1
|
Tagami K, Okuzawa T, Yoshida K, Mishima R, Obara N, Kunimatsu A, Koide M, Teranishi T, Itakura K, Ikeda K, Murohara T, Nagata K. L-arginine ameliorates hypertension and cardiac mitochondrial abnormalities but not cardiac injury in male metabolic syndrome rats. Physiol Rep 2025; 13:e70183. [PMID: 39980190 PMCID: PMC11842508 DOI: 10.14814/phy2.70183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 02/22/2025] Open
Abstract
L-Arginine supplementation has beneficial effects on metabolic disorders in rodents. We here investigated the effects of exogenous L-arginine on cardiac pathology and mitochondrial reactive oxygen species (ROS) production and dynamics in DahlS.Z-Leprfa/Leprfa (DS/obese) rats, a model of metabolic syndrome (MetS). DS/obese rats and their lean homozygous littermate (DahlS.Z-Lepr+/Lepr+, or DS/lean) controls were provided with drinking water containing 0.50% L-arginine-HCl or 0.85% L-alanine (isonitrogenous control) from 13 to 17 weeks of age. L-Arginine supplementation markedly alleviated hypertension without affecting cardiac injury in MetS rats. It also attenuated the increase in ROS production apparent in cardiac mitochondria isolated from MetS rats as well as suppressed the associated upregulation of Nox4 mRNA and protein in the heart. Furthermore, L-arginine reversed the decrease in the size of cardiac mitochondria as well as changes in the expression of DRP1 and OPA1 proteins apparent in the L-alanine-treated MetS rat heart. Cardiac arginase II gene expression and arginase activity were increased by L-arginine treatment in MetS rats but not CONT rats. L-Arginine supplementation thus ameliorated hypertension and cardiac mitochondrial abnormalities in MetS rats, with the lack of a cardioprotective effect possibly being due to increased arginase activity.
Collapse
Affiliation(s)
- Kaito Tagami
- Pathophysiology Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Touko Okuzawa
- Pathophysiology Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Keisuke Yoshida
- Pathophysiology Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Rin Mishima
- Pathophysiology Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Natsuki Obara
- Department of Medical TechnologyNagoya University School of Health SciencesNagoyaJapan
| | - Asuko Kunimatsu
- Department of Medical TechnologyNagoya University School of Health SciencesNagoyaJapan
| | - Mayako Koide
- Department of Medical TechnologyNagoya University School of Health SciencesNagoyaJapan
| | - Tamami Teranishi
- Department of Medical TechnologyNagoya University School of Health SciencesNagoyaJapan
| | - Koji Itakura
- Division for Medical Research EngineeringNagoya University Graduate School of MedicineNagoyaJapan
| | - Katsuhide Ikeda
- Pathophysiology Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Toyoaki Murohara
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Kohzo Nagata
- Pathophysiology Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
2
|
Ajalbert G, Brenna A, Ming XF, Yang Z, Potenza DM. Elevation of Arginase-II in Podocytes Contributes to Age-Associated Albuminuria in Male Mice. Int J Mol Sci 2023; 24:11228. [PMID: 37446405 PMCID: PMC10342439 DOI: 10.3390/ijms241311228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
One of the manifestations of renal aging is podocyte dysfunction and loss, which are associated with proteinuria and glomerulosclerosis. Studies show a male bias in glomerular dysfunction and chronic kidney diseases, and the underlying mechanisms remain obscure. Recent studies demonstrate the role of an age-associated increase in arginase-II (Arg-II) in proximal tubules of both male and female mice. However, it is unclear whether Arg-II is also involved in aging glomeruli. The current study investigates the role of the sex-specific elevation of Arg-II in podocytes in age-associated increased albuminuria. Young (3-4 months) and old (20-22 months) male and female mice of wt and arginase-II knockout (arg-ii-/-) were used. Albuminuria was employed as a readout of glomerular function. Cellular localization and expression of Arg-II in glomeruli were analyzed using an immunofluorescence confocal microscope. A more pronounced age-associated increase in albuminuria was found in male than in female mice. An age-associated induction of Arg-II in glomeruli and podocytes (as demonstrated by co-localization of Arg-II with the podocyte marker synaptopodin) was also observed in males but not in females. Ablation of the arg-ii gene in mice significantly reduces age-associated albuminuria in males. Also, age-associated decreases in podocyte density and glomerulus hypertrophy are significantly prevented in male arg-ii-/- but not in female mice. However, age-associated glomerulosclerosis is not affected by arg-ii ablation in both sexes. These results demonstrate a role of Arg-II in sex-specific podocyte injury in aging. They may explain the sex-specific differences in the development of renal disease in humans during aging.
