1
|
Fedorova AA, Rybalchenko OV, Okorokova LS, Kapustina VV, Orlova OG, Markov AG. Changes in the Tissue Barrier after Exposure to Lipopolysaccharide on the Apical Side of Enterocytes and the Follicle-Associated Epithelium in Peyer's Patches of the Rat Intestine. Bull Exp Biol Med 2024; 177:757-762. [PMID: 39480568 DOI: 10.1007/s10517-024-06263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Indexed: 11/02/2024]
Abstract
To study the para- and transcellular permeability of columnar epithelium and follicle-associated epithelium of Peyer's patches in the rat intestine, LPS was applied from the mucosal side to simulate the action of endotoxins from gram-negative bacteria of gut microbiota. LPS did not affect transepithelial resistance or sodium fluorescein permeability, but increased the levels of claudin-3 and claudin-4 in enterocytes, suggesting strengthening of the paracellular intestinal barrier. Transcellular permeability was evaluated by electron microscopy based on the number of vesicular structures in the cytoplasm of different cell types. LPS increased the number of small vesicles in follicle-associated epithelium of Peyers' patches. In columnar epithelial cells, LPS reduced the number of smaller vesicles and increased the number of larger ones. LPS did not damage the tissue barrier, but enhanced transcytosis, which could potentiate the effects of endotoxin on its receptors in the intestinal mucosa.
Collapse
Affiliation(s)
- A A Fedorova
- Department of General Physiology, Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - O V Rybalchenko
- Department of Physiology, Institute of Medicine, St. Petersburg State University, St. Petersburg, Russia
| | - L S Okorokova
- Department of General Physiology, Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - V V Kapustina
- Department of Physiology, Institute of Medicine, St. Petersburg State University, St. Petersburg, Russia
| | - O G Orlova
- Department of Physiology, Institute of Medicine, St. Petersburg State University, St. Petersburg, Russia
| | - A G Markov
- Department of General Physiology, Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia.
- Laboratory of Interoception, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
2
|
Marsch P, Rajagopal N, Nangia S. Biophysics of claudin proteins in tight junction architecture: Three decades of progress. Biophys J 2024; 123:2363-2378. [PMID: 38859584 PMCID: PMC11365114 DOI: 10.1016/j.bpj.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/19/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024] Open
Abstract
Tight junctions are cell-cell adhesion complexes that act as gatekeepers of the paracellular space. Formed by several transmembrane proteins, the claudin family performs the primary gate-keeping function. The claudin proteins form charge and size-selective diffusion barriers to maintain homeostasis across endothelial and epithelial tissue. Of the 27 known claudins in mammals, some are known to seal the paracellular space, while others provide selective permeability. The differences in permeability arise due to the varying expression levels of claudins in each tissue. The tight junctions are observed as strands in freeze-fracture electron monographs; however, at the molecular level, tight junction strands form when multiple claudin proteins assemble laterally (cis assembly) within a cell and head-on (trans assembly) with claudins of the adjacent cell in a zipper-like architecture, closing the gap between the neighboring cells. The disruption of tight junctions caused by changing claudin expression levels or mutations can lead to diseases. Therefore, knowledge of the molecular architecture of the tight junctions and how that is tied to tissue-specific function is critical for fighting diseases. Here, we review the current understanding of the tight junctions accrued over the last three decades from experimental and computational biophysics perspectives.
Collapse
Affiliation(s)
- Patrick Marsch
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
| | - Nandhini Rajagopal
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York.
