens and harmful substances in their environment and diet. Distinct insect gut compartments possess unique functionalities contributing to their physiological processes, including immunity. The insect gut's cellular composition is vital for cellular and humoral immunity. The peritrophic membrane, mucus layer, lumen, microvilli, and various gut cells provide essential support for activating and regulating immune defense mechanisms. These components also secrete molecules and enzymes that are imperative in physiological activities. Additionally, the gut microbiota initiates various signaling pathways and produces vitamins and minerals that help maintain gut homeostasis. Distinct immune signaling pathways are activated within the gut when insects ingest pathogens or hazardous materials. The pathway induced depends on the infection or pathogen type; include immune deficiency (imd), Toll, JAK/STAT, Duox-ROS, and JNK/FOXO regulatory pathways. These pathways produce different antimicrobial peptides (AMPs) and maintain gut homeostasis. Furthermore, various signaling mechanisms within gut cells regulate insect gut recovery following infection. Although some questions regarding insect gut immunity in different species require additional study, this review provides insights into the insect gut's structure and composition, commensal microorganism roles in Drosophila melanogaster and Tenebrio molitor life cycles, different signaling pathways involved in gut immune systems, and the insect gut post-infection recovery through various signaling mechanisms.
Collapse
Affiliation(s)
- Shahidul Ahmed Khan
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Maryam Ali Mohmmadie Kojour
- Life & Medical Sciences Institute (LIMES) Development, Genetics & Molecular Physiology Unit, University of Bonn, Bonn, Germany
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
24
|
Yang L, Li J, Yang L, Wang X, Xiao S, Xiong S, Xu X, Xu J, Ye G. Altered Gene Expression of the Parasitoid Pteromalus puparum after Entomopathogenic Fungus Beauveria bassiana Infection. Int J Mol Sci 2023; 24:17030. [PMID: 38069352 PMCID: PMC10707577 DOI: 10.3390/ijms242317030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Both parasitoids and entomopathogenic fungi are becoming increasingly crucial for managing pest populations. Therefore, it is essential to carefully consider the potential impact of entomopathogenic fungi on parasitoids due to their widespread pathogenicity and the possible overlap between these biological control tools during field applications. However, despite their importance, little research has been conducted on the pathogenicity of entomopathogenic fungi on parasitoids. In our study, we aimed to address this knowledge gap by investigating the interaction between the well-known entomopathogenic fungus Beauveria bassiana, and the pupal endoparasitoid Pteromalus puparum. Our results demonstrated that the presence of B. bassiana significantly affected the survival rates of P. puparum under laboratory conditions. The pathogenicity of B. bassiana on P. puparum was dose- and time-dependent, as determined via through surface spraying or oral ingestion. RNA-Seq analysis revealed that the immune system plays a primary and crucial role in defending against B. bassiana. Notably, several upregulated differentially expressed genes (DEGs) involved in the Toll and IMD pathways, which are key components of the insect immune system, and antimicrobial peptides were rapidly induced during both the early and late stages of infection. In contrast, a majority of genes involved in the activation of prophenoloxidase and antioxidant mechanisms were downregulated. Additionally, we identified downregulated DEGs related to cuticle formation, olfactory mechanisms, and detoxification processes. In summary, our study provides valuable insights into the interactions between P. puparum and B. bassiana, shedding light on the changes in gene expression during fungal infection. These findings have significant implications for the development of more effective and sustainable strategies for pest management in agriculture.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinting Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lei Yang
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shan Xiao
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shijiao Xiong
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
25
|
Spínola-Amilibia M, Illanes-Vicioso R, Ruiz-López E, Colomer-Vidal P, Rodriguez-Ventura F, Peces Pérez R, Arias CF, Torroba T, Solà M, Arias-Palomo E, Bertocchini F. Plastic degradation by insect hexamerins: Near-atomic resolution structures of the polyethylene-degrading proteins from the wax worm saliva. SCIENCE ADVANCES 2023; 9:eadi6813. [PMID: 37729416 PMCID: PMC10511194 DOI: 10.1126/sciadv.adi6813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/15/2023] [Indexed: 09/22/2023]
Abstract
Plastic waste management is a pressing ecological, social, and economic challenge. The saliva of the lepidopteran Galleria mellonella larvae is capable of oxidizing and depolymerizing polyethylene in hours at room temperature. Here, we analyze by cryo-electron microscopy (cryo-EM) G. mellonella's saliva directly from the native source. The three-dimensional reconstructions reveal that the buccal secretion is mainly composed of four hexamerins belonging to the hemocyanin/phenoloxidase family, renamed Demetra, Cibeles, Ceres, and a previously unidentified factor termed Cora. Functional assays show that this factor, as its counterparts Demetra and Ceres, is also able to oxidize and degrade polyethylene. The cryo-EM data and the x-ray analysis from purified fractions show that they self-assemble primarily into three macromolecular complexes with striking structural differences that likely modulate their activity. Overall, these results establish the ground to further explore the hexamerins' functionalities, their role in vivo, and their eventual biotechnological application.
