1
|
Counteractions of a Novel Hydroalcoholic Extract from Lens Culinaria against the Dexamethasone-Induced Osteoblast Loss of Native Murine Cells. Cells 2022; 11:cells11192936. [PMID: 36230898 PMCID: PMC9563349 DOI: 10.3390/cells11192936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
The cytoprotective effects of a novel hydroalcoholic extract (0.01–5 mg/mL) from Lens culinaria (Terre di Altamura Srl) were investigated within murine native skeletal muscle fibers, bone marrow cells, and osteoblasts, and in cell lines treated with the apoptotic agent staurosporine (2.14 × 10−6 M), the alkylating drug cisplatin (10−4 M), the topoisomerase I inhibitor irinotecan (10−4 M), the antimitotic pro-oxidant doxorubicin (10−6 M), and the immunosuppressant dexamethasone (2 × 10−6 M). An amount of 10g of plant material was used to obtain a 70% ethanol/water product, following two-step extraction, evaporation, lyophilization, and storage at −20 °C. For the murine osteoblasts, doxorubicin reduced survival by −65%, dexamethasone by −32% and −60% after 24 and 48 h of incubation time, respectively. The extract was effective in preventing the osteoblast count-reduction induced by dexamethasone; it was also effective at preventing the inhibition of mineralization induced by dexamethasone. Doxorubicin and cisplatin caused a significant reduction in cell growth by −77% for bone marrow cells, −43% for irinotecan, and −60% for dexamethasone, but there was no evidence for the cytoprotective effects of the extract in these cells. Staurosporine and doxorubicin caused a fiber death rate of >−40% after 18 and 24 h of incubation, yet the extract was not effective at preventing these effects. The extract was effective in preventing the staurosporine-induced reduction of HEK293 proliferation and colony formation in the crystal violet DNA staining and the clonogenic assays. It was also effective for the cisplatin-induced reduction in HEK293 cell proliferation. The extract, however, failed to protect the SHSY5Y neurons against cisplatin and irinotecan-induced cytotoxicity. A UV/VIS spectroscopy analysis showed three peaks at the wavelengths of 350, 260, and 190 nm, which correspond to flavonoids, proanthocyanins, salicylates, and AA, constituting the extract. These data suggest the possible development of this extract for use against dexamethasone-induced bone loss and renal chemotherapy-induced damage.
Collapse
|
2
|
Gambino G, Giglia G, Gallo D, Scordino M, Giardina C, Zuccarini M, Di Iorio P, Giuliani P, Ciruela F, Ferraro G, Mudò G, Sardo P, Di Liberto V. Guanosine modulates K + membrane currents in SH-SY5Y cells: involvement of adenosine receptors. Pflugers Arch 2022; 474:1133-1145. [PMID: 36048287 PMCID: PMC9560947 DOI: 10.1007/s00424-022-02741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/09/2022] [Accepted: 08/10/2022] [Indexed: 12/03/2022]
Abstract
Guanosine (GUO), widely considered a key signaling mediator, is implicated in the regulation of several cellular processes. While its interaction with neural membranes has been described, GUO still is an orphan neuromodulator. It has been postulated that GUO may eventually interact with potassium channels and adenosine (ADO) receptors (ARs), both particularly important for the control of cellular excitability. Accordingly, here, we investigated the effects of GUO on the bioelectric activity of human neuroblastoma SH-SY5Y cells by whole-cell patch-clamp recordings. We first explored the contribution of voltage-dependent K+ channels and, besides this, the role of ARs in the regulation of GUO-dependent cellular electrophysiology. Our data support that GUO is able to specifically modulate K+-dependent outward currents over cell membranes. Importantly, administering ADO along with GUO potentiates its effects. Overall, these results suggested that K+ outward membrane channels may be targeted by GUO with an implication of ADO receptors in SH-SY5Y cells, but also support the hypothesis of a functional interaction of the two ligands. The present research runs through the leitmotif of the deorphanization of GUO, adding insight on the interplay with adenosinergic signaling and suggesting GUO as a powerful modulator of SH-SY5Y excitability.