Collapse
Affiliation(s)
| | | | | | - Zhihong Yang
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland; (G.A.); (A.B.); (X.-F.M.)
| | - Duilio M. Potenza
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland; (G.A.); (A.B.); (X.-F.M.)
| |
Collapse
|
3
|
Atmanspacher F, Schreckenberg R, Wolf A, Grgic I, Schlüter KD. Effect of Metabolic Adaptation by Voluntary Running Wheel Activity and Aldosterone Inhibition on Renal Function in Female Spontaneously Hypertensive Rats. Cells 2022; 11:cells11243954. [PMID: 36552716 PMCID: PMC9777552 DOI: 10.3390/cells11243954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Metabolic effects of physical activity may be reno-protective in the context of hypertension, although exercise stresses kidneys. Aldosterone participates in renal disease in hypertension, but exercise affects the plasma concentration of aldosterone. This study was designed to evaluate whether physical activity and pharmacological treatment by aldosterone have additive effects on renal protection in hypertensive rats. Female spontaneously hypertensive rats (SHR) or normotensive Wistar rats performed voluntary running wheel activity alone or in combination with aldosterone blockade (spironolactone). The following groups were studied: young and pre-hypertensive SHR (n = 5 sedentary; n = 10 running wheels, mean body weight 129 g), 10-month-old Wistar rats (n = 6 sedentary; n = 6 running wheels, mean body weight 263 g), 10-month-old SHRs (n = 18 sedentary, mean body weight 224 g; n = 6 running wheels, mean body weight 272 g; n = 6 aldosterone, mean body weight 219 g; n = 6 aldosterone and running wheels, mean body weight 265 g). Another group of SHRs had free access to running wheels for 6 months and kept sedentary for the last 3 months (n = 6, mean body weight 240 g). Aldosterone was given for the last 4 months. SHRs from the running groups had free access to running wheels beginning at the age of 6 weeks. Renal function was analyzed by microalbuminuria (Alb/Cre), urinary secretion of kidney injury molecule-1 (uKim-1), and plasma blood urea nitrogen (BUN) concentration. Molecular adaptation of the kidney to hypertension and its modification by spironolactone and/or exercise were analyzed by real-time PCR, immunoblots, and histology. After six months of hypertension, rats had increased Alb/Cre and BUN but normal uKim-1. Voluntary free running activity normalized BUN but not Alb/Cre, whereas spironolactone reduced Alb/Cre but not BUN. Exercise constitutively increased renal expression of proprotein convertase subtilisin/kexin type 9 (PCSK9; mRNA and protein) and arginase-2 (mRNA). Spironolactone reduced these effects. uKim-1 increased in rats performing voluntary running wheel activity exercise irrespectively of blood pressure and aldosterone blockade. We observed independent but no additive effects of aldosterone blockade and physical activity on renal function and on molecules potentially affecting renal lipid metabolism.
