1
|
Blaszczyk K, Jedrzejak AP, Ziojla N, Shcheglova E, Szarafin K, Jankowski A, Beamish CA, Chmielowiec J, Sabek OM, Balasubramanyam A, Patel S, Borowiak M. SPOCK2 controls the proliferation and function of immature pancreatic β-cells through MMP2. Exp Mol Med 2025:10.1038/s12276-024-01380-2. [PMID: 39741186 DOI: 10.1038/s12276-024-01380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 01/02/2025] Open
Abstract
Human pluripotent stem cell-derived β-cells (SC-β-cells) represent an alternative cell source for transplantation in diabetic patients. Although mitogens could in theory be used to expand β-cells, adult β-cells very rarely replicate. In contrast, newly formed β-cells, including SC-β-cells, display higher proliferative capacity and distinct transcriptional and functional profiles. Through bidirectional expression modulation and single-cell RNA-seq, we identified SPOCK2, an ECM protein, as an inhibitor of immature β-cell proliferation. Human β-cells lacking SPOCK2 presented elevated MMP2 expression and activity, leading to β-integrin-FAK-c-JUN pathway activation. Treatment with the MMP2 protein resulted in pronounced short- and long-term SC-β-cell expansion, significantly increasing glucose-stimulated insulin secretion in vitro and in vivo. These findings suggest that SPOCK2 mediates fetal β-cell proliferation and maturation. In summary, we identified a molecular mechanism that specifically regulates SC-β-cell proliferation and function, highlighting a unique signaling milieu of SC-β-cells with promise for the robust derivation of fully functional cells for transplantation.
Collapse
Affiliation(s)
- Katarzyna Blaszczyk
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Anna P Jedrzejak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Natalia Ziojla
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Ekaterina Shcheglova
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Karolina Szarafin
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Artur Jankowski
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Christine A Beamish
- Department of Surgery, Methodist Research Institute, Houston, TX, 77030, USA
| | - Jolanta Chmielowiec
- Collegium Medicum, University of Warmia and Mazury, Aleja Warszawska 30, Olsztyn, 11-082, Poland
| | - Omaima M Sabek
- Department of Surgery, Methodist Research Institute, Houston, TX, 77030, USA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sanjeet Patel
- Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Malgorzata Borowiak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland.
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Landoni JC, Erkul S, Laalo T, Goffart S, Kivelä R, Skube K, Nieminen AI, Wickström SA, Stewart J, Suomalainen A. Overactive mitochondrial DNA replication disrupts perinatal cardiac maturation. Nat Commun 2024; 15:8066. [PMID: 39277581 PMCID: PMC11401880 DOI: 10.1038/s41467-024-52164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
High mitochondrial DNA (mtDNA) amount has been reported to be beneficial for resistance and recovery of metabolic stress, while increased mtDNA synthesis activity can drive aging signs. The intriguing contrast of these two mtDNA boosting outcomes prompted us to jointly elevate mtDNA amount and frequency of replication in mice. We report that high activity of mtDNA synthesis inhibits perinatal metabolic maturation of the heart. The offspring of the asymptomatic parental lines are born healthy but manifest dilated cardiomyopathy and cardiac collapse during the first days of life. The pathogenesis, further enhanced by mtDNA mutagenesis, involves prenatal upregulation of mitochondrial integrated stress response and the ferroptosis-inducer MESH1, leading to cardiac fibrosis and cardiomyocyte death after birth. Our evidence indicates that the tight control of mtDNA replication is critical for early cardiac homeostasis. Importantly, ferroptosis sensitivity is a potential targetable mechanism for infantile-onset cardiomyopathy, a common manifestation of mitochondrial diseases.
Collapse
MESH Headings
- Animals
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- DNA Replication
- Mice
- Myocytes, Cardiac/metabolism
- Female
- Male
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Ferroptosis/genetics
- Myocardium/metabolism
- Myocardium/pathology
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/genetics
- Mice, Inbred C57BL
- Animals, Newborn
- Humans
- Heart/physiopathology
- Fibrosis
Collapse
Affiliation(s)
- Juan C Landoni
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Semin Erkul
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuomas Laalo
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Riikka Kivelä
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Helsinki, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Karlo Skube
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anni I Nieminen
- Metabolomics Unit, Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Sara A Wickström
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Helsinki, Finland
| | - James Stewart
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Anu Suomalainen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- HUS Diagnostic Centre, Helsinki University Hospital, Helsinki, Finland.
