1
|
Qu J, Dang S, Sun YY, Zhang T, Jiang H, Lu HZ. METTL21C mediates autophagy and formation of slow-twitch muscle fibers in mice after exercise. Genes Genet Syst 2024; 99:n/a. [PMID: 38417894 DOI: 10.1266/ggs.23-00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
Homeostasis is essential for muscle repair and regeneration after skeletal muscle exercise. This study investigated the role of methyltransferase-like 21C (METTL21C) in skeletal muscle of mice after exercise and the potential mechanism. First, muscle samples were collected at 2, 4 and 6 weeks after exercise, and liver glycogen, muscle glycogen, blood lactic acid and triglyceride were assessed. Moreover, the expression levels of autophagy markers and METTL21C in skeletal muscle were analyzed. The results showed that the expression levels of METTL21C and MYH7 in the gastrocnemius muscle of mice in the exercise group were significantly higher after exercise than those in the control group, which suggested that long-term exercise promoted the formation of slow-twitch muscle fibers in mouse skeletal muscle. Likewise, the autophagy capacity was enhanced with the prolongation of exercise in muscles. The findings were confirmed in mouse C2C12 cells. We discovered that knockdown of Mettl21c reduced the expression of MYH7 and the autophagy level in mouse myoblasts. These findings indicate that METTL21C promotes skeletal muscle homeostasis after exercise by enhancing autophagy, and also contributes to myogenic differentiation and the formation of slow muscle fibers.
Collapse
Affiliation(s)
- Jing Qu
- Institute of Physical Education, Shaanxi University of Technology
| | - Shuai Dang
- School of Biological Science and Engineering, Shaanxi University of Technology
- Department of Medical, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University
| | - Yuan-Yuan Sun
- School of Biological Science and Engineering, Shaanxi University of Technology
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology
| | - Hai Jiang
- Institute of Physical Education, Shaanxi University of Technology
| | - Hong-Zhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology
| |
Collapse
|
2
|
Yeo HS, Lim JY. Effects of exercise prehabilitation on muscle atrophy and contractile properties in hindlimb-unloaded rats. Muscle Nerve 2023; 68:886-893. [PMID: 37772693 DOI: 10.1002/mus.27979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/30/2023]
Abstract
INTRODUCTION/AIMS Effective strategies for rapid recovery after surgery are needed. Therefore, we investigated the effects of exercise prehabilitation (EP) and hindlimb unloading (HU) on muscle loss and contractility. METHODS Twenty-two Sprague-Dawley rats (12 wk old) were divided into normal control (NCON, n = 5), hindlimb unloading control (HCON, n = 10), and exercise prehabilitation followed by hindlimb unloading (Ex-preH, n = 7) groups. Ex-PreH performed exercise training for 14 days before hindlimb unloading for 14 days. Body composition was evaluated, along with muscle strength and function. The soleus (SOL) and extensor digitorum longus (EDL) muscle contractile properties were analyzed at the whole-muscle level. The titin concentration and myosin heavy chain (MHC) type composition were analyzed. RESULTS There were no effects of Ex-preH on total mass, lean mass, or muscle weight. Physical function was significantly higher in the Ex-preH group than in the HCON group (39.5° vs. 35.7°). The SOL twitch force (19.6 vs. 7.1 mN/m2 ) and specific force (107.3 vs. 61.2 mN/m2 ) were greater in Ex-preH group than in HCON group. EDL shortening velocity was higher in Ex-preH group than in HCON group (13.2 vs. 5.0 FL/s). The SOL full-length titin level was higher in Ex-preH group than in HCON group. DISCUSSION Exercise prehabilitation did not prevent muscle mass loss followed by muscle wasting, although it minimized the reduction of physical function. Therefore, exercise prehabilitation should be considered for rapid functional recovery after disuse due to surgery and injuries.
Collapse
Affiliation(s)
- Hyo-Seong Yeo
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Seoul National University Institute on Aging, Seoul, South Korea
- Aging & Mobility Biophysics Laboratory, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jae-Young Lim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Seoul National University Institute on Aging, Seoul, South Korea
- Aging & Mobility Biophysics Laboratory, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
3
|
Gandouzi I, Fekih S, Selmi O, Chalghaf N, Turki M, Ayedi F, Guelmami N, Azaiez F, Souissi N, Marsigliante S, Muscella A. Oxidative status alteration during aerobic-dominant mixed and anaerobic-dominant mixed effort in judokas. Heliyon 2023; 9:e20442. [PMID: 37829795 PMCID: PMC10565691 DOI: 10.1016/j.heliyon.2023.e20442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
This study aimed to depict the oxidative status variation in judokas during aerobic-dominant mixed effort (AeDME) and anaerobic-dominant mixed effort (AnDME). It is to be expected that the sporting commitment of Judo is a stimulus of oxidative stress leading to the recruitment of antioxidant responses. Blood samples were collected from 17 athletes at rest, immediately after a training session (AeDME) and after a 5-min bout (AnDME). AeDME and AnDME caused significant increases in malondialdehyde (MDA) (p < 0.01 and p < 0.001 respectively) and glutathione (GSH) (p = 0.018 and p < 0.001 respectively). Blood thiol concentrations decreased following AeDME and AnDME (p < 0.001) whilst catalase decreased significantly after AnDME (p = 0.026) only. Uric acid increased significantly after AnDME than after AeDME (p = 0.047) while, conversely, total bilirubin was higher after AnDME than after AeDME (p = 0.02). We may ultimately summarize that AeDME and AnDME caused oxidative stress, higher in AnDME, and some antioxidant response slightly higher in AnDME compared to AeDME. In sports, monitoring of oxidative stress status is recommended as part of the training regimen.
Collapse
Affiliation(s)
- Imed Gandouzi
- Molecular Basis of Human Pathology Laboratory, Faculty of Medicine of Sfax, Tunisia
- Higher Institute of Sport and Physical Education of Gafsa ISSEP, Gafsa, Tunisia
- RU: Physical Activity, Sport & Health, The National Observatory of Sport, Tunisia
| | - Soufien Fekih
- Higher Institute of Sport and Physical Education of Gafsa ISSEP, Gafsa, Tunisia
| | - Okba Selmi
- Higher Institute of Sport and Physical Education of Kef ISSEP, Kef, Tunisia
| | - Nasr Chalghaf
- Higher Institute of Sport and Physical Education of Gafsa ISSEP, Gafsa, Tunisia
- Group for the Study of Development and Social Environment (GEDES), Faculty of Human and Social Science of Sfax, Sfax, Tunisia
| | - Mouna Turki
- Molecular Basis of Human Pathology Laboratory, Faculty of Medicine of Sfax, Tunisia
- Biochemistry Laboratory, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Fatma Ayedi
- Biochemistry Laboratory, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Noomen Guelmami
- Higher Institute of Sport and Physical Education of Kef ISSEP, Kef, Tunisia
| | - Fairouz Azaiez
- Higher Institute of Sport and Physical Education of Gafsa ISSEP, Gafsa, Tunisia
- Group for the Study of Development and Social Environment (GEDES), Faculty of Human and Social Science of Sfax, Sfax, Tunisia
| | - Nizar Souissi
- RU: Physical Activity, Sport & Health, The National Observatory of Sport, Tunisia
| | - Santo Marsigliante
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Antonella Muscella
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| |
Collapse
|
4
|
Maugeri G, Amato A, Sortino M, D Agata V, Musumeci G. The Influence of Exercise on Oxidative Stress after Spinal Cord Injury: A Narrative Review. Antioxidants (Basel) 2023; 12:1401. [PMID: 37507940 PMCID: PMC10376509 DOI: 10.3390/antiox12071401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Spinal cord injury (SCI) is an irreversible disease resulting in partial or total loss of sensory and motor function. The pathophysiology of SCI is characterized by an initial primary injury phase followed by a secondary phase in which reactive oxygen species (ROSs) and associated oxidative stress play hallmark roles. Physical exercise is an indispensable means of promoting psychophysical well-being and improving quality of life. It positively influences the neuromuscular, cardiovascular, respiratory, and immune systems. Moreover, exercise may provide a mechanism to regulate the variation and equilibrium between pro-oxidants and antioxidants. After a brief overview of spinal cord anatomy and the different types of spinal cord injury, the purpose of this review is to investigate the evidence regarding the effect of exercise on oxidative stress among individuals with SCI.
