1
|
Heuer RM, Falagan-Lotsch P, Okutsu J, Deperalto M, Koop RR, Umeh OG, Guevara GA, Noor MI, Covington MA, Shelton DS. Therapeutic Efficacy of Selenium Pre-treatment in Mitigating Cadmium-Induced Cardiotoxicity in Zebrafish (Danio rerio). Cardiovasc Toxicol 2024; 24:1287-1300. [PMID: 39212842 PMCID: PMC11445284 DOI: 10.1007/s12012-024-09910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases are a rampant public health threat. Environmental contaminants, such as Cadmium (Cd), a toxic metal, are risk factors for cardiovascular diseases. Given that human exposure to Cd is increasing, there is a need for therapies to ameliorate Cd toxicity. Selenium (Se), an essential trace element, has been proposed to rescue the effects of Cd toxicity, with mixed effects. Se's narrow therapeutic window necessitates precise dosing to avoid toxicity. Here, we assessed the effects of various waterborne Cd and Se concentrations and sequences on cardiac function using zebrafish (Danio rerio). We showed that Cd induced pericardial edemas and modified heart rates in zebrafish larvae in a concentration-dependent manner. To identify the therapeutic range of Se for Cd-induced cardiotoxicity, zebrafish embryos were treated with 0, 10, 50, 100, 150, or 200 μg/L Se for 1-4 days prior to exposure to 2.5 and 5 μg/L Cd. We found that a 50 µg/L Se pre-treatment before 2.5 μg/L Cd, but not 5 μg/L Cd, reduced the prevalence of pericardial edemas and ameliorated Cd-induced bradycardia in zebrafish. Zebrafish exposed to 10 and 50 μg/L of Se for up to 4 days showed typical heart morphology, whereas other Se-exposed and control fish presented pericardial edemas. Longer Se pre-treatment durations led to fewer incidences of pericardial edemas. Overall, this study highlights the importance of optimizing Se concentrations and pre-treatment periods to harness its protective effects against Cd-induced cardiotoxicity. These findings provide insights into potential therapeutic strategies for reducing Cd-related cardiovascular damage in humans.
Collapse
Affiliation(s)
- Rachael M Heuer
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, 33149, USA
| | - Priscila Falagan-Lotsch
- Department of Biological Sciences, Auburn University, Rouse Life Sciences Building, Auburn, AL, 36849, USA
| | - Jessica Okutsu
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, FL, 33134, USA
| | - Madison Deperalto
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, 33149, USA
| | - Rebekka R Koop
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, 33149, USA
| | - Olaedo G Umeh
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, FL, 33134, USA
| | - Gabriella A Guevara
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, FL, 33134, USA
| | - Md Imran Noor
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, FL, 33134, USA
| | - Myles A Covington
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, FL, 33134, USA
| | - Delia S Shelton
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, FL, 33134, USA.
| |
Collapse
|
2
|
Burggren W, Abramova R, Bautista NM, Fritsche Danielson R, Dubansky B, Gupta A, Hansson K, Iyer N, Jagadeeswaran P, Jennbacken K, Rydén-Markinhutha K, Patel V, Raman R, Trivedi H, Vazquez Roman K, Williams S, Wang QD. A larval zebrafish model of cardiac physiological recovery following cardiac arrest and myocardial hypoxic damage. Biol Open 2024; 13:bio060230. [PMID: 39263862 DOI: 10.1242/bio.060230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/22/2024] [Indexed: 09/13/2024] Open
Abstract
Contemporary cardiac injury models in zebrafish larvae include cryoinjury, laser ablation, pharmacological treatment and cardiac dysfunction mutations. Although effective in damaging cardiomyocytes, these models lack the important element of myocardial hypoxia, which induces critical molecular cascades within cardiac muscle. We have developed a novel, tractable, high throughput in vivo model of hypoxia-induced cardiac damage that can subsequently be used in screening cardioactive drugs and testing recovery therapies. Our potentially more realistic model for studying cardiac arrest and recovery involves larval zebrafish (Danio rerio) acutely exposed to severe hypoxia (PO2=5-7 mmHg). Such exposure induces loss of mobility quickly followed by cardiac arrest occurring within 120 min in 5 days post fertilization (dpf) and within 40 min at 10 dpf. Approximately 90% of 5 dpf larvae survive acute hypoxic exposure, but survival fell to 30% by 10 dpf. Upon return to air-saturated