Collapse
Affiliation(s)
- Giuditta Gambino
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy.
| | - Giuseppe Giglia
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Daniele Gallo
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Miriana Scordino
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Costanza Giardina
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology, CAST, "G. D'Annunzio" University Foundation, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology, CAST, "G. D'Annunzio" University Foundation, Chieti, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology, CAST, "G. D'Annunzio" University Foundation, Chieti, Italy
| | - Francisco Ciruela
- Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Giuseppe Ferraro
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Giuseppa Mudò
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Pierangelo Sardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Valentina Di Liberto
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy.
| |
Collapse
|
3
|
Yin H, Cheng H, Li P, Yang Z. TRPC6 interacted with K Ca1.1 channels to regulate the proliferation and apoptosis of glioma cells. Arch Biochem Biophys 2022; 725:109268. [PMID: 35489424 DOI: 10.1016/j.abb.2022.109268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022]
Abstract
Malignant glioma is the most aggressive and deadliest brain malignancy. TRPC6 and KCa1.1, two ion channels, have been considered as potential therapeutic targets for malignant glioma treatment. TRPC6, a Ca2+-permeable channel, plays a vital role in promoting tumorigenesis and the progression of glioma. KCa1.1, a large-conductance Ca2+-activated channel, is also involved in growth and migration of glioma. However, the underlying mechanism by which these two ion channels promote glioma progression was unclear. In our study, we found that TRPC6 upregulated the expression of KCa1.1, while the immunoprecipitation analysis also showed that TRPC6 interacts with KCa1.1 channels in glioma cells. The currents of KCa1.1 recorded by the whole-cell patch clamp technique were increased by TRPC6 in glioma cells, suggesting that TRPC6 can provide a Ca2+ source for the activation of KCa1.1 channels. It was also suggested that TRPC6 regulates the proliferation and apoptosis of glioma cells through KCa1.1 channels in vitro. Therefore, C6-bearing glioma rats were established to validate the results in vitro. After the administration of paxilline (a specific inhibitor of KCa1.1 channels), TRPC6-dependent growth of glioma was inhibited in vivo. We also found that TRPC6 enhanced co-expression with KCa1.1 in glioma. These all suggested that TRPC6/KCa1.1 signal plays a role in promoting the growth of glioma. Our results provided new evidence for TRPC6 and KCa1.1 as potential targets for glioma treatment.
Collapse
Affiliation(s)
- Hongqiang Yin
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Haofeng Cheng
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Peiqi Li
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Zhuo Yang
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Relevance of AIF/CypA Lethal Pathway in SH-SY5Y Cells Treated with Staurosporine. Int J Mol Sci 2021; 23:ijms23010265. [PMID: 35008690 PMCID: PMC8745523 DOI: 10.3390/ijms23010265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 11/18/2022] Open
Abstract
The AIF/CypA complex exerts a lethal activity in several rodent models of acute brain injury. Upon formation, it translocates into the nucleus of cells receiving apoptotic stimuli, inducing chromatin condensation, DNA fragmentation, and cell death by a caspase-independent mechanism. Inhibition of this complex in a model of glutamate-induced cell death in HT-22 neuronal cells by an AIF peptide (AIF(370-394)) mimicking the binding site on CypA, restores cell survival and prevents brain injury in neonatal mice undergoing hypoxia-ischemia without apparent toxicity. Here, we explore the effects of the peptide on SH-SY5Y neuroblastoma cells stimulated with staurosporine (STS), a cellular model widely used to study Parkinson’s disease (PD). This will pave the way to understanding the role of the complex and the potential therapeutic efficacy of inhibitors in PD. We find that AIF(370-394) confers resistance to STS-induced apoptosis in SH-SY5Y cells similar to that observed with CypA silencing and that the peptide works on the AIF/CypA translocation pathway and not on caspases activation. These findings suggest that the AIF/CypA complex is a promising target for developing novel therapeutic strategies against PD.
Collapse
|
5
|
Zyrianova T, Lopez B, Liao A, Gu C, Wong L, Ottolia M, Olcese R, Schwingshackl A. BK Channels Regulate LPS-induced CCL-2 Release from Human Pulmonary Endothelial Cells. Am J Respir Cell Mol Biol 2021; 64:224-234. [PMID: 33217242 PMCID: PMC7874395 DOI: 10.1165/rcmb.2020-0228oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/05/2020] [Indexed: 11/24/2022] Open
Abstract
We recently established a role for the stretch-activated two-pore-domain K+ (K2P) channel TREK-1 (K2P2.1) in inflammatory cytokine secretion using models of hyperoxia-, mechanical stretch-, and TNF-α-induced acute lung injury. We have now discovered the expression of large conductance, Ca2+-activated K+ (BK) channels in human pulmonary microvascular endothelial cells and primary human alveolar epithelial cells using semiquantitative real-time PCR, IP and Western blot, and investigated their role in inflammatory cytokine secretion using an LPS-induced acute lung injury model. As expected, LPS induced IL-6 and CCL-2 secretion from pulmonary endothelial and epithelial cells. BK activation with NS1619 decreased LPS-induced CCL-2 but not IL-6 secretion from endothelial cells and had no effect on epithelial cells, although fluorometric assays revealed that BK activation hyperpolarized the plasma membrane potential (Em) of both cell types. Interestingly, BK inhibition (Paxilline) did not alter cytokine secretion or the Em in either cell type. Furthermore, LPS treatment by itself did not affect the Em or intracellular Ca2+ concentrations. Therefore, we propose BK channel activation as a novel targeted approach to counteract LPS-induced CCL-2 secretion from endothelial cells. This protective effect appears to occur via Em hyperpolarization but independent of intracellular Ca2+ concentrations.