Collapse
Affiliation(s)
- Mercedes Spínola-Amilibia
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Ramiro Illanes-Vicioso
- Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona Science Park, 08028 Barcelona, Spain
| | - Elena Ruiz-López
- Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona Science Park, 08028 Barcelona, Spain
| | - Pere Colomer-Vidal
- Department of Plant and Microbial Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Francisco Rodriguez-Ventura
- Department of Plant and Microbial Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Rosa Peces Pérez
- Department of Plant and Microbial Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Clemente F. Arias
- Department of Plant and Microbial Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
- Grupo Interdisciplinar de Sistemas Complejos, GISC, Madrid, Spain
| | - Tomas Torroba
- Department of Chemistry, Faculty of Science and PCT, University of Burgos, Burgos, Spain
| | - Maria Solà
- Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona Science Park, 08028 Barcelona, Spain
| | - Ernesto Arias-Palomo
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Federica Bertocchini
- Department of Plant and Microbial Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| |
Collapse
|
26
|
Song Y, Gu F, Li Y, Zhou W, Wu FA, Wang J, Sheng S. Host trehalose metabolism disruption by validamycin A results in reduced fitness of parasitoid offspring. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105570. [PMID: 37666623 DOI: 10.1016/j.pestbp.2023.105570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 09/06/2023]
Abstract
The general cutworm, Spodoptera litura (Lepidoptera: Noctuidae) is a worldwide destructive omnivorous pest and the endoparasitoid wasp Meteorus pulchricornis (Hymenoptera: Braconidae) is the dominant endoparasitoid of S. litura larvae. Trehalase is a key enzyme in insect trehalose metabolism and plays an important role in the growth and development of insects. However, the specific function of trehalase in parasitoid and host associations has been less reported. In this study, we obtained two trehalase genes (SlTre1 and SlTre2) from our previously constructed S. litura transcriptome database; they were highly expressed in 3rd instar larvae. SlTre1 was mainly expressed in the midgut, and SlTre2 was expressed highest in the head. SlTre1 and SlTre2 were highly expressed 5 days after parasitization by M. pulchricornis. Treatment with the trehalase inhibitor validamycin A significantly inhibited the expression levels of SlTre1 and SlTre2, and the trehalase activity. Besides, the content of trehalose was increased but the content of glucose was decreased 24 h after validamycin A treatment in parasitized S. litura larvae. In addition, the immune-related genes in phenoloxidase (PO) pathway and fatty acid synthesis-related genes in lipid metabolism were upregulated in parasitized host larvae after validamycin A treatment. Importantly, the emergence rate, proportion of normal adults, and body size of parasitoid offspring was decreased in parasitized S. litura larvae after validamycin A treatment, indicating that validamycin A disrupts the trehalose metabolism of parasitized host and thus reduces the fitness of parasitoid offspring. The present study provides a novel perspective for coordinating the application of biocontrol and antibiotics in agroecosystem.
Collapse
Affiliation(s)
- Yan Song
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Fengming Gu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yijiangcheng Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Weihong Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Fu-An Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212100, China
| | - Jun Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212100, China
| | - Sheng Sheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212100, China.
| |
Collapse
|
27
|
Zhou L, Ma L, Liu L, Sun S, Jing X, Lu Z. The Effects of Diet on the Immune Responses of the Oriental Armyworm Mythimna separata. INSECTS 2023; 14:685. [PMID: 37623395 PMCID: PMC10455674 DOI: 10.3390/insects14080685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Nutrients can greatly affect host immune defenses against infection. Possessing a simple immune system, insects have been widely used as models to address the relationships between nutrition and immunity. The effects of high versus low protein-to-carbohydrate ratio (P:C) diets on insect immune responses vary in different studies. To reveal the dietary manipulation of immune responses in the polyphagous agricultural pest oriental armyworm, we examined immune gene expression, phenoloxidase (PO) activity, and phagocytosis to investigate the immune traits of bacteria-challenged oriental armyworms, which were fed different P:C ratio diets. We found the oriental armyworms that were fed a 35:7 (P:C) diet showed higher phenoloxidase (PO) activity and stronger melanization, and those reared on a 28:14 (P:C) diet showed higher antimicrobial activity. However, different P:C diets had no apparent effect on the hemocyte number and phagocytosis. These results overall indicate that high P:C diets differently optimize humoral immune defense responses in oriental armyworms, i.e., PO-mediated melanization and antimicrobial peptide synthesis in response to bacteria challenge.
Collapse
Affiliation(s)
- Lizhen Zhou
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (L.Z.); (L.M.); (L.L.); (S.S.); (X.J.)
| | - Li Ma
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (L.Z.); (L.M.); (L.L.); (S.S.); (X.J.)
| | - Lu Liu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (L.Z.); (L.M.); (L.L.); (S.S.); (X.J.)
| | - Shaolei Sun
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (L.Z.); (L.M.); (L.L.); (S.S.); (X.J.)
| | - Xiangfeng Jing
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (L.Z.); (L.M.); (L.L.); (S.S.); (X.J.)
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (L.Z.); (L.M.); (L.L.); (S.S.); (X.J.)
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A&F University, Yangling 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Integrated Pest Management on Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
28
|
Chen WF, Wang HF, Wang Y, Liu ZG, Xu BH. Honey bee larval culture in vitro: gut emptying determines the transition from larva to prepupa and recombinant AccApidaecin improves antibacterial activity. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:368-379. [PMID: 36849462 DOI: 10.1017/s0007485323000020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In vitro rearing of honey bee larvae is ideal for bioassay studies; no honey bee stable cell lines are available. Inconsistency of internal development staging of reared larvae and a susceptibility to contamination are common problems encountered. Standardized protocols on rearing larvae in vitro to make the larvae growth and development more similar to that of natural colonies are necessary to ensure the accuracy of experimental results and promote honey bee research as a model organism. Here, we concluded that when larval fasting weight was >160 mg, the time point of gut emptying can be defined as the critical point separating the larval and prepupal stages. In this way, we can conduct precise studies on the prepupal stage, such as organ remodeling during metamorphosis. Simultaneously, we further verified that recombinant AccApidaecin in genetic engineered bacteria added to the larval diet upregulated antibacterial peptide gene expression, and did not stimulate the stress response in larvae, nor did it affect the pupation rate or eclosion rate. This demonstrated that feeding recombinant AccApidaecin can enhance the individual antibacterial ability at the molecular level.
Collapse
Affiliation(s)
- Wen-Feng Chen
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong Province, China
| | - Hong-Fang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong Province, China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong Province, China
| | - Zhen-Guo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong Province, China
| | - Bao-Hua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong Province, China
| |
Collapse
|
29
|
Bossen J, Kühle JP, Roeder T. The tracheal immune system of insects - A blueprint for understanding epithelial immunity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 157:103960. [PMID: 37235953 DOI: 10.1016/j.ibmb.2023.103960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
The unique design of respiratory organs in multicellular organisms makes them prone to infection by pathogens. To cope with this vulnerability, highly effective local immune systems evolved that are also operative in the tracheal system of insects. Many pathogens and parasites (including viruses, bacteria, fungi, and metazoan parasites) colonize the trachea or invade the host via this route. Currently, only two modules of the tracheal immune system have been characterized in depth: 1) Immune deficiency pathway-mediated activation of antimicrobial peptide gene expression and 2) local melanization processes that protect the structure from wounding. There is an urgent need to increase our understanding of the architecture of tracheal immune systems, especially regarding those mechanisms that enable the maintenance of immune homeostasis. This need for new studies is particularly exigent for species other than Drosophila.