Collapse
Affiliation(s)
- Grazia Maugeri
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Alessandra Amato
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Martina Sortino
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Velia D Agata
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe Musumeci
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Center on Motor Activities (CRAM), University of Catania, 95123 Catania, Italy
| |
Collapse
|
5
|
de Oliveira DS, Bruna Pires Borges I, Kazue Nagahashi Marie S, Marcondes Lerario A, Oba-Shinjo SM, Katsuyuki Shinjo S. Exercise training attenuates skeletal muscle fat infiltration and improves insulin pathway of patients with immune-mediated necrotizing myopathies and dermatomyositis. Arch Rheumatol 2023; 38:189-199. [PMID: 37680507 PMCID: PMC10481685 DOI: 10.46497/archrheumatol.2023.9257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 07/21/2022] [Indexed: 09/09/2023] Open
Abstract
Objectives This study aims to evaluate the effects of exercise training on intramuscular lipid content and genes related to insulin pathway in patients with systemic autoimmune myopathies (SAMs). Patients and methods Between January 2016 and May 2019, a total of seven patients with dermatomyositis (DM; 3 males, 4 females; mean age: 49.8±2.3 years; range, 43 to 54 years), six with immune mediated necrotizing myopathy (IMNM; 3 males, 3 females; mean age: 58.5±10.6 years; range, 46 to 74 years), and 10 control individuals (CTRL group; 4 males, 6 females; mean age: 48.7±3.9 years; range, 41 to 56 years) were included. The muscle biopsy before and after the intervention was performed to evaluate the intramuscular lipid content. Patients underwent a combined exercise training program for 12 weeks. Skeletal muscle gene expression was analyzed and the DM versus CTRL group, DM pre- and post-, and IMNM pre- and post-intervention were compared. Results The DM group had a higher intramuscular lipid content in type II muscle fibers compared to the CTRL group. After the intervention, there was a reduction of lipid content in type I and II fibers in DM and IMNM group. The CTRL group showed a significantly higher expression of genes related to insulin and lipid oxidation pathways (AMPKβ2, AS160, INSR, PGC1-α, PI3K, and RAB14) compared to the DM group. After exercise training, there was an increase gene expression related to insulin pathway and lipid oxidation in DM group (AMPKβ2, AS160, INSR, PGC1-α, PI3K, and RAB14) and in IMNM group (AKT2, AMPKβ2, RAB10, RAB14, and PGC1-α). Conclusion Exercise training attenuated the amount of fat in type I and II muscle fibers in patients with DM and IMNM and increased gene expression related to insulin pathways and lipid oxidation in DM and IMNM. These results suggest that exercise training can improve the quality and metabolic functions of skeletal muscle in these diseases.
Collapse
Affiliation(s)
- Diego Sales de Oliveira
- Division of Rheumatology, Laboratory of Inflammatory Myopathies, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Brazil
| | - Isabela Bruna Pires Borges
- Division of Rheumatology, Laboratory of Inflammatory Myopathies, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Brazil
| | - Suely Kazue Nagahashi Marie
- Department of Neurology, Laboratory of Molecular and Cellular Biology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Brazil
| | - Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Sueli Mieko Oba-Shinjo
- Department of Neurology, Laboratory of Molecular and Cellular Biology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Brazil
| | - Samuel Katsuyuki Shinjo
- Division of Rheumatology, Laboratory of Inflammatory Myopathies, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Brazil
| |
Collapse
|
6
|
Protective effects of saffron extract and resistance training against atrophic markers: a study on rats with dexamethasone-induced muscle atrophy. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-022-01002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2022]
|
7
|
Yang X, Li P, Lei J, Feng Y, Tang L, Guo J. Integrated Application of Low-Intensity Pulsed Ultrasound in Diagnosis and Treatment of Atrophied Skeletal Muscle Induced in Tail-Suspended Rats. Int J Mol Sci 2022; 23:10369. [PMID: 36142280 PMCID: PMC9498990 DOI: 10.3390/ijms231810369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Long-term exposure to microgravity leads to muscle atrophy, which is primarily characterized by a loss of muscle mass and strength and reduces one′s functional capability. A weightlessness-induced muscle atrophy model was established using the tail suspension test to evaluate the intervention or therapeutic effect of low-intensity pulsed ultrasound (LIPUS) on muscle atrophy. The rats were divided into five groups at random: the model group (B), the normal control group (NC), the sham-ultrasound control group (SUC), the LIPUS of 50 mW/cm2 radiation group (50 UR), and the LIPUS of 150 mW/cm2 radiation group (150 UR). Body weight, gastrocnemius weight, muscle force, and B-ultrasound images were used to evaluate muscle atrophy status. Results showed that the body weight, gastrocnemius weight, and image entropy of the tail suspension group were significantly lower than those of the control group (p < 0.01), confirming the presence of muscle atrophy. Although the results show that the muscle force and two weights of the rats stimulated by LIPUS are still much smaller than those of the NC group, they are significantly different from those of the pure tail suspension B group (p < 0.01). On day 14, the gastrocnemius forces of the rats exposed to 50 mW/cm2 and 150 mW/cm2 LIPUS were 150% and 165% of those in the B group. The gastrocnemius weights were both 135% of those in the B group. This suggests that ultrasound can, to a certain extent, prevent muscular atrophy.
Collapse
Affiliation(s)
- Xuebing Yang
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi’an 710119, China
| | - Pan Li
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi’an 710119, China
| | - Jiying Lei
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi’an 710119, China
- Junior Middle Department, Shanxi Modern Bilingual School, Taiyuan 030031, China
| | - Yichen Feng
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi’an 710119, China
| | - Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi’an 710119, China
| | - Jianzhong Guo
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
8
|
Jîtcă G, Ősz BE, Tero-Vescan A, Miklos AP, Rusz CM, Bătrînu MG, Vari CE. Positive Aspects of Oxidative Stress at Different Levels of the Human Body: A Review. Antioxidants (Basel) 2022; 11:antiox11030572. [PMID: 35326222 PMCID: PMC8944834 DOI: 10.3390/antiox11030572] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Oxidative stress is the subject of numerous studies, most of them focusing on the negative effects exerted at both molecular and cellular levels, ignoring the possible benefits of free radicals. More and more people admit to having heard of the term "oxidative stress", but few of them understand the meaning of it. We summarized and analyzed the published literature data in order to emphasize the importance and adaptation mechanisms of basal oxidative stress. This review aims to provide an overview of the mechanisms underlying the positive effects of oxidative stress, highlighting these effects, as well as the risks for the population consuming higher doses than the recommended daily intake of antioxidants. The biological dose-response curve in oxidative stress is unpredictable as reactive species are clearly responsible for cellular degradation, whereas antioxidant therapies can alleviate senescence by maintaining redox balance; nevertheless, excessive doses of the latter can modify the redox balance of the cell, leading to a negative outcome. It can be stated that the presence of oxidative status or oxidative stress is a physiological condition with well-defined roles, yet these have been insufficiently researched and explored. The involvement of reactive oxygen species in the pathophysiology of some associated diseases is well-known and the involvement of antioxidant therapies in the processes of senescence, apoptosis, autophagy, and the maintenance of cellular homeostasis cannot be denied. All data in this review support the idea that oxidative stress is an undesirable phenomenon in high and long-term concentrations, but regular exposure is consistent with the hormetic theory.
Collapse
Affiliation(s)
- George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| | - Bianca E. Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (G.J.); (C.E.V.)
