1
|
Yang H, Shen X, Wang H, Shuai W. Tumour necrosis factor alpha-induced protein 3-interacting protein 3 overexpression protects against arrhythmogenic remodelling in the heart failure mice. Europace 2024; 27:euaf002. [PMID: 39800969 PMCID: PMC11757166 DOI: 10.1093/europace/euaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 12/11/2024] [Indexed: 01/25/2025] Open
Abstract
AIMS Ventricular arrhythmias (VAs), which can lead to sudden cardiac death, are the primary cause of mortality in patients with heart failure (HF). However, the precise mechanisms underlying these arrhythmias are not well understood. Recent studies have implicated tumour necrosis factor alpha-induced protein 3-interacting protein 3 (TNIP3) in pathological cardiac hypertrophy. Nevertheless, its role in isoproterenol (ISO)-associated VAs remains elusive. METHODS AND RESULTS We overexpressed TNIP3 in the myocardium using an adeno-associated virus 9 system, administered via tail vein injection. C57BL/6 mice received daily subcutaneous injections of ISO for two consecutive weeks to establish an HF model. We performed histopathology and electrophysiological studies to assess ventricular structural remodelling, electrical remodelling, and susceptibility to VAs. Additionally, RNA sequencing (RNA-Seq) and western blot analysis were conducted to elucidate the underlying mechanisms. The expression of TNIP3 was up-regulated following ISO treatment. TNIP3 overexpression significantly reversed ISO-induced cardiac dysfunction, fibrosis, electrical remodelling, and VAs susceptibility. Accordingly, RNA-Seq identifies that the inflammatory response takes an important role in ISO-induced Vas, and TNIP3 overexpression could alleviate ISO-induced cardiac proinflammatory response by promoting M1 to M2 macrophage polarization. Mechanistically, PI3K/Akt/NF-κB signalling is responsible for the protective effect of TNIP3 overexpression on ISO-induced HF. And PI3K/Akt signalling activation offset the protective effect of TNIP3 overexpression on ISO-induced cardiac inflammation and VAs. CONCLUSION The findings of this study highlight the critical role of TNIP3 in ISO-associated cardiac remodelling and VAs, which are induced by the inhibited activation of the PI3K/Akt/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Hongjie Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan 430060, Hubei, P.R. of China
| | - Xiaoyan Shen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan 430060, Hubei, P.R. of China
| | - Huibo Wang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital; Institute of Cardiovascular Diseases, China Three Gorges University, Hu Bei Clinical Research Center for Ischemic Cardiovascular Disease, No. 183 Yiling Avenue, Yichang 443000, Hubei, China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan 430060, Hubei, P.R. of China
| |
Collapse
|
2
|
García-Mendívil L, Pérez-Zabalza M, Oliver-Gelabert A, Vallejo-Gil JM, Fañanás-Mastral J, Vázquez-Sancho M, Bellido-Morales JA, Vaca-Núñez AS, Ballester-Cuenca C, Diez E, Ordovás L, Pueyo E. Interindividual Age-Independent Differences in Human CX43 Impact Ventricular Arrhythmic Risk. RESEARCH (WASHINGTON, D.C.) 2023; 6:0254. [PMID: 38023417 PMCID: PMC10650968 DOI: 10.34133/research.0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023]
Abstract
Connexin 43 (CX43) is one of the major components of gap junctions, the structures responsible for the intercellular communication and transmission of the electrical impulse in the left ventricle. There is limited information on the histological changes of CX43 with age and their effect on electrophysiology, especially in humans. Here, we analyzed left ventricular biopsies from living donors starting at midlife to characterize age-related CX43 remodeling. We assessed its quantity, degree of lateralization, and spatial heterogeneity together with fibrotic deposition. We observed no significant age-related remodeling of CX43. Only spatial heterogeneity increased slightly with age, and this increase was better explained by biological age than by chronological age. Importantly, we found that CX43 features varied considerably among individuals in our population with no relevant relationship to age or fibrosis content, in contrast to animal species. We used our experimental results to feed computational models of human ventricular electrophysiology and to assess the effects of interindividual differences in specific features of CX43 and fibrosis on conduction velocity, action potential duration, and arrhythmogenicity. We found that larger amounts of fibrosis were associated with the highest arrhythmic risk, with this risk being increased when fibrosis deposition was combined with a reduction in CX43 amount and/or with an increase in CX43 spatial heterogeneity. These mechanisms underlying high arrhythmic risk in some individuals were not associated with age in our study population. In conclusion, our data rule out CX43 remodeling as an age-related arrhythmic substrate in the population beyond midlife, but highlight its potential as a proarrhythmic factor at the individual level, especially when combined with increased fibrosis.