Collapse
Affiliation(s)
| | | | | | | | | | - Michela Ottolia
- Department of Anesthesiology and Perioperative Medicine, and
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, and
- Department of Physiology, University of California Los Angeles, Los Angeles, California
| | | |
Collapse
|
6
|
Maqoud F, Scala R, Hoxha M, Zappacosta B, Tricarico D. ATP-sensitive potassium channel subunits in the neuroinflammation: novel drug targets in neurodegenerative disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:130-149. [PMID: 33463481 DOI: 10.2174/1871527320666210119095626] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/07/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022]
Abstract
Arachidonic acids and its metabolites modulate plenty of ligand-gated, voltage-dependent ion channels, and metabolically regulated potassium channels including ATP-sensitive potassium channels (KATP). KATP channels are hetero-multimeric complexes of sulfonylureas receptors (SUR1, SUR2A or SUR2B) and the pore-forming subunits (Kir6.1 and Kir6.2) likewise expressed in the pre-post synapsis of neurons and inflammatory cells, thereby affecting their proliferation and activity. KATP channels are involved in amyloid-β (Aβ)-induced pathology, therefore emerging as therapeutic targets against Alzheimer's and related diseases. The modulation of these channels can represent an innovative strategy for the treatment of neurodegenerative disorders; nevertheless, the currently available drugs are not selective for brain KATP channels and show contrasting effects. This phenomenon can be a consequence of the multiple physiological roles of the different varieties of KATP channels. Openings of cardiac and muscular KATP channel subunits, is protective against caspase-dependent atrophy in these tissues and some neurodegenerative disorders, whereas in some neuroinflammatory diseases benefits can be obtained through the inhibition of neuronal KATP channel subunits. For example, glibenclamide exerts an anti-inflammatory effect in respiratory, digestive, urological, and central nervous system (CNS) diseases, as well as in ischemia-reperfusion injury associated with abnormal SUR1-Trpm4/TNF-α or SUR1-Trpm4/ Nos2/ROS signaling. Despite this strategy is promising, glibenclamide may have limited clinical efficacy due to its unselective blocking action of SUR2A/B subunits also expressed in cardiovascular apparatus with pro-arrhythmic effects and SUR1 expressed in pancreatic beta cells with hypoglycemic risk. Alternatively, neuronal selective dual modulators showing agonist/antagonist actions on KATP channels can be an option.
Collapse
Affiliation(s)
- Fatima Maqoud
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| | - Rosa Scala
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| | - Malvina Hoxha
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, "Catholic University Our Lady of Good Counsel", Tirana. Albania
| | - Bruno Zappacosta
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, "Catholic University Our Lady of Good Counsel", Tirana. Albania
| | - Domenico Tricarico
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| |
Collapse
|
7
|
Maqoud F, Zizzo N, Mele A, Denora N, Passantino G, Scala R, Cutrignelli A, Tinelli A, Laquintana V, la Forgia F, Fontana S, Franco M, Lopedota AA, Tricarico D. The hydroxypropyl-β-cyclodextrin-minoxidil inclusion complex improves the cardiovascular and proliferative adverse effects of minoxidil in male rats: Implications in the treatment of alopecia. Pharmacol Res Perspect 2020; 8:e00585. [PMID: 32378360 PMCID: PMC7203570 DOI: 10.1002/prp2.585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 12/22/2022] Open
Abstract
The efficacy of minoxidil (MXD) ethanolic solutions (1%-5% w/v) in the treatment of androgenetic alopecia is limited by adverse reactions. The toxicological effects of repeated topical applications of escalating dose (0.035%-3.5% w/v) and of single and twice daily doses (3.5% w/v) of a novel hydroxypropyl-β-cyclodextrin MXD GEL formulation (MXD/HP-β-CD) and a MXD solution were investigated in male rats. The cardiovascular effects were evaluated by telemetric monitoring of ECG and arterial pressure in free-moving rats. Ultrasonographic evaluation of cardiac morphology and function, and histopathological and biochemical analysis of the tissues, were performed. A pharmacovigilance investigation was undertaken using the EudraVigilance database for the evaluation of the potential cancer-related effects of topical MXD. Following the application of repeated escalating doses of MXD solution, cardiac hypertrophy, hypotension, enhanced serum natriuretic peptides and K+ -ion levels, serum liver biomarkers, and histological lesions including renal cancer were observed. In addition, the administration of a twice daily dose of MXD solution, at SF rat vs human = 311, caused reductions in the systolic, diastolic, and mean blood pressure of the rats (-30.76 ± 3%, -28.84 ± 4%, and -30.66 ± 5%, respectively, vs the baseline; t test P < .05). These effects were not reversible following washout of the MXD solution. Retrospective investigation showed 32 cases of cancer associated with the use of topical MXD in humans. The rats treated with MXD HP-β-CD were less severely affected. MXD causes proliferative adverse effects. The MXD HP-β-CD inclusion complex reduces these adverse effects.
