1
|
Sajid MI, Nunez FJ, Amirrad F, Roosan MR, Vojtko T, McCulloch S, Alachkar A, Nauli SM. Untargeted metabolomics analysis on kidney tissues from mice reveals potential hypoxia biomarkers. Sci Rep 2023; 13:17516. [PMID: 37845304 PMCID: PMC10579359 DOI: 10.1038/s41598-023-44629-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023] Open
Abstract
Chronic hypoxia may have a huge impact on the cardiovascular and renal systems. Advancements in microscopy, metabolomics, and bioinformatics provide opportunities to identify new biomarkers. In this study, we aimed at elucidating the metabolic alterations in kidney tissues induced by chronic hypoxia using untargeted metabolomic analyses. Reverse phase ultrahigh performance liquid chromatography-mass spectroscopy/mass spectroscopy (RP-UPLC-MS/MS) and hydrophilic interaction liquid chromatography (HILIC)-UPLC-MS/MS methods with positive and negative ion mode electrospray ionization were used for metabolic profiling. The metabolomic profiling revealed an increase in metabolites related to carnitine synthesis and purine metabolism. Additionally, there was a notable increase in bilirubin. Heme, N-acetyl-L-aspartic acid, thyroxine, and 3-beta-Hydroxy-5-cholestenoate were found to be significantly downregulated. 3-beta-Hydroxy-5-cholestenoate was downregulated more significantly in male than female kidneys. Trichome Staining also showed remarkable kidney fibrosis in mice subjected to chronic hypoxia. Our study offers potential intracellular metabolite signatures for hypoxic kidneys.
Collapse
Affiliation(s)
- Muhammad Imran Sajid
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, 9401 Jeronimo Road, Irvine, CA, 92618-1908, USA
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Francisco J Nunez
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, 9401 Jeronimo Road, Irvine, CA, 92618-1908, USA
| | - Farideh Amirrad
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, 9401 Jeronimo Road, Irvine, CA, 92618-1908, USA
| | - Moom Rahman Roosan
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, 9401 Jeronimo Road, Irvine, CA, 92618-1908, USA
| | - Tom Vojtko
- Metabolon Inc, 617 Davis Drive, Suite 100, Morrisville, NC, 27560, USA
| | - Scott McCulloch
- Metabolon Inc, 617 Davis Drive, Suite 100, Morrisville, NC, 27560, USA
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697-4625, USA.
| | - Surya M Nauli
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, 9401 Jeronimo Road, Irvine, CA, 92618-1908, USA.
- Department of Medicine, University of California Irvine, Orange, CA, 92868, USA.
| |
Collapse
|
2
|
Lee JW, Cho JY, Thuy PX, Moon EY. HeLa Cervical Cancer Cells Are Maintained by Nephronophthisis 3-Associated Primary Cilium Formation via ROS-Induced ERK and HIF-1α Activation under Serum-Deprived Normoxic Condition. Int J Mol Sci 2022; 23:ijms232314500. [PMID: 36498831 PMCID: PMC9739938 DOI: 10.3390/ijms232314500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
The primary cilium (PC) is a microtubule-based antenna-like organelle projecting from the surface of the cell membrane. We previously reported that PC formation could be regulated by nephronophthisis 3 (NPHP3) expression followed by its interaction with thymosin β4. Here, we investigated whether cancer cell viability is regulated by NPHP3-mediated PC formation. The total and viable cell number were reduced by incubating cells under serum deprivation (SD) without fetal bovine serum (-FBS). PC frequency was increased by SD which enhanced NPHP3 expression and hypoxia inducible factor (HIF)-1α. The role of HIF-1α on NPHP3 expression and PC formation was confirmed by the binding of HIF-1α to the NPHP3 promoter and siRNA-based inhibition of HIF-1α (siHIF-1α), respectively. HIF-1α-stabilizing dimethyloxallyl glycine (DMOG) and hypoxic conditions increased NPHP3 expression and PC formation. In addition, as SD elevated the reactive oxygen species (ROS), PC frequency and NPHP3 expression were inhibited by a treatment with N-acetylcysteine (NAC), a ROS scavenger. PC formation was increased by H2O2 treatment, which was inhibited by siHIF-1α. The inhibition of ERK with P98059 decreased the frequency of PC formation and NPHP3 expression. Cell viability was reduced by a treatment with ciliobrevin A (CilioA) to inhibit PC formation, which was re-affirmed by using PC-deficient IFT88-/- cells. Taken together, the results imply that PC formation in cancer cells could be controlled by NPHP3 expression through ROS-induced HIF-1α and ERK activation under SD conditions. It suggests that cancer cell viability under SD conditions could be maintained by NPHP3 expression to regulate PC formation.