Collapse
Affiliation(s)
- Laura García-Mendívil
- Biomedical Signal Interpretation and Computational Simulation group (BSICoS), Aragón Institute of Engineering Research,
University of Zaragoza, Zaragoza 50018, Spain
- BSICoS, Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza 50018, Spain
| | - María Pérez-Zabalza
- Biomedical Signal Interpretation and Computational Simulation group (BSICoS), Aragón Institute of Engineering Research,
University of Zaragoza, Zaragoza 50018, Spain
- BSICoS, Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza 50018, Spain
- Centro Universitario de la Defensa (CUD), Zaragoza 50090, Spain
| | - Antoni Oliver-Gelabert
- Biomedical Signal Interpretation and Computational Simulation group (BSICoS), Aragón Institute of Engineering Research,
University of Zaragoza, Zaragoza 50018, Spain
- BSICoS, Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza 50018, Spain
| | - José María Vallejo-Gil
- Department of Cardiovascular Surgery,
University Hospital Miguel Servet, Zaragoza 50009, Spain
| | - Javier Fañanás-Mastral
- Department of Cardiovascular Surgery,
University Hospital Miguel Servet, Zaragoza 50009, Spain
| | - Manuel Vázquez-Sancho
- Department of Cardiovascular Surgery,
University Hospital Miguel Servet, Zaragoza 50009, Spain
| | | | | | - Carlos Ballester-Cuenca
- Department of Cardiovascular Surgery,
University Hospital Miguel Servet, Zaragoza 50009, Spain
| | - Emiliano Diez
- Institute of Experimental Medicine and Biology of Cuyo (IMBECU), CONICET, Mendoza 5500, Argentina
| | - Laura Ordovás
- Biomedical Signal Interpretation and Computational Simulation group (BSICoS), Aragón Institute of Engineering Research,
University of Zaragoza, Zaragoza 50018, Spain
- BSICoS, Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza 50018, Spain
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), Zaragoza 50018, Spain
| | - Esther Pueyo
- Biomedical Signal Interpretation and Computational Simulation group (BSICoS), Aragón Institute of Engineering Research,
University of Zaragoza, Zaragoza 50018, Spain
- BSICoS, Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza 50018, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza 50018, Spain
| |
Collapse
|
3
|
Wang C, Ma Y, Liu Y, Li L, Cui C, Qin H, Zhao Z, Li C, Ju W, Chen M, Li D, Zhou W. Texture analysis of SPECT myocardial perfusion provides prognostic value for dilated cardiomyopathy. J Nucl Cardiol 2023; 30:504-515. [PMID: 35676551 DOI: 10.1007/s12350-022-03006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Texture analysis (TA) has demonstrated clinical values in extracting information, quantifying inhomogeneity, evaluating treatment outcomes, and predicting long-term prognosis for cardiac diseases. The aim of this study was to explore whether TA of SPECT myocardial perfusion could contribute to improving the prognosis of dilated cardiomyopathy (DCM) patients. METHODS Eighty-eight patients were recruited in our study between 2009 and 2020 who were diagnosed with DCM and underwent single-photon emission tomography myocardial perfusion imaging (SPECT MPI). Forty TA features were obtained from quantitative analysis of SPECT imaging in subjects with myocardial perfusion at rest. All patients were divided into two groups: the all-cause death group and the survival group. The prognostic value of texture parameters was assessed by Cox regression and Kaplan-Meier analysis. RESULTS Twenty-five all-cause deaths (28.4%) were observed during the follow-up (39.2±28.7 months). Compared with the survival group, NT-proBNP and total perfusion deficit (TPD) were higher and left ventricular ejection fraction (LVEF) was lower in the all-cause death group. In addition, 26 out of 40 texture parameters were significantly different between the two groups. Univariate Cox regression analysis revealed that NT-proBNP, LVEF, and 25 texture parameters were significantly associated with all-cause death. The multivariate Cox regression analysis showed that low gray-level emphasis (LGLE) (P = 0.010, HR = 4.698, 95% CI 1.457-15.145) and long-run low gray-level emphasis (LRLGE) (P =0.002, HR = 6.085, 95% CI 1.906-19.422) were independent predictors of the survival outcome. When added to clinical parameters, LVEF, TPD, and TA parameters, including LGLE and LRLGE, were incrementally associated with all-cause death (global chi-square statistic of 26.246 vs. 33.521; P = 0.028, global chi-square statistic of 26.246 vs. 34.711; P = 0.004). CONCLUSION TA based on gated SPECT MPI could discover independent prognostic predictors of all-cause death in medically treated patients with DCM. Moreover, TA parameters, including LGLE and LRLGE, independent of the total perfusion deficit of the cardiac myocardium, appeared to provide incremental prognostic value for DCM patients.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Ying Ma
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Yanyun Liu
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Shaanxi, 710126, China
| | - Longxi Li
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Chang Cui
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Huiyuan Qin
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Zhongqiang Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Chunxiang Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Weizhu Ju
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Minglong Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Dianfu Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Weihua Zhou
- Department of Applied Computing, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA.
- Center for Biocomputing and Digital Health, Institute of Computing and Cybersystems, and Health Research Institute, Michigan Technological University, Houghton, USA.