- Correspondence:
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.T.-V.); (A.P.M.)
| | - Amalia Pușcaș Miklos
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.T.-V.); (A.P.M.)
| | - Carmen-Maria Rusz
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (C.-M.R.); (M.-G.B.)
| | - Mădălina-Georgiana Bătrînu
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (C.-M.R.); (M.-G.B.)
| | - Camil E. Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| |
Collapse
|
9
|
Abbadi D, Andrews JJ, Katsara O, Schneider RJ. AUF1 gene transfer increases exercise performance and improves skeletal muscle deficit in adult mice. Mol Ther Methods Clin Dev 2021; 22:222-236. [PMID: 34485607 PMCID: PMC8399044 DOI: 10.1016/j.omtm.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022]
Abstract
Muscle function and mass begin declining in adults long before evidence of sarcopenia and include reduced mitochondrial function, although much remains to be characterized. We found that mRNA decay factor AU-rich mRNA binding factor 1 (AUF1), which stimulates myogenesis, is strongly reduced in skeletal muscle of adult and older mice in the absence of evidence of sarcopenia. Muscle-specific adeno-associated virus (AAV)8-AUF1 gene therapy increased expression of AUF1, muscle function, and mass. AAV8 AUF1 muscle gene transfer in 12-month-old mice increased the levels of activated muscle stem (satellite) cells, increased muscle mass, reduced markers of muscle atrophy, increased markers of mitochondrial content and muscle fiber oxidative capacity, and enhanced exercise performance to levels of 3-month-old mice. With wild-type and AUF1 knockout mice and cultured myoblasts, AUF1 supplementation of muscle fibers was found to increase expression of Peroxisome Proliferator-activated Receptor Gamma Co-activator 1-alpha (PGC1α), a major effector of skeletal muscle mitochondrial oxidative metabolism. AUF1 stabilized and increased translation of the pgc1α mRNA, which is strongly reduced in adult muscle in the absence of AUF1 supplementation. Skeletal muscle-specific gene transfer of AUF1 therefore restores muscle mass, increases exercise endurance, and may provide a therapeutic strategy for age-related muscle loss.
Collapse
Affiliation(s)
- Dounia Abbadi
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - John J. Andrews
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Olga Katsara
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Robert J. Schneider
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
10
|
Nguyen BL, Yoshihara T, Deminice R, Lawrence J, Ozdemir M, Hyatt H, Powers SK. Alterations in renin-angiotensin receptors are not responsible for exercise preconditioning of skeletal muscle fibers. SPORTS MEDICINE AND HEALTH SCIENCE 2021; 3:148-156. [PMID: 35784524 PMCID: PMC9219300 DOI: 10.1016/j.smhs.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 11/27/2022] Open
Abstract
Endurance exercise training promotes a protective phenotype in skeletal muscle known as exercise preconditioning. Exercise preconditioning protects muscle fibers against a variety of threats including inactivity-induced muscle atrophy. The mechanism(s) responsible for exercise preconditioning remain unknown and are explored in these experiments. Specifically, we investigated the impact of endurance exercise training on key components of the renin-angiotensin system (RAS). The RAS was targeted because activation of the classical axis of the RAS pathway via angiotensin II type I receptors (AT1Rs) promotes muscle atrophy whereas activation of the non-classical RAS axis via Mas receptors (MasRs) inhibits the atrophic signaling of the classical RAS pathway. Guided by prior studies, we hypothesized that an exercise-induced decrease in AT1Rs and/or increases in MasRs in skeletal muscle fibers is a potential mechanism responsible for exercise preconditioning. Following endurance exercise training in rats, we examined the abundance of AT1Rs and MasRs in both locomotor and respiratory muscles. Our results indicate that endurance exercise training does not alter the protein abundance of AT1Rs or MasRs in muscle fibers from the diaphragm, plantaris, and soleus muscles compared to sedentary controls (p > 0.05). Furthermore, fluorescent angiotensin II (AngII) binding analyses confirm our results that exercise preconditioning does not alter the protein abundance of AT1Rs in the diaphragm, plantaris, and soleus (p > 0.05). This study confirms that exercise-induced changes in RAS receptors are not a key mechanism that contributes to the beneficial effects of exercise preconditioning in skeletal muscle fibers.
Collapse
Affiliation(s)
- Branden L. Nguyen
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, 32611, Florida, USA
| | - Toshinori Yoshihara
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, 32611, Florida, USA
- Department of Exercise Physiology, Juntendo University, Tokyo, 270-1695, Japan
| | - Rafael Deminice
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, 32611, Florida, USA
- Department of Physical Education, University of Estadual of Londrina, Londrina, 10011, Brazil
| | - Jensen Lawrence
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, 32611, Florida, USA
| | - Mustafa Ozdemir
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, 32611, Florida, USA
| | - Hayden Hyatt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, 32611, Florida, USA
| | - Scott K. Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, 32611, Florida, USA
- Corresponding authors. Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
11
|
Pogoda A, Chmielewska N, Maciejak P, Szyndler J. Transcriptional Dysregulation in Huntington's Disease: The Role in Pathogenesis and Potency for Pharmacological Targeting. Curr Med Chem 2021; 28:2783-2806. [PMID: 32628586 DOI: 10.2174/0929867327666200705225821] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/15/2020] [Accepted: 06/19/2020] [Indexed: 11/22/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by a mutation in the gene that encodes a critical cell regulatory protein, huntingtin (Htt). The expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats causes improper folding of functional proteins and is an initial trigger of pathological changes in the brain. Recent research has indicated that the functional dysregulation of many transcription factors underlies the neurodegenerative processes that accompany HD. These disturbances are caused not only by the loss of wild-type Htt (WT Htt) function but also by the occurrence of abnormalities that result from the action of mutant Htt (mHtt). In this review, we aim to describe the role of transcription factors that are currently thought to be strongly associated with HD pathogenesis, namely, RE1-silencing transcription factor, also known as neuron-restrictive silencer factor (REST/NRSF), forkhead box proteins (FOXPs), peroxisome proliferator-activated receptor gamma coactivator-1a (PGC1α), heat shock transcription factor 1 (HSF1), and nuclear factor κ light-chain-enhancer of activated B cells (NF- κB). We also take into account the role of these factors in the phenotype of HD as well as potential pharmacological interventions targeting the analyzed proteins. Furthermore, we considered whether molecular manipulation resulting in changes in transcription factor function may have clinical potency for treating HD.
Collapse
Affiliation(s)
- Aleksandra Pogoda
- Faculty of Medicine, Medical University of Warsaw, Zwirki i Wigury Street 61, 02-097 Warsaw, Poland
| | - Natalia Chmielewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland
| | - Piotr Maciejak
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland
| | - Janusz Szyndler
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha Street 1B, 02-097 Warsaw, Poland
| |
Collapse
|
12
|
Tofas T, Fatouros IG, Draganidis D, Deli CK, Chatzinikolaou A, Tziortzis C, Panayiotou G, Koutedakis Y, Jamurtas AZ. Effects of Cardiovascular, Resistance and Combined Exercise Training on Cardiovascular, Performance and Blood Redox Parameters in Coronary Artery Disease Patients: An 8-Month Training-Detraining Randomized Intervention. Antioxidants (Basel) 2021; 10:antiox10030409. [PMID: 33803076 PMCID: PMC8001546 DOI: 10.3390/antiox10030409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
It is well-documented that chronic/regular exercise improves the cardiovascular function, decreases oxidative stress and enhances the antioxidant capacity in coronary artery disease (CAD) patients. However, there is insufficient evidence regarding the chronic effects of different types of training and detraining on cardiovascular function and the levels of oxidative stress and antioxidant status in these patients. Therefore, the present study aimed at investigating the effects of cardiovascular, resistance and combined exercise training followed by a three-month detraining period, on cardiovascular function, physical performance and blood redox status parameters in CAD patients. Sixty coronary artery disease patients were randomly assigned to either a cardiovascular training (CVT, N = 15), resistance training (RT, N = 11), combined cardiovascular and resistance training (CT, N = 16) or a control (C, N = 15) group. The training groups participated in an 8-month supervised training program (training three days/week) followed by a 3-month detraining period, while the control group participated only in measurements. Body composition, blood pressure, performance-related variables (aerobic capacity (VO2max), muscle strength, flexibility) and blood redox status-related parameters (thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (TAC), reduced glutathione (GSH), oxidized glutathione (GSSG), catalase activity (CAT), protein carbonyls (PC)) were assessed at the beginning of the study, after 4 and 8 months of training as well as following 1, 2 and 3 months of detraining (DT). CVT induced the most remarkable and pronounced alterations in blood pressure (~9% reduction in systolic blood pressure and ~5% in diastolic blood pressure) and redox status since it had a positive effect on all redox-related variables (ranging from 16 to 137%). RT and CT training affected positively some of the assessed (TAC, CAT and PC) redox-related variables. Performance-related variables retained the positive response of the training, whereas most of the redox status parameters, for all training groups, restored near to the pre-exercise values at the end of the DT period. These results indicate that exercise training has a significant effect on redox status of CAD. Three months of detraining is enough to abolish the exercise-induced beneficial effects on redox status, indicating that for a better antioxidant status, exercise must be a lifetime commitment.