- HiLife, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Shi Y, Tian M, Zhao X, Tang L, Wang F, Wu H, Liao Q, Ren H, Fu W, Zheng S, Jose PA, Li L, Zeng C. α-Ketoglutarate promotes cardiomyocyte proliferation and heart regeneration after myocardial infarction. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1083-1097. [PMID: 39223390 DOI: 10.1038/s44161-024-00531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
The neonatal mammalian heart can regenerate following injury through cardiomyocyte proliferation but loses this potential by postnatal day 7. Stimulating adult cardiomyocytes to reenter the cell cycle remains unclear. Here we show that cardiomyocyte proliferation depends on its metabolic state. Given the connection between the tricarboxylic acid cycle and cell proliferation, we analyzed these metabolites in mouse hearts from postnatal day 0.5 to day 7 and found that α-ketoglutarate ranked highest among the decreased metabolites. Injection of α-ketoglutarate extended the window of cardiomyocyte proliferation during heart development and promoted heart regeneration after myocardial infarction by inducing adult cardiomyocyte proliferation. This was confirmed in Ogdh-siRNA-treated mice with increased α-ketoglutarate levels. Mechanistically, α-ketoglutarate decreases H3K27me3 deposition at the promoters of cell cycle genes in cardiomyocytes. Thus, α-ketoglutarate promotes cardiomyocyte proliferation through JMJD3-dependent demethylation, offering a potential approach for treating myocardial infarction.
Collapse
Affiliation(s)
- Yu Shi
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Miao Tian
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Xiaofang Zhao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Luxun Tang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Feng Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Hao Wu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Qiao Liao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Wenbin Fu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Pedro A Jose
- Division of Renal Diseases and Hypertension, Department of Medicine and Pharmacology-Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Liangpeng Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China.
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China.
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China.
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, P. R. China.
- Department of Cardiology, The First Affiliated Hospital of Qunming Medical University, Qunming, P. R. China.
| |
Collapse
|
4
|
Li J, Hong X, Chen Y, Yin B, Yang H, Shi C, Zeng X, Zhang D, Guo Z, Zhang X. MicroPET Imaging of Riboflavin Transporter 3 Expression in Myocardial Infarction/Reperfusion Rat Models with Radiofluorinated Riboflavin. ACS Pharmacol Transl Sci 2024; 7:2350-2357. [PMID: 39144563 PMCID: PMC11320726 DOI: 10.1021/acsptsci.4c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024]
Abstract
Riboflavin transporter 3 (RFVT3) represents a potential cardioprotective biotarget in energetic metabolism reprogramming after myocardial infarction/reperfusion (MI/R). This study investigated the feasibility of noninvasive real-time quantification of RFVT3 expression after MI/R with an radiolabeled probe 18F-RFTA in a preclinical rat model of MI/R. The tracer 18F-RFTA was radio-synthesized manually and characterized on the subjects of radiolabeling yield, radiochemical purity, and stability in vivo. MI/R and sham-operated rat models were confirmed by cardiac magnetic resonance imaging (cMRI) and single-photon-emission computed tomography (SPECT) myocardial perfusion imaging (MPI) with technetium-99m sestamibi (99mTc-MIBI). Positron emission tomography (PET) imaging of MI/R and sham-operated rat models were conducted with 18F-RFTA. Ex vivo autoradiography and RFVT3 immunohistochemical (IHC) staining were conducted to verify the RFVT3 expression in infarcted and normal myocardium. 18F-RFTA injection was prepared with high radiochemical purity (>95%) and kept stable in vitro and in vivo. 18F-RFTA PET revealed significant uptake in the infarcted myocardium at 8 h after reperfusion, as confirmed by lower 99mTc-MIBI perfusion and decreased intensity of cMRI. Conversely, there were only the tiniest uptakes in the normal myocardium and blocked infarcted myocardium, which was further corroborated by ex vivo autoradiography. The RFVT3 expression was further confirmed by IHC staining in the infarcted and normal myocardium. We first demonstrate the feasibility of imaging RFVT3 in infarcted myocardium. 18F-RFTA is an encouraging PET probe for imaging cardioprotective biotarget RFVT3 in mitochondrial energetic metabolism reprogramming after myocardial infarction. Noninvasive imaging of cardioprotective biotarget RFVT3 has potential value in the diagnosis and therapy of patients with MI.