Collapse
Affiliation(s)
- Felix Atmanspacher
- Physiologisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Rolf Schreckenberg
- Physiologisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Annemarie Wolf
- Physiologisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Ivica Grgic
- Klinik für Nephrologie und Transplantationsmedizin, Philipps Universität Marburg, 35043 Marburg, Germany
| | - Klaus-Dieter Schlüter
- Physiologisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
- Correspondence:
| |
Collapse
|
4
|
Ren Z, Potenza DM, Ma Y, Ajalbert G, Hoogewijs D, Ming XF, Yang Z. Role of Arginase-II in Podocyte Injury under Hypoxic Conditions. Biomolecules 2022; 12:biom12091213. [PMID: 36139052 PMCID: PMC9496188 DOI: 10.3390/biom12091213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia plays a crucial role in acute and chronic renal injury, which is attributable to renal tubular and glomerular cell damage. Some studies provide evidence that hypoxia-dependent upregulation of the mitochondrial enzyme arginase type-II (Arg-II) in tubular cells promotes renal tubular injury. It is, however, not known whether Arg-II is also expressed in glomerular cells, particularly podocytes under hypoxic conditions, contributing to hypoxia-induced podocyte injury. The effects of hypoxia on human podocyte cells (AB8/13) in cultures and on isolated kidneys from wild-type (wt) and arg-ii gene-deficient (arg-ii−/−) mice ex vivo, as well as on mice of the two genotypes in vivo, were investigated, respectively. We found that the Arg-II levels were enhanced in cultured podocytes in a time-dependent manner over 48 h, which was dependent on the stabilization of hypoxia-inducible factor 1α (HIF1α). Moreover, a hypoxia-induced derangement of cellular actin cytoskeletal fibers, a decrease in podocin, and an increase in mitochondrial ROS (mtROS) generation—as measured by MitoSOX—were inhibited by adenoviral-mediated arg-ii gene silencing. These effects of hypoxia on podocyte injury were mimicked by the HIFα stabilizing drug DMOG, which inhibits prolyl hydroxylases (PHD), the enzymes involved in HIFα degradation. The silencing of arg-ii prevented the detrimental effects of DMOG on podocytes. Furthermore, the inhibition of mtROS generation by rotenone—the inhibitor of respiration chain complex-I—recapitulated the protective effects of arg-ii silencing on podocytes under hypoxic conditions. Moreover, the ex vivo experiments with isolated kidney tissues and the in vivo experiments with mice exposed to hypoxic conditions showed increased Arg-II levels in podocytes and decreased podocyte markers regarding synaptopodin in wt mice but not in arg-ii−/− mice. While age-associated albuminuria was reduced in the arg-ii−/− mice, the hypoxia-induced increase in albuminuria was, however, not significantly affected in the arg-ii−/−. Our study demonstrates that Arg-II in podocytes promotes cell injury. Arg-ii ablation seems insufficient to protect mice in vivo against a hypoxia-induced increase in albuminuria, but it does reduce albuminuria in aging.
Collapse
Affiliation(s)
- Zhilong Ren
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Duilio Michele Potenza
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Yiqiong Ma
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guillaume Ajalbert
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - David Hoogewijs
- Integrative Oxygen Physiology, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Xiu-Fen Ming
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Correspondence: (X.-F.M.); (Z.Y.); Tel.: +41-26-300-85-93 (Z.Y.)
| | - Zhihong Yang
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Correspondence: (X.-F.M.); (Z.Y.); Tel.: +41-26-300-85-93 (Z.Y.)