| |
Collapse
|
3
|
Alija Ç, Knobe L, Pouyiourou I, Furuse M, Rosenthal R, Günzel D. Integrating Continuous Transepithelial Flux Measurements into an Ussing Chamber Set-Up. Int J Mol Sci 2024; 25:2252. [PMID: 38396929 PMCID: PMC10889482 DOI: 10.3390/ijms25042252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Fluorescently labelled compounds are often employed to study the paracellular properties of epithelia. For flux measurements, these compounds are added to the donor compartment and samples collected from the acceptor compartment at regular intervals. However, this method fails to detect rapid changes in permeability. For continuous transepithelial flux measurements in an Ussing chamber setting, a device was developed, consisting of a flow-through chamber with an attached LED, optical filter, and photodiode, all encased in a light-impermeable container. The photodiode output was amplified and recorded. Calibration with defined fluorescein concentration (range of 1 nM to 150 nM) resulted in a linear output. As proof of principle, flux measurements were performed on various cell lines. The results confirmed a linear dependence of the flux on the fluorescein concentration in the donor compartment. Flux depended on paracellular barrier function (expression of specific tight junction proteins, and EGTA application to induce barrier loss), whereas activation of transcellular chloride secretion had no effect on fluorescein flux. Manipulation of the lateral space by osmotic changes in the perfusion solution also affected transepithelial fluorescein flux. In summary, this device allows a continuous recording of transepithelial flux of fluorescent compounds in parallel with the electrical parameters recorded by the Ussing chamber.
Collapse
Affiliation(s)
- Çlirim Alija
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité–Universitätsmedizin Berlin, 12203 Berlin, Germany; (Ç.A.); (L.K.); (I.P.); (R.R.)
| | - Lukas Knobe
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité–Universitätsmedizin Berlin, 12203 Berlin, Germany; (Ç.A.); (L.K.); (I.P.); (R.R.)
| | - Ioanna Pouyiourou
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité–Universitätsmedizin Berlin, 12203 Berlin, Germany; (Ç.A.); (L.K.); (I.P.); (R.R.)
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan;
| | - Rita Rosenthal
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité–Universitätsmedizin Berlin, 12203 Berlin, Germany; (Ç.A.); (L.K.); (I.P.); (R.R.)
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité–Universitätsmedizin Berlin, 12203 Berlin, Germany; (Ç.A.); (L.K.); (I.P.); (R.R.)
| |
Collapse
|
4
|
Cornelius V, Droessler L, Amasheh S. Quercetin Improves Barrier Properties in Porcine Small Intestine but Not in Peyer's Patches. Int J Mol Sci 2024; 25:1530. [PMID: 38338808 PMCID: PMC10855467 DOI: 10.3390/ijms25031530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Peyer's patches (PPs) are part of the gut-associated lymphatic tissue (GALT) and represent the first line of the intestinal immunological defense. They consist of follicles with lymphocytes and an overlying subepithelial dome with dendritic cells and macrophages, and they are covered by the follicle-associated epithelium (FAE). A sealed paracellular pathway in the FAE is crucial for the controlled uptake of luminal antigens. Quercetin is the most abundant plant flavonoid and has a barrier-strengthening effect on tight junctions (TJs), a protein complex that regulates the paracellular pathway. In this study, we aimed to analyze the effect of quercetin on porcine PPs and the surrounding villus epithelium (VE). We incubated both tissue types for 4 h in Ussing chambers, recorded the transepithelial electrical resistance (TEER), and measured the unidirectional tracer flux of [3H]-mannitol. Subsequently, we analyzed the expression, protein amount, and localization of three TJ proteins, claudin 1, claudin 2, and claudin 4. In the PPs, we could not detect an effect of quercetin after 4 h, neither on TEER nor on the [3H]-mannitol flux. In the VE, quercetin led to a higher TEER value, while the [3H]-mannitol flux was unchanged. The pore-forming claudin 2 was decreased while the barrier-forming claudin 4 was increased and the expression was upregulated. Claudin 1 was unchanged and all claudins could be located in the paracellular membrane by immunofluorescence microscopy. Our study shows the barrier-strengthening effect of quercetin in porcine VE by claudin 4 upregulation and a claudin 2 decrease. Moreover, it underlines the different barrier properties of PPs compared to the VE.