Collapse
Affiliation(s)
- Fatima Maqoud
- Section of PharmacologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Nicola Zizzo
- Anatomy PathologyDepartment of Veterinary MedicineUniversity of BariBariItaly
| | - Antonietta Mele
- Section of PharmacologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Nunzio Denora
- Pharmaceutical TechnologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Giuseppe Passantino
- Anatomy PathologyDepartment of Veterinary MedicineUniversity of BariBariItaly
| | - Rosa Scala
- Section of PharmacologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Annalisa Cutrignelli
- Pharmaceutical TechnologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Antonella Tinelli
- Anatomy PathologyDepartment of Veterinary MedicineUniversity of BariBariItaly
| | - Valentino Laquintana
- Pharmaceutical TechnologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Flavia la Forgia
- Farmalabor s.r.I.Centro di Ricerca “Dr. Sergio Fontana 1900‐1982”Canosa di PugliaItaly
| | - Sergio Fontana
- Farmalabor s.r.I.Centro di Ricerca “Dr. Sergio Fontana 1900‐1982”Canosa di PugliaItaly
| | - Massimo Franco
- Pharmaceutical TechnologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Angela Assunta Lopedota
- Pharmaceutical TechnologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Domenico Tricarico
- Section of PharmacologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| |
Collapse
|
8
|
Zizzo N, Passantino G, D'alessio RM, Tinelli A, Lopresti G, Patruno R, Tricarico D, Maqoud F, Scala R, Zito FA, Ranieri G. Thymidine Phosphorylase Expression and Microvascular Density Correlation Analysis in Canine Mammary Tumor: Possible Prognostic Factor in Breast Cancer. Front Vet Sci 2019; 6:368. [PMID: 31709268 PMCID: PMC6823610 DOI: 10.3389/fvets.2019.00368] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose: The thymidine phosphorylase (TP) is a key enzyme involved in the metabolism of pyrimidines. Inhibition or downregulation of this enzyme causes accumulation of metabolites with consequences in DNA replication. TP regulates angiogenesis and chemotactic activity of endothelial cells. Different studies showed the presence of TP upregulation in human cancer but the correlation between TP expression and the microvascular density (MVD) in canine mammary tumors is unknown. The aim of this study was to investigate a possible correlation between the MVD and TP expression in tumor cells of canine mammary tumors of different degree of severity (G1–G3) by immunohistochemical analysis. Methods: Sixty-eight samples of spontaneous mammary neoplasia of 5–12 cm in diameter were collected from purebred and mixed-breed dogs (mean aged = 9.5 ± 7), not subject to chemotherapy treatments in veterinary clinics. Histopathological analysis and immunostaining were performed. Results: Carcinoma simple samples have been classified as 72.06% of tubule-papillary, 20.59% cysto-papillary, and 7.35% tubular carcinomas. Immunostainings revealed a marked cytoplasmic expression of TP in 30.88% of samples, mild in 32.35%, weaker in 22.07%, and negative in 14.70%. The correlation analysis and two-way ANOVA showed a linear correlation between MVD and TP with a coefficient of correlation (r) > 0.5 (p < 0.05) in G2 and G3. No correlation between variables was found in G1. Conclusions: These findings suggest that cytoplasmic TP overexpression is correlated with microvascular density in canine mammary tumors, in severe grade, and it can be a potential prognostic factor in breast cancer.