| |
Collapse
|
5
|
Michaeloudes C, Abubakar-Waziri H, Lakhdar R, Raby K, Dixey P, Adcock IM, Mumby S, Bhavsar PK, Chung KF. Molecular mechanisms of oxidative stress in asthma. Mol Aspects Med 2021; 85:101026. [PMID: 34625291 DOI: 10.1016/j.mam.2021.101026] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
The lungs are exposed to reactive oxygen species oxygen (ROS) produced as a result of inhalation of oxygen, as well as smoke and other air pollutants. Cell metabolism and the NADPH oxidases (Nox) generate low levels of intracellular ROS that act as signal transduction mediators by inducing oxidative modifications of histones, enzymes and transcription factors. Redox signalling is also regulated by localised production and sensing of ROS in mitochondria, the endoplasmic reticulum (ER) and inside the nucleus. Intracellular ROS are maintained at low levels through the action of a battery of enzymatic and non-enzymatic antioxidants. Asthma is a heterogeneous airway inflammatory disease with different immune endotypes; these include atopic or non-atopic Th2 type immune response associated with eosinophilia, or a non-Th2 response associated with neutrophilia. Airway remodelling and hyperresponsiveness accompany the inflammatory response in asthma. Over-production of ROS resulting from infiltrating immune cells, particularly eosinophils and neutrophils, and a concomitant impairment of antioxidant responses lead to development of oxidative stress in asthma. Oxidative stress is augmented in severe asthma and during exacerbations, as well as by air pollution and obesity, and causes oxidative damage of tissues promoting airway inflammation and hyperresponsiveness. Furthermore, deregulated Nox activity, mitochondrial dysfunction, ER stress and/or oxidative DNA damage, resulting from exposure to irritants, inflammatory mediators or obesity, may lead to redox-dependent changes in cell signalling. ROS play a central role in airway epithelium-mediated sensing, development of innate and adaptive immune responses, and airway remodelling and hyperresponsiveness. Nonetheless, antioxidant compounds have proven clinically ineffective as therapeutic agents for asthma, partly due to issues with stability and in vivo metabolism of these compounds. The compartmentalised nature of ROS production and sensing, and the role of ROS in homeostatic responses and in the action of corticosteroids and β2-adrenergic receptor agonists, adds another layer of complexity to antioxidant therapy development. Nox inhibitors and mitochondrial-targeted antioxidants are in clinical development for a number of diseases but they have not yet been investigated in asthma. A better understanding of the complex role of ROS in the pathogenesis of asthma will highlight new opportunities for more targeted and effective redox therapies.
Collapse
Affiliation(s)
- Charalambos Michaeloudes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom.
| | - Hisham Abubakar-Waziri
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Ramzi Lakhdar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Katie Raby
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Piers Dixey
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Sharon Mumby
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Pankaj K Bhavsar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom; Royal Brompton & Harefield NHS Trust, London, UK
| |
Collapse
|
6
|
Role of tubular epithelial arginase-II in renal inflammaging. NPJ Aging Mech Dis 2021; 7:5. [PMID: 33654066 PMCID: PMC7925687 DOI: 10.1038/s41514-021-00057-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/26/2021] [Indexed: 11/26/2022] Open
Abstract
The aging kidney undergoes complex changes and is vulnerable to injury and development of chronic kidney disease (CKD) with preponderance affecting more women than men. Evidence has been presented that the type-II L-arginine:ureohydrolase, arginase-II (Arg-II) plays a role in the acceleration of aging. Arg-II is highly expressed in the kidney. However, the role of Arg-II in renal aging is not known. This study is to investigate whether Arg-II is involved in the kidney aging process dependently on sex. Arg-II level in the kidney of wild type (WT) mice is significantly elevated with aging, which is accompanied by an increase in expression of the inflammatory cytokines/chemokines, tissue macrophages, factors involved in fibrosis, and tubulointestitial fibrosis in both males and females. This renal aging phenotype is significantly suppressed in arg-II−/− mice, mainly in the females in which Arg-II level is higher than in the males. Importantly, numerous factors such as IL-1β, MCP1, VCAM-1, and TGFβ1 are mainly localized in the proximal tubular S3 segment cells expressing Arg-II in the aging kidney. In human proximal tubular cells (HK-2), TNF-α enhances adhesion molecule expression dependently on Arg-II upregulation. Overexpression of Arg-II in the cells enhances TGFβ1 levels which is prevented by mitochondrial ROS inhibition. In summary, our study reveals that renal proximal tubular Arg-II plays an important role in the kidney aging process in females. Arg-II could be a promising therapeutic target for the treatment and prevention of aging-associated kidney diseases.