Collapse
Affiliation(s)
| | | | - Salah Amasheh
- Institute of Veterinary Physiology, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|
5
|
Stein L, Vollstaedt ML, Amasheh S. Cannabidiol Strengthening of Gastric Tight Junction Complexes Analyzed in an Improved Xenopus Oocyte Assay. MEMBRANES 2024; 14:18. [PMID: 38248708 PMCID: PMC10819461 DOI: 10.3390/membranes14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Cannabidiol (CBD), the non-psychoactive compound derived from the cannabis plant, has gained attention in recent years as a remedy against gastrointestinal disorders ranging from nausea and inflammation to abdominal pain. Recent advances demonstrated an effect on inflammatory pathways and barrier proteins. However, information on possible direct effects is scarce and needs to be addressed, as applications are currently increasing in popularity. To accomplish this, we have employed Xenopus laevis oocytes as a heterologous expression system for analysis of the direct effects on stomach-specific claudins and further developed tight junction (TJ) protein interaction assays. Human claudin-4, claudin-5, and claudin-18.2 were expressed in Xenopus oocytes, clustered in pairs to form contact areas, and analyzed in a two-cell model approach, including measurement of the contact area and contact strength. CLDN4/5/18 + CLDN4/5/18 oocyte pairs were incubated with 20 µM CBD or with 40 µM CBD and were compared to cells without CBD treatment (ctrl). For interaction analysis, the contact area was measured after 24 h and 48 h. Whereas CBD did not affect the size of the protein interaction area, Double Orbital Challenge experiments revealed an increased contact strength after 24 h incubation with CBD. In addition, the Xenopus oocyte experiments were accompanied by an analysis of claudin-4, -5, and -18 expression in gastric epithelium by immunoblotting and immunohistochemistry. Claudin-4, -5, and -18 were strongly expressed, indicating a major role for gastric epithelial barrier function. In summary, our study shows direct effects of 40 µM CBD on Xenopus oocytes heterologously expressing a stomach-specific claudin combination, indicating a supportive and beneficial effect of CBD on gastric TJ proteins.
Collapse
Affiliation(s)
| | | | - Salah Amasheh
- Institute of Veterinary Physiology, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (L.S.); (M.-L.V.)
| |
Collapse
|
6
|
Tsugami Y, Nakayama S, Suzuki N, Nii T, Isobe N. Investigating mammary glands of lactating goats for the presence of tertiary lymphoid organs. Front Immunol 2022; 13:941333. [PMID: 36032165 PMCID: PMC9399771 DOI: 10.3389/fimmu.2022.941333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022] Open
Abstract
Ectopic tertiary lymphoid organs (TLOs) have been identified in many organs, such as the lungs, nasal cavities, and kidneys of both mice and humans. Although lymphocyte aggregates have been observed in the mammary glands of ruminants, the details remain unclear. In this study, we investigated the mammary glands of lactating goats for the presence of TLOs. The localization of CD20 (B cells), CD3 (T cells), MECA79 (high endothelial venules), CD40 (follicular dendritic cells), BCL6 (germinal center), and IgA was examined by immunohistochemistry. The concentrations of IgG, IgA, lactoferrin, β-defensin-1, cathelicidin-2, cathelicidin-7, S100A7, and S100A8 in milk were measured by ELISA. The localization and amount of tight junction (TJ) proteins (claudin-3 and claudin-4) were examined using immunofluorescence and western blotting. We found that 19 out of 30 udders contained lymphocyte aggregates, which showed positive reactions against CD20, CD3, CD40, and MECA79. In addition, large-sized aggregations showed separate localization of B cells and T cells and a positive reaction against BCL6, although BCL6 was sparsely localized in the aggregations. These results indicate that mammary glands of lactating goats contain TLOs. The IgG and IgA concentrations in the milk of TLO-positive goats and the number of IgA-positive cells were higher than those in negative goats. Furthermore, claudin-4 was localized in the TJ region and the amount was higher in TLO-positive mammary glands than that in the negative group, indicating the presence of leakages at TJs. In conclusion, a majority of lactating goat udders have TLOs, which contribute to local immunity by producing immunoglobulins.