Collapse
Affiliation(s)
| | | | | | - Eun-Yi Moon
- Correspondence: ; Tel.: +82-2-3408-3768; Fax: +82-2-3408-4334
| |
Collapse
|
3
|
Yang Y, Peng Y, He S, Wu J, Xie Q, Ma Y. The Clinical Differences of Patients With Traumatic Brain Injury in Plateau and Plain Areas. Front Neurol 2022; 13:848944. [PMID: 35547378 PMCID: PMC9081812 DOI: 10.3389/fneur.2022.848944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Traumatic brain injury (TBI) is a leading cause of death and disability, which tends to have a worse clinical recovery if it occurs in plateau areas than in plain areas. To explore the underlying cause of this outcome preliminarily, this retrospective study was conducted to compare the clinical differences of patients with TBI in plateau and plain areas. Methods In this study, 32 patients with TBI in plateau areas (altitude ≥ 4,000 m) and 32 in plain areas (altitude ≤ 1,000 m) were recruited according to the inclusion and exclusion criteria from June 2020 to December 2021. The collected data and compared parameters include clinical features, head CT presentations and Marshall classifications, hematology profile, lipid profile, coagulation profile, and multiorgan (cardiac, liver, renal) function within 24 h of hospital admission, as well as the treatment method and final outcome. Results There were no obvious differences in demographic characteristics, including gender, age, height, and weight, between patients with TBI in plateau and plain areas (all P > 0.05). Compared to patients with TBI in plain areas, the time before hospital admission was longer, heartbeat was slower, systolic blood pressure (SBP) was lower, and hospital stays were longer in patients with TBI in plateau areas (all P < 0.05). More importantly, elevated red blood cells (RBCs) count and hemoglobin (HGB) level, enhanced coagulation function, and higher rates of multiorgan (cardiac, liver, and renal) injury were found in patients with TBI in plateau areas (all P < 0.05). Conclusion Patients with TBI in plateau areas presented with altered clinical characteristics, enhanced coagulation function, and aggravated predisposition toward multiorgan (cardiac, liver, and renal) injury, compared to patients with TBI in plain areas. Future prospective studies are needed to further elucidate the influences of high altitude on the disease course of TBI.
Collapse
Affiliation(s)
- Yongxiang Yang
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
| | - Yuping Peng
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China.,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Siyi He
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command, Chengdu, China
| | - Jianping Wu
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
| | - Qingyun Xie
- Department of Orthopedic, General Hospital of Western Theater Command, Chengdu, China
| | - Yuan Ma
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
4
|
Wang W, Jack BM, Wang HH, Kavanaugh MA, Maser RL, Tran PV. Intraflagellar Transport Proteins as Regulators of Primary Cilia Length. Front Cell Dev Biol 2021; 9:661350. [PMID: 34095126 PMCID: PMC8170031 DOI: 10.3389/fcell.2021.661350] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
Primary cilia are small, antenna-like organelles that detect and transduce chemical and mechanical cues in the extracellular environment, regulating cell behavior and, in turn, tissue development and homeostasis. Primary cilia are assembled via intraflagellar transport (IFT), which traffics protein cargo bidirectionally along a microtubular axoneme. Ranging from 1 to 10 μm long, these organelles typically reach a characteristic length dependent on cell type, likely for optimum fulfillment of their specific roles. The importance of an optimal cilia length is underscored by the findings that perturbation of cilia length can be observed in a number of cilia-related diseases. Thus, elucidating mechanisms of cilia length regulation is important for understanding the pathobiology of ciliary diseases. Since cilia assembly/disassembly regulate cilia length, we review the roles of IFT in processes that affect cilia assembly/disassembly, including ciliary transport of structural and membrane proteins, ectocytosis, and tubulin posttranslational modification. Additionally, since the environment of a cell influences cilia length, we also review the various stimuli encountered by renal epithelia in healthy and diseased states that alter cilia length and IFT.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Brittany M Jack
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Henry H Wang
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Matthew A Kavanaugh
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Robin L Maser
- Department of Clinical Laboratory Sciences, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Pamela V Tran
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
5
|
Qiao Y, Wang Z, Bunikyte R, Chen X, Jin S, Qi X, Cai D, Feng S. Cobalt chloride-simulated hypoxia elongates primary cilia in immortalized human retina pigment epithelial-1 cells. Biochem Biophys Res Commun 2021; 555:190-195. [PMID: 33823365 DOI: 10.1016/j.bbrc.2021.03.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 11/20/2022]
Abstract
Primary cilia are microtubule-based organelles that are involved in sensing micro-environmental cues and regulating cellular homeostasis via triggering signaling cascades. Hypoxia is one of the most common environmental stresses that organ and tissue cells may often encounter during embryogenesis, cell differentiation, infection, inflammation, injury, cerebral and cardiac ischemia, or tumorigenesis. Although hypoxia has been reported to promote or inhibit primary ciliogenesis in different tissues or cultured cell lines, the role of hypoxia in ciliogenesis is controversial and still unclear. Here we investigated the primary cilia change under cobalt chloride (CoCl2)-simulated hypoxia in immortalized human retina pigment epithelial-1 (hTERT RPE-1) cells. We found CoCl2 treatment elongated primary cilia in a time- and dose-dependent manner. The prolonged cilia recovered back to near normal length when CoCl2 was washed out from the cell culture medium. Under CoCl2-simulated hypoxia, the protein expression levels of HIF-1/2α and acetylated-α-tubulin (cilia marker) were increased, while the protein expression level of Rabaptin-5 is decreased during hypoxia. Taken together, our results suggest that hypoxia may elongate primary cilia by downregulating Rabaptin-5 involved endocytosis. The coordination between endocytosis and ciliogenesis may be utilized by cells to adapt to hypoxia.