Collapse
Affiliation(s)
- Tryfonas Tofas
- School of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (T.T.); (I.G.F.); (D.D.); (C.K.D.); (Y.K.)
| | - Ioannis G. Fatouros
- School of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (T.T.); (I.G.F.); (D.D.); (C.K.D.); (Y.K.)
| | - Dimitrios Draganidis
- School of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (T.T.); (I.G.F.); (D.D.); (C.K.D.); (Y.K.)
| | - Chariklia K. Deli
- School of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (T.T.); (I.G.F.); (D.D.); (C.K.D.); (Y.K.)
| | - Athanasios Chatzinikolaou
- School of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece;
| | - Charalambos Tziortzis
- Department of Health Sciences, European University Cyprus 6 Diogenis Str., 2404 Engomi, P.O. Box 22006, 1516, Nicosia, Cyprus; (C.T.); (G.P.)
| | - George Panayiotou
- Department of Health Sciences, European University Cyprus 6 Diogenis Str., 2404 Engomi, P.O. Box 22006, 1516, Nicosia, Cyprus; (C.T.); (G.P.)
| | - Yiannis Koutedakis
- School of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (T.T.); (I.G.F.); (D.D.); (C.K.D.); (Y.K.)
- School of Sports, Performing Arts and Leisure, University of Wolverhampton, Walsall Campus, Gorway Rd, Walsall WS1 3BD, UK
| | - Athanasios Z. Jamurtas
- School of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (T.T.); (I.G.F.); (D.D.); (C.K.D.); (Y.K.)
- Correspondence: ; Tel./Fax: +30-24310-47054
| |
Collapse
|
13
|
Zongxing L, Xiangwen W, Shengxian Y. The effect of sitting position changes from pedaling rehabilitation on muscle activity. Comput Methods Biomech Biomed Engin 2020; 24:260-269. [PMID: 32969744 DOI: 10.1080/10255842.2020.1823377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sports injuries or traffic accidents make the individuals bedridden for a long duration, easily causing the disuse of lower limb muscles. Exercise rehabilitation is an effective method to improve muscle activity; however, currently, exercise therapy mainly relies on the experience of rehabilitation physicians for determining the rehabilitation parameters. In this paper, we establish a human-machine coupling system model for disuse atrophy of lower limb muscles. We analyze the influence of sitting position on pedaling rehabilitation. The relationship between the sitting position and muscle effect of lower limb muscle is calculated. We optimized the parameters to analyze muscle force and activity distribution in the muscle group during different sitting positions, and the rehabilitation risk area and the invalid area were identified from the distribution map, which helps quantify the maximal exercise of muscles without causing secondary muscle damage. The mapping relationship between sitting position and muscle force was established in this study. Further, muscle activity mapping is performed for overall assessment. Muscle activity assessment considered the training intensity of small muscles and avoids secondary injury of small muscle. The corresponding designated sitting posture improved the intensity of muscle training and shortened the rehabilitation cycle. Systematic distribution areas for different rehabilitation effects in pedal exercises are presented and provide the sitting position distribution areas for patients in the early, middle, and late stages. The proposed model provides theoretical guidance for rehabilitation physicians.
Collapse
Affiliation(s)
- Lu Zongxing
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, Fujian, China
| | - Wei Xiangwen
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, Fujian, China
| | - You Shengxian
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
14
|
Daou HN. Exercise as an anti-inflammatory therapy for cancer cachexia: a focus on interleukin-6 regulation. Am J Physiol Regul Integr Comp Physiol 2020; 318:R296-R310. [DOI: 10.1152/ajpregu.00147.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer cachexia is a complicated disorder of extreme, progressive skeletal muscle wasting. It is directed by metabolic alterations and systemic inflammation dysregulation. Numerous studies have demonstrated that increased systemic inflammation promotes this type of cachexia and have suggested that cytokines are implicated in the skeletal muscle loss. Exercise is firmly established as an anti-inflammatory therapy that can attenuate or even reverse the process of muscle wasting in cancer cachexia. The interleukin IL-6 is generally considered to be a key player in the development of the microenvironment of malignancy; it promotes tumor growth and metastasis by acting as a bridge between chronic inflammation and cancerous tissue and it also induces skeletal muscle atrophy and protein breakdown. Paradoxically, a beneficial role for IL-6 has also been identified recently, and that is its status as a “founding member” of the myokine class of proteins. Skeletal muscle is an important source of circulating IL-6 in people who participate in exercise training. IL-6 acts as an anti-inflammatory myokine by inhibiting TNFα and improving glucose uptake through the stimulation of AMPK signaling. This review discusses the action of IL-6 in skeletal muscle tissue dysfunction and the role of IL-6 as an “exercise factor” that modulates the immune system. This review also sheds light on the main considerations related to the treatment of muscle wasting in cancer cachexia.
Collapse
|
15
|
Yoshihara T, Tsuzuki T, Chang SW, Kakigi R, Sugiura T, Naito H. Exercise preconditioning attenuates hind limb unloading-induced gastrocnemius muscle atrophy possibly via the HDAC4/Gadd45 axis in old rats. Exp Gerontol 2019; 122:34-41. [PMID: 31009659 DOI: 10.1016/j.exger.2019.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/01/2019] [Accepted: 04/18/2019] [Indexed: 11/25/2022]
Abstract
The mechanisms involved in unloading-induced skeletal muscle loss may be age-specific, and the evidence for exercise preconditioning-induced protection against disuse muscle atrophy in aged rats is limited. Therefore, in this study, we investigated age-related differences in the activation of the HDAC4/Gadd45α pathway following hindlimb unloading (HU). We also assessed the protective effect of preconditioning exercise on this pathway in young and old rat gastrocnemius muscle. Three-month-old (young, n = 18) and 24-month-old (old, n = 18) male Wistar rats were assigned to the following groups: control group (n = 6), seven days of HU group (n = 6), and a bout of exercise preconditioning prior to HU (Ex+HU) group (n = 6). Rats of both ages in the Ex + HU group ran continuously on a motor-driven treadmill (0° slope, 20 m/min, 15 min) prior to HU. The gastrocnemius muscles were removed after 7 days of HU and analyzed for protein content and mRNA expression. Gastrocnemius muscle weight was significantly higher in the Ex+HU group than in the HU group of old rats, but not in young rats. Levels of HDAC4 protein and mRNA were significantly increased in the old HU group. However, the increase was significantly suppressed in the old Ex+HU group. Moreover, the protective effect of exercise preconditioning had a positive effect on Gadd45α mRNA and protein levels only in the old Ex+HU group. No exercise preconditioning-related protection was observed in the young rats. Our data indicated that a single bout of preconditioning exercise prior to HU may exert a protective effect in disuse muscle atrophy in old rats and that these effects may be partially mediated by the HDAC4/Gadd45α axis.
Collapse
Affiliation(s)
- Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba 270-1695, Japan.
| | - Takamasa Tsuzuki
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan.
| | - Shuo-Wen Chang
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba 270-1695, Japan.
| | - Ryo Kakigi
- Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Takao Sugiura
- Faculty of Education, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8513, Japan.