Collapse
|
7
|
Droessler L, Cornelius V, Boehm E, Stein L, Brunner N, Amasheh S. Barrier Perturbation in Porcine Peyer’s Patches by Tumor Necrosis Factor is Associated With a Dysregulation of Claudins. Front Physiol 2022; 13:889552. [PMID: 35707009 PMCID: PMC9189282 DOI: 10.3389/fphys.2022.889552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/26/2022] [Indexed: 12/22/2022] Open
Abstract
The proinflammatory cytokine tumor necrosis factor (TNF) has been described as one of the main mediators of intestinal inflammatory diseases, affecting the composition of tight junction (TJ) proteins and leading to a disruption of the epithelial barrier. An intact intestinal barrier is mandatory, because the follicle-associated epithelium of Peyer’s patches represents the first defense line of the intestinal immune system and ensures a controlled uptake of antigens from the gut lumen. In the current study, we have analyzed the detailed effects of TNF on the follicle-associated epithelium of porcine Peyer’s patches by applying the Ussing chamber technique. Epithelial tissue specimens of Peyer’s patches and the surrounding villus epithelium were mounted into conventional Ussing chambers and incubated with TNF for 10 h. The transepithelial resistance, representing epithelial barrier function of the tissue, was recorded. A reduction of transepithelial resistance was detected after 8 h in Peyer’s patch tissue specimens, whereas the villus epithelium was not significantly affected by TNF. Subsequent molecular analysis of TJ protein expression revealed a marked decrease of claudin-1 and -4, and an increase of claudin-2. In neighboring villus epithelium, no significant changes in the expression of TJ proteins could be shown. A strong increase of TNF receptor-2 (TNFR-2) could also be detected in Peyer’s patches, in agreement with the major role of this receptor in Peyer’s patches. Our findings were in accordance with changes detected by confocal laser scanning immunofluorescence microscopy. The regulation of TNF effects via myosin light chain kinase (MLCK) was analyzed in blocking experiments. Our detailed analysis is the first to show that TNF affects the barrier function of the follicle-associated epithelium of porcine Peyer’s patches but has no effects on the villus epithelium. These findings reveal not only the basic differences of epithelial barrier function between the two structures, but also the significance of Peyer’s patches as a primary mucosal immune defense.
Collapse
|
8
|
Bekusova V, Droessler L, Amasheh S, Markov AG. Effects of 1,2-Dimethylhydrazine on Barrier Properties of Rat Large Intestine and IPEC-J2 Cells. Int J Mol Sci 2021; 22:10278. [PMID: 34638619 PMCID: PMC8508681 DOI: 10.3390/ijms221910278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022] Open
Abstract
Colon cancer is accompanied by a decrease of epithelial barrier properties, which are determined by tight junction (TJ) proteins between adjacent epithelial cells. The aim of the current study was to analyze the expression of TJ proteins in a rat model of 1,2-dimethylhydrazine (DMH)-induced colorectal cancer, as well as the barrier properties and TJ protein expression of IPEC-J2 cell monolayers after incubation with DMH. Transepithelial electrical resistance and paracellular permeability for sodium fluorescein of IPEC-J2 were examined by an epithelial volt/ohm meter and spectrophotometry. The expression and localization of TJ proteins were analyzed by immunoblotting and immunohistochemistry. In the colonic tumors of rats with DMH-induced carcinogenesis, the expression of claudin-3 and -4 was significantly increased compared to controls. The transepithelial electrical resistance of IPEC-J2 cells increased, while paracellular permeability for sodium fluorescein decreased, accompanied by an increased expression of claudin-4. The increase of claudin-4 in rat colon after chronic DMH exposure was consistent with the acute effect of DMH on IPEC-J2 cells, which may indicate an essential role of this protein in colorectal cancer development.
Collapse
Affiliation(s)
- Viktoria Bekusova
- Department of General Physiology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, 199034 Saint Petersburg, Russia;
| | - Linda Droessler
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (L.D.); (S.A.)
| | - Salah Amasheh
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (L.D.); (S.A.)