water, only a subset of larvae resumed heartbeat, occurring within 4 min (5 dpf) and 6-8 min (8-10 dpf). Heart rate, stroke volume and cardiac output in control larvae before hypoxic exposure were 188±5 bpm, 0.20±0.001 nL and 35.5±2.2 nL/min (n=35), respectively. After briefly falling to zero upon severe hypoxic exposure, heart rate returned to control values by 24 h of recovery. However, reflecting the severe cardiac damage induced by the hypoxic episode, stroke volume and cardiac output remained depressed by ∼50% from control values at 24 h of recovery, and full restoration of cardiac function ultimately required 72 h post-cardiac arrest. Immunohistological staining showed co-localization of Troponin C (identifying cardiomyocytes) and Capase-3 (identifying cellular apoptosis). As an alternative to models employing mechanical or pharmacological damage to the developing myocardium, the highly reproducible cardiac effects of acute hypoxia-induced cardiac arrest in the larval zebrafish represent an alternative, potentially more realistic model that mimics the cellular and molecular consequences of an infarction for studying cardiac tissue hypoxia injury and recovery of function.
Collapse
Affiliation(s)
- Warren Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Regina Abramova
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Naim M Bautista
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Regina Fritsche Danielson
- SVP and head of Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| | - Ben Dubansky
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Avi Gupta
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Kenny Hansson
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| | - Neha Iyer
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Pudur Jagadeeswaran
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Karin Jennbacken
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| | - Katarina Rydén-Markinhutha
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| | - Vishal Patel
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Revathi Raman
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Hersh Trivedi
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Karem Vazquez Roman
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Steven Williams
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Qing-Dong Wang
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| |
Collapse
|
3
|
Heuer RM, Falagan-Lotsch P, Okutsu J, Deperalto M, Koop RR, Umeh OG, Guevara GA, Noor MI, Covington MA, Shelton DS. Therapeutic Efficacy of Selenium Pre-treatment in Mitigating Cadmium-Induced Cardiotoxicity in Zebrafish (Danio rerio). RESEARCH SQUARE 2024:rs.3.rs-4583781. [PMID: 39011097 PMCID: PMC11247922 DOI: 10.21203/rs.3.rs-4583781/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Cardiovascular diseases are a rampant public health threat. Environmental contaminants, such as Cadmium (Cd), a toxic metal, have been linked to increased risk for cardiovascular diseases. Given that human exposure to Cd is increasing overtime, there is a need to develop new therapies to ameliorate Cd toxicity. Selenium (Se), an essential trace element, has been proposed to rescue the effects of Cd toxicity, with mixed effects. Se's narrow therapeutic window necessitates precise dosing to avoid toxicity. Here, we assessed the effects of various waterborne Cd and Se concentrations and sequences on cardiac function using zebrafish (Danio rerio). We showed that Cd induced pericardial edemas and modified heart rates in a concentration-dependent manner. To identify the therapeutic range of Se for Cd-induced cardiotoxicity, zebrafish embryos were treated with 0, 10, 50, 100, 150, or 200 μg/L Se for 1-4 days prior to exposure to Cd at 2.5, and 5 μg/L. We found that a 50 μg/L Se pre-treatment prior to Cd at 2.5 μg/L, but not at 5 μg/L, reduced the prevalence of pericardial edemas and ameliorated Cd-induced bradycardia in zebrafish. Embryos exposed to 10 and 50 μg/L of Se showed typical heart morphology, whereas other Se-exposed and Se-deficient fish presented pericardial edemas. Longer Se pre-treatment durations led to fewer incidences of pericardial edemas. Overall, this study highlights the importance of optimizing Se concentration and pre-treatment periods to harness its protective effects against Cd-induced cardiotoxicity. These findings provide insights into potential therapeutic strategies for reducing Cd-related cardiovascular damage in humans.