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba 270-1695, Japan.
| |
Collapse
|
16
|
Physical strategies to prevent disuse-induced functional decline in the elderly. Ageing Res Rev 2018; 47:80-88. [PMID: 30031068 DOI: 10.1016/j.arr.2018.07.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/08/2018] [Accepted: 07/09/2018] [Indexed: 01/07/2023]
Abstract
Disuse situations can have serious adverse health consequences in the elderly, including mainly functional impairment with subsequent increase in the risk of falls or morbimortality. The present review provides clinicians and care givers with detailed and practical information on the feasibility and effectiveness of physical strategies that are currently available to prevent or attenuate the functional decline that occurs secondarily to disuse situations in the elderly, notably in the hospital setting. In this context, active approaches such as resistance exercises and maximal voluntary contractions, which can be performed both isometrically and dynamically, are feasible during most immobilization situations including in hospitalized old people and represent powerful tools for the prevention of muscle atrophy. Aerobic exercise should also be prescribed whenever possible to reduce the loss of cardiovascular capacity associated with disuse periods. Other feasible strategies for patients who are unwilling or unable to perform volitional exercise comprise neuromuscular electrical stimulation, vibration, and blood flow restriction. However, they should ideally be applied synchronously with voluntary exercise to obtain synergistic benefits.
Collapse
|
17
|
Theilen NT, Jeremic N, Weber GJ, Tyagi SC. Exercise preconditioning diminishes skeletal muscle atrophy after hindlimb suspension in mice. J Appl Physiol (1985) 2018; 125:999-1010. [PMID: 29975600 PMCID: PMC6230574 DOI: 10.1152/japplphysiol.00137.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The aim of the present study was to investigate whether short-term, concurrent exercise training before hindlimb suspension (HLS) prevents or diminishes both soleus and gastrocnemius atrophy and to analyze whether changes in mitochondrial molecular markers were associated. Male C57BL/6 mice were assigned to control at 13 ± 1 wk of age, 7-day HLS at 12 ± 1 wk of age (HLS), 2 wk of exercise training before 7-day HLS at 10 ± 1 wk of age (Ex+HLS), and 2 wk of exercise training at 11 ± 1 wk of age (Ex) groups. HLS resulted in a 27.1% and 21.5% decrease in soleus and gastrocnemius muscle weight-to-body weight ratio, respectively. Exercise training before HLS resulted in a 5.6% and 8.1% decrease in soleus and gastrocnemius weight-to-body weight ratio, respectively. Exercise increased mitochondrial biogenesis- and function-associated markers and slow myosin heavy chain (SMHC) expression, and reduced fiber-type transitioning marker myosin heavy chain 4 (Myh4). Ex+HLS revealed decreased reactive oxygen species (ROS) and oxidative stress compared with HLS. Our data indicated the time before an atrophic setting, particularly caused by muscle unloading, may be a useful period to intervene short-term, progressive exercise training to prevent skeletal muscle atrophy and is associated with mitochondrial biogenesis, function, and redox balance. NEW & NOTEWORTHY Mitochondrial dysfunction is associated with disuse-induced skeletal muscle atrophy, whereas exercise is known to increase mitochondrial biogenesis and function. Here we provide evidence of short-term concurrent exercise training before an atrophic event protecting skeletal muscle from atrophy in two separate muscles with different, dominant fiber-types, and we reveal an association with the adaptive changes of mitochondrial molecular markers to exercise.
Collapse
Affiliation(s)
- Nicholas T Theilen
- Department of Physiology, University of Louisville , Louisville, Kentucky
| | - Nevena Jeremic
- Department of Physiology, University of Louisville , Louisville, Kentucky
| | - Gregory J Weber
- Department of Physiology, University of Louisville , Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville , Louisville, Kentucky
| |
Collapse
|
18
|
Cho Y, Ross RS. A mini review: Proteomics approaches to understand disused vs. exercised human skeletal muscle. Physiol Genomics 2018; 50:746-757. [PMID: 29958080 DOI: 10.1152/physiolgenomics.00043.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Immobilization, bed rest, or denervation leads to muscle disuse and subsequent skeletal muscle atrophy. Muscle atrophy can also occur as a component of various chronic diseases such as cancer, AIDS, sepsis, diabetes, and chronic heart failure or as a direct result of genetic muscle disorders. In addition to this atrophic loss of muscle mass, metabolic deregulation of muscle also occurs. In contrast, physical exercise plays a beneficial role in counteracting disuse-induced atrophy by increasing muscle mass and strength. Along with this, exercise can also reduce mitochondrial dysfunction and metabolic deregulation. Still, while exercise causes valuable metabolic and functional adaptations in skeletal muscle, the mechanisms and effectors that lead to these changes such as increased mitochondria content or enhanced protein synthesis are not fully understood. Therefore, mechanistic insights may ultimately provide novel ways to treat disuse induced atrophy and metabolic deregulation. Mass spectrometry (MS)-based proteomics offers enormous promise for investigating the molecular mechanisms underlying disuse and exercise-induced changes in skeletal muscle. This review will focus on initial findings uncovered by using proteomics approaches with human skeletal muscle specimens and discuss their potential for the future study.
Collapse
Affiliation(s)
- Yoshitake Cho
- Division of Cardiology, Department of Medicine, University of California San Diego , La Jolla, California
| | - Robert S Ross
- Division of Cardiology, Department of Medicine, University of California San Diego , La Jolla, California.,Cardiology Section, Department of Medicine, Veterans Administration Healthcare , San Diego, California
| |
Collapse
|
19
|
Ohira T, Higashibata A, Seki M, Kurata Y, Kimura Y, Hirano H, Kusakari Y, Minamisawa S, Kudo T, Takahashi S, Ohira Y, Furukawa S. The effects of heat stress on morphological properties and intracellular signaling of denervated and intact soleus muscles in rats. Physiol Rep 2018; 5:5/15/e13350. [PMID: 28784851 PMCID: PMC5555886 DOI: 10.14814/phy2.13350] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022] Open
Abstract
The effects of heat stress on the morphological properties and intracellular signaling of innervated and denervated soleus muscles were investigated. Heat stress was applied to rats by immersing their hindlimbs in a warm water bath (42°C, 30 min/day, every other day following unilateral denervation) under anesthesia. During 14 days of experimental period, heat stress for a total of seven times promoted growth‐related hypertrophy in sham‐operated muscles and attenuated atrophy in denervated muscles. In denervated muscles, the transcription of ubiquitin ligase, atrogin‐1/muscle atrophy F‐box (Atrogin‐1), and muscle RING‐finger protein‐1 (MuRF‐1), genes was upregulated and ubiquitination of proteins was also increased. Intermittent heat stress inhibited the upregulation of Atrogin‐1, but not MuRF‐1 transcription. And the denervation‐caused reduction in phosphorylated protein kinase B (Akt), 70‐kDa heat‐shock protein (HSP70), and peroxisome proliferator‐activated receptor γ coactivator‐1α (PGC‐1α), which are negative regulators of Atrogin‐1 and MuRF‐1 transcription, was mitigated. In sham‐operated muscles, repeated application of heat stress did not affect Atrogin‐1 and MuRF‐1 transcription, but increased the level of phosphorylated Akt and HSP70, but not PGC‐1α. Furthermore, the phosphorylation of Akt and ribosomal protein S6, which is known to stimulate protein synthesis, was increased immediately after a single heat stress particularly in the sham‐operated muscles. The effect of a heat stress was suppressed in denervated muscles. These results indicated that the beneficial effects of heat stress on the morphological properties of muscles were brought regardless of innervation. However, the responses of intracellular signaling to heat stress were distinct between the innervated and denervated muscles.