| |
Collapse
|
4
|
van Ham WB, Cornelissen CM, van Veen TAB. Uremic toxins in chronic kidney disease highlight a fundamental gap in understanding their detrimental effects on cardiac electrophysiology and arrhythmogenesis. Acta Physiol (Oxf) 2022; 236:e13888. [PMID: 36148604 PMCID: PMC9787632 DOI: 10.1111/apha.13888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 01/29/2023]
Abstract
Chronic kidney disease (CKD) and cardiovascular disease (CVD) have an estimated 700-800 and 523 million cases worldwide, respectively, with CVD being the leading cause of death in CKD patients. The pathophysiological interplay between the heart and kidneys is defined as the cardiorenal syndrome (CRS), in which worsening of kidney function is represented by increased plasma concentrations of uremic toxins (UTs), culminating in dialysis patients. As there is a high incidence of CVD in CKD patients, accompanied by arrhythmias and sudden cardiac death, knowledge on electrophysiological remodeling would be instrumental for understanding the CRS. While the interplay between both organs is clearly of importance in CRS, the involvement of UTs in pro-arrhythmic remodeling is only poorly investigated, especially regarding the mechanistic background. Currently, the clinical approach against potential arrhythmic events is mainly restricted to symptom treatment, stressing the need for fundamental research on UT in relation to electrophysiology. This review addresses the existing knowledge of UTs and cardiac electrophysiology, and the experimental research gap between fundamental research and clinical research of the CRS. Clinically, mainly absorbents like ibuprofen and AST-120 are studied, which show limited safe and efficient usability. Experimental research shows disturbances in cardiac electrical activation and conduction after inducing CKD or exposure to UTs, but are scarcely present or focus solely on already well-investigated UTs. Based on UTs data derived from CKD patient cohort studies, a clinically relevant overview of physiological and pathological UTs concentrations is created. Using this, future experimental research is stimulated to involve electrophysiologically translatable animals, such as rabbits, or in vitro engineered heart tissues.
Collapse
Affiliation(s)
- Willem B. van Ham
- Department of Medical Physiology, Division Heart & LungsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Carlijn M. Cornelissen
- Department of Medical Physiology, Division Heart & LungsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Toon A. B. van Veen
- Department of Medical Physiology, Division Heart & LungsUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
5
|
Bone Marrow Mesenchymal Stem Cells and Their Derived Extracellular Vesicles Attenuate Non-Alcoholic Steatohepatitis-Induced Cardiotoxicity via Modulating Cardiac Mechanisms. Life (Basel) 2022; 12:life12030355. [PMID: 35330106 PMCID: PMC8952775 DOI: 10.3390/life12030355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular-disease (CVD)-related mortality has been fueled by the upsurge of non-alcoholic steatohepatitis (NASH). Mesenchymal stem cells (MSCs) were extensively studied for their reparative power in ameliorating different CVDs via direct and paracrine effects. Several reports pointed to the importance of bone marrow mesenchymal stem cells (BM-MSCs) as a reliable therapeutic approach for several CVDs. Nevertheless, their therapeutic potential has not yet been investigated in the cardiotoxic state that is induced by NASH. Thus, this study sought to investigate the molecular mechanisms associated with cardiotoxicity that accompany NASH. Besides, we aimed to comparatively study the therapeutic effects of bone-marrow mesenchymal-stem-cell-derived extracellular vesicles (BM-MSCs-EV) and BM-MSCs in a cardiotoxic model that is induced by NASH in rats. Rats were fed with high-fat diet (HFD) for 12 weeks. At the seventh week, BM-MSCs-EV were given a dose of 120 µg/kg i.v., twice a week for six weeks (12 doses per 6 weeks). Another group was treated with BM-MSCs at a dose of 1 × 106 cell i.v., per rat once every 2 weeks for 6 weeks (3 doses per 6 weeks). BM-MSCs-EV demonstrated superior cardioprotective effects through decreasing serum cardiotoxic markers, cardiac hypoxic state (HIF-1) and cardiac inflammation (NF-κB p65, TNF-α, IL-6). This was accompanied by increased vascular endothelial growth factor (VEGF) and improved cardiac histopathological alterations. Both BM-MSCs-EV and BM-MSCs restored the mitochondrial antioxidant state through the upregulation of UCP2 and MnSOD genes. Besides, mitochondrial Parkin-dependent and -independent mitophagies were regained through the upregulation of (Parkin, PINK1, ULK1, BNIP3L, FUNDC1) and (LC3B). These effects were mediated through the regulation of pAKT, PI3K, Hypoxia, VEGF and NF-κB signaling pathways by an array of secreted microRNAs (miRNAs). Our findings unravel the potential ameliorative effects of BM-MSCs-EV as a comparable new avenue for BM-MSCs for modulating cardiotoxicity that is induced by NASH.
Collapse
|
6
|
Finocchiaro G, Sheikh N, Leone O, Westaby J, Mazzarotto F, Pantazis A, Ferrantini C, Sacconi L, Papadakis M, Sharma S, Sheppard MN, Olivotto I. Arrhythmogenic potential of myocardial disarray in hypertrophic cardiomyopathy: genetic basis, functional consequences and relation to sudden cardiac death. Europace 2021; 23:985-995. [PMID: 33447843 DOI: 10.1093/europace/euaa348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022] Open
Abstract
Myocardial disarray is defined as disorganized cardiomyocyte spatial distribution, with loss of physiological fibre alignment and orientation. Since the first pathological descriptions of hypertrophic cardiomyopathy (HCM), disarray appeared as a typical feature of this condition and sparked vivid debate regarding its specificity to the disease and clinical significance as a diagnostic marker and a risk factor for sudden death. Although much of the controversy surrounding its diagnostic value in HCM persists, it is increasingly recognized that myocardial disarray may be found in physiological contexts and in cardiac conditions different from HCM, raising the possibility that central focus should be placed on its quantity and distribution, rather than a mere presence. While further studies are needed to establish what amount of disarray should be considered as a hallmark of the disease, novel experimental approaches and emerging imaging techniques for the first time allow ex vivo and in vivo characterization of the myocardium to a molecular level. Such advances hold the promise of filling major gaps in our understanding of the functional consequences of myocardial disarray in HCM and specifically on arrhythmogenic propensity and as a risk factor for sudden death. Ultimately, these studies will clarify whether disarray represents a major determinant of the HCM clinical profile, and a potential therapeutic target, as opposed to an intriguing but largely innocent bystander.