Collapse
|
4
|
Hsiao BY, Horng JL, Yu CH, Lin WT, Wang YH, Lin LY. Assessing cardiovascular toxicity in zebrafish embryos exposed to copper nanoparticles. Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109838. [PMID: 38220071 DOI: 10.1016/j.cbpc.2024.109838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
The toxicity of copper nanoparticles (CuNPs) to aquatic animals, particularly their effects on the cardiovascular system, has not been thoroughly investigated. In the present study, zebrafish embryos were used as a model to address this issue. After exposure to different concentrations (0.01, 0.1, 1, and 3 mg/L) of CuNPs for 96 h (4 to 100 h post-fertilization), cardiac parameters of the heart rate (HR), end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), and cardiac output (CO), and vascular parameters of the aortic blood flow velocity (ABFV) and aortic diameter (AD) were examined by a video-microscopic method. Morphologically, CuNPs induced concentration-dependent pericardial edema. Although CuNPs did not alter the HR, they significantly reduced the EDV, SV, and CO at ≥0.1 mg/L, the ESV and EF at 3 mg/L, the ABFV at ≥0.1 mg/L, and the AD at ≥1 mg/L. Transcript levels of several cardiac genes, nppa, nppb, vmhc, and gata4, were also examined. CuNPs significantly suppressed nppa and nppb at ≥0.1 mg/L, gata4 at ≥0.01 mg/L, and vmhc at 1 mg/L. This study demonstrated that CuNPs can induce cardiovascular toxicity at environmentally relevant concentrations during fish embryonic development and highlight the potential ecotoxicity of CuNPs to aquatic animals.
Collapse
Affiliation(s)
- Bu-Yuan Hsiao
- Division of Cardiology and Cardiovascular Research Center, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan; Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Hua Yu
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Wen-Ting Lin
- Affiliated Senior High School of National Taiwan Normal University, Taipei 10658, Taiwan
| | - Yu-Han Wang
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan.
| |
Collapse
|
5
|
Göpel T, Burggren WW. Temperature and hypoxia trigger developmental phenotypic plasticity of cardiorespiratory physiology and growth in the parthenogenetic marbled crayfish, Procambarus virginalis Lyko, 2017. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111562. [PMID: 38113959 DOI: 10.1016/j.cbpa.2023.111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/06/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Attempting to differentiate phenotypic variation caused by environmentally-induced alterations in gene expression from that caused by actual allelic differences can be experimentally difficult. Environmental variables must be carefully controlled and then interindividual genetic differences ruled out as sources of phenotypic variation. We investigated phenotypic variability of cardiorespiratory physiology as well as biometric traits in the parthenogenetically-reproducing marbled crayfish Procambarus virginalis Lyko, 2017, all offspring being genetically identical clones. Populations of P. virginalis were reared from eggs tank-bred at four different temperatures (16, 19, 22 and 25 °C) or two different oxygen levels (9.5 and 20 kPa). Then, at Stage 3 and 4 juvenile stages, physiological (heart rate, oxygen consumption) and morphological (carapace length, body mass) variables were measured. Heart rate and oxygen consumption measured at 23 °C showed only small effects of rearing temperature in Stage 3 juveniles, with larger effects evident in older, Stage 4 juveniles. Additionally, coefficients of variation were calculated to compare our data to previously published data on P. virginalis as well as sexually-reproducing crayfish. Comparison revealed that carapace length, body mass and heart rate (but not oxygen consumption) indeed showed lower, yet notable coefficients of variation in clonal crayfish. Yet, despite being genetically identical, significant variation in their morphology and physiology in response to different rearing conditions nonetheless occurred in marbled crayfish. This suggests that epigenetically induced phenotypic variation might play a significant role in asexual but also sexually reproducing species.