Collapse
Affiliation(s)
- Takashi Ohira
- Division of Aerospace Medicine, Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan .,Space Biomedical Research Group, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, Japan
| | - Akira Higashibata
- Japanese Experiment Module Utilization Center, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, Japan
| | - Masaya Seki
- Advanced Engineering Services Co. Ltd., Tsukuba, Ibaraki, Japan
| | - Yoichi Kurata
- Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hisashi Hirano
- Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yoichiro Kusakari
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Susumu Minamisawa
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Kudo
- Laboratory Animal Resource Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshinobu Ohira
- Graduate School of Health and Sports Science, Doshisha University, Kyoto, Japan
| | - Satoshi Furukawa
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, Japan
| |
Collapse
|
20
|
Shen L, Meng X, Zhang Z, Wang T. Physical Exercise for Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:529-545. [PMID: 30390268 DOI: 10.1007/978-981-13-1435-3_24] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The most direct characteristic of muscle atrophy is reduction in muscle mass, which is due to increased protein degradation or reduced protein synthesis in skeletal muscle. The loss of muscle mass can directly affect the quality of daily life, prolong the recovery period, and become the main risk factor for chronic diseases. However, there is currently no effective way to prevent and treat this disease, and therefore it is imperative to explore effective therapeutic approaches for muscle atrophy. It is well known that physical exercise is important for maintaining good health and long-term adherence to exercise can reduce the risk of cardiovascular diseases, obesity, and diabetes. It is also well established that exercise training can promote the synthesis of muscle protein and activate signaling pathways that regulate the metabolism and function of muscle fibers. Therefore, exercise can be used as a method to treat muscle atrophy in many of these conditions. Mitochondria play an important role in skeletal muscle homeostasis and bioenergy metabolism. Mitochondria are sensitive to contractile signals, and hence exercise can improve mitochondrial function and promote biosynthesis, which ultimately maintains the healthy state of cells and the whole body. On the other hand, frequent unaccustomed exercise will change the structure and function of skeletal muscle fibers, which is called exercise-induced muscle damage. When the exercise-induced muscle damage happens, it can cause temporary muscle damage and soreness, giving a negative effect on the muscle function.
Collapse
Affiliation(s)
- Liang Shen
- Physical Education College of Shanghai University, Shanghai, China
| | - Xiangmin Meng
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Zhongrong Zhang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Tianhui Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China.
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|
21
|
|
22
|
Vitamin D supplementation attenuates oxidative stress in paraspinal skeletal muscles in patients with low back pain. Eur J Appl Physiol 2017; 118:143-151. [DOI: 10.1007/s00421-017-3755-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 10/29/2017] [Indexed: 12/17/2022]
|
23
|
Scicchitano BM, Pelosi L, Sica G, Musarò A. The physiopathologic role of oxidative stress in skeletal muscle. Mech Ageing Dev 2017; 170:37-44. [PMID: 28851603 DOI: 10.1016/j.mad.2017.08.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/14/2017] [Accepted: 08/18/2017] [Indexed: 12/16/2022]
Abstract
Muscle senescence is a complex mechanism that is usually associated with a decrease in mass, strength and velocity of contraction. This state, known as sarcopenia, is a multifactorial process and it may be the consequence of several events, including accumulation of oxidative stress. The role of oxidative stress in the physiopathology of skeletal muscle is quite complex. Transiently increased levels of oxidative stress might reflect a potentially health promoting process, while an uncontrolled accumulation might have pathological implication. The physiopathological role of oxidative stress on skeletal muscle, its involvement in aging-induced sarcopenia, and potential countermeasures will be discussed.
Collapse
Affiliation(s)
- Bianca Maria Scicchitano
- Institute of Histology and Embryology, School of Medicine, Catholic University of the Sacred Heart, Rome, Italy.
| | - Laura Pelosi
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy
| | - Gigliola Sica
- Institute of Histology and Embryology, School of Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Italy.
| |
Collapse
|
24
|
Ribosomal transcription is regulated by PGC-1alpha and disturbed in Huntington's disease. Sci Rep 2017; 7:8513. [PMID: 28819135 PMCID: PMC5561056 DOI: 10.1038/s41598-017-09148-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022] Open
Abstract
PGC-1α is a versatile inducer of mitochondrial biogenesis and responsive to the changing energy demands of the cell. As mitochondrial ATP production requires proteins that derive from translation products of cytosolic ribosomes, we asked whether PGC-1α directly takes part in ribosomal biogenesis. Here, we show that a fraction of cellular PGC-1α localizes to the nucleolus, the site of ribosomal transcription by RNA polymerase I. Upon activation PGC-1α associates with the ribosomal DNA and boosts recruitment of RNA polymerase I and UBF to the rDNA promoter. This induces RNA polymerase I transcription under different stress conditions in cell culture and mouse models as well as in healthy humans and is impaired already in early stages of human Huntington’s disease. This novel molecular link between ribosomal and mitochondrial biogenesis helps to explain sarcopenia and cachexia in diseases of neurodegenerative origin.
Collapse
|
25
|
Morais SRL, Brito VGB, Mello WG, Oliveira SHP. l-arginine modulates inflammation and muscle regulatory genes after a single session of resistance exercise in rats. Scand J Med Sci Sports 2017. [PMID: 28649743 DOI: 10.1111/sms.12935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We investigated the skeletal muscle adaptation to l-arginine supplementation prior to a single session of resistance exercise (RE) during the early phase of muscle repair. Wistar rats were randomly assigned into non-exercised (Control), RE plus vehicle (RE); RE plus l-arginine (RE+L-arg) and RE plus aminoguanidine (RE+AG) groups. Animals received four doses of either vehicle (0.9% NaCl), l-arg (1 g/b.w.), or AG (iNOS inhibitor) (50 mg/b.w.). The animals performed a single RE session until the concentric failure (ladder climbing; 80% overload) and the skeletal muscles were harvested at 0, 8, 24, and 48 hours post-RE. The RE resulted in increased neutrophil infiltrate (24 hours post-RE) (3621 vs 11852; P<.0001) associated with enhanced TNF-α (819.49 vs 357.02; P<.005) and IL-6 (3.84 vs 1.08; P<.0001). Prior, l-arginine supplementation attenuates neutrophil infiltration (5622; P<.0001), and also TNF-α (506.01; P<.05) and IL-6 (2.51, P<.05) levels. AG pretreatment mediated an inhibition of iNOS levels similar to levels found in RE group. RE animals displayed increased of atrogin-1 (1.9 fold) and MuRF-1 (3.2 fold) mRNA levels, reversed by l-arg supplementation [atrogin-1 (0.6 fold; P<.001); MuRF-1 (0.8-fold; P<.001)] at 24 hours post-RE. MyoD up-regulated levels were restricted to l-arg treated animals at 24 hours (2.8 vs 1.5 fold; P<.005) and 48 hours post-RE (2.4 vs 1.1 fold; P<.001). AG pretreatment reversed these processes at 24 hours [atrogin-1 (2.1 fold; P<.0001); MuRF-1 (2.5 fold; P<.0001); MyoD (1.4 fold)]. l-arginine supplementation seems to attenuate the resolution of RE-induced muscle inflammation and up-regulates MyoD expression during the early phase of muscle repair.
Collapse
Affiliation(s)
- S R L Morais
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas-SBFis/UNESP, Araçatuba, São Paulo, Brazil.,Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - V G B Brito
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas-SBFis/UNESP, Araçatuba, São Paulo, Brazil.,Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - W G Mello
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas-SBFis/UNESP, Araçatuba, São Paulo, Brazil.,Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - S H P Oliveira
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas-SBFis/UNESP, Araçatuba, São Paulo, Brazil.,Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| |
Collapse
|
26
|
Spanidis Y, Stagos D, Orfanou M, Goutzourelas N, Bar-Or D, Spandidos D, Kouretas D. Variations in Oxidative Stress Levels in 3 Days Follow-up in Ultramarathon Mountain Race Athletes. J Strength Cond Res 2017; 31:582-594. [PMID: 28212265 DOI: 10.1519/jsc.0000000000001584] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Spanidis, Y, Stagos, D, Orfanou, M, Goutzourelas, N, Bar-or, D, Spandidos, D, and Kouretas, D. Variations in oxidative stress levels in 3 days follow-up in ultramarathon mountain race athletes. J Strength Cond Res 31(3): 582-594, 2017-The aim of the present study was the monitoring of the redox status of runners participating in a mountain ultramarathon race of 103 km. Blood samples from 12 runners were collected prerace and 24, 48, and 72 hours postrace. The samples were analyzed by using conventional oxidative stress markers, such as protein carbonyls (CARB), thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (TAC) in plasma, as well as glutathione (GSH) levels and catalase (CAT) activity in erythrocytes. In addition, 2 novel markers, the static oxidation-reduction potential marker (sORP) and the capacity oxidation-reduction potential (cORP), were measured in plasma. The results showed significant increase in sORP levels and significant decrease in cORP and GSH levels postrace compared with prerace. The other markers did not exhibit significant changes postrace compared with prerace. Furthermore, an interindividual analysis showed that in all athletes but one sORP was increased, whereas cORP was decreased. Moreover, GSH levels were decreased in all athletes at least at 2 time points postrace compared with prerace. The other markers exhibited great variations between different athletes. In conclusion, ORP and GSH markers suggested that oxidative stress has existed even 3 days post ultramarathon race. The practical applications from these results would be that the most effective markers for short-term monitoring of ultramarathon mountain race-induced oxidative stress were sORP, cORP, and GSH. Also, administration of supplements enhancing especially GSH is recommended during ultramarathon mountain races to prevent manifestation of pathological conditions.