Collapse
Affiliation(s)
- Jindian Li
- Department
of Nuclear Medicine, Fudan University Shanghai Cancer Center, Department
of Oncology, Shanghai Medical College, Fudan
University, Shanghai 200032, China
- Center
for Molecular Imaging and Translational Medicine, State Key Laboratory
of Molecular Vaccinology and Molecular Diagnostics, School of Public
Health, Xiamen University, Xiamen 361102, China
| | - Xingfang Hong
- Laboratory
of Pathogen Biology, School of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Yingxi Chen
- Center
for Molecular Imaging and Translational Medicine, State Key Laboratory
of Molecular Vaccinology and Molecular Diagnostics, School of Public
Health, Xiamen University, Xiamen 361102, China
| | - Bin Yin
- The
First Affiliated Hospital, Center of Burn & Plastic and Wound
Healing Surgery, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hongzhang Yang
- Center
for Molecular Imaging and Translational Medicine, State Key Laboratory
of Molecular Vaccinology and Molecular Diagnostics, School of Public
Health, Xiamen University, Xiamen 361102, China
| | - Changrong Shi
- Center
for Molecular Imaging and Translational Medicine, State Key Laboratory
of Molecular Vaccinology and Molecular Diagnostics, School of Public
Health, Xiamen University, Xiamen 361102, China
| | - Xinying Zeng
- Center
for Molecular Imaging and Translational Medicine, State Key Laboratory
of Molecular Vaccinology and Molecular Diagnostics, School of Public
Health, Xiamen University, Xiamen 361102, China
| | - Deliang Zhang
- Department
of Nuclear Medicine, Xiang’an Hospital
Affiliated to Xiamen University, Xiamen 361102, China
| | - Zhide Guo
- Center
for Molecular Imaging and Translational Medicine, State Key Laboratory
of Molecular Vaccinology and Molecular Diagnostics, School of Public
Health, Xiamen University, Xiamen 361102, China
| | - Xianzhong Zhang
- Department
of Nuclear Medicine, Peking Union Medical College Hospital & Theranostics
and Translational Research Center, National Infrastructures for Translational
Medicine, Institute of Clinical Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
5
|
Sun JT, Wang ZM, Zhou LH, Yang TT, Zhao D, Bao YL, Wang SB, Gu LF, Chen JW, Shan TK, Wei TW, Wang H, Wang QM, Kong XQ, Xie LP, Gu AH, Zhao Y, Chen F, Ji Y, Cui YQ, Wang LS. PEX3 promotes regenerative repair after myocardial injury in mice through facilitating plasma membrane localization of ITGB3. Commun Biol 2024; 7:795. [PMID: 38951640 PMCID: PMC11217276 DOI: 10.1038/s42003-024-06483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
The peroxisome is a versatile organelle that performs diverse metabolic functions. PEX3, a critical regulator of the peroxisome, participates in various biological processes associated with the peroxisome. Whether PEX3 is involved in peroxisome-related redox homeostasis and myocardial regenerative repair remains elusive. We investigate that cardiomyocyte-specific PEX3 knockout (Pex3-KO) results in an imbalance of redox homeostasis and disrupts the endogenous proliferation/development at different times and spatial locations. Using Pex3-KO mice and myocardium-targeted intervention approaches, the effects of PEX3 on myocardial regenerative repair during both physiological and pathological stages are explored. Mechanistically, lipid metabolomics reveals that PEX3 promotes myocardial regenerative repair by affecting plasmalogen metabolism. Further, we find that PEX3-regulated plasmalogen activates the AKT/GSK3β signaling pathway via the plasma membrane localization of ITGB3. Our study indicates that PEX3 may represent a novel therapeutic target for myocardial regenerative repair following injury.