Collapse
Affiliation(s)
- Torben Göpel
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, USA; Multiscale Biology, Georg-August-Universität Göttingen, Göttingen, Germany.
| | - Warren W Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| |
Collapse
|
6
|
Scovil AM, Boloori T, de Jourdan BP, Speers-Roesch B. The effect of chemical dispersion and temperature on the metabolic and cardiac responses to physically dispersed crude oil exposure in larval American lobster (Homarus americanus). MARINE POLLUTION BULLETIN 2023; 191:114976. [PMID: 37137253 DOI: 10.1016/j.marpolbul.2023.114976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Despite their potential vulnerability to oil spills, little is known about the physiological effects of petroleum exposure and spill responses in cold-water marine animal larvae. We investigated the effects of physically dispersed (water-accommodated fraction, WAF) and chemically dispersed (chemically enhanced WAF, CEWAF; using Slickgone EW) conventional heavy crude oil on the routine metabolic rate and heart rate of stage I larval American lobster (Homarus americanus). We found no effects of 24-h exposure to sublethal concentrations of crude oil WAF or CEWAF at 12 °C. We then investigated the effect of sublethal concentrations of WAFs at three environmentally relevant temperatures (9, 12, 15 °C). The highest WAF concentration increased metabolic rate at 9 °C, whereas it decreased heart rate and increased mortality at 15 °C. Overall, metabolic and cardiac function of American lobster larvae is relatively resilient to conventional heavy crude oil and Slickgone EW exposure, but responses to WAF may be temperature-dependent.
Collapse
Affiliation(s)
- Allie M Scovil
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Tahereh Boloori
- Huntsman Marine Science Centre, 1 Lower Campus Road, St. Andrews, New Brunswick E5B 2L7, Canada
| | - Benjamin P de Jourdan
- Huntsman Marine Science Centre, 1 Lower Campus Road, St. Andrews, New Brunswick E5B 2L7, Canada
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada.
| |
Collapse
|
7
|
Córdova-de la Cruz SE, Martínez-Bautista G, Peña-Marín ES, Martínez-García R, Núñez-Nogueira G, Adams RH, Burggren WW, Alvarez-González CA. Morphological and cardiac alterations after crude oil exposure in the early-life stages of the tropical gar (Atractosteus tropicus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22281-22292. [PMID: 34783950 DOI: 10.1007/s11356-021-17208-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Fish development can be affected by environmental pollutants such as crude oil (anthropogenic or natural sources), causing alterations especially in cardiac function and morphology. Most such studies have focused on saltwater species, whereas studies in freshwater fishes are scant. The objective of the current study was to evaluate the effects of crude oil exposure (as 0, 5, 10, 15, or 20% high-energy water accommodated fractions, HEWAF) on cardiac function and edema formation during two early periods of development (embryo and eleuteroembryo, 48 h each) individually using the tropical gar Atractosteus tropicus as a model. Embryos did not exhibit alterations in body mass, total length, condition factor, and cardiac function as a function of oil. In contrast, eleuteroembryos proved to be more sensitive and exhibited increased body mass, total length, and condition factor, decreased heart rate and phenotypic alterations such as cardiac dysmorphia (tubular hearts) and spine curvature at high concentrations of HEWAF. Moreover, edema formation was observed in both stages This study shows different functional responses of A. tropicus after crude oil exposure and provides useful information of the developmental impacts of these compounds on the early life stages of freshwater tropical fishes.