Collapse
Affiliation(s)
- Judith Bossen
- Kiel University, Zoology, Dept, Molecular Physiology, Kiel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Jan-Philip Kühle
- Kiel University, Zoology, Dept, Molecular Physiology, Kiel, Germany
| | - Thomas Roeder
- Kiel University, Zoology, Dept, Molecular Physiology, Kiel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.
| |
Collapse
|
30
|
Dong Y, Hou Q, Ye M, Li Z, Li J, You M, Yuchi Z, Lin J, You S. Clip-SP1 cleavage activates downstream prophenoloxidase activating protease (PAP) in Plutella xylostella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104737. [PMID: 37236330 DOI: 10.1016/j.dci.2023.104737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Melanization is a component of the humoral immune defense of insects and is induced by serine protease-mediated phenoloxidase (PO) catalysis. Prophenoloxidase (PPO) in the midgut of Plutella xylostella is activated by the CLIP domain serine protease (clip-SP) in response to Bacillus thuringiensis (Bt) infection, but the detailed signaling cascade following this activation is unknown. Here, we report that activation of clip-SP enhances PO activity in the P. xylostella midgut by cleaving three downstream PPO-activating proteases (PAPs). First, the expression level of clip-SP1 was increased in the midgut after Bt8010 infection of P. xylostella. Then, purified recombinant clip-SP1 was able to activate three PAPs - PAPa, PAPb and PAP3 - which in turn enhanced their PO activity in the hemolymph. Furthermore, clip-SP1 showed a dominant effect on PO activity compared to the individual PAPs. Our results indicate that Bt infection induces the expression of clip-SP1, which is upstream of a signaling cascade, to efficiently activate PO catalysis and mediate melanization in the midgut of P. xylostella. And it provides a basis for studying the complex PPO regulatory system in the midgut during Bt infection.
Collapse
Affiliation(s)
- Yi Dong
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
| | - Qing Hou
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
| | - Min Ye
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
| | - Zeyun Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
| | - Jingge Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China.
| | - Zhiguang Yuchi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Junhan Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China; Department of Food and Biological Engineering, Fujian Vocational College of Bioengineering, Fuzhou, 350002, China.
| | - Shijun You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China.
| |
Collapse
|
31
|
Liao C, Huang R, Yang Y, Huang Y, Zhang K, Ma L, Li T, Wang L, Zhang H, Li B. Effects of insecticidal proteins of Enterobacter cloacae NK on cellular immunity of Galleria mellonella larvae. Front Microbiol 2023; 14:1154811. [PMID: 37228380 PMCID: PMC10203167 DOI: 10.3389/fmicb.2023.1154811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Enterobacter cloacae produces insecticidal proteins capable of causing toxicity in pests, but the insecticidal mechanisms of these proteins for insect control remain unclear. To elucidate the mechanisms, the purified insecticidal protein from E. cloacae NK was administered to Galleria mellonella larvae either by intraperitoneal injection or by feeding. The number of hemocytes, apoptosis in immune cells, and polyphenol oxidase (PO) activity of G. mellonella larvae were detected by hemocytometer, Annexin V-FITC/PI, and UV-vis spectrophotometer, respectively. With the extension of the invasion time of NK insecticidal protein, the number of hemocytes in G. mellonella larvae decreased significantly (p < 0.05), whereas the apoptosis rate of hemocytes increased. The activity of PO showed a trend of rising-peak-sharp decline and the melanization reaction was deepened simultaneously. Moreover, the phagocytosis and coating capabilities of hemocytes decreased, and the intraperitoneal injection method was more effective than the feeding method. Taking together, the insecticidal protein of E. cloacae NK inhibits and destroys the cellular immune response of G. mellonella larvae, which suggests an important role in killing the host insect.
Collapse
Affiliation(s)
- Chunli Liao
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
- Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, Henan, China
- Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Ran Huang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Yi Yang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Yapeng Huang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Kai Zhang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Liang Ma
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Taotao Li
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
- Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, Henan, China
- Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Lianzhe Wang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
- Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, Henan, China
- Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Huamin Zhang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
- Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, Henan, China
- Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Bingbing Li
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
- Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, Henan, China
- Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan, China
| |
Collapse
|
32
|
Li Z, Xiong L, Li J, Yao S, Dong Y, Li Y, Chen X, Ye M, Zhang Y, Xie X, You M, Yuchi Z, Liu Y, You S. Enhanced resistance to Bacillus thuringiensis Cry1Ac toxin mediated by the activation of prophenoloxidase in a cosmopolitan pest. Int J Biol Macromol 2023; 242:124678. [PMID: 37141972 DOI: 10.1016/j.ijbiomac.2023.124678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/16/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Plutella xylostella has evolved resistance to Bacillus thuringiensis Cry1Ac toxin over a long evolutionary period. Enhanced immune response is an important factor in insect resistance to a variety of insecticides, and whether phenoloxidase (PO), an immune protein, is involved in resistance to Cry1Ac toxin in P. xylostella remains unclear. Here, spatial and temporal expression patterns showed that prophenoloxidase (PxPPO1 and PxPPO2) in the Cry1S1000-resistant strain was more highly expressed in eggs, 4th instar, head, and hemolymph than those in G88-susceptible strain. The results of PO activity analysis showed that after treatment with Cry1Ac toxin PO activity was about 3 times higher than that before treatment. Furthermore, knockout of PxPPO1 and PxPPO2 significantly increased the susceptibility to Cry1Ac toxin. These findings were further supported by the knockdown of Clip-SPH2, a negative regulator of PO, which resulted in increased PxPPO1 and PxPPO2 expression and Cry1Ac susceptibility in the Cry1S1000-resistant strain. Finally, the synergistic effect of quercetin showed that larval survival decreased from 100 % to <20 % compared to the control group. This study will provide a theoretical basis for the analysis of immune-related genes (PO) genes involved in the resistance mechanism and pest control of P. xylostella.