Collapse
Affiliation(s)
- Jia-Teng Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zi-Mu Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liu-Hua Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tong-Tong Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Di Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yu-Lin Bao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Si-Bo Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ling-Feng Gu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jia-Wen Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tian-Kai Shan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tian-Wen Wei
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qi-Ming Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiang-Qing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Li-Ping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Ai-Hua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yang Zhao
- Department of Biostatistics, School of Public Health, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, 210029, China
| | - Feng Chen
- Department of Biostatistics, School of Public Health, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, 210029, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yi-Qiang Cui
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, China.
| | - Lian-Sheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
6
|
Wei N, Lee C, Duan L, Galdos FX, Samad T, Raissadati A, Goodyer WR, Wu SM. Cardiac Development at a Single-Cell Resolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:253-268. [PMID: 38884716 DOI: 10.1007/978-3-031-44087-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Mammalian cardiac development is a complex, multistage process. Though traditional lineage tracing studies have characterized the broad trajectories of cardiac progenitors, the advent and rapid optimization of single-cell RNA sequencing methods have yielded an ever-expanding toolkit for characterizing heterogeneous cell populations in the developing heart. Importantly, they have allowed for a robust profiling of the spatiotemporal transcriptomic landscape of the human and mouse heart, revealing the diversity of cardiac cells-myocyte and non-myocyte-over the course of development. These studies have yielded insights into novel cardiac progenitor populations, chamber-specific developmental signatures, the gene regulatory networks governing cardiac development, and, thus, the etiologies of congenital heart diseases. Furthermore, single-cell RNA sequencing has allowed for the exquisite characterization of distinct cardiac populations such as the hard-to-capture cardiac conduction system and the intracardiac immune population. Therefore, single-cell profiling has also resulted in new insights into the regulation of cardiac regeneration and injury repair. Single-cell multiomics approaches combining transcriptomics, genomics, and epigenomics may uncover an even more comprehensive atlas of human cardiac biology. Single-cell analyses of the developing and adult mammalian heart offer an unprecedented look into the fundamental mechanisms of cardiac development and the complex diseases that may arise from it.
Collapse
Affiliation(s)
- Nicholas Wei
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | - Carissa Lee
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | - Lauren Duan
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | | | - Tahmina Samad
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | | | | | - Sean M Wu
- Stanford University, Cardiovascular Institute, Stanford, CA, USA.
| |
Collapse
|
7
|
Martin-Puig S, Menendez-Montes I. Cardiac Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:365-396. [PMID: 38884721 DOI: 10.1007/978-3-031-44087-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The heart is composed of a heterogeneous mixture of cellular components perfectly intermingled and able to integrate common environmental signals to ensure proper cardiac function and performance. Metabolism defines a cell context-dependent signature that plays a critical role in survival, proliferation, or differentiation, being a recognized master piece of organ biology, modulating homeostasis, disease progression, and adaptation to tissue damage. The heart is a highly demanding organ, and adult cardiomyocytes require large amount of energy to fulfill adequate contractility. However, functioning under oxidative mitochondrial metabolism is accompanied with a concomitant elevation of harmful reactive oxygen species that indeed contributes to the progression of several cardiovascular pathologies and hampers the regenerative capacity of the mammalian heart. Cardiac metabolism is dynamic along embryonic development and substantially changes as cardiomyocytes mature and differentiate within the first days after birth. During early stages of cardiogenesis, anaerobic glycolysis is the main energetic program, while a progressive switch toward oxidative phosphorylation is a hallmark of myocardium differentiation. In response to cardiac injury, different signaling pathways participate in a metabolic rewiring to reactivate embryonic bioenergetic programs or the utilization of alternative substrates, reflecting the flexibility of heart metabolism and its central role in organ adaptation to external factors. Despite the well-established metabolic pattern of fetal, neonatal, and adult cardiomyocytes, our knowledge about the bioenergetics of other cardiac populations like endothelial cells, cardiac fibroblasts, or immune cells is limited. Considering the close intercellular communication and the influence of nonautonomous cues during heart development and after cardiac damage, it will be fundamental to better understand the metabolic programs in different cardiac cells in order to develop novel interventional opportunities based on metabolic rewiring to prevent heart failure and improve the limited regenerative capacity of the mammalian heart.