Collapse
Affiliation(s)
- Gherardo Finocchiaro
- Cardiothoracic Centre, Guy's and St Thomas' Hospital, London, UK.,King's College London
| | - Nabeel Sheikh
- Cardiothoracic Centre, Guy's and St Thomas' Hospital, London, UK.,King's College London
| | - Ornella Leone
- Cardiovascular and Cardiac Transplant Pathology Unit, Department of Pathology, Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | - Joe Westaby
- Cardiovascular Pathology Unit and Cardiology Clinical and Academic Group. St George's, University of London, London and St George's University Hospital NHS Foundation Trust, UK
| | - Francesco Mazzarotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Italy.,National Heart and Lung Institute, Imperial College London, UK.,Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, London, UK
| | - Antonis Pantazis
- Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, London, UK
| | - Cecilia Ferrantini
- University of Florence, Florence, Italy.,European Laboratory for Non-Linear Spectroscopy, Florence, Italy
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy, Florence, Italy.,Institute for Experimental Cardiovascular Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Papadakis
- Cardiovascular Pathology Unit and Cardiology Clinical and Academic Group. St George's, University of London, London and St George's University Hospital NHS Foundation Trust, UK
| | - Sanjay Sharma
- Cardiovascular Pathology Unit and Cardiology Clinical and Academic Group. St George's, University of London, London and St George's University Hospital NHS Foundation Trust, UK
| | - Mary N Sheppard
- Cardiovascular Pathology Unit and Cardiology Clinical and Academic Group. St George's, University of London, London and St George's University Hospital NHS Foundation Trust, UK
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
7
|
Fazlollahi F, Santini Gonzalez JJ, Repas SJ, Canan BD, Billman GE, Janssen PML. Contraction-relaxation coupling is unaltered by exercise training and infarction in isolated canine myocardium. J Gen Physiol 2021; 153:211978. [PMID: 33847735 PMCID: PMC8047736 DOI: 10.1085/jgp.202012829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/20/2021] [Accepted: 03/18/2021] [Indexed: 12/28/2022] Open
Abstract
The two main phases of the mammalian cardiac cycle are contraction and relaxation; however, whether there is a connection between them in humans is not well understood. Routine exercise has been shown to improve cardiac function, morphology, and molecular signatures. Likewise, the acute and chronic changes that occur in the heart in response to injury, disease, and stress are well characterized, albeit not fully understood. In this study, we investigated how exercise and myocardial injury affect contraction–relaxation coupling. We retrospectively analyzed the correlation between the maximal speed of contraction and the maximal speed of relaxation of canine myocardium after receiving surgically induced myocardial infarction, followed by either sedentary recovery or exercise training for 10–12 wk. We used isolated right ventricular trabeculae, which were electrically paced at different lengths, frequencies, and with increasing β-adrenoceptor stimulation. In all conditions, contraction and relaxation were linearly correlated, irrespective of injury or training history. Based on these results and the available literature, we posit that contraction–relaxation coupling is a fundamental myocardial property that resides in the structural arrangement of proteins at the level of the sarcomere and that this may be regulated by the actions of cardiac myosin binding protein C (cMyBP-C) on actin and myosin.
Collapse
Affiliation(s)
- Farbod Fazlollahi
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH
| | - Jorge J Santini Gonzalez
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH
| | - Steven J Repas
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH
| | - Benjamin D Canan
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH
| | - George E Billman
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH
| |
Collapse
|
8
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
9
|
Gap junction protein beta 4 plays an important role in cardiac function in humans, rodents, and zebrafish. PLoS One 2020; 15:e0240129. [PMID: 33048975 PMCID: PMC7553298 DOI: 10.1371/journal.pone.0240129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/20/2020] [Indexed: 11/19/2022] Open
Abstract
Aims GJB4 encodes a transmembrane connexin protein (Cx30.3) that is a component of gap junctions. This study investigated whether GJB4 plays an important role in human heart disease and function. Methods and results We examined a patient and her older brother who both presented with complicated severe hypertrophic cardiomyopathy (HCM) and whose parents are healthy married cousins. The gene exome analysis showed 340 single nucleotide polymorphisms (SNPs) that caused amino acid changes for which the patient was homozygous and both parents were heterozygous. After excluding all known common (>10%) SNP gene mutations, the gene for GJB4 was the only identified gene that is possibly associated with cardiac muscle. The resultant E204A substitution exists in the 4th transmembrane domain. GJB4-E204A impaired the binding with gap junction protein A1 (GJA1) compared with GJB4-WT. The expression of GJB4 was induced in rat disease models of left and right ventricle hypertrophy and mouse disease models of adriamycin-induced cardiomyopathy and myocardial infarction, while it was not detected at all in control. An immunohistochemical study was performed for autopsied human hearts and the explanted heart of the patient. GJB4 was expressed and colocalized with GJA1 in intercalated discs in human diseased hearts, which was extensively enhanced in the explanted heart of the patient. The abnormal expression and localization of GJB4 were observed in beating spheres of patient’s induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs). We generated knockout zebrafish of GJB4 by CRISPR/Cas9 and the endodiastolic volume and the ventricular ejection fraction were significantly lower in GJB4-deficient than in wild-type zebrafish at five days post-fertilization. Conclusions These results indicate both that GJB4 is defined as a new connexin in diseased hearts, of which mutation can cause a familial form of HCM, and that GJB4 may be a new target for the treatment of cardiac hypertrophy and dysfunction.