Collapse
Affiliation(s)
- Simrith E Córdova-de la Cruz
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Gil Martínez-Bautista
- Developmental Integrative Biology Group, Department of Biology, University of North, Texas, Denton, TX, USA
| | - Emyr S Peña-Marín
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
- Cátedra CONACYT-UJAT, CDMX, Mexico
| | - Rafael Martínez-García
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Gabriel Núñez-Nogueira
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Randy H Adams
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Warren W Burggren
- Developmental Integrative Biology Group, Department of Biology, University of North, Texas, Denton, TX, USA
| | | |
Collapse
|
8
|
Mousavi SE, Purser GJ, Patil JG. Embryonic Onset of Sexually Dimorphic Heart Rates in the Viviparous Fish, Gambusia holbrooki. Biomedicines 2021; 9:165. [PMID: 33567532 PMCID: PMC7915484 DOI: 10.3390/biomedicines9020165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
In fish, little is known about sex-specific differences in physiology and performance of the heart and whether these differences manifest during development. Here for the first time, the sex-specific heart rates during embryogenesis of Gambusia holbrooki, from the onset of the heart rates (HRs) to just prior to parturition, was investigated using light cardiogram. The genetic sex of the embryos was post-verified using a sex-specific genetic marker. Results reveal that heart rates and resting time significantly increase (p < 0.05) with progressive embryonic development. Furthermore, both ventricular and atrial frequencies of female embryos were significantly higher (p < 0.05) than those of their male sibs at the corresponding developmental stages and remained so at all later developmental stages (p < 0.05). In concurrence, the heart rate and ventricular size of the adult females were also significantly (p < 0.05) higher and larger respectively than those of males. Collectively, the results suggest that the cardiac sex-dimorphism manifests as early as late-organogenesis and persists through adulthood in this species. These findings suggest that the cardiac measurements can be employed to non-invasively sex the developing embryos, well in advance of when their phenotypic sex is discernible. In addition, G. holbrooki could serve as a better model to study comparative vertebrate cardiovascular development as well as to investigate anthropogenic and climatic impacts on heart physiology of this species, that may be sex influenced.
Collapse
Affiliation(s)
- Seyed Ehsan Mousavi
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia;
| | - G. John Purser
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia;
| | - Jawahar G. Patil
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia;
- Inland Fisheries Service, New Norfolk, TAS 7140, Australia
| |
Collapse
|
9
|
Salehin N, Villarreal C, Teranikar T, Dubansky B, Lee J, Chuong CJ. Assessing Pressure-Volume Relationship in Developing Heart of Zebrafish In-Vivo. Ann Biomed Eng 2021; 49:2080-2093. [PMID: 33532949 DOI: 10.1007/s10439-021-02731-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
During embryogenesis, the developing heart transforms from a linear peristaltic tube into a multi-chambered pulsatile pump with blood flow-regulating valves. In this work, we report how hemodynamic parameters evolve during the heart's development, leading to its rhythmic pumping and blood flow regulation as a functioning organ. We measured the time course of intra-ventricular pressure from zebrafish embryos at 3, 4, and 5 days post fertilization (dpf) using the servo null method. We also measured the ventricular volume and monitored the opening/closing activity of the AV and VB valves using 4D selective plane illumination microscopy (SPIM). Our results revealed significant increases in peak systolic pressure, stroke volume and work, cardiac output, and power generation, and a total peripheral resistance decrease from zebrafish at 4, 5 dpf versus 3 dpf. These data illustrate that the early-stage zebrafish heart's increasing efficiency is synchronous with the expected changes in valve development, chamber morphology and increasing vascular network complexity. Such physiological measurements in tractable laboratory model organisms are critical for understanding how gene variants may affect phenotype. As the zebrafish emerges as a leading biomedical model organism, the ability to effectively measure its physiology is critical to its translational relevance.
Collapse
Affiliation(s)
- Nabid Salehin
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76010, USA
| | - Cameron Villarreal
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76010, USA
| | - Tanveer Teranikar
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76010, USA
| | - Benjamin Dubansky
- Department of Biological Sciences, University of North Texas, Denton, TX, 76201, USA
| | - Juhyun Lee
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76010, USA
| | - Cheng-Jen Chuong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76010, USA.
| |
Collapse
|
10
|
Benslimane FM, Zakaria ZZ, Shurbaji S, Abdelrasool MKA, Al-Badr MAHI, Al Absi ESK, Yalcin HC. Cardiac function and blood flow hemodynamics assessment of zebrafish (Danio rerio) using high-speed video microscopy. Micron 2020; 136:102876. [PMID: 32512409 DOI: 10.1016/j.micron.2020.102876] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/04/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND In the last few decades, zebrafish (Danio rerio) were introduced as a model organism to investigate human diseases including cardiovascular and neuronal disorders. In most zebrafish investigations, cardiac function and blood flow hemodynamics need to be assessed to study the effects of the interference on the cardiovascular system. For heart function assessment, most important parameters include heart rate, cardiac output, ejection fraction, fractional area change, and fractional shortening. METHODS A 10 s high-speed video of beating heart and flowing blood within major vessels of zebrafish that are less than 5 days post fertilization (dpf) were recorded via a stereo microscope equipped with a high speed camera. The videos were analyzed using MicroZebraLab and image J software for the assessment of cardiac function. RESULTS Using the technique described here, we were able to simply yet effectively assess cardiac function and blood flow dynamics of normal zebrafish embryos. We believe that the practical method presented here will help cardiac researchers using the zebrafish as a model to examine cardiac function by using tools that could be available in their laboratory.