Collapse
|
7
|
Huang J, Ladeiras D, Yu Y, Ming XF, Yang Z. Detrimental Effects of Chronic L-Arginine Rich Food on Aging Kidney. Front Pharmacol 2021; 11:582155. [PMID: 33542686 PMCID: PMC7851093 DOI: 10.3389/fphar.2020.582155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/18/2020] [Indexed: 11/13/2022] Open
Abstract
The impaired L-arginine/nitric oxide pathway is a well-recognized mechanism for cardiovascular and renal diseases with aging. Therefore, supplementation of L-arginine is widely proposed to boost health or as adjunct therapy for the patients. However, clinical data, show adverse effects and even enhanced mortality in patients receiving long-term L-arginine supplementation. The effects of long-term L-arginine supplementation on kidney aging and the underlying mechanisms remain elusive. Moreover, high protein and high amino acid diet has been thought detrimental for kidney. We therefore investigated effects of chronic dietary L-arginine supplementation on kidney aging. In both young (4 months) and old (18-24 months) mice, animals either receive standard chow containing 0.65% L-arginine or diet supplemented with L-arginine to 2.46% for 16 weeks. Inflammation and fibrosis markers and albuminuria are then analyzed. Age-associated increases in tnf-α, il-1β, and il-6, vcam-1, icam-1, mcp1, inos, and macrophage infiltration, collagen expression, and S6K1 activation are observed, which is not favorably affected, but rather further enhanced, by L-arginine supplementation. Importantly, L-arginine supplementation further enhances age-associated albuminuria and mortality particularly in females, accompanied by elevated renal arginase-II (Arg-II) levels. The enhanced albuminuria by L-arginine supplementation in aging is not protected in Arg-II-/- mice. In contrast, L-arginine supplementation increases ROS and decreases nitric oxide production in old mouse aortas, which is reduced in Arg-II-/- mice. The results do not support benefits of long-term L-arginine supplementation. It rather accelerates functional decline of kidney and vasculature in aging. Thus, the long-term dietary L-arginine supplementation should be avoided particularly in elderly population.
Collapse
Affiliation(s)
- Ji Huang
- Department of Endocrinology, Metabolism, and Cardiovascular System, Laboratory of Cardiovascular and Aging Research, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland
| | - Diogo Ladeiras
- Department of Endocrinology, Metabolism, and Cardiovascular System, Laboratory of Cardiovascular and Aging Research, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland
| | - Yi Yu
- Department of Endocrinology, Metabolism, and Cardiovascular System, Laboratory of Cardiovascular and Aging Research, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Xiu-Fen Ming
- Department of Endocrinology, Metabolism, and Cardiovascular System, Laboratory of Cardiovascular and Aging Research, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland
| | - Zhihong Yang
- Department of Endocrinology, Metabolism, and Cardiovascular System, Laboratory of Cardiovascular and Aging Research, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland
| |
Collapse
|
8
|
Ansermet C, Centeno G, Lagarrigue S, Nikolaeva S, Yoshihara HA, Pradervand S, Barras J, Dattner N, Rotman S, Amati F, Firsov D. Renal tubular arginase-2 participates in the formation of the corticomedullary urea gradient and attenuates kidney damage in ischemia-reperfusion injury in mice. Acta Physiol (Oxf) 2020; 229:e13457. [PMID: 32072766 DOI: 10.1111/apha.13457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022]
Abstract
AIM Arginase 2 (ARG2) is a mitochondrial enzyme that catalyses hydrolysis of l-arginine into urea and l-ornithine. In the kidney, ARG2 is localized to the S3 segment of the proximal tubule. It has been shown that expression and activity of this enzyme are upregulated in a variety of renal pathologies, including ischemia-reperfusion (IR) injury. However, the (patho)physiological role of ARG2 in the renal tubule remains largely unknown. METHODS We addressed this question in mice with conditional knockout of Arg2 in renal tubular cells (Arg2lox/lox /Pax8-rtTA/LC1 or, cKO mice). RESULTS We demonstrate that cKO mice exhibit impaired urea concentration and osmolality gradients along the corticomedullary axis. In a model of unilateral