Collapse
|
10
|
Huang HC, Chien KL, Chang YC, Lin LY, Wang J, Liu YB. Increases in repolarization heterogeneity predict left ventricular systolic dysfunction and response to cardiac resynchronization therapy in patients with left bundle branch block. J Cardiovasc Electrophysiol 2020; 31:1770-1778. [PMID: 32275338 DOI: 10.1111/jce.14488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 12/23/2022]
Abstract
INTRODUCTION This study aimed to investigate the association between T-wave morphology and impaired left ventricular ejection fraction (LVEF) in patients with complete left bundle branch block (cLBBB), and the predictive value of T-wave morphology for response to cardiac resynchronization therapy (CRT). METHODS AND RESULTS We enrolled 189 patients with cLBBB on electrocardiogram performed between January 2007 and December 2011 who underwent standard echocardiography. Repolarization parameters, including the QRS-to-T angle (TCRT), T-wave morphology dispersion (TMD), T-wave loop area (PL), and T-wave residuum (TWR), were reconstructed from digital standard 12-lead electrocardiograms by T-wave morphology analysis. CRT response was defined as ≥15% reduction in left ventricular end-systolic volume at 12 months after CRT implantation. The clinical outcome endpoint was a composite of heart failure hospitalization, heart transplantation, or death during follow up (mean, 5.8 years). On logistic regression, a higher heart rate, longer QRS duration, increased TMD, and larger TWR were all independently associated with LVEF < 40%. Among 40 patients who underwent CRT, those with a larger TMD (P = .007), larger PL (P = .025), and more negative TCRT (P = .015) had better response to CRT. A large TMD (P = .018) and large PL (P = .003) were also independent predictors of the clinical outcome endpoint. CONCLUSIONS Increases in repolarization heterogeneity in patients with cLBBB are associated with impaired LVEF. A large TMD and large PL may be useful as additional predictors of response to CRT, improving patient selection for CRT.
Collapse
Affiliation(s)
- Hui-Chun Huang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuo-Liong Chien
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Institute of Epidemiology, College of Public Health, Taipei, Taiwan
| | - Yi-Chung Chang
- Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan
| | - Lian-Yu Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jui Wang
- Institute of Epidemiology, College of Public Health, Taipei, Taiwan
| | - Yen-Bin Liu
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
11
|
Wang W, Ye S, Zhang L, Jiang Q, Chen J, Chen X, Zhang F, Wu H. Granulocyte colony-stimulating factor attenuates myocardial remodeling and ventricular arrhythmia susceptibility via the JAK2-STAT3 pathway in a rabbit model of coronary microembolization. BMC Cardiovasc Disord 2020; 20:85. [PMID: 32066388 PMCID: PMC7026986 DOI: 10.1186/s12872-020-01385-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
Background Coronary microembolization (CME) has a poor prognosis, with ventricular arrhythmia being the most serious consequence. Understanding the underlying mechanisms could improve its management. We investigated the effects of granulocyte colony-stimulating factor (G-CSF) on connexin-43 (Cx43) expression and ventricular arrhythmia susceptibility after CME. Methods Forty male rabbits were randomized into four groups (n = 10 each): Sham, CME, G-CSF, and AG490 (a JAK2 selective inhibitor). Rabbits in the CME, G-CSF, and AG490 groups underwent left anterior descending (LAD) artery catheterization and CME. Animals in the G-CSF and AG490 groups received intraperitoneal injection of G-CSF and G-CSF + AG490, respectively. The ventricular structure was assessed by echocardiography. Ventricular electrical properties were analyzed using cardiac electrophysiology. The myocardial interstitial collagen content and morphologic characteristics were evaluated using Masson and hematoxylin-eosin staining, respectively. Results Western blot and immunohistochemistry were employed to analyze the expressions of Cx43, G-CSF receptor (G-CSFR), JAK2, and STAT3. The ventricular effective refractory period (VERP), VERP dispersion, and inducibility and lethality of ventricular tachycardia/fibrillation were lower in the G-CSF than in the CME group (P < 0.01), indicating less severe myocardial damage and arrhythmias. The G-CSF group showed higher phosphorylated-Cx43 expression (P < 0.01 vs. CME). Those G-CSF-induced changes were reversed by A490, indicating the involvement of JAK2. G-CSFR, phosphorylated-JAK2, and phosphorylated-STAT3 protein levels were higher in the G-CSF group than in the AG490 (P < 0.01) and Sham (P < 0.05) groups. Conclusion G-CSF might attenuate myocardial remodeling via JAK2-STAT3 signaling and thereby reduce ventricular arrhythmia susceptibility after CME.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Shuhua Ye
- Department of Cardiology, Fujian Provincial People's Hospital, Fuzhou, 350004, China
| | - Lutao Zhang
- Department of Cardiology, People's Hospital of Wuqing District, Tianjin, 301700, China
| | - Qiong Jiang
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Jianhua Chen
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xuehai Chen
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Feilong Zhang
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| | - Hangzhou Wu
- Fujian Medical University Union clinical medical college, Fuzhou, 350001, China.