Collapse
Affiliation(s)
- Silvia Martin-Puig
- Department of Metabolic and Immune Diseases, Institute for Biomedical Research "Sols-Morreale", National Spanish Research Council, CSIC, Madrid, Spain.
- Cardiac Regeneration Program, National Center for Cardiovascular Research, CNIC, Madrid, Spain.
| | - Ivan Menendez-Montes
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
8
|
Yang X, Li L, Zeng C, Wang WE. The characteristics of proliferative cardiomyocytes in mammals. J Mol Cell Cardiol 2023; 185:50-64. [PMID: 37918322 DOI: 10.1016/j.yjmcc.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Better understanding of the mechanisms regulating the proliferation of pre-existing cardiomyocyte (CM) should lead to better options for regenerating injured myocardium. The absence of a perfect research model to definitively identify newly formed mammalian CMs is lacking. However, methodologies are being developed to identify and enrich proliferative CMs. These methods take advantages of the different proliferative states of CMs during postnatal development, before and after injury in the neonatal heart. New approaches use CMs labeled in lineage tracing animals or single cell technique-based CM clusters. This review aims to provide a timely update on the characteristics of the proliferative CMs, including their structural, functional, genetic, epigenetic and metabolic characteristics versus non-proliferative CMs. A better understanding of the characteristics of proliferative CMs should lead to the mechanisms for inducing endogenous CMs to self-renew, which is a promising therapeutic strategy to treat cardiac diseases that cause CM death in humans.
Collapse
Affiliation(s)
- Xinyue Yang
- Department of Geriatrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liangpeng Li
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Wei Eric Wang
- Department of Geriatrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
9
|
Menendez-Montes I, Garry DJ, Zhang J(J, Sadek HA. Metabolic Control of Cardiomyocyte Cell Cycle. Methodist Debakey Cardiovasc J 2023; 19:26-36. [PMID: 38028975 PMCID: PMC10655756 DOI: 10.14797/mdcvj.1309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Current therapies for heart failure aim to prevent the deleterious remodeling that occurs after MI injury, but currently no therapies are available to replace lost cardiomyocytes. Several organisms now being studied are capable of regenerating their myocardium by the proliferation of existing cardiomyocytes. In this review, we summarize the main metabolic pathways of the mammalian heart and how modulation of these metabolic pathways through genetic and pharmacological approaches influences cardiomyocyte proliferation and heart regeneration.
Collapse
Affiliation(s)
| | | | | | - Hesham A. Sadek
- University of Texas Southwestern Medical Center, Dallas, Texas, US
| |
Collapse
|
10
|
Abstract
Metabolic switches are a crucial hallmark of cellular development and regeneration. In response to changes in their environment or physiological state, cells undergo coordinated metabolic switching that is necessary to execute biosynthetic demands of growth and repair. In this Review, we discuss how metabolic switches represent an evolutionarily conserved mechanism that orchestrates tissue development and regeneration, allowing cells to adapt rapidly to changing conditions during development and postnatally. We further explore the dynamic interplay between metabolism and how it is not only an output, but also a driver of cellular functions, such as cell proliferation and maturation. Finally, we underscore the epigenetic and cellular mechanisms by which metabolic switches mediate biosynthetic needs during development and regeneration, and how understanding these mechanisms is important for advancing our knowledge of tissue development and devising new strategies to promote tissue regeneration.