Collapse
Affiliation(s)
- Zeyun Li
- State Key Laboratory of Crop Pest Control in Fujian and Taiwan, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China; Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Lei Xiong
- State Key Laboratory of Crop Pest Control in Fujian and Taiwan, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China; Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Jingge Li
- State Key Laboratory of Crop Pest Control in Fujian and Taiwan, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China; Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Shuyuan Yao
- State Key Laboratory of Crop Pest Control in Fujian and Taiwan, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China; Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Yi Dong
- State Key Laboratory of Crop Pest Control in Fujian and Taiwan, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China; Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Yongbin Li
- State Key Laboratory of Crop Pest Control in Fujian and Taiwan, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China; Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Xuanhao Chen
- State Key Laboratory of Crop Pest Control in Fujian and Taiwan, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China; Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Min Ye
- State Key Laboratory of Crop Pest Control in Fujian and Taiwan, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China; Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | | | - Xuefeng Xie
- BGI-Sanya, BGI-Shenzhen, Sanya 572025, China.
| | - Minsheng You
- State Key Laboratory of Crop Pest Control in Fujian and Taiwan, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China; Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China.
| | - Zhiguang Yuchi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yuanyuan Liu
- State Key Laboratory of Crop Pest Control in Fujian and Taiwan, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; BGI-Sanya, BGI-Shenzhen, Sanya 572025, China; Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shijun You
- State Key Laboratory of Crop Pest Control in Fujian and Taiwan, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China; Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China; BGI-Sanya, BGI-Shenzhen, Sanya 572025, China.
| |
Collapse
|
33
|
Parks SC, Okakpu OK, Azizpor P, Nguyen S, Martinez-Beltran S, Claudio I, Anesko K, Bhatia A, Dhillon HS, Dillman AR. Parasitic nematode secreted phospholipase A 2 suppresses cellular and humoral immunity by targeting hemocytes in Drosophila melanogaster. Front Immunol 2023; 14:1122451. [PMID: 37006283 PMCID: PMC10050561 DOI: 10.3389/fimmu.2023.1122451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/15/2023] [Indexed: 03/17/2023] Open
Abstract
A key aspect of parasitic nematode infection is the nematodes' ability to evade and/or suppress host immunity. This immunomodulatory ability is likely driven by the release of hundreds of excretory/secretory proteins (ESPs) during infection. While ESPs have been shown to display immunosuppressive effects on various hosts, our understanding of the molecular interactions between individual proteins released and host immunity requires further study. We have recently identified a secreted phospholipase A2 (sPLA2) released from the entomopathogenic nematode (EPN) Steinernema carpocapsae we have named Sc-sPLA2. We report that Sc-sPLA2 increased mortality of Drosophila melanogaster infected with Streptococcus pneumoniae and promoted increased bacterial growth. Furthermore, our data showed that Sc-sPLA2 was able to downregulate both Toll and Imd pathway-associated antimicrobial peptides (AMPs) including drosomycin and defensin, in addition to suppressing phagocytosis in the hemolymph. Sc-sPLA2 was also found to be toxic to D. melanogaster with the severity being both dose- and time-dependent. Collectively, our data highlighted that Sc-sPLA2 possessed both toxic and immunosuppressive capabilities.
Collapse
Affiliation(s)
- Sophia C. Parks
- Department of Nematology, University of California, Riverside, CA, United States
| | - Ogadinma K. Okakpu
- Department of Nematology, University of California, Riverside, CA, United States
| | - Pakeeza Azizpor
- Department of Nematology, University of California, Riverside, CA, United States
| | - Susan Nguyen
- Department of Nematology, University of California, Riverside, CA, United States
| | | | - Isaiah Claudio
- Department of Nematology, University of California, Riverside, CA, United States
| | - Kyle Anesko
- Department of Nematology, University of California, Riverside, CA, United States
| | - Anil Bhatia
- Metabolomics Core Facility, IIGB, University of California, Riverside, CA, United States
| | - Harpal S. Dhillon
- Department of Nematology, University of California, Riverside, CA, United States
| | - Adler R. Dillman
- Department of Nematology, University of California, Riverside, CA, United States
| |
Collapse
|
34
|
Serrano I, Verdial C, Tavares L, Oliveira M. The Virtuous Galleria mellonella Model for Scientific Experimentation. Antibiotics (Basel) 2023; 12:505. [PMID: 36978373 PMCID: PMC10044286 DOI: 10.3390/antibiotics12030505] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The first research on the insect Galleria mellonella was published 85 years ago, and the larva is now widely used as a model to study infections caused by bacterial and fungal pathogens, for screening new antimicrobials, to study the adjacent immune response in co-infections or in host-pathogen interaction, as well as in a toxicity model. The immune system of the G. mellonella model shows remarkable similarities with mammals. Furthermore, results from G. mellonella correlate positively with mammalian models and with other invertebrate models. Unlike other invertebrate models, G. mellonella can withstand temperatures of 37 °C, and its handling and experimental procedures are simpler. Despite having some disadvantages, G. mellonella is a virtuous in vivo model to be used in preclinical studies, as an intermediate model between in vitro and mammalian in vivo studies, and is a great example on how to apply the bioethics principle of the 3Rs (Replacement, Reduction, and Refinement) in animal experimentation. This review aims to discuss the progress of the G. mellonella model, highlighting the key aspects of its use, including experimental design considerations and the necessity to standardize them. A different score in the "cocoon" category included in the G. mellonella Health Index Scoring System is also proposed.
Collapse
Affiliation(s)
- Isa Serrano
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Cláudia Verdial
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Tavares
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Manuela Oliveira
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
35
|
Stanley D, Haas E, Kim Y. Beyond Cellular Immunity: On the Biological Significance of Insect Hemocytes. Cells 2023; 12:cells12040599. [PMID: 36831266 PMCID: PMC9954174 DOI: 10.3390/cells12040599] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Insect immunity is assorted into humoral and cellular immune reactions. Humoral reactions involve the regulated production of anti-microbial peptides, which directly kill microbial invaders at the membrane and intracellular levels. In cellular immune reactions, millions of hemocytes are mobilized to sites of infection and replaced by hematopoiesis at a high biological cost after the immune defense. Here, we considered that the high biological costs of maintaining and replacing hemocytes would be a better investment if hemocytes carried out meaningful biological actions unrelated to cellular immunity. This idea allows us to treat a set of 10 hemocyte actions that are not directly involved in immunity, some of which, so far, are known only in Drosophila melanogaster. These include (1) their actions in molting and development, (2) in surviving severe hypoxia, (3) producing phenoloxidase precursor and its actions beyond immunity, (4) producing vitellogenin in a leafhopper, (5) recognition and responses to cancer in Drosophila, (6) non-immune actions in Drosophila, (7) clearing apoptotic cells during development of the central nervous system, (8) developing hematopoietic niches in Drosophila, (9) synthesis and transport of a lipoprotein, and (10) hemocyte roles in iron transport. We propose that the biological significance of hemocytes extends considerably beyond immunity.