Collapse
Affiliation(s)
- Nicola Zizzo
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Giuseppe Passantino
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Roberta Maria D'alessio
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy.,MD Freelancer, Bristol, United Kingdom
| | - Antonella Tinelli
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Giuseppe Lopresti
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Rosa Patruno
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Fatima Maqoud
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Rosa Scala
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Francesco Alfredo Zito
- Interventional and Medical Oncology Unit, Department of Pathology National Cancer Research Centre, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Girolamo Ranieri
- Interventional and Medical Oncology Unit, Department of Pathology National Cancer Research Centre, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| |
Collapse
|
9
|
Sanarica F, Mantuano P, Conte E, Cozzoli A, Capogrosso RF, Giustino A, Cutrignelli A, Cappellari O, Rolland JF, De Bellis M, Denora N, Camerino GM, De Luca A. Proof-of-concept validation of the mechanism of action of Src tyrosine kinase inhibitors in dystrophic mdx mouse muscle: in vivo and in vitro studies. Pharmacol Res 2019; 145:104260. [PMID: 31059789 DOI: 10.1016/j.phrs.2019.104260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/08/2019] [Accepted: 05/01/2019] [Indexed: 12/18/2022]
Abstract
Src tyrosine kinase (TK), a redox-sensitive protein overexpressed in dystrophin-deficient muscles, can contribute to damaging signaling by phosphorylation and degradation of β-dystroglycan (β-DG). We performed a proof-of-concept preclinical study to validate this hypothesis and the benefit-safety ratio of a pharmacological inhibition of Src-TK in Duchenne muscular dystrophy (DMD). Src-TK inhibitors PP2 and dasatinib were administered for 5 weeks to treadmill-exercised mdx mice. The outcome was evaluated in vivo and ex vivo on functional, histological and biochemical disease-related parameters. Considering the importance to maintain a proper myogenic program, the potential cytotoxic effects of both compounds, as well as their cytoprotection against oxidative stress-induced damage, was also assessed in C2C12 cells. In line with the hypothesis, both compounds restored the level of β-DG and reduced its phosphorylated form without changing basal expression of genes of interest, corroborating a mechanism at post-translational level. The histological profile of gastrocnemius muscle was slightly improved as well as the level of plasma biomarkers. However, amelioration of in vivo and ex vivo functional parameters was modest, with PP2 being more effective than dasatinib. Both compounds reached appreciable levels in skeletal muscle and liver, supporting proper animal exposure. Dasatinib exerted a greater concentration-dependent cytotoxic effect on C2C12 cells than the more selective PP2, while being less protective against H2O2 cytotoxicity, even though at concentrations higher than those experienced during in vivo treatments. Our results support the interest of Src-TK as drug target in dystrophinopathies, although further studies are necessary to assess the therapeutic potential of inhibitors in DMD.
Collapse
Affiliation(s)
- F Sanarica
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - P Mantuano
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - E Conte
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - A Cozzoli
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - R F Capogrosso
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy; Department of Chemical, Toxicological and Pharmacological Drug Studies, Catholic University "Our Lady of Good Counsel", Tirana, Albania
| | - A Giustino
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari "Aldo Moro", 70121, Bari, Italy
| | - A Cutrignelli
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - O Cappellari
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester Academic Health Science Centre, UK
| | - J F Rolland
- AXXAM S.p.A., Openzone, 20091, Bresso, Milan, Italy
| | - M De Bellis
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - N Denora
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - G M Camerino
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - A De Luca
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy.
| |
Collapse
|
10
|
Chubinskiy-Nadezhdin VI, Sudarikova AV, Shilina MA, Vasileva VY, Grinchuk TM, Lyublinskaya OG, Nikolsky NN, Negulyaev YA. Cell Cycle-Dependent Expression of Bk Channels in Human Mesenchymal Endometrial Stem Cells. Sci Rep 2019; 9:4595. [PMID: 30872711 PMCID: PMC6418245 DOI: 10.1038/s41598-019-41096-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 02/28/2019] [Indexed: 12/21/2022] Open
Abstract
The study of ion channels in stem cells provides important information about their role in stem cell fate. Previously we have identified the activity of calcium-activated potassium channels of big conductance (BK channels) in human endometrium-derived mesenchymal stem cells (eMSCs). BK channels could have significant impact into signaling processes by modulating membrane potential. The membrane potential and ionic permeability dynamically changes during cycle transitions. Here, we aimed at verification of the role of BK channels as potassium transporting pathway regulating cell cycle passageway of eMSCs. The functional expression of native BK channels was confirmed by patch-clamp and immunocytochemistry. In non-synchronized cells immunofluorescent analysis revealed BK-positive and BK-negative stained eMSCs. Using cell synchronization, we found that the presence of BK channels in plasma membrane was cell cycle-dependent and significantly decreased in G2M phase. However, the study of cell cycle progression in presence of selective BK channel inhibitors showed no effect of pore blockers on cycle transitions. Thus, BK channel-mediated K+ transport is not critical for the fundamental mechanism of passageway through cell cycle of eMSCs. At the same time, the dynamics of the presence of BK channels on plasma membrane of eMSCs can be a novel indicator of cellular proliferation.