| |
Collapse
|
12
|
Kessler EL, Nikkels PG, van Veen TA. Disturbed Desmoglein-2 in the intercalated disc of pediatric patients with dilated cardiomyopathy. Hum Pathol 2017; 67:101-108. [PMID: 28764973 DOI: 10.1016/j.humpath.2017.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/06/2017] [Accepted: 07/14/2017] [Indexed: 01/28/2023]
Abstract
Dilated cardiomyopathy (DCM) leads to disturbed contraction and force transduction, and is associated with substantial mortality in all age groups. Involvement of a disrupted composition of the intercalated disc (ID) has been reported. However, in children, little is established about such subcellular changes during disease, because of the pathological mix-up with the ongoing cardiac maturation. This leaves maladaptive remodeling often undetected. We aimed at illustrating subcellular alterations in children diagnosed with DCM compared to age-matched controls, focusing on ID proteins known to be crucially stable under healthy conditions and destabilized during cardiac injury in adults. Left ventricular or septal pediatric specimens were collected from 7 individuals diagnosed with DCM (age: 23 weeks in utero to 8 weeks postnatal) and age-matched controls that died of non-cardiovascular cause. We determined the amount of fibrosis and localization of ID proteins by immunohistochemistry. In pediatric DCM, most ID proteins follow similar spatiotemporal changes in localization as in controls. However, although no mutations were found, the signal of the desmosomal protein Desmoglein-2 was reduced in all pediatric DCM specimens, but not in controls or adult DCM patients. Endocardial and transmural fibrosis was increased in all pediatric DCM patients compared to age-matched controls. Composition of the ID in pediatric DCM patients is similar to controls, except for the localization of Desmoglein-2 and presence of severe fibrosis. This suggests that the architecture of desmosomes is already disturbed in the early stages of DCM. These findings contribute to the understanding of pediatric DCM.
Collapse
Affiliation(s)
- Elise L Kessler
- Department of Medical Physiology, University Medical Center Utrecht, 3584CM Utrecht, The Netherlands
| | - Peter Gj Nikkels
- Department of Pathology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Toon Ab van Veen
- Department of Medical Physiology, University Medical Center Utrecht, 3584CM Utrecht, The Netherlands.
| |
Collapse
|
13
|
Toib A, Zhang C, Borghetti G, Zhang X, Wallner M, Yang Y, Troupes CD, Kubo H, Sharp TE, Feldsott E, Berretta RM, Zalavadia N, Trappanese DM, Harper S, Gross P, Chen X, Mohsin S, Houser SR. Remodeling of repolarization and arrhythmia susceptibility in a myosin-binding protein C knockout mouse model. Am J Physiol Heart Circ Physiol 2017. [PMID: 28646025 DOI: 10.1152/ajpheart.00167.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is one of the most common genetic cardiac diseases and among the leading causes of sudden cardiac death (SCD) in the young. The cellular mechanisms leading to SCD in HCM are not well known. Prolongation of the action potential (AP) duration (APD) is a common feature predisposing hypertrophied hearts to SCD. Previous studies have explored the roles of inward Na+ and Ca2+ in the development of HCM, but the role of repolarizing K+ currents has not been defined. The objective of this study was to characterize the arrhythmogenic phenotype and cellular electrophysiological properties of mice with HCM, induced by myosin-binding protein C (MyBPC) knockout (KO), and to test the hypothesis that remodeling of repolarizing K+ currents causes APD prolongation in MyBPC KO myocytes. We demonstrated that MyBPC KO mice developed severe hypertrophy and cardiac dysfunction compared with wild-type (WT) control mice. Telemetric electrocardiographic recordings of awake mice revealed prolongation of the corrected QT interval in the KO compared with WT control mice, with overt ventricular arrhythmias. Whole cell current- and voltage-clamp experiments comparing KO with WT mice demonstrated ventricular myocyte hypertrophy, AP prolongation, and decreased repolarizing K+ currents. Quantitative RT-PCR analysis revealed decreased mRNA levels of several key K+ channel subunits. In conclusion, decrease in repolarizing K+ currents in MyBPC KO ventricular myocytes contributes to AP and corrected QT interval prolongation and could account for the arrhythmia susceptibility.NEW & NOTEWORTHY Ventricular myocytes isolated from the myosin-binding protein C knockout hypertrophic cardiomyopathy mouse model demonstrate decreased repolarizing K+ currents and action potential and QT interval prolongation, linking cellular repolarization abnormalities with arrhythmia susceptibility and the risk for sudden cardiac death in hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Amir Toib
- Section of Pediatric Cardiology, St. Christopher's Hospital for Children and Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania; and.,Cardiovascular Research Center and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Chen Zhang
- Cardiovascular Research Center and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Giulia Borghetti