Collapse
Affiliation(s)
- Ahmed I. Mahmoud
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
11
|
Huang L, Wang Q, Gu S, Cao N. Integrated metabolic and epigenetic mechanisms in cardiomyocyte proliferation. J Mol Cell Cardiol 2023; 181:79-88. [PMID: 37331466 DOI: 10.1016/j.yjmcc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
Heart disease continues to be the leading cause of mortality worldwide, primarily attributed to the restricted regenerative potential of the adult human heart following injury. In contrast to their adult counterparts, many neonatal mammals can spontaneously regenerate their myocardium in the first few days of life via extensive proliferation of the pre-existing cardiomyocytes. Reasons for the decline in regenerative capacity during postnatal development, and how to control it, remain largely unexplored. Accumulated evidence suggests that the preservation of regenerative potential depends on a conducive metabolic state in the embryonic and neonatal heart. Along with the postnatal increase in oxygenation and workload, the mammalian heart undergoes a metabolic transition, shifting its primary metabolic substrate from glucose to fatty acids shortly after birth for energy advantage. This metabolic switch causes cardiomyocyte cell-cycle arrest, which is widely regarded as a key mechanism for the loss of regenerative capacity. Beyond energy provision, emerging studies have suggested a link between this intracellular metabolism dynamics and postnatal epigenetic remodeling of the mammalian heart that reshapes the expression of many genes important for cardiomyocyte proliferation and cardiac regeneration, since many epigenetic enzymes utilize kinds of metabolites as obligate cofactors or substrates. This review summarizes the current state of knowledge of metabolism and metabolite-mediated epigenetic modifications in cardiomyocyte proliferation, with a particular focus on highlighting the potential therapeutic targets that hold promise to treat human heart failure via metabolic and epigenetic regulations.
Collapse
Affiliation(s)
- Liying Huang
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Qiyuan Wang
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Shanshan Gu
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Nan Cao
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China.
| |
Collapse
|
12
|
Kankuri E, Finckenberg P, Leinonen J, Tarkia M, Björk S, Purhonen J, Kallijärvi J, Kankainen M, Soliymani R, Lalowski M, Mervaala E. Altered acylcarnitine metabolism and inflexible mitochondrial fuel utilization characterize the loss of neonatal myocardial regeneration capacity. Exp Mol Med 2023; 55:806-817. [PMID: 37009793 PMCID: PMC10167339 DOI: 10.1038/s12276-023-00967-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 11/29/2022] [Accepted: 12/23/2022] [Indexed: 04/04/2023] Open
Abstract
Myocardial regeneration capacity declines during the first week after birth, and this decline is linked to adaptation to oxidative metabolism. Utilizing this regenerative window, we characterized the metabolic changes in myocardial injury in 1-day-old regeneration-competent and 7-day-old regeneration-compromised mice. The mice were either sham-operated or received left anterior descending coronary artery ligation to induce myocardial infarction (MI) and acute ischemic heart failure. Myocardial samples were collected 21 days after operations for metabolomic, transcriptomic and proteomic analyses. Phenotypic characterizations were carried out using echocardiography, histology and mitochondrial structural and functional assessments. In both groups, MI induced an early decline in cardiac function that persisted in the regeneration-compromised mice over time. By integrating the findings from metabolomic, transcriptomic and proteomic examinations, we linked regeneration failure to the accumulation of long-chain acylcarnitines and insufficient metabolic capacity for fatty acid beta-oxidation. Decreased expression of the redox-sensitive mitochondrial Slc25a20 carnitine-acylcarnitine translocase together with a decreased reduced:oxidized glutathione ratio in the myocardium in the regeneration-compromised mice pointed to a defect in the redox-sensitive acylcarnitine transport to the mitochondrial matrix. Rather than a forced shift from the preferred adult myocardial oxidative fuel source, our results suggest the facilitation of mitochondrial fatty acid transport and improvement of the beta-oxidation pathway as a means to overcome the metabolic barrier for repair and regeneration in adult mammals after MI and heart failure.