Collapse
Affiliation(s)
| | | | - Mariia A Shilina
- Institute of Cytology RAS, 194064, Tikhoretsky Ave. 4, St. Petersburg, Russia
| | - Valeria Y Vasileva
- Institute of Cytology RAS, 194064, Tikhoretsky Ave. 4, St. Petersburg, Russia
| | - Tatiana M Grinchuk
- Institute of Cytology RAS, 194064, Tikhoretsky Ave. 4, St. Petersburg, Russia
| | - Olga G Lyublinskaya
- Institute of Cytology RAS, 194064, Tikhoretsky Ave. 4, St. Petersburg, Russia
| | - Nikolai N Nikolsky
- Institute of Cytology RAS, 194064, Tikhoretsky Ave. 4, St. Petersburg, Russia
| | - Yuri A Negulyaev
- Institute of Cytology RAS, 194064, Tikhoretsky Ave. 4, St. Petersburg, Russia
- Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, 29, Polytechnicheskaya st., 195251, St. Petersburg, Russia
| |
Collapse
|
11
|
Cell Cycle Regulation by Ca 2+-Activated K⁺ (BK) Channels Modulators in SH-SY5Y Neuroblastoma Cells. Int J Mol Sci 2018; 19:ijms19082442. [PMID: 30126198 PMCID: PMC6121591 DOI: 10.3390/ijms19082442] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/02/2018] [Accepted: 08/13/2018] [Indexed: 12/28/2022] Open
Abstract
The effects of Ca2+-activated K+ (BK) channel modulation by Paxilline (PAX) (10−7–10−4 M), Iberiotoxin (IbTX) (0.1–1 × 10−6 M) and Resveratrol (RESV) (1–2 × 10−4 M) on cell cycle and proliferation, AKT1pSer473 phosphorylation, cell diameter, and BK currents were investigated in SH-SY5Y cells using Operetta-high-content-Imaging-System, ELISA-assay, impedentiometric counting method and patch-clamp technique, respectively. IbTX (4 × 10−7 M), PAX (5 × 10−5 M) and RESV (10−4 M) caused a maximal decrease of the outward K+ current at +30 mV (Vm) of −38.3 ± 10%, −31.9 ± 9% and −43 ± 8%, respectively, which was not reversible following washout and cell depolarization. After 6h of incubation, the drugs concentration dependently reduced proliferation. A maximal reduction of cell proliferation, respectively of −60 ± 8% for RESV (2 × 10−4 M) (IC50 = 1.50 × 10−4 M), −65 ± 6% for IbTX (10−6 M) (IC50 = 5 × 10−7 M), −97 ± 6% for PAX (1 × 10−4 M) (IC50 = 1.06 × 10−5 M) and AKT1pser473 dephosphorylation was observed. PAX induced a G1/G2 accumulation and contraction of the S-phase, reducing the nuclear area and cell diameter. IbTX induced G1 contraction and G2 accumulation reducing diameter. RESV induced G2 accumulation and S contraction reducing diameter. These drugs share common actions leading to a block of the surface membrane BK channels with cell depolarization and calcium influx, AKT1pser473 dephosphorylation by calcium-dependent phosphatase, accumulation in the G2 phase, and a reduction of diameter and proliferation. In addition, the PAX action against nuclear membrane BK channels potentiates its antiproliferative effects with early apoptosis.
Collapse
|
12
|
Cheng Q, Chen A, Du Q, Liao Q, Shuai Z, Chen C, Yang X, Hu Y, Zhao J, Liu S, Wen GR, An J, Jing H, Tuo B, Xie R, Xu J. Novel insights into ion channels in cancer stem cells (Review). Int J Oncol 2018; 53:1435-1441. [PMID: 30066845 DOI: 10.3892/ijo.2018.4500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/28/2018] [Indexed: 11/06/2022] Open
Abstract
Cancer stem cells (CSCs) are immortal cells in tumor tissues that have been proposed as the driving force of tumorigenesis and tumor invasion. Previously, ion channels were revealed to contribute to cancer cell proliferation, migration and apoptosis. Recent studies have demonstrated that ion channels are present in various CSCs; however, the functions of ion channels and their mechanisms in CSCs remain unknown. The present review aimed to focus on the roles of ion channels in the regulation of CSC behavior and the CSC-like properties of cancer cells. Evaluation of the relationship between ion channels and CSCs is critically important for understanding malignancy.