Collapse
Affiliation(s)
- David Stanley
- Biological Control of Insect Research Laboratory, USDA/ARS, 1503 S Providence Road, Columbia, MO 65203, USA
- Correspondence: (D.S.); (Y.K.)
| | - Eric Haas
- Department of Chemistry and Biochemistry, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
- Correspondence: (D.S.); (Y.K.)
| |
Collapse
|
36
|
Xiao Z, Yao X, Bai S, Wei J, An S. Involvement of an Enhanced Immunity Mechanism in the Resistance to Bacillus thuringiensis in Lepidopteran Pests. INSECTS 2023; 14:151. [PMID: 36835720 PMCID: PMC9965922 DOI: 10.3390/insects14020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Bacillus thuringiensis (Bt) is the safest, economically successful entomopathogen to date. It is extensively produced in transgenic crops or used in spray formulations to control Lepidopteran pests. The most serious threat to the sustainable usage of Bt is insect resistance. The resistance mechanisms to Bt toxins depend not only on alterations in insect receptors, but also on the enhancement of insect immune responses. In this work, we review the current knowledge of the immune response and resistance of insects to Bt formulations and Bt proteins, mainly in Lepidopteran pests. We discuss the pattern recognition proteins for recognizing Bt, antimicrobial peptides (AMPs) and their synthetic signaling pathways, the prophenoloxidase system, reactive oxygen species (ROS) generation, nodulation, encapsulation, phagocytosis, and cell-free aggregates, which are involved in immune response reactions or resistance to Bt. This review also analyzes immune priming, which contributes to the evolution of insect resistance to Bt, and puts forward strategies to improve the insecticidal activity of Bt formulations and manage insect resistance, targeting the insect immune responses and resistance.
Collapse
|
37
|
Resisting an invasion: A review of the triatomine vector (Kissing bug) defense strategies against a Trypanosoma sp infection. Acta Trop 2023; 238:106745. [PMID: 36375520 DOI: 10.1016/j.actatropica.2022.106745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Triatomines are an important group of insects in the Americas. They serve as transmission vectors for Trypanosoma cruzi, the etiologic agent responsible for the deadly Chagas disease in humans. The digenetic parasite has a complex life cycle, alternating between mammalian and insect hosts, facing different environments. In the insect vector, the metacyclic trypomastigote (non-replicative) and epimastigote (replicative) stages face a set of insect-mediated environmental changes, such as intestinal pH, body temperature, nutrient availability, and vector immune response. These insects have the ability to differentiate between self and non-self-particles using their innate immune system. This immune system comprises physical barriers, cellular responses (phagocytosis, nodules and encapsulation), humoral factors, including effector mechanisms (antimicrobial peptides and prophenoloxidase cascade) and the intestinal microbiota. Here, we consolidate and synthesize the available literature to describe the defense mechanisms deployed by the triatomine vector against the parasite, as documented in recent years, the possible mechanisms developed by the parasite to protect against the insect's specific microenvironment and innate immune responses, and future perspectives on the Triatomine-Trypanosome interaction.
Collapse
|
38
|
Marieshwari BN, Bhuvaragavan S, Sruthi K, Mullainadhan P, Janarthanan S. Insect phenoloxidase and its diverse roles: melanogenesis and beyond. J Comp Physiol B 2023; 193:1-23. [PMID: 36472653 DOI: 10.1007/s00360-022-01468-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022]
Abstract
Insect life on earth is greatly diversified despite being exposed to several infectious agents due to their diverse habitats and ecological niche. One of the major factors responsible for their successful establishment is having a powerful innate immune system. The most common and effective method used by insects in recognizing pathogen and non-self-substances is the melanization process among others. The key enzyme involved in melanin biosynthesis is the copper containing humoral defense enzyme, phenoloxidase (PO). This review focused on understanding about PO and that had been in research for nearly a century. The review elaborates about evolutionary significance of PO in arthropods, its relationship with mammalian tyrosinases, various substrates, activators and inhibitors involved in the activation of phenoloxidase cascade, as it requires an integrated system of activation that vary among insect species. The enzyme also plays a vital role in insect immunity by involving in several other immune functions like sclerotization, wound healing, opsonization, encapsulation and nodule formation. Further, gene knock down or knock out of PO genes and inhibition of PO-melanization cascade by several mechanisms can also be considered as promising future alternative to control serious pests by making them highly susceptible to any targeted attack.
Collapse
Affiliation(s)
| | | | - Kannan Sruthi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India
| | | | - Sundaram Janarthanan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India.
| |
Collapse
|
39
|
Erban T, Sopko B, Bodrinova M, Talacko P, Chalupnikova J, Markovic M, Kamler M. Proteomic insight into the interaction of Paenibacillus larvae with honey bee larvae before capping collected from an American foulbrood outbreak: Pathogen proteins within the host, lysis signatures and interaction markers. Proteomics 2023; 23:e2200146. [PMID: 35946602 DOI: 10.1002/pmic.202200146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023]
Abstract
American foulbrood (AFB) is a devastating disease of honey bees. There remains a gap in the understanding of the interactions between the causative agent and host, so we used shotgun proteomics to gain new insights. Nano-LC-MS/MS analysis preceded visual description and Paenibacillus larvae identification in the same individual sample. A further critical part of our methodology was that larvae before capping were used as the model stage. The identification of the virulence factors SplA, PlCBP49, enolase, and DnaK in all P. larvae-positive samples was consistent with previous studies. Furthermore, the results were consistent with the array of virulence factors identified in an in vitro study of P. larvae exoprotein fractions. Although an S-layer protein and a putative bacteriocin were highlighted as important, the microbial collagenase ColA and InhA were not found in our samples. The most important virulence factor identified was isoform of neutral metalloproteinase (UniProt: V9WB82), a major protein marker responsible for the shift in the PCA biplot. This protein is associated with larval decay and together with other virulence factors (bacteriocin) can play a key role in protection against secondary invaders. Overall, this study provides new knowledge on host-pathogen interactions and a new methodical approach to study the disease.