ischemia-reperfusion injury (UIRI) with an intact contralateral kidney, ischemia followed by 24 hours of reperfusion resulted in significantly more pronounced histological damage in ischemic kidneys from cKO mice compared to control and sham-operated mice. In parallel, UIRI-subjected cKO mice exhibited a broad range of renal functional abnormalities, including albuminuria and aminoaciduria. Fourteen days after UIRI, the cKO mice exhibited complex phenotype characterized by significantly lower body weight, increased plasma levels of early predictive markers of kidney disease progression (asymmetric dimethylarginine and symmetric dimethylarginine), impaired mitochondrial function in the ischemic kidney but no difference in kidney fibrosis as compared to control mice. CONCLUSION Collectively, these results establish the role of ARG2 in the formation of corticomedullary urea and osmolality gradients and suggest that this enzyme attenuates kidney damage in ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Camille Ansermet
- Department of Pharmacology and Toxicology University of Lausanne Lausanne Switzerland
| | - Gabriel Centeno
- Department of Pharmacology and Toxicology University of Lausanne Lausanne Switzerland
| | - Sylviane Lagarrigue
- Department of Physiology & Institute of Sport Sciences University of Lausanne Lausanne Switzerland
| | - Svetlana Nikolaeva
- Department of Pharmacology and Toxicology University of Lausanne Lausanne Switzerland
- Institute of Evolutionary Physiology and Biochemistry St‐Petersburg Russia
| | - Hikari A. Yoshihara
- Institute of Physics Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Sylvain Pradervand
- Genomic Technologies Facility University of Lausanne Lausanne Switzerland
| | - Jean‐Luc Barras
- Service of Clinical Pathology Lausanne University Hospital Institute of Pathology Lausanne Switzerland
| | - Nicolas Dattner
- Service of Clinical Pathology Lausanne University Hospital Institute of Pathology Lausanne Switzerland
| | - Samuel Rotman
- Service of Clinical Pathology Lausanne University Hospital Institute of Pathology Lausanne Switzerland
| | - Francesca Amati
- Department of Physiology & Institute of Sport Sciences University of Lausanne Lausanne Switzerland
| | - Dmitri Firsov
- Department of Pharmacology and Toxicology University of Lausanne Lausanne Switzerland
| |
Collapse
|
9
|
Esquinas P, Rios R, Raya AI, Pineda C, Rodriguez M, Aguilera-Tejero E, Lopez I. Structural and ultrastructural renal lesions in rats fed high-fat and high-phosphorus diets. Clin Kidney J 2020; 14:847-854. [PMID: 33777367 PMCID: PMC7986333 DOI: 10.1093/ckj/sfaa009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Background Foods prone to deteriorate renal function are rich in fat and in phosphorus (P), but the interaction between these two factors is not well studied. Method Detailed structural and ultrastructural histopathological studies were performed on the kidneys of rats fed different amounts of fat and P: low (4%) fat (LF) and normal (0.6%) P (NP), LF and high (1.2%) P (HP), high (35%) fat (HF) and NP, HF and HP, and HF with low (0.2%) P (LP) for 28 weeks. Results Glomeruli of the HF groups showed segmental areas of retraction, sclerosis and thickening of the Bowman’s capsule and basal membranes, which were more accentuated in the HF–HP group. Ultrastructural lesions in the glomeruli also were prominent in rats fed HF, particularly in the HF–HP group, and included thickening of the capillary membrane, endothelial damage, mesangial matrix hypercellularity and podocyte effacement. P restriction reduced the severity of endothelial damage, mesangial matrix hypercellularity, thickening of capillary basement membrane and podocyte effacement. The kidneys of rats fed HP showed significant tubular atrophy and dilatation, focal tubular hyperplasia, thickening of the tubular basal membrane, interstitial edema, inflammation and calcification. All groups fed HF also showed tubular lesions that were more prominent in the HF–HP group. P restriction had a beneficial effect on inflammation and calcification. Conclusions Intake of both HF and HP damages the kidneys and their noxious effects are additive. HF intake was preferentially associated with glomerular lesions, while lesions related to HP intake were located mainly in the tubuli and in the interstitium.