Collapse
Affiliation(s)
- Qijiao Cheng
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Anhai Chen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Qian Du
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Qiushi Liao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Zhangli Shuai
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Changmei Chen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Xinrong Yang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Yaxia Hu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Ju Zhao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Songpo Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Guo Rong Wen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Jiaxin An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Hai Jing
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
13
|
Bazard P, Frisina RD, Walton JP, Bhethanabotla VR. Nanoparticle-based Plasmonic Transduction for Modulation of Electrically Excitable Cells. Sci Rep 2017; 7:7803. [PMID: 28798342 PMCID: PMC5552804 DOI: 10.1038/s41598-017-08141-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/05/2017] [Indexed: 11/11/2022] Open
Abstract
There is a compelling need for the development of new sensory and neural prosthetic devices which are capable of more precise point stimulation. Current prosthetic devices suffer from the limitation of low spatial resolution due to the non-specific stimulation characteristics of electrical stimulation, i.e., the spread of electric fields generated. We present a visible light stimulation method for modulating the firing patterns of electrically-excitable cells using surface plasmon resonance phenomena. In in-vitro studies using gold (Au) nanoparticle-coated nanoelectrodes, we show that this method (substrate coated with nanoparticles) has the potential for incorporating this new technology into neural stimulation prosthetics, such as cochlear implants for the deaf, with very high spatial resolution. Au nanoparticles (NPs) were coated on micropipettes using aminosilane linkers; and these micropipettes were used for stimulating and inhibiting the action potential firing patterns of SH-SY5Y human neuroblastoma cells and neonatal cardiomyocytes. Our findings pave the way for development of biomedical implants and neural testing devices using nanoelectrodes capable of temporally and spatially precise excitation and inhibition of electrically-excitable cellular activity.
Collapse
Affiliation(s)
- Parveen Bazard
- Department of Chemical and Biomedical Engineering, College of Engineering, University of South Florida, Tampa, FL-33620, USA.,Global Center of Hearing and Speech Research, University of South Florida, Tampa, FL-33612, USA
| | - Robert D Frisina
- Department of Chemical and Biomedical Engineering, College of Engineering, University of South Florida, Tampa, FL-33620, USA.,Department of Communication Sciences and Disorders, College of Behavioral & Community Sciences, University of South Florida, Tampa, FL-33620, USA.,Global Center of Hearing and Speech Research, University of South Florida, Tampa, FL-33612, USA
| | - Joseph P Walton
- Department of Chemical and Biomedical Engineering, College of Engineering, University of South Florida, Tampa, FL-33620, USA.,Department of Communication Sciences and Disorders, College of Behavioral & Community Sciences, University of South Florida, Tampa, FL-33620, USA.,Global Center of Hearing and Speech Research, University of South Florida, Tampa, FL-33612, USA
| | - Venkat R Bhethanabotla
- Department of Chemical and Biomedical Engineering, College of Engineering, University of South Florida, Tampa, FL-33620, USA. .,Global Center of Hearing and Speech Research, University of South Florida, Tampa, FL-33612, USA.
| |
Collapse
|
14
|
Maqoud F, Cetrone M, Mele A, Tricarico D. Molecular structure and function of big calcium-activated potassium channels in skeletal muscle: pharmacological perspectives. Physiol Genomics 2017; 49:306-317. [DOI: 10.1152/physiolgenomics.00121.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/08/2017] [Accepted: 04/10/2017] [Indexed: 11/22/2022] Open
Abstract
The large-conductance Ca2+-activated K+ (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles (sarco-BK), and smooth muscles. These channels are activated by changes in membrane electrical potential and by increases in the concentration of intracellular calcium ion (Ca2+). The BK channel is subjected to many mechanisms that add diversity to the BK channel α-subunit gene. These channels are indeed subject to alternative splicing, auxiliary subunits modulation, posttranslational modifications, and protein-protein interactions. BK channels can be modulated by diverse molecules that may induce either an increase or decrease in channel activity. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, have been found to be relevant in many physiological processes. BK channel diversity is obtained by means of alternative splicing and modulatory β- and γ-subunits. The association of the α-subunit with β- or with γ-subunits can change the BK channel phenotype, functional diversity, and pharmacological properties in different tissues. In the case of the skeletal muscle BK channel (sarco-BK channel), we established that the main mechanism regulating BK channel diversity is the alternative splicing of the KCNMA1/slo1 gene encoding for the α-subunit generating different splicing isoform in the muscle phenotypes. This finding helps to design molecules selectively targeting the skeletal muscle subtypes. The use of drugs selectively targeting the skeletal muscle BK channels is a promising strategy in the treatment of familial disorders affecting muscular skeletal apparatus including hyperkalemia and hypokalemia periodic paralysis.