Collapse
Affiliation(s)
- Ypatios Spanidis
- 1Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece; 2Trauma Research Department, St. Anthony Hospital, Lakewood, Colorado; 3Trauma Research Department, Swedish Medical Center, Englewood, Colorado; 4Trauma Research Department, Medical Center of Plano, Plano, Texas; 5Luoxis Diagnostics, Inc., Englewood, Colorado; and 6Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, Greece
| | | | | | | | | | | | | |
Collapse
|
27
|
Strength training prior to muscle injury potentiates low-level laser therapy (LLLT)-induced muscle regeneration. Lasers Med Sci 2016; 32:317-325. [PMID: 27909917 DOI: 10.1007/s10103-016-2116-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022]
Abstract
We evaluated whether strength training (ST) performed prior to skeletal muscle cryolesion would act as a preconditioning, improving skeletal muscle regeneration and responsiveness to low-level laser therapy (LLLT). Wistar rats were randomly assigned into non-exercised (NE), NE plus muscle lesion (NE + LE), NE + LE plus LLLT (NE + LE + LLLT), strength training (ST), ST + LE, and ST + LE + LLLT. The animals performed 10 weeks of ST (climbing ladder; 3× week; 80% overload). Forty-eight hours after the last ST session, tibialis anterior (TA) cryolesion was induced and LLLT (InGaAlP, 660 nm, 0.035 W, 4.9 J/cm2/point, 3 points, spot light 0.028 cm2, 14 J/cm2) initiated and conducted daily for 14 consecutive days. The difference between intergroups was assessed using Student's t test and intragroups by two-way analysis of variance. Cryolesion induced massive muscle degeneration associated with inflammatory infiltrate. Prior ST improved skeletal regeneration 14-days after cryolesion and potentiated the regenerative response to LLLT. Cryolesion induced increased TNF-α levels in both NE + LE and ST + LE groups. Both isolated ST and LLLT reduced TNF-α to control group levels; however, prior ST potentiated LLLT response. Both isolated ST and LLLT increased IL-10 levels with no additional effect. In contrast, increased TA IL-6 levels were restricted to ST and ST + LE + LLLT groups. TA myogenin mRNA levels were not changed by neither prior ST or ST + LLLT. Both prior ST and LLLT therapies increased MyoD mRNA levels and, interestingly, combined therapies potentiated this response. Myf5 mRNA levels were increased only in ST groups. Taken together, our data provides evidences for prior ST potentiating LLLT efficacy in promoting skeletal muscle regeneration.
Collapse
|
28
|
He F, Li J, Liu Z, Chuang CC, Yang W, Zuo L. Redox Mechanism of Reactive Oxygen Species in Exercise. Front Physiol 2016; 7:486. [PMID: 27872595 PMCID: PMC5097959 DOI: 10.3389/fphys.2016.00486] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/10/2016] [Indexed: 01/04/2023] Open
Abstract
It is well known that regular exercise can benefit health by enhancing antioxidant defenses in the body. However, unaccustomed and/or exhaustive exercise can generate excessive reactive oxygen species (ROS), leading to oxidative stress-related tissue damages and impaired muscle contractility. ROS are produced in both aerobic and anaerobic exercise. Mitochondria, NADPH oxidases and xanthine oxidases have all been identified as potential contributors to ROS production, yet the exact redox mechanisms underlying exercise-induced oxidative stress remain elusive. Interestingly, moderate exposure to ROS is necessary to induce body's adaptive responses such as the activation of antioxidant defense mechanisms. Dietary antioxidant manipulation can also reduce ROS levels and muscle fatigue, as well as enhance exercise recovery. To elucidate the complex role of ROS in exercise, this review updates on new findings of ROS origins within skeletal muscles associated with various types of exercises such as endurance, sprint and mountain climbing. In addition, we will examine the corresponding antioxidant defense systems as well as dietary manipulation against damages caused by ROS.
Collapse
Affiliation(s)
- Feng He
- Department of Kinesiology, California State University-Chico Chico, CA, USA
| | - Juan Li
- Department of Physical Education, Anhui University Anhui, China
| | - Zewen Liu
- Affiliated Ezhou Central Hospital at Medical School of Wuhan UniversityHubei, China; Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of MedicineColumbus, OH, USA
| | - Chia-Chen Chuang
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of MedicineColumbus, OH, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State UniversityColumbus, OH, USA
| | - Wenge Yang
- Department of Physical Education, China University of Geosciences Beijing, China
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of MedicineColumbus, OH, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
29
|
Soavi C, Marušič U, Sanz JM, Morieri ML, Dalla Nora E, Šimunič B, Pišot R, Zuliani G, Passaro A. Age-related differences in plasma BDNF levels after prolonged bed rest. J Appl Physiol (1985) 2016; 120:1118-23. [DOI: 10.1152/japplphysiol.01111.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/01/2016] [Indexed: 01/22/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a member of the family of neurotrophins and has been implicated in brain resistance to insults. Murine studies have demonstrated increased hippocampal concentration after acute immobilization and decreased concentration after chronic immobilization. In humans, chronic stress and sedentary lifestyle result in decreased plasma BDNF levels, but there no data exist regarding acute immobilization. The aim of our study was to evaluate age-related responses [comparing 7 younger subjects (age 23 ± 3 yr) and 8 older subjects (age 60 ± 4 yr)] of plasma BDNF before (baseline data collection, BDC) and after 14 days (BR14) of horizontal bed rest (BR). At BDC, BDNF levels were not different between the two groups ( P = 0.101), although at BR14, BDNF levels were higher in older subjects (62.02 ± 18.31) than in younger subjects (34.36 ± 15.24 pg/ml) ( P = 0.002). A general linear model for repeated measures showed a significant effect of BR on BDNF ( P = 0.002). The BDC BDNF levels correlated with fat-free mass in both populations (ALL) ( R = 0.628, P = 0.012), (older, R = 0.753, P = 0.031; younger, R = 0.772, P = 0.042), and with total cholesterol in ALL ( R = 0.647, P = 0.009) and older study subjects ( R = 0.805, P = 0.016). At BR14, BDNF correlated with total cholesterol ( R = 0.579, P = 0.024) and age ( R = 0.647, P = 0.009) in ALL. With an increase in age, the brain could become naturally less resistant to acute stressors, including the detrimental effects of prolonged bed rest, and thus the increase in BDNF in the older study group might reflect a protective overshooting of the brain to counteract the negative effects in such conditions.