| | - Alexander G. Markov
- Department of General Physiology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, 199034 Saint Petersburg, Russia;
| |
Collapse
|
9
|
Tumor Necrosis Factor Alpha Effects on the Porcine Intestinal Epithelial Barrier Include Enhanced Expression of TNF Receptor 1. Int J Mol Sci 2021; 22:ijms22168746. [PMID: 34445450 PMCID: PMC8395858 DOI: 10.3390/ijms22168746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
Tumor necrosis factor alpha (TNFα) has been shown to impair the intestinal barrier, inducing and maintaining inflammatory states of the intestine. The aim of the current study was to analyze functional, molecular and regulatory effects of TNFα in a newly established non-transformed jejunal enterocyte model, namely IPEC-J2 monolayers. Incubation with 1000 U/mL TNFα induced a marked decrease in transepithelial electrical resistance (TEER), and an increase in permeability for the paracellular flux marker [3H]-D-mannitol compared to controls. Immunoblots revealed a significant decrease in tight junction (TJ) proteins occludin, claudin-1 and claudin-3. Moreover, a dose-dependent increase in the TNF receptor (TNFR)-1 was detected, explaining the exponential nature of pro-inflammatory effects, while TNFR-2 remained unchanged. Recovery experiments revealed reversible effects after the removal of the cytokine, excluding apoptosis as a reason for the observed changes. Furthermore, TNFα signaling could be inhibited by the specific myosin light chain kinase (MLCK) blocker ML-7. Results of confocal laser scanning immunofluorescence microscopy were in accordance with all quantitative changes. This study explains the self-enhancing effects of TNFα mediated by MLCK, leading to a differential regulation of TJ proteins resulting in barrier impairment in the intestinal epithelium.
Collapse
|
10
|
Meoli L, Günzel D. Channel functions of claudins in the organization of biological systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183344. [PMID: 32442419 DOI: 10.1016/j.bbamem.2020.183344] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Claudins are tight junction proteins mostly appreciated in their function of paracellular barrier-formation. Compared to a virtual absence of any tight junctions, their paracellular sealing role certainly stands out. Yet, it was recognized immediately after the discovery of the first claudins, that some members of the claudin protein family were able to convey size and charge selectivity to the paracellular pathway. Thus, paracellular permeability can be fine-tuned according to the physiological needs of a tissue by inserting these channel-forming claudins into tight junction strands. Precise permeability adjustment is further suggested by the presence of numerous isoforms of channel-forming claudins (claudin-10b-, -15-, -16-like isoforms) in various vertebrate taxa. Moreover, their expression and localization are controlled by multiple transcriptional and posttranslational mechanisms. Consequently, mutation or dysregulation of channel-forming claudins can cause severe diseases. The present review therefore aims at providing an up-to-date report of the current research on these aspects of channel-forming claudins and their possible implications on future developments.
Collapse
Affiliation(s)
- Luca Meoli
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Dorothee Günzel
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany.
| |
Collapse
|
11
|
Huang L, Wang J, Wang Y, Zhang E, Li Y, Yu Q, Yang Q. Upregulation of CD4 +CD8 + memory cells in the piglet intestine following oral administration of Bacillus subtilis spores combined with PEDV whole inactivated virus. Vet Microbiol 2019; 235:1-9. [PMID: 31282365 DOI: 10.1016/j.vetmic.2019.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/26/2022]
Abstract
Oral immunization is a commonly employed route for inducing local immunity. However, the application of oral immunization is limited by the short-term persistence of immunity, particularly for inactivated viruses. The ultimate goal for mucosal vaccination is to stimulate protective immunological memory. In the intestine, long-term persistence of immunity is related to CD4+CD8+ memory T-cells. In this study, piglets were orally immunized with Bacillus subtilis spores (B.s) plus whole inactivated porcine epidemic diarrhea virus (PEDV WIV), followed by booster oral immunization. Initially, the results showed that B.s plus PEDV WIV enhanced the anti-PEDV capability on mucosal surfaces, as evidenced by plaque reduction neutralization tests in serum and intestinal fluid. Elevated antigen-specific IgG titers in the serum and IgA titers in saliva, feces and nasal washing liquid were also observed. Meanwhile, B.s plus PEDV WIV increased the area of Peyer's patches and the number of intraepithelial lymphocytes in the ileum of piglets. Similarly, the percentage of CD4+CD8+ memory T-cells were upregulated and proliferation ability of antigen-specific memory T-cell was strengthened in intestinal mucosal-associated lymphocytes, which was accompanied with increased expression of CCR9 after oral immunization with B.s plus PEDV WIV. In addition, the activation of memory T-cells is correlated with the increased mRNA expression of Toll-like receptor 2 and 4, as well as interleukin-6 and induced by B.s. Collectively, the study provided further insight into the potential immunopotentiator ability of B.s to assist PEDV WIV in the potentiation of immunity by upregulating memory CD4+CD8+ T cells via oral immunization.