Collapse
Affiliation(s)
- Tomas Erban
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia
| | - Bruno Sopko
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia
| | - Miroslava Bodrinova
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science, Charles University, Prague, Czechia
| | - Julie Chalupnikova
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia
| | - Martin Markovic
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia
| | - Martin Kamler
- Bee Research Institute at Dol, Libcice nad Vltavou, Czechia
| |
Collapse
|
40
|
Li W, Dou W, Wang JJ. BdcSP10 is a prophenoloxidase-activating protease in Bactrocera dorsalis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104558. [PMID: 36167146 DOI: 10.1016/j.dci.2022.104558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Insects rely on a powerful and efficient innate immune system against microbial invaders. One of the most important immune processes is the melanization reaction, in which eumelanin is synthesized and deposited on the physically injured site or the surface of invading pathogens. The melanization reaction is mediated by prophenoloxidase (PPO), which is synthesized as an inactive zymogen and requires proteolytic activation through a clip serine protease cascade. This cascade has been characterized in several Lepidoptera insect species, but it is less understood in most Diptera insects. Here, with the means of reverse genetics and biochemistry, we characterized the function of a clip serine protease BdcSP10 from the oriental fruit fly Bactrocera dorsalis (Hendel), a significant agriculture pest to a broad variety of fruit and vegetable crops. BdcSP10 knockdown inhibited the melanization reaction and rendered adult flies more vulnerable to pathogenic infections. In addition, purified and activated BdcSP10 proteases promoted the melanization reaction in larval hemolymph and directly cleaved and activated purified PPO1 and PPO2 in vitro. Taken together, we identified BdcSP10 as a PPO-activating protease and validated its important role in the defense against microbial infection in B. dorsalis. This work broadens the understanding of the activation mechanism of the melanization reaction in Diptera insects.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
41
|
Zeng T, Jaffar S, Xu Y, Qi Y. The Intestinal Immune Defense System in Insects. Int J Mol Sci 2022; 23:ijms232315132. [PMID: 36499457 PMCID: PMC9740067 DOI: 10.3390/ijms232315132] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Over a long period of evolution, insects have developed unique intestinal defenses against invasion by foreign microorganisms, including physical defenses and immune responses. The physical defenses of the insect gut consist mainly of the peritrophic matrix (PM) and mucus layer, which are the first barriers to pathogens. Gut microbes also prevent the colonization of pathogens. Importantly, the immune-deficiency (Imd) pathways produce antimicrobial peptides to eliminate pathogens; mechanisms related to reactive oxygen species are another important pathway for insect intestinal immunity. The janus kinase/STAT signaling pathway is involved in intestinal immunity by producing bactericidal substances and regulating tissue repair. Melanization can produce many bactericidal active substances into the intestine; meanwhile, there are multiple responses in the intestine to fight against viral and parasitic infections. Furthermore, intestinal stem cells (ISCs) are also indispensable in intestinal immunity. Only the coordinated combination of the intestinal immune defense system and intestinal tissue renewal can effectively defend against pathogenic microorganisms.
Collapse
|
42
|
Kato T, Nishimura K, Misu S, Ikeo K, Park EY. Changes of the gene expression in silkworm larvae and Cordyceps militaris at late stages of the pathogenesis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21968. [PMID: 36116100 DOI: 10.1002/arch.21968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Cordyceps militaris is an entomopathogenic fungus that forms its fruiting body. The gene expression change in C. militaris and silkworm larvae were analyzed using RNA-seq to investigate the relationship of C. militaris with the host, silkworm larvae before the death by mycosis. At 144 h after the injection of C. militaris conidia, genes encoding proteases, protease inhibitors, and cuticle proteins in the fat body of silkworm larvae were upregulated, but genes encoding lipoproteins and other proteins in hemolymph were downregulated. On the other hand, at 168 h after the injection of C. militaris conidia, genes encoding amino acid and oligopeptide transporters and permeases in C. militaris were upregulated, suggesting that C. militaris may use peptides and amino acids in silkworm larvae as a nutrient to grow in vivo. Additionally, one gene cluster composed of genes putatively involved in the degradation of phenolic substrates was also upregulated. The addition of 4,5-dichlorocatechol, an inhibitor of catechol 1,2-dioxygenase, inhibited the in vivo growth of C. militaris, Beauveria bassiana and Metarhizium anisopliae. These results also suggest that the expression of the gene cluster may be crucial for the in vivo growth of C. militaris and entomopathogenic fungi. This study will clarify how C. militaris grows in insect hosts by avoiding host's immune systems.
Collapse
Affiliation(s)
- Tatsuya Kato
- Laboratory of Biotechnology, Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Konomi Nishimura
- Laboratory of Biotechnology, Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Sadahiko Misu
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Kazuho Ikeo
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Enoch Y Park
- Laboratory of Biotechnology, Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
43
|
Ruckthong L, Pretzler M, Kampatsikas I, Rompel A. Biochemical characterization of Dimocarpus longan polyphenol oxidase provides insights into its catalytic efficiency. Sci Rep 2022; 12:20322. [PMID: 36434079 PMCID: PMC9700842 DOI: 10.1038/s41598-022-20616-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022] Open
Abstract
The "dragon-eye" fruits produced by the tropical longan tree are rich in nutrients and antioxidants. They suffer from post-harvest enzymatic browning, a process for which mainly the polyphenol oxidase (PPO) family of enzymes is responsible. In this study, two cDNAs encoding the PPO have been cloned from leaves of Dimocarpus longan (Dl), heterologously expressed in Escherichia coli and purified by affinity chromatography. The prepro-DlPPO1 contains two signal peptides at its N-terminal end that facilitate transportation of the protein into the chloroplast stroma and to the thylakoid lumen. Removal of the two signal peptides from prepro-DlPPO1 yields pro-DlPPO1. The prepro-DlPPO1 exhibited higher thermal tolerance than pro-DlPPO1 (unfolding at 65 °C vs. 40 °C), suggesting that the signal peptide may stabilize the fold of DlPPO1. DlPPO1 can be classified as a tyrosinase because it accepts both monophenolic and diphenolic substrates. The pro-DlPPO1 exhibited the highest specificity towards the natural diphenol (-)-epicatechin (kcat/KM of 800 ± 120 s-1 mM-1), which is higher than for 4-methylcatechol (590 ± 99 s-1 mM-1), pyrogallol (70 ± 9.7 s-1 mM-1) and caffeic acid (4.3 ± 0.72 s-1 mM-1). The kinetic efficiencies of prepro-DlPPO1 are 23, 36, 1.7 and 4.7-fold lower, respectively, than those observed with pro-DlPPO1 for the four aforementioned diphenolic substrates. Additionally, docking studies showed that (-)-epicatechin has a lower binding energy than any other investigated substrate. Both kinetic and in-silico studies strongly suggest that (-)-epicatechin is a good substrate of DlPPO1 and ascertain the affinity of PPOs towards specific flavonoid compounds.