Collapse
Affiliation(s)
- Ying Qiao
- Key Laboratory of Regenerative Medicine, Ministry of Education, International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology & Guangdong Province, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Zhengduo Wang
- Key Laboratory of Regenerative Medicine, Ministry of Education, International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology & Guangdong Province, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Raimonda Bunikyte
- Key Laboratory of Regenerative Medicine, Ministry of Education, International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology & Guangdong Province, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Xi Chen
- Key Laboratory of Regenerative Medicine, Ministry of Education, International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology & Guangdong Province, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Shuang Jin
- Key Laboratory of Regenerative Medicine, Ministry of Education, International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology & Guangdong Province, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine, Ministry of Education, International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology & Guangdong Province, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Dongqing Cai
- Key Laboratory of Regenerative Medicine, Ministry of Education, International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology & Guangdong Province, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632, China.
| | - Shanshan Feng
- Key Laboratory of Regenerative Medicine, Ministry of Education, International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology & Guangdong Province, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
6
|
Gailey CD, Wang EJ, Jin L, Ahmadi S, Brautigan DL, Li X, Xu W, Scott MM, Fu Z. Phosphosite T674A mutation in kinesin family member 3A fails to reproduce tissue and ciliary defects characteristic of CILK1 loss of function. Dev Dyn 2021; 250:263-273. [PMID: 32935890 PMCID: PMC8460152 DOI: 10.1002/dvdy.252] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Kinesin family member 3A (KIF3A) is a molecular motor protein in the heterotrimeric kinesin-2 complex that drives anterograde intraflagellar transport. This process plays a pivotal role in both biogenesis and maintenance of the primary cilium that supports tissue development. Ciliogenesis associated kinase 1 (CILK1) phosphorylates human KIF3A at Thr672. CILK1 loss of function causes ciliopathies that manifest profound and multiplex developmental defects, including hydrocephalus, polydactyly, shortened and hypoplastic bones and alveoli airspace deficiency, leading to perinatal lethality. Prior studies have raised the hypothesis that CILK1 phosphorylation of KIF3A is critical for its regulation of organ development. RESULTS We produced a mouse model with phosphorylation site Thr674 in mouse Kif3a mutated to Ala. Kif3a T674A homozygotes are viable and exhibit no skeletal and brain abnormalities, and only mildly reduced airspace in alveoli. Mouse embryonic fibroblasts carrying Kif3a T674A mutation show a normal rate of ciliation and a moderate increase in cilia length. CONCLUSION These results indicate that eliminating Kif3a Thr674 phosphorylation by Cilk1 is insufficient to reproduce the severe developmental defects in ciliopathies caused by Cilk1 loss of function. This suggests KIF3A-Thr672 phosphorylation by CILK1 is not essential for tissue development and other substrates are involved in CILK1 ciliopathies.
Collapse
Affiliation(s)
- Casey D. Gailey
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Eric J. Wang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Li Jin
- Department of Orthopedic Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Sean Ahmadi
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - David L. Brautigan
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
- NCI designated Cancer Center, Cancer Biology Program, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Xudong Li
- Department of Orthopedic Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Wenhao Xu
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Michael M. Scott
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Zheng Fu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
- NCI designated Cancer Center, Cancer Biology Program, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|