Collapse
Affiliation(s)
- Paula Esquinas
- Laboratory of Cytogenetics and Genotyping of Domestic Animal, National University of Colombia, Bogota, Colombia
| | - Rafael Rios
- Department of Medicina y Cirugia Animal, University of Cordoba, Cordoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Ana I Raya
- Department of Medicina y Cirugia Animal, University of Cordoba, Cordoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Carmen Pineda
- Department of Medicina y Cirugia Animal, University of Cordoba, Cordoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Mariano Rodriguez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Escolastico Aguilera-Tejero
- Department of Medicina y Cirugia Animal, University of Cordoba, Cordoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Ignacio Lopez
- Department of Medicina y Cirugia Animal, University of Cordoba, Cordoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| |
Collapse
|
10
|
Atawia RT, Bunch KL, Toque HA, Caldwell RB, Caldwell RW. Mechanisms of obesity-induced metabolic and vascular dysfunctions. FRONT BIOSCI-LANDMRK 2019; 24:890-934. [PMID: 30844720 PMCID: PMC6689231 DOI: 10.2741/4758] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity has reached epidemic proportions and its prevalence is climbing. Obesity is characterized by hypertrophied adipocytes with a dysregulated adipokine secretion profile, increased recruitment of inflammatory cells, and impaired metabolic homeostasis that eventually results in the development of systemic insulin resistance, a phenotype of type 2 diabetes. Nitric oxide synthase (NOS) is an enzyme that converts L-arginine to nitric oxide (NO), which functions to maintain vascular and adipocyte homeostasis. Arginase is a ureohydrolase enzyme that competes with NOS for L-arginine. Arginase activity/expression is upregulated in obesity, which results in diminished bioavailability of NO, impairing both adipocyte and vascular endothelial cell function. Given the emerging role of NO in the regulation of adipocyte physiology and metabolic capacity, this review explores the interplay between arginase and NO, and their effect on the development of metabolic disorders, cardiovascular diseases, and mitochondrial dysfunction in obesity. A comprehensive understanding of the mechanisms involved in the development of obesity-induced metabolic and vascular dysfunction is necessary for the identification of more effective and tailored therapeutic avenues for their prevention and treatment.
Collapse
Affiliation(s)
- Reem T Atawia
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Katharine L Bunch
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Haroldo A Toque
- Department of Pharmacology and Toxicology,and Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Ruth B Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Robert W Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904,USA,
| |
Collapse
|
11
|
Huang J, Montani JP, Verrey F, Feraille E, Ming XF, Yang Z. Arginase-II negatively regulates renal aquaporin-2 and water reabsorption. FASEB J 2018; 32:5520-5531. [PMID: 29718707 PMCID: PMC6405175 DOI: 10.1096/fj.201701209r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Type-II l-arginine:ureahydrolase, arginase-II (Arg-II), is abundantly
expressed in the kidney. The physiologic role played by Arg-II in the kidney remains
unknown. Herein, we report that in mice that are deficient in Arg-II
(Arg-II−/−), total and membrane-associated aquaporin-2
(AQP2) protein levels were significantly higher compared with wild-type (WT)
controls. Water deprivation enhanced Arg-II expression, AQP2 levels, and membrane
association in collecting ducts. Effects of water deprivation on AQP2 were stronger
in Arg-II−/− mice than in WT mice. Accordingly, a decrease
in urine volume and an increase in urine osmolality under water deprivation were more
pronounced in Arg-II−/− mice than in WT mice, which
correlated with a weaker increase in plasma osmolality in
Arg-II−/− mice. There was no difference in vasopressin
release under water deprivation conditions between either genotype of mice. Although
total AQP2 and phosphorylated AQP2-S256 levels (mediated by PKA) in kidneys under
water deprivation conditions were significantly higher in
Arg-II−/− mice compared with WT animals, there is no
difference in the ratio of AQP2-S256:AQP2. In cultured mouse collecting duct
principal mCCDcl1 cells, expression of both Arg-II and AQP2 were enhanced
by the vasopressin type 2 receptor agonist, desamino-d-arginine
vasopressin (dDAVP). Silencing Arg-II enhanced the expression and membrane
association of AQP2 by dDAVP without influencing cAMP levels. In conclusion,
in vivo and in vitro experiments demonstrate
that Arg-II negatively regulates AQP2 and the urine-concentrating capability in
kidneys via a mechanism that is not associated with the modulation
of the cAMP pathway.—Huang, J., Montani, J.-P., Verrey, F., Feraille, E.,
Ming, X.-F., Yang, Z. Arginase-II negatively regulates renal aquaporin-2 and water
reabsorption.