- Cardiovascular Research Center and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Xiaoxiao Zhang
- Cardiovascular Research Center and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Markus Wallner
- Cardiovascular Research Center and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Yijun Yang
- Cardiovascular Research Center and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Constantine D Troupes
- Cardiovascular Research Center and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Hajime Kubo
- Cardiovascular Research Center and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Thomas E Sharp
- Cardiovascular Research Center and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Eric Feldsott
- Cardiovascular Research Center and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Remus M Berretta
- Cardiovascular Research Center and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Neil Zalavadia
- Cardiovascular Research Center and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Danielle M Trappanese
- Cardiovascular Research Center and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Shavonn Harper
- Cardiovascular Research Center and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Polina Gross
- Cardiovascular Research Center and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Xiongwen Chen
- Cardiovascular Research Center and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Sadia Mohsin
- Cardiovascular Research Center and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Steven R Houser
- Cardiovascular Research Center and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Wassner AJ, Jugo RH, Dorfman DM, Padera RF, Maynard MA, Zavacki AM, Jay PY, Huang SA. Myocardial Induction of Type 3 Deiodinase in Dilated Cardiomyopathy. Thyroid 2017; 27:732-737. [PMID: 28314380 PMCID: PMC5421592 DOI: 10.1089/thy.2016.0570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The thyroid hormone-inactivating enzyme type 3 deiodinase (D3) is induced during hypertrophic and ischemic cardiomyopathy, leading to a state of local cardiac hypothyroidism. Whether D3 induction occurs in dilated cardiomyopathy is unknown. METHODS This study characterized changes in cardiac D3 and thyroid hormone signaling in a transgenic model of progressive dilated cardiomyopathy (TG9 mice). RESULTS Cardiac D3 was dramatically induced 15-fold during the progression of dilated cardiomyopathy in TG9 mice. This D3 induction localized to cardiomyocytes and was associated with a decrease in myocardial thyroid hormone signaling. CONCLUSIONS Cardiac D3 is induced in a mouse model of dilated cardiomyopathy, indicating that D3 induction may be a general response to diverse forms of cardiomyopathy.
Collapse
Affiliation(s)
- Ari J. Wassner
- Thyroid Program, Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts
| | - Rebecca H. Jugo
- Thyroid Program, Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts
| | - David M. Dorfman
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Robert F. Padera
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michelle A. Maynard
- Thyroid Program, Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts
| | - Ann M. Zavacki
- Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Boston, Massachusetts
| | - Patrick Y. Jay
- Departments of Pediatrics and Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Stephen A. Huang
- Thyroid Program, Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
15
|
Localisation Microscopy of Breast Epithelial ErbB-2 Receptors and Gap Junctions: Trafficking after γ-Irradiation, Neuregulin-1β, and Trastuzumab Application. Int J Mol Sci 2017; 18:ijms18020362. [PMID: 28208769 PMCID: PMC5343897 DOI: 10.3390/ijms18020362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 12/28/2022] Open
Abstract
In cancer, vulnerable breast epithelium malignance tendency correlates with number and activation of ErbB receptor tyrosine kinases. In the presented work, we observe ErbB receptors activated by irradiation-induced DNA injury or neuregulin-1β application, or alternatively, attenuated by a therapeutic antibody using high resolution fluorescence localization microscopy. The gap junction turnover coinciding with ErbB receptor activation and co-transport is simultaneously recorded. DNA injury caused by 4 Gray of 6 MeV photon γ-irradiation or alternatively neuregulin-1β application mobilized ErbB receptors in a nucleograde fashion—a process attenuated by trastuzumab antibody application. This was accompanied by increased receptor density, indicating packing into transport units. Factors mobilizing ErbB receptors also mobilized plasma membrane resident gap junction channels. The time course of ErbB receptor activation and gap junction mobilization recapitulates the time course of non-homologous end-joining DNA repair. We explain our findings under terms of DNA injury-induced membrane receptor tyrosine kinase activation and retrograde trafficking. In addition, we interpret the phenomenon of retrograde co-trafficking of gap junction connexons stimulated by ErbB receptor activation.