Collapse
Affiliation(s)
| | - Zain Z Zakaria
- Biomedical Research Center, Qatar University, Doha, Qatar; Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Samar Shurbaji
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | | | | | | |
Collapse
|
11
|
Stefanaki C, Michos A, Latsios G, Tousoulis D, Peppa M, Zosi P, Boschiero D, Bacopoulou F. Sexual Dimorphism of Heart Rate Variability in Adolescence: A Case-Control Study on Depression, Anxiety, Stress Levels, Body Composition, and Heart Rate Variability in Adolescents with Impaired Fasting Glucose. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:2688. [PMID: 32295195 PMCID: PMC7216092 DOI: 10.3390/ijerph17082688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/22/2022]
Abstract
Prediabetes in the form of impaired fasting glucose, impaired glucose tolerance, or both is considered as a preliminary stage for the onset of diabetes and diabetic complications. Hormonal fluctuations in adolescence are accompanied by body composition modifications, which are associated with insulin resistance and subclinical inflammation. Bioimpedance (BIA) accurately evaluates body composition, and heart rate variability (HRV) assesses cardiac autonomic function, which are frequently afflicted by insulin resistance. We aimed at evaluating the effect of glycemic status on mental stress, anxiety, and depression status in adolescents with impaired fasting glucose, body composition, and HRV parameters. This is a case-control study to evaluate the effect of the hyperglycemia on depression, anxiety, and stress levels (DASS21 questionnaire), body composition (BIA-ACC-BIOTEKNA©), and HRV (PPG Stress Flow-BIOTEKNA©), between euglycemic adolescents (euglycemic group) and adolescents with impaired fasting glucose (prediabetic group), aged 12-20 years. No differences were found between the prediabetic (n = 13) and the euglycemic (n = 16) groups in the outcome measures, possibly due to the number of participants. Interestingly, females, irrespective of their glycemic status, exhibited altered sympathovagal function as revealed by impaired HRV. In the euglycemic group, HRV parameters were significantly correlated and in line with the DASS21 scores, but in the prediabetic group, similarities to those of adults were observed. Impaired fasting glucose had no impact on mental health, body composition, or HRV parameters in adolescents. HRV parameters were impaired in females, irrespective of their glycemic status. This finding implies that females seem to be more prone to stress disorders, even from a young age. Future studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Charikleia Stefanaki
- Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, 115 27 Athens, Greece; (A.M.); (F.B.)
- Department of Pediatrics, General Hospital of Nikaia “Agios Panteleimon”, 184 54 Piraeus, Greece;
| | - Athanasios Michos
- Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, 115 27 Athens, Greece; (A.M.); (F.B.)
| | - George Latsios
- First Cardiology Department, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, 115 28 Athens, Greece; (G.L.); (D.T.)
| | - Dimitrios Tousoulis
- First Cardiology Department, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, 115 28 Athens, Greece; (G.L.); (D.T.)
| | - Melpomeni Peppa
- Endocrine Unit, Second Department of Internal Medicine Propaedeutic, Research Institute and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, 115 28 Athens, Greece;
| | - Paraskevi Zosi
- Department of Pediatrics, General Hospital of Nikaia “Agios Panteleimon”, 184 54 Piraeus, Greece;
| | | | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, 115 27 Athens, Greece; (A.M.); (F.B.)