Collapse
Affiliation(s)
- Ji Huang
- Division of Physiology, Department of Medicine, Cardiovascular and Aging Research, University of Fribourg, Fribourg, Switzerland.,Kidney Control of Homeostasis, National Center of Competence in Research, Zurich, Switzerland
| | - Jean-Pierre Montani
- Division of Physiology, Department of Medicine, Cardiovascular and Aging Research, University of Fribourg, Fribourg, Switzerland.,Kidney Control of Homeostasis, National Center of Competence in Research, Zurich, Switzerland
| | - François Verrey
- Kidney Control of Homeostasis, National Center of Competence in Research, Zurich, Switzerland.,Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Eric Feraille
- Kidney Control of Homeostasis, National Center of Competence in Research, Zurich, Switzerland.,Department of Cell Biology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Xiu-Fen Ming
- Division of Physiology, Department of Medicine, Cardiovascular and Aging Research, University of Fribourg, Fribourg, Switzerland.,Kidney Control of Homeostasis, National Center of Competence in Research, Zurich, Switzerland
| | - Zhihong Yang
- Division of Physiology, Department of Medicine, Cardiovascular and Aging Research, University of Fribourg, Fribourg, Switzerland.,Kidney Control of Homeostasis, National Center of Competence in Research, Zurich, Switzerland
| |
Collapse
|
12
|
Xiong Y, Yepuri G, Montani JP, Ming XF, Yang Z. Arginase-II Deficiency Extends Lifespan in Mice. Front Physiol 2017; 8:682. [PMID: 28943853 PMCID: PMC5596098 DOI: 10.3389/fphys.2017.00682] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/25/2017] [Indexed: 12/22/2022] Open
Abstract
The mitochondrial arginase type II (Arg-II) has been shown to interact with ribosomal protein S6 kinase 1 (S6K1) and mitochondrial p66Shc and to promote cell senescence, apoptosis and inflammation under pathological conditions. However, the impact of Arg-II on organismal lifespan is not known. In this study, we demonstrate a significant lifespan extension in mice with Arg-II gene deficiency (Arg-II−/−) as compared to wild type (WT) control animals. This effect is more pronounced in the females than in the males. The gender difference is associated with higher Arg-II expression levels in the females than in the males in skin and heart at both young and old age. Ablation of Arg-II gene significantly reduces the aging marker p16INK4a levels in these tissues of old female mice, whereas in the male mice this effect of Arg-II deficiency is weaker. In line with this observation, age-associated increases in S6K1 signaling and p66Shc levels in heart are significantly attenuated in the female Arg-II−/− mice. In the male mice, only p66Shc but not S6K1 signaling is reduced. In summary, our study demonstrates that Arg-II may play an important role in the acceleration of aging in mice. Genetic disruption of Arg-II in mouse extends lifespan predominantly in females, which relates to inhibition of S6K1, p66Shc, and p16INK4a. Thus, Arg-II may represent a promising target to decelerate aging process and extend lifespan as well as to treat age-related diseases.
Collapse
Affiliation(s)
- Yuyan Xiong
- Division of Physiology, Cardiovascular and Aging Research, Department of Medicine, University of FribourgFribourg, Switzerland
| | - Gautham Yepuri
- Division of Physiology, Cardiovascular and Aging Research, Department of Medicine, University of FribourgFribourg, Switzerland
| | - Jean-Pierre Montani
- Division of Physiology, Cardiovascular and Aging Research, Department of Medicine, University of FribourgFribourg, Switzerland.,National Center of Competence in Research "Kidney.CH"Fribourg, Switzerland
| | - Xiu-Fen Ming
- Division of Physiology, Cardiovascular and Aging Research, Department of Medicine, University of FribourgFribourg, Switzerland.,National Center of Competence in Research "Kidney.CH"Fribourg, Switzerland
| | - Zhihong Yang
- Division of Physiology, Cardiovascular and Aging Research, Department of Medicine, University of FribourgFribourg, Switzerland.,National Center of Competence in Research "Kidney.CH"Fribourg, Switzerland
| |
Collapse
|