Collapse
Affiliation(s)
- Leela Ruckthong
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090, Wien, Austria
- Faculty of Science, Department of Chemistry, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, 10140, Thailand
| | - Matthias Pretzler
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090, Wien, Austria
| | - Ioannis Kampatsikas
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090, Wien, Austria
| | - Annette Rompel
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090, Wien, Austria.
| |
Collapse
|
44
|
Huang X, Jing D, Prabu S, Zhang T, Wang Z. RNA Interference of Phenoloxidases of the Fall Armyworm, Spodoptera frugiperda, Enhance Susceptibility to Bacillus thuringiensis Protein Vip3Aa19. INSECTS 2022; 13:1041. [PMID: 36354865 PMCID: PMC9699050 DOI: 10.3390/insects13111041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Phenoloxidase (PO) is an important enzyme in the cellular immune system and is involved in defense against a wide range of pathogens, including Bacillus thuringiensis. Vip3Aa19 is secreted and expressed by Bacillus thuringiensis (Bt) at the middle exponential growth phase and is a kind of protein with efficient insecticidal activity against Spodoptera frugiperda. However, immune responses of the target insects have been regarded as a hindrance to Bt pathogenicity. This paper reports two phenoloxidase (PO) genes (SfPAE and SfPO2) identified from the hemocyte transcriptome data of the fall armyworm, Spodoptera frugiperda. qRT-PCR validation results showed that the expression levels of two PO genes were significantly upregulated after Vip3Aa19 (LC50 = 4.98 µg/g) toxin treatment compared with those of S. frugiperda fed an insecticide-free artificial diet. Meanwhile, two PO genes were expressed from the egg to adult stages even without an immune challenge. We noticed that at all developmental stages investigated in the S. frugiperda, SfPAE was generally expressed at a higher level than SfPO2. However, after Vip3Aa19 treatment, the SfPO2 gene mRNA expression level was significantly elevated in response to the toxin challenge. An injection of a specific double-stranded RNA (dsRNA) against POs could suppress its expression. The third instar larvae of S. frugiperda treated with dsRNA were much more susceptible to Vip3Aa19 toxin than the control larvae were. Notably, the mortality rate was nearly 90% after a dsPO2 injection. These results proved that SfPO2 was more important for the survival of S. frugiperda. Finally, RNA interference and then PO activity detection revealed that PO genes mainly existed in the hemolymph and played an important role in immune defense against Bt toxin.
Collapse
Affiliation(s)
- Xiaodan Huang
- Engineering Research Center of Natural Enemy Insects, Institute of Biological Control, Jilin Agricultural University, Changchun 130118, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dapeng Jing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sivaprasath Prabu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tiantao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
45
|
Wu CY, Xiao KR, Wang LZ, Wang J, Song QS, Stanley D, Wei SJ, Zhu JY. Identification and expression profiling of serine protease-related genes in Tenebrio molitor. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21963. [PMID: 36039637 DOI: 10.1002/arch.21963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
In insects, serine proteases and serine protease homologs (SPs/SPHs) are involved in a variety of physiological processes including digestion, development, and immunity. Here, we identified 112 SP and 88 SPH genes in the genome of the yellow mealworm, Tenebrio molitor. Based on the features of domain structure, they were divided into "S" group containing single Tryp-SPc or Tryp-SPHc domain, "C" group containing 1-4 CLIP domain (CLIPA-D) and "M" group containing the CBD, CUB, EGF, Fz, Gd, LDLa, PAN, SEA, SR, Sushi, and TSP domains, and have 115, 48, and 37 gene members, respectively. According to the active sites in the catalytic triad, the putative trypsin, chymotrypsin, or elastase-like enzyme specificity of the identified SPs/SPHs were predicted. Phylogenetic and genomic location analyses revealed that gene duplication exists in the large amount of SPs/SPHs. Gene expression profiling using RNA-seq data along with real time reverse transcription-polymerase chain reaction analysis showed that most SP/SPH genes display life stage specific expression patterns, indicating their important roles in development. Many SP/SPH genes are specifically or highly expressed in the gut, salivary gland, fat body, hemocyte, ovary, and testis, suggesting that they participate in digestion, immunity, and reproduction. The findings lay the foundation for further functional characterization of SPs/SPHs in T. molitor.
Collapse
Affiliation(s)
- Chao-Yan Wu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Kai-Ran Xiao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Long-Zhang Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Jun Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qi-Sheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Shu-Jun Wei
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
46
|
Frattini A, Martínez‐Solís M, Llopis‐Giménez Á, Pozo MJ, Rivero J, Crava CM, Herrero S. Compatibility of mycorrhiza-induced resistance with viral and bacterial entomopathogens in the control of Spodoptera exigua in tomato. PEST MANAGEMENT SCIENCE 2022; 78:4388-4396. [PMID: 35767223 PMCID: PMC9543428 DOI: 10.1002/ps.7058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Arbuscular mycorrhizal fungi (AMF) are soil-borne microorganisms that establish mutualistic associations with roots of most terrestrial plants. This symbiosis results in nutritional and defensive benefits to the host plant, usually conferring protection against biotic stresses, but its indirect impact on third trophic levels is still unknown. In the present work, we explore whether the symbiosis of tomato plants with Funneliformis mosseae (and/or exposition to herbivory) influences the interaction of the generalist pest Spodoptera exigua (Lepidoptera: Noctuidae) with bacterial (Bacillus thuringiensis) and viral (baculovirus, SeMNPV) natural entomopathogens. RESULTS Symbiosis with AMF and previous herbivory reduces the relative growth of S. exigua, increases its susceptibility to a sublethal dose of B. thuringiensis and has positive or neutral impact on the lethality of SeMNPV. Reduction of the phenoloxidase activity, a marker of the insect immune response, was associated with the larval feeding on plant material previously exposed to herbivory but not to the AMF. In addition, no changes in the insect gut microbiota could be associated with the observed changes in larval growth and susceptibility to the entomopathogens. CONCLUSION Our findings provide the first evidence of compatibility of AMF symbiosis in tomato with the use of bacterial and viral entomopathogens, contributing to the development of novel approaches to combine the beneficial effect of AMF and entomopathogens in biological pest control. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ada Frattini
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED)Universitat de ValènciaValenciaSpain