| |
Collapse
|
12
|
Magnuson JT, Bautista NM, Lucero J, Lund AK, Xu EG, Schlenk D, Burggren WW, Roberts AP. Exposure to Crude Oil Induces Retinal Apoptosis and Impairs Visual Function in Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2843-2850. [PMID: 32036658 DOI: 10.1021/acs.est.9b07658] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) present in crude oil are known to impair visual development in fish. However, the underlying mechanism of PAH-induced toxicity to the visual system of fish is not understood. Embryonic zebrafish (Danio rerio) at 4 h post fertilization were exposed to weathered crude oil and assessed for visual function using an optokinetic response, with subsequent samples taken for immunohistochemistry and gene expression analysis. Cardiotoxicity was also assessed by measuring the heart rate, stroke volume, and cardiac output, as cardiac performance has been proposed to be a contributing factor to eye-associated malformations following oil exposure. Larvae exposed to the highest concentrations of crude oil (89.8 μg/L) exhibited an increased occurrence of bradycardia, though no changes in stroke volume or cardiac output were observed. However, genes important in eye development and phototransduction were downregulated in oil-exposed larvae, with an increased occurrence of cellular apoptosis, reduced neuronal connection, and reduced optokinetic behavioral response in zebrafish larvae.
Collapse
Affiliation(s)
- Jason T Magnuson
- Department of Biological Sciences and Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76203, United States
| | - Naim M Bautista
- Department of Biological Sciences and Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76203, United States
| | - JoAnn Lucero
- Department of Biological Sciences and Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76203, United States
| | - Amie K Lund
- Department of Biological Sciences and Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76203, United States
| | - Elvis Genbo Xu
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A0C5, Canada
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, California 92521, United States
| | - Warren W Burggren
- Department of Biological Sciences and Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76203, United States
| | - Aaron P Roberts
- Department of Biological Sciences and Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76203, United States
| |
Collapse
|
13
|
Perrichon P, Stieglitz JD, Xu EG, Magnuson JT, Pasparakis C, Mager EM, Wang Y, Schlenk D, Benetti DD, Roberts AP, Grosell M, Burggren WW. Mahi-mahi (Coryphaena hippurus) life development: morphological, physiological, behavioral and molecular phenotypes. Dev Dyn 2019; 248:337-350. [PMID: 30884004 PMCID: PMC6593825 DOI: 10.1002/dvdy.27] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/05/2019] [Accepted: 03/06/2019] [Indexed: 01/16/2023] Open
Abstract
Background Mahi‐mahi (Coryphaena hippurus) is a commercially and ecologically important fish species that is widely distributed in tropical and subtropical waters. Biological attributes and reproductive capacities of mahi‐mahi make it a tractable model for experimental studies. In this study, life development of cultured mahi‐mahi from the zygote stage to adult has been described. Results A comprehensive developmental table has been created reporting development as primarily detailed observations of morphology. Additionally, physiological, behavioral, and molecular landmarks have been described to significantly contribute in the understanding of mahi life development. Conclusion Remarkably, despite the vast difference in adult size, many developmental landmarks of mahi map quite closely onto the development and growth of Zebrafish and other warm‐water, active Teleost fishes. Mahi‐mahi is a tractable model for experimental studies high‐performance pelagic predatory fish species. Biological attributes of mahi are reported in a comprehensive developmental table. Physiological, behavioral and molecular landmarks are described through the life development. Mahi has a rapid growth rate, but the developmental marks are similar to other teleost fishes.