Collapse
Affiliation(s)
- E Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - P Finckenberg
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Leinonen
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Tarkia
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - S Björk
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Purhonen
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Kallijärvi
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Kankainen
- Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - R Soliymani
- Helsinki Institute of Life Science (HiLIFE), Meilahti Clinical Proteomics Core Facility, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Lalowski
- Helsinki Institute of Life Science (HiLIFE), Meilahti Clinical Proteomics Core Facility, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - E Mervaala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
13
|
Dimasi CG, Darby JRT, Morrison JL. A change of heart: understanding the mechanisms regulating cardiac proliferation and metabolism before and after birth. J Physiol 2023; 601:1319-1341. [PMID: 36872609 PMCID: PMC10952280 DOI: 10.1113/jp284137] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/17/2023] [Indexed: 03/07/2023] Open
Abstract
Mammalian cardiomyocytes undergo major maturational changes in preparation for birth and postnatal life. Immature cardiomyocytes contribute to cardiac growth via proliferation and thus the heart has the capacity to regenerate. To prepare for postnatal life, structural and metabolic changes associated with increased cardiac output and function must occur. This includes exit from the cell cycle, hypertrophic growth, mitochondrial maturation and sarcomeric protein isoform switching. However, these changes come at a price: the loss of cardiac regenerative capacity such that damage to the heart in postnatal life is permanent. This is a significant barrier to the development of new treatments for cardiac repair and contributes to heart failure. The transitional period of cardiomyocyte growth is a complex and multifaceted event. In this review, we focus on studies that have investigated this critical transition period as well as novel factors that may regulate and drive this process. We also discuss the potential use of new biomarkers for the detection of myocardial infarction and, in the broader sense, cardiovascular disease.
Collapse
Affiliation(s)
- Catherine G. Dimasi
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| |
Collapse
|
14
|
Dorninger F, Kiss A, Rothauer P, Stiglbauer-Tscholakoff A, Kummer S, Fallatah W, Perera-Gonzalez M, Hamza O, König T, Bober MB, Cavallé-Garrido T, Braverman NE, Forss-Petter S, Pifl C, Bauer J, Bittner RE, Helbich TH, Podesser BK, Todt H, Berger J. Overlapping and Distinct Features of Cardiac Pathology in Inherited Human and Murine Ether Lipid Deficiency. Int J Mol Sci 2023; 24:1884. [PMID: 36768204 PMCID: PMC9914995 DOI: 10.3390/ijms24031884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Inherited deficiency in ether lipids, a subgroup of glycerophospholipids with unique biochemical and biophysical properties, evokes severe symptoms in humans resulting in a multi-organ syndrome. Mouse models with defects in ether lipid biosynthesis have widely been used to understand the pathophysiology of human disease and to study the roles of ether lipids in various cell types and tissues. However, little is known about the function of these lipids in cardiac tissue. Previous studies included case reports of cardiac defects in ether-lipid-deficient patients, but a systematic analysis of the impact of ether lipid deficiency on the mammalian heart is still missing. Here, we utilize a mouse model of complete ether lipid deficiency (Gnpat KO) to accomplish this task. Similar to a subgroup of human patients with rhizomelic chondrodysplasia punctata (RCDP), a fraction of Gnpat KO fetuses present with defects in ventricular septation, presumably evoked by a developmental delay. We did not detect any signs of cardiomyopathy but identified increased left ventricular end-systolic and end-diastolic pressure in middle-aged ether-lipid-deficient mice. By comprehensive electrocardiographic characterization, we consistently found reduced ventricular conduction velocity, as indicated by a prolonged QRS complex, as well as increased QRS and QT dispersion in the Gnpat KO group. Furthermore, a shift of the Wenckebach point to longer cycle lengths indicated depressed atrioventricular nodal function. To complement our findings in mice, we analyzed medical records and performed electrocardiography in ether-lipid-deficient human patients, which, in contrast to the murine phenotype, indicated a trend towards shortened QT intervals. Taken together, our findings demonstrate that the cardiac phenotype upon ether lipid deficiency is highly heterogeneous, and although the manifestations in the mouse model only partially match the abnormalities in human patients, the results add to our understanding of the physiological role of ether lipids and emphasize their importance for proper cardiac development and function.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Attila Kiss
- Center for Biomedical Research, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Peter Rothauer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Währingerstrasse 13a, 1090 Vienna, Austria
| | - Alexander Stiglbauer-Tscholakoff
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Stefan Kummer
- Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Währinger Straße 13, 1090 Vienna, Austria
| | - Wedad Fallatah
- Department of Genetic Medicine, King AbdulAziz University, Jeddah 21589, Saudi Arabia
- Department of Human Genetics and