Collapse
Affiliation(s)
- Cecilia Soavi
- Medical Science Department, University of Ferrara, Ferrara, Italy; and
| | - Uroš Marušič
- Science and Research Centre, University of Primorska, Capodistria, Slovenia
| | - Juana Maria Sanz
- Medical Science Department, University of Ferrara, Ferrara, Italy; and
| | | | | | - Bostjan Šimunič
- Science and Research Centre, University of Primorska, Capodistria, Slovenia
| | - Rado Pišot
- Science and Research Centre, University of Primorska, Capodistria, Slovenia
| | - Giovanni Zuliani
- Medical Science Department, University of Ferrara, Ferrara, Italy; and
| | - Angelina Passaro
- Medical Science Department, University of Ferrara, Ferrara, Italy; and
| |
Collapse
|
30
|
Banzrai C, Nodera H, Kawarai T, Higashi S, Okada R, Mori A, Shimatani Y, Osaki Y, Kaji R. Impaired Axonal Na(+) Current by Hindlimb Unloading: Implication for Disuse Neuromuscular Atrophy. Front Physiol 2016; 7:36. [PMID: 26909041 PMCID: PMC4754663 DOI: 10.3389/fphys.2016.00036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/26/2016] [Indexed: 12/12/2022] Open
Abstract
This study aimed to characterize the excitability changes in peripheral motor axons caused by hindlimb unloading (HLU), which is a model of disuse neuromuscular atrophy. HLU was performed in normal 8-week-old male mice by fixing the proximal tail by a clip connected to the top of the animal's cage for 3 weeks. Axonal excitability studies were performed by stimulating the sciatic nerve at the ankle and recording the compound muscle action potential (CMAP) from the foot. The amplitudes of the motor responses of the unloading group were 51% of the control amplitudes [2.2 ± 1.3 mV (HLU) vs. 4.3 ± 1.2 mV (Control), P = 0.03]. Multiple axonal excitability analysis showed that the unloading group had a smaller strength-duration time constant (SDTC) and late subexcitability (recovery cycle) than the controls [0.075 ± 0.01 (HLU) vs. 0.12 ± 0.01 (Control), P < 0.01; 5.4 ± 1.0 (HLU) vs. 10.0 ± 1.3 % (Control), P = 0.01, respectively]. Three weeks after releasing from HLU, the SDTC became comparable to the control range. Using a modeling study, the observed differences in the waveforms could be explained by reduced persistent Na+ currents along with parameters related to current leakage. Quantification of RNA of a SCA1A gene coding a voltage-gated Na+ channel tended to be decreased in the sciatic nerve in HLU. The present study suggested that axonal ion currents are altered in vivo by HLU. It is still undetermined whether the dysfunctional axonal ion currents have any pathogenicity on neuromuscular atrophy or are the results of neural plasticity by atrophy.
Collapse
Affiliation(s)
| | - Hiroyuki Nodera
- Department of Neurology, Tokushima University Tokushima, Japan
| | | | - Saki Higashi
- Department of Neurology, Tokushima University Tokushima, Japan
| | - Ryo Okada
- Department of Neurology, Tokushima University Tokushima, Japan
| | - Atsuko Mori
- Department of Neurology, Tokushima University Tokushima, Japan
| | | | - Yusuke Osaki
- Department of Neurology, Tokushima University Tokushima, Japan
| | - Ryuji Kaji
- Department of Neurology, Tokushima University Tokushima, Japan
| |
Collapse
|
31
|
Welch N, Moran K, Antony J, Richter C, Marshall B, Coyle J, Falvey E, Franklyn-Miller A. The effects of a free-weight-based resistance training intervention on pain, squat biomechanics and MRI-defined lumbar fat infiltration and functional cross-sectional area in those with chronic low back. BMJ Open Sport Exerc Med 2015; 1:e000050. [PMID: 27900136 PMCID: PMC5117021 DOI: 10.1136/bmjsem-2015-000050] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2015] [Indexed: 01/30/2023] Open
Abstract
Background Low back pain is one of the most prevalent musculoskeletal conditions in the world. Many exercise treatment options exist but few interventions have utilised free-weight resistance training. To investigate the effects of a free-weight-based resistance training intervention on pain and lumbar fat infiltration in those with chronic low back pain. Methods Thirty participants entered the study, 11 females (age=39.6±12.4 years, height=164 cm±5.3 cm, body mass=70.9±8.2 kg,) and 19 males (age=39.7±9.7 years, height=179±5.9 cm, body mass=86.6±15.9 kg). A 16-week, progressive, free-weight-based resistance training intervention was used. Participants completed three training sessions per week. Participants completed a Visual Analogue Pain Scale, Oswestry Disability Index and Euro-Qol V2 quality of life measure at baseline and every 4 weeks throughout the study. Three-dimensional kinematic and kinetic measures were used for biomechanical analysis of a bodyweight squat movement. Maximum strength was measured using an isometric mid-thigh pull, and lumbar paraspinal endurance was measured using a Biering-Sorensen test. Lumbar paraspinal fat infiltration was measured preintervention and postintervention using MRIs. Results Postintervention pain, disability and quality of life were all significantly improved. In addition, there was a significant reduction in fat infiltration at the L3L4 and L4L5 levels and increase in lumbar extension time to exhaustion of 18%. Conclusions A free-weight-based resistance training intervention can be successfully utilised to improve pain, disability and quality of life in those with low back pain.
Collapse
Affiliation(s)
- Neil Welch
- Sports Medicine Department, Sports Surgery Clinic, Dublin, Ireland
- INSIGHT Research Centre, Dublin City University, Dublin, Ireland
- Sports Surgery Clinic, Santry Demesne, Dublin 9, Ireland
| | - Kieran Moran
- INSIGHT Research Centre, Dublin City University, Dublin, Ireland
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Joseph Antony
- INSIGHT Research Centre, Dublin City University, Dublin, Ireland
| | - Chris Richter
- INSIGHT Research Centre, Dublin City University, Dublin, Ireland
| | - Brendan Marshall
- Sports Medicine Department, Sports Surgery Clinic, Dublin, Ireland
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Joe Coyle
- Sports Medicine Department, Sports Surgery Clinic, Dublin, Ireland
| | - Eanna Falvey
- Sports Medicine Department, Sports Surgery Clinic, Dublin, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Andrew Franklyn-Miller
- Sports Medicine Department, Sports Surgery Clinic, Dublin, Ireland
- Centre for Health, Exercise and Sports Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
32
|
Spanidis Y, Goutzourelas N, Stagos D, Mpesios A, Priftis A, Bar-Or D, Spandidos DA, Tsatsakis AM, Leon G, Kouretas D. Variations in oxidative stress markers in elite basketball players at the beginning and end of a season. Exp Ther Med 2015; 11:147-153. [PMID: 26889231 PMCID: PMC4726866 DOI: 10.3892/etm.2015.2843] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to examine the changes occuring in the redox status in male basketball players at the beginning and end of a highly competitive season. For this purpose, the redox status of 14 professional athletes of a European basketball club was examined at 2 different time points, at the beginning (phase 1) and at the end of the season (phase 2). The redox status was assessed in blood using conventional oxidative stress markers, such as thiobarbituric acid reactive substances (TBARS), protein carbonyls (CARB) and the total antioxidant capacity (TAC) in plasma, as well as glutathione (GSH) levels and catalase (CAT) activity in erythrocytes. Moreover, a new static oxidation-reduction potential marker (sORP) was assessed in plasma. Our results revealed that sORP was significantly increased by 9.6% and GSH levels were significantly decreased by 35.0% at phase 2 compared to phase 1, indicating the induction of oxidative stress due to excessive exercise. Moreover, TAC was significantly increased by 12.9% at phase 2 compared to phase 1, indicating the activation of adaptive responses for counteracting oxidative stress. The CARB and TBARS levels were not significantly altered between the 2 phases, although there was a significant correlation (r=0.798) between the sORP and CARB levels. Furthermore, the variations in these markers between athletes were examined. We found that 3 markers exhibited a similar response between athletes, that is, sORP was increased in all 14 athletes, TAC was increased in 13 and the GSH levels were decreased in 14. However, the other 3 markers (i.e., TBARS, CARB and CAT) exhibited marked variations between the athletes, suggesting that the optimal approach with which to counteract (e.g., antioxidant supplementation) the observed increase in oxidative stress is the individualized examination of the redox status of athletes using a series of markers. This would allow the identification of athletes affected by severe oxidative stress and inflammation, and would thus indicate when necessary intervention measures are required to improve their health and performance.
Collapse
Affiliation(s)
- Ypatios Spanidis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Nikolaos Goutzourelas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Anastasios Mpesios
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Alexandros Priftis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - David Bar-Or
- Department of Trauma Research, St. Anthony Hospital, Lakewood, CO 80228, USA; Department of Trauma Research, Swedish Medical Center, Englewood, CO 80113, USA; Department of Trauma Research, Medical Center of Plano, Plano, TX 75075, USA; Luoxis Diagnostics, Inc., Englewood, CO 80112, USA
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, University of Crete, Medical School, Heraklion 71409, Greece
| | - Aristides M Tsatsakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| | - George Leon
- Standard Centre of Bioassays, 'Hartografoi Hygeias', Athens 15124, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| |
Collapse
|