Collapse
Affiliation(s)
| | - John D Stieglitz
- Department of Marine Ecosystems and Society, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Florida
| | - Elvis Genbo Xu
- Department of Environmental Sciences, University of California Riverside, California
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California Riverside, California
| | - Christina Pasparakis
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Florida
| | - Edward M Mager
- Department of Biological Sciences, University of North Texas, Denton, Texas
| | - Yadong Wang
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Florida
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, California
| | - Daniel D Benetti
- Department of Marine Ecosystems and Society, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Florida
| | - Aaron P Roberts
- Department of Biological Sciences, University of North Texas, Denton, Texas
| | - Martin Grosell
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Florida
| | - Warren W Burggren
- Department of Biological Sciences, University of North Texas, Denton, Texas
| |
Collapse
|
14
|
Perrichon P, Mager EM, Pasparakis C, Stieglitz JD, Benetti DD, Grosell M, Burggren WW. Combined effects of elevated temperature and Deepwater Horizon oil exposure on the cardiac performance of larval mahi-mahi, Coryphaena hippurus. PLoS One 2018; 13:e0203949. [PMID: 30332409 PMCID: PMC6192557 DOI: 10.1371/journal.pone.0203949] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/30/2018] [Indexed: 12/03/2022] Open
Abstract
The 2010 Deepwater Horizon oil spill coincided with the spawning season of many pelagic fish species in the Gulf of Mexico. Yet, few studies have investigated physiological responses of larval fish to interactions between anthropogenic crude oil exposure and natural factors (e.g. temperature, oxygen levels). Consequently, mahi mahi (Coryphaena hippurus) embryos were exposed for 24 hours to combinations of two temperatures (26 and 30°C) and six concentrations of oiled fractions of weathered oil (from 0 to 44.1 μg ∑50PAHs·L-1). In 56 hours post-fertilization larvae, heart rate, stroke volume and cardiac output were measured as indicators of functional cardiac phenotypes. Fluid accumulation and incidence of edema and hematomas were quantified as indicators of morphological impairments. At both 26 and 30°C, oil-exposed larvae suffered dose-dependent morphological impairments and functional heart failure. Elevation of temperature to 30°C appeared to induce greater physiological responses (bradycardia) at PAH concentrations in the range of 3.0–14.9 μg·L-1. Conversely, elevated temperature in oil-exposed larvae reduced edema severity and hematoma incidence. However, the apparent protective role of warmer temperature does not appear to protect against enhanced mortality. Collectively, our findings show that elevated temperature may slightly decrease larval resilience to concurrent oil exposure.
Collapse
Affiliation(s)
- Prescilla Perrichon
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
- * E-mail:
| | - Edward M. Mager
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Christina Pasparakis
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Florida, United States of America
| | - John D. Stieglitz
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Florida, United States of America
| | - Daniel D. Benetti
- Department of Marine Ecosystems and Society, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Florida, United States of America
| | - Martin Grosell
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Florida, United States of America
| | - Warren W. Burggren
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| |
Collapse
|
15
|
Network Neuroscience and Personality. PERSONALITY NEUROSCIENCE 2018; 1:e14. [PMID: 32435733 PMCID: PMC7219685 DOI: 10.1017/pen.2018.12] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/28/2018] [Accepted: 04/14/2018] [Indexed: 12/11/2022]
Abstract
Personality and individual differences originate from the brain. Despite major advances in the affective and cognitive neurosciences, however, it is still not well understood how personality and single personality traits are represented within the brain. Most research on brain-personality correlates has focused either on morphological aspects of the brain such as increases or decreases in local gray matter volume, or has investigated how personality traits can account for individual differences in activation differences in various tasks. Here, we propose that personality neuroscience can be advanced by adding a network perspective on brain structure and function, an endeavor that we label personality network neuroscience. With the rise of resting-state functional magnetic resonance imaging (MRI), the establishment of connectomics as a theoretical framework for structural and functional connectivity modeling, and recent advancements in the application of mathematical graph theory to brain connectivity data, several new tools and techniques are readily available to be applied in personality neuroscience. The present contribution introduces these concepts, reviews recent progress in their application to the study of individual differences, and explores their potential to advance our understanding of the neural implementation of personality. Trait theorists have long argued that personality traits are biophysical entities that are not mere abstractions of and metaphors for human behavior. Traits are thought to actually exist in the brain, presumably in the form of conceptual nervous systems. A conceptual nervous system refers to the attempt to describe parts of the central nervous system in functional terms with relevance to psychology and behavior. We contend that personality network neuroscience can characterize these conceptual nervous systems on a functional and anatomical level and has the potential do link dispositional neural correlates to actual behavior.
Collapse
|
16
|
Burggren WW, Dubansky B, Bautista NM. Cardiovascular Development in Embryonic and Larval Fishes. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/bs.fp.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|