Collapse
|
16
|
Ding YY, Li JM, Guo FJ, Liu Y, Tong YF, Pan XC, Lu XL, Ye W, Chen XH, Zhang HG. Triptolide Upregulates Myocardial Forkhead Helix Transcription Factor p3 Expression and Attenuates Cardiac Hypertrophy. Front Pharmacol 2016; 7:471. [PMID: 27965581 PMCID: PMC5127789 DOI: 10.3389/fphar.2016.00471] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022] Open
Abstract
The forkhead/winged helix transcription factor (Fox) p3 can regulate the expression of various genes, and it has been reported that the transfer of Foxp3-positive T cells could ameliorate cardiac hypertrophy and fibrosis. Triptolide (TP) can elevate the expression of Foxp3, but its effects on cardiac hypertrophy remain unclear. In the present study, neonatal rat ventricular myocytes (NRVM) were isolated and stimulated with angiotensin II (1 μmol/L) to induce hypertrophic response. The expression of Foxp3 in NRVM was observed by using immunofluorescence assay. Fifty mice were randomly divided into five groups and received vehicle (control), isoproterenol (Iso, 5 mg/kg, s.c.), one of three doses of TP (10, 30, or 90 μg/kg, i.p.) for 14 days, respectively. The pathological morphology changes were observed after Hematoxylin and eosin, lectin and Masson's trichrome staining. The levels of serum brain natriuretic peptide (BNP) and troponin I were determined by enzyme-linked immunosorbent assay and chemiluminescence, respectively. The mRNA and protein expressions of α- myosin heavy chain (MHC), β-MHC and Foxp3 were determined using real-time PCR and immunohistochemistry, respectively. It was shown that TP (1, 3, 10 μg/L) treatment significantly decreased cell size, mRNA and protein expression of β-MHC, and upregulated Foxp3 expression in NRVM. TP also decreased heart weight index, left ventricular weight index and, improved myocardial injury and fibrosis; and decreased the cross-scetional area of the myocardium, serum cardiac troponin and BNP. Additionally, TP markedly reduced the mRNA and protein expression of myocardial β-MHC and elevated the mRNA and protein expression of α-MHC and Foxp3 in a dose-dependent manner. In conclusion, TP can effectively ameliorate myocardial damage and inhibit cardiac hypertrophy, which is at least partly related to the elevation of Foxp3 expression in cardiomyocytes.
Collapse
Affiliation(s)
- Yuan-Yuan Ding
- Department of Pharmacology, College of Pharmacy, Third Military Medical University Chongqing, China
| | - Jing-Mei Li
- Department of Pharmacology, College of Pharmacy, Third Military Medical University Chongqing, China
| | - Feng-Jie Guo
- The People's Liberation Army No. 309 Hospital Beijing, China
| | - Ya Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University Chongqing, China
| | - Yang-Fei Tong
- Department of Pharmacology, College of Pharmacy, Third Military Medical UniversityChongqing, China; Department of Pharmacy, Chongqing Traditional Medicine HospitalChongqing, China
| | - Xi-Chun Pan
- Department of Pharmacology, College of Pharmacy, Third Military Medical University Chongqing, China
| | - Xiao-Lan Lu
- Department of Pharmacology, College of Pharmacy, Third Military Medical UniversityChongqing, China; Department of Clinical Laboratory, First Affiliated Hospital of North Sichuan Medical CollegeNanchong, China
| | - Wen Ye
- Department of Pharmacology, College of Pharmacy, Third Military Medical University Chongqing, China
| | - Xiao-Hong Chen
- Department of Pharmacology, College of Pharmacy, Third Military Medical University Chongqing, China
| | - Hai-Gang Zhang
- Department of Pharmacology, College of Pharmacy, Third Military Medical University Chongqing, China
| |
Collapse
|
17
|
Nagai-Okatani C, Minamino N. Aberrant Glycosylation in the Left Ventricle and Plasma of Rats with Cardiac Hypertrophy and Heart Failure. PLoS One 2016; 11:e0150210. [PMID: 27281159 PMCID: PMC4900630 DOI: 10.1371/journal.pone.0150210] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/20/2016] [Indexed: 11/21/2022] Open
Abstract
Targeted proteomics focusing on post-translational modifications, including glycosylation, is a useful strategy for discovering novel biomarkers. To apply this strategy effectively to cardiac hypertrophy and resultant heart failure, we aimed to characterize glycosylation profiles in the left ventricle and plasma of rats with cardiac hypertrophy. Dahl salt-sensitive hypertensive rats, a model of hypertension-induced cardiac hypertrophy, were fed a high-salt (8% NaCl) diet starting at 6 weeks. As a result, they exhibited cardiac hypertrophy at 12 weeks and partially impaired cardiac function at 16 weeks compared with control rats fed a low-salt (0.3% NaCl) diet. Gene expression analysis revealed significant changes in the expression of genes encoding glycosyltransferases and glycosidases. Glycoproteome profiling using lectin microarrays indicated upregulation of mucin-type O-glycosylation, especially disialyl-T, and downregulation of core fucosylation on N-glycans, detected by specific interactions with Amaranthus caudatus and Aspergillus oryzae lectins, respectively. Upregulation of plasma α-l-fucosidase activity was identified as a biomarker candidate for cardiac hypertrophy, which is expected to support the existing marker, atrial natriuretic peptide and its related peptides. Proteomic analysis identified cysteine and glycine-rich protein 3, a master regulator of cardiac muscle function, as an O-glycosylated protein with altered glycosylation in the rats with cardiac hypertrophy, suggesting that alternations in O-glycosylation affect its oligomerization and function. In conclusion, our data provide evidence of significant changes in glycosylation pattern, specifically mucin-type O-glycosylation and core defucosylation, in the pathogenesis of cardiac hypertrophy and heart failure, suggesting that they are potential biomarkers for these diseases.
Collapse
Affiliation(s)
- Chiaki Nagai-Okatani
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Naoto Minamino
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
18
|
Billman GE, Del Rio CL. Editorial: Cardiac electronic remodeling and susceptibility to arrhythmias: an introduction and brief historical overview. Front Physiol 2015. [PMID: 26217235 PMCID: PMC4491600 DOI: 10.3389/fphys.2015.00196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- George E Billman
- Department of Physiology and Cell Biology, The Ohio State University Columbus, OH, USA
| | | |
Collapse
|