| | - María Martínez‐Solís
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED)Universitat de ValènciaValenciaSpain
| | - Ángel Llopis‐Giménez
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED)Universitat de ValènciaValenciaSpain
| | - María J. Pozo
- Department of Soil Microbiology and Symbiotic SystemsEstación Experimental del Zaidín – Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - Javier Rivero
- Department of Soil Microbiology and Symbiotic SystemsEstación Experimental del Zaidín – Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - Cristina M. Crava
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED)Universitat de ValènciaValenciaSpain
| | - Salvador Herrero
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED)Universitat de ValènciaValenciaSpain
| |
Collapse
|
47
|
The molecular dialog between oomycete effectors and their plant and animal hosts. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
48
|
Mahajan E, Singh S, Diksha, Kaur S, Sohal SK. The genotoxic, cytotoxic and growth regulatory effects of plant secondary metabolite β-caryophyllene on polyphagous pest Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Toxicon 2022; 219:106930. [PMID: 36167142 DOI: 10.1016/j.toxicon.2022.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022]
Abstract
Use of secondary metabolites as an alternative to organic pesticides is an eco-friendly and safe strategy in pest management. β-caryophyllene [(1R,4E,9S)-4,11,11-trimethyl-8-methylene bicyclo [7.2.0]undec-4-ene], a natural sesquiterpene is found as an essential oil in many plants like Syzygium aromaticum, Piper nigrum, Cannabis sativa. The present study aims at exploring the insecticidal, genotoxic and cytotoxic potential of β-caryophyllene against common cutworm Spodoptera litura (Fab.), a major polyphagous pest. S. litura larvae were fed on different concentrations (5, 25, 125, 625 and 3125 ppm) of β-caryophyllene. Results revealed delay in larval and pupal period with increase in concentration. Larval mortality increased and adult emergence declined significantly with increase in concentration. Higher concentrations of β-caryophyllene caused pupal and adult deformities. A negative impact of β-caryophyllene was also seen on the nutritional physiology of S. litura. Parameters such as relative growth rate, relative consumption rate, efficiency of conversion of ingested food, efficiency of conversion of digested food and approximate digestibility showed a significant reduction in a dose dependent manner. DNA damage assessed using comet assay revealed significant genotoxic effects at LC30 and LC50 concentrations. There was an increase in tail length, percent tail DNA, tail moment and olive tail moment. Phenol oxidase activity was suppressed at LC50 concentration with respect to control. Total hemocyte count also declined significantly at LC30 and LC50 concentrations as compared to control. β-caryophyllene induced genotoxic and cytotoxic damage affecting the growth and survival of S. litura larvae. Our findings suggest that β-caryophyllene has the potential to be used for the management of insect pests.
Collapse
Affiliation(s)
- Evani Mahajan
- Department of Zoology, Guru Nanak Dev University Amritsar, Punjab, 143005, India
| | - Sumit Singh
- Department of Zoology, Guru Nanak Dev University Amritsar, Punjab, 143005, India
| | - Diksha
- Department of Zoology, Guru Nanak Dev University Amritsar, Punjab, 143005, India
| | - Sanehdeep Kaur
- Department of Zoology, Guru Nanak Dev University Amritsar, Punjab, 143005, India
| | - Satwinder Kaur Sohal
- Department of Zoology, Guru Nanak Dev University Amritsar, Punjab, 143005, India.
| |
Collapse
|
49
|
Wood MJ, Alkhaibari AM, Butt TM. Stress-Mediated Responses of Aedes aegypti (Diptera: Culicidae) Larvae When Exposed to Metarhizium brunneum (Hypocreales: Clavicipitaceae) and Toxorhynchites brevipalpis (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1732-1740. [PMID: 35938709 PMCID: PMC9473657 DOI: 10.1093/jme/tjac110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 06/15/2023]
Abstract
Aedes aegypti mosquitoes are capable of vectoring a wide range of diseases including dengue, yellow fever, and Zika viruses, with approximately half of the worlds' population at risk from such diseases. Development of combined predator-parasite treatments for the control of larvae consistently demonstrates increased efficacy over single-agent treatments, however, the mechanism behind the interaction remains unknown. Treatments using the natural predator Toxorhynchites brevipalpis and the entomopathogenic fungus Metarhizium brunneum were applied in the laboratory against Ae. aegypti larvae as both individual and combined treatments to determine the levels of interaction between control strategies. Parallel experiments involved the removal of larvae from test arenas at set intervals during the course of the trial to record whole body caspase and phenoloxidase activities. This was measured via luminometric assay to measure larval stress factors underlying the interactions. Combined Metarhizium and Toxorhynchites treatments were seen to drastically reduce lethal times as compared to individual treatments. This was accompanied by increased phenoloxidase and caspase activities in combination treatments after 18 h (p < 0.001). The sharp increases in caspase and phenoloxidase activities suggest that combined treatments act to increase stress factor responses in the larvae that result in rapid mortality above that of either control agent individually. This work concludes that the underlying mechanism for increased lethality in combined parasite-predator treatments may be related to additive stress factors induced within the target host larvae.
Collapse
Affiliation(s)
| | | | - Tariq M Butt
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, UK
| |
Collapse
|
50
|
Cardoso-Jaime V, Broderick NA, Maya-Maldonado K. Metal ions in insect reproduction: a crosstalk between reproductive physiology and immunity. CURRENT OPINION IN INSECT SCIENCE 2022; 52:100924. [PMID: 35483647 PMCID: PMC9357134 DOI: 10.1016/j.cois.2022.100924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 04/13/2022] [Indexed: 05/03/2023]
Abstract
Most insects exhibit high reproductive capacity, which demands large amounts of energy, including macronutrients and micronutrients. Interestingly, many proteins involved in oogenesis depend on metals ions, in particular iron (Fe), zinc (Zn), and copper (Cu). Mechanisms by which metal ions influence reproduction have been described in Drosophila melanogaster, but remain poorly understood in hematophagous insects where blood meals include significant ingestion of metal ions. Moreover, there is evidence that some proteins involved in reproduction and immunity could have dual function in both processes. This review highlights the importance of metal ions in the reproduction of non-hematophagous and hematophagous insects. In addition, we discuss how insects optimize physiological processes using proteins involved in crosstalk between reproductive physiology and immunity, which is a double-edge sword in allocating their functions to protect the insect and ensure reproduction.
Collapse
Affiliation(s)
- Victor Cardoso-Jaime
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|