Collapse
Affiliation(s)
- Fatima Maqoud
- Department of Pharmacy-Drug Science, University of Bari, Bari, Italy
- Faculty of Science, Chouaib Doukkali University, El Jadida, Morocco
| | - Michela Cetrone
- Istituto Tumori Giovanni Paolo II, Istituto di Ricovero e Cura a Carattere Scientifico, National Cancer Institute, Bari, Italy; and
| | - Antonietta Mele
- Department of Pharmacy-Drug Science, University of Bari, Bari, Italy
| | | |
Collapse
|
15
|
The Cardioprotective Effect of Dexmedetomidine in Rats Is Dose-Dependent and Mediated by BKCa Channels. J Cardiovasc Pharmacol 2017; 69:228-235. [DOI: 10.1097/fjc.0000000000000466] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Denora N, Lopedota A, de Candia M, Cellamare S, Degennaro L, Luisi R, Mele A, Tricarico D, Cutrignelli A, Laquintana V, Altomare CD, Franco M, Dimiccoli V, Tolomeo A, Scilimati A. Pharmaceutical development of novel lactate-based 6-fluoro-l-DOPA formulations. Eur J Pharm Sci 2017; 99:361-368. [DOI: 10.1016/j.ejps.2016.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/31/2016] [Accepted: 10/01/2016] [Indexed: 12/25/2022]
|
17
|
A novel injectable formulation of 6-fluoro-l-DOPA imaging agent for diagnosis of neuroendocrine tumors and Parkinson's disease. Int J Pharm 2017; 519:304-313. [PMID: 28119123 DOI: 10.1016/j.ijpharm.2017.01.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 12/25/2022]
Abstract
Two [19F]F-l-DOPA (F-DOPA) new β-cyclodextrin (CD)-based dosage forms (FA and FB, respectively) have been studied and their physico-chemical and pharmacological features determined to overcome the administration site reactions showed by the currently used [18F]F-l-DOPA formulation (IASOdopa®) to perform PET-CT diagnosis in oncology (neuroendocrine tumors) and neurological (Parkinson's disease) field. Chemical stability of FA and FB was found to be longer than IASOdopa® by adding the thiol-antioxidant agent, L-Cysteine. 1H and 19F NMR investigations suggest the formation of an inclusion complex of F-DOPA with β-CD. In vitro experiments on the effects of FA and FB on mouse skeletal muscle fibers and on the human neuroblastoma SH-SY5Y and embryonal kidney tsA201 cell lines viability showed that FA was the most performant formulation compared to F-DOPA solutions. In vivo tolerability tests of FA on adult male rat showed no significant effects on body weight and no change in their dried organs weight. In addition, their metabolic and physiological parameters were not affected. In conclusion, [18F]F-l-DOPA, formulated as FA, constitutes a promising dosage form for PET-CT diagnosis of both neuroendocrine tumors and Parkinson's disease.
Collapse
|
18
|
Pierri CL, Bossis F, Punzi G, De Grassi A, Cetrone M, Parisi G, Tricarico D. Molecular modeling of antibodies for the treatment of TNFα-related immunological diseases. Pharmacol Res Perspect 2016; 4:e00197. [PMID: 26977294 PMCID: PMC4777268 DOI: 10.1002/prp2.197] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/20/2015] [Accepted: 10/24/2015] [Indexed: 12/13/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) have high efficacy in treating TNF α-related immunological diseases. Other than neutralizing TNF α, these IgG1 antibodies exert Fc receptor-mediated effector functions such as the complement-dependent cytotoxicity (CDC) and antibody-dependent cell cytotoxicity (ADCC). The crystallizable fragment (Fc) of these IgG1 contains a single glycosylation site at Asn 297/300 that is essential for the CDC and ADCC. Glycosylated antibodies lacking core fucosylation showed an improved ADCC. However, no structural data are available concerning the ligand-binding interaction of these mAbs used in TNF α-related diseases and the role of the fucosylation. We therefore used comparative modeling for generating complete 3D mAb models that include the antigen-binding fragment (Fab) portions of infliximab, complexed with TNF α (4G3Y.pdb), the Fc region of the human IGHG1 fucosylated (3SGJ) and afucosylated (3SGK) complexed with the Fc receptor subtype Fcγ RIIIA, and the Fc region of a murine immunoglobulin (1IGT). After few thousand steps of energy minimization on the resulting 3D mAb models, minimized final models were used to quantify interactions occurring between Fcγ RIIIA and the fucosylated/afucosylated Fc fragments. While fucosylation does not affect Fab-TNF α interactions, we found that in the absence of fucosylation the Fc-mAb domain and Fcγ RIIIA are closer and new strong interactions are established between G129 of the receptor and S301 of the Chimera 2 Fc mAb; new polar interactions are also established between the Chimera 2 Fc residues Y299, N300, and S301 and the Fcγ RIIIA residues K128, G129, R130, and R155. These data help to explain the reduced ADCC observed in the fucosylated mAbs suggesting the specific AA residues involved in binding interactions.
Collapse
Affiliation(s)
- Ciro Leonardo Pierri
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
| | - Fabrizio Bossis
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
| | - Giuseppe Punzi
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
| | | | - Giovanni Parisi
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
| | | |
Collapse
|