Collapse
Affiliation(s)
- Lulu Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of veterinary medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China.
| | - Jialu Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of veterinary medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China.
| | - Yongheng Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of veterinary medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China.
| | - En Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of veterinary medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China.
| | - Yuchen Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of veterinary medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China.
| | - Qinghua Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of veterinary medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China.
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of veterinary medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
12
|
Caprate Modulates Intestinal Barrier Function in Porcine Peyer's Patch Follicle-Associated Epithelium. Int J Mol Sci 2019; 20:ijms20061418. [PMID: 30897851 PMCID: PMC6471651 DOI: 10.3390/ijms20061418] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/09/2019] [Accepted: 03/19/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Many food components influence intestinal epithelial barrier properties and might therefore also affect susceptibility to the development of food allergies. Such allergies are triggered by increased antibody production initiated in Peyer’s patches (PP). Usually, the presentation of antigens in the lumen of the gut to the immune cells of the PP is strongly regulated by the follicle-associated epithelium (FAE) that covers the PP. As the food component caprate has been shown to impede barrier properties in villous epithelium, we hypothesized that caprate also affects the barrier function of the PP FAE, thereby possibly contributing a risk factor for the development of food allergies. Methods: In this study, we have focused on the effects of caprate on the barrier function of PP, employing in vitro and ex vivo experimental setups to investigate functional and molecular barrier properties. Incubation with caprate induced an increase of transepithelial resistance, and a marked increase of permeability for the paracellular marker fluorescein in porcine PP to 180% of control values. These effects are in accordance with changes in the expression levels of the barrier-forming tight junction proteins tricellulin and claudin-5. Conclusions: This barrier-affecting mechanism could be involved in the initial steps of a food allergy, since it might trigger unregulated contact of the gut lumen with antigens.
Collapse
|
13
|
Vitzthum C, Stein L, Brunner N, Knittel R, Fallier-Becker P, Amasheh S. Xenopus oocytes as a heterologous expression system for analysis of tight junction proteins. FASEB J 2019; 33:5312-5319. [PMID: 30645152 DOI: 10.1096/fj.201801451rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Claudins (cldns) represent the largest family of transmembrane tight junction (TJ) proteins, determining organ-specific epithelial barrier properties. Because methods for the analysis of multiple cldn interaction are limited, we have established the heterologous Xenopus laevis oocyte expression system for TJ protein assembly and interaction analysis. Oocytes were injected with cRNA encoding human cldn-1, -2, or -3 or with a combination of these and were incubated in pairs for interaction analysis. Immunoblotting and immunohistochemistry were performed, and membrane contact areas were analyzed morphometrically and by freeze fracture electron microscopy. Cldns were specifically detected in membranes of expressing oocytes, and coincubation of oocytes resulted in adhesive contact areas that increased with incubation time. Adjacent membrane areas revealed specific cldn signals, including "kissing-point"-like structures representing homophilic trans-interactions of cldns. Contact areas of oocytes expressing a combination markedly exceeded those expressing single cldns, indicating effects on adhesion. Ultrastructural analysis revealed a self-assembly of TJ strands and a cldn-specific strand morphology.-Vitzthum, C., Stein, L., Brunner, N., Knittel, R., Fallier-Becker, P., Amasheh, S. Xenopus oocytes as a heterologous expression system for analysis of tight junction proteins.
Collapse
Affiliation(s)
- Constanze Vitzthum
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany; and
| | - Laura Stein
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany; and
| | - Nora Brunner
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany; and
| | - Ria Knittel
- Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen, Germany
| | - Petra Fallier-Becker
- Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen, Germany
| | - Salah Amasheh
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany; and
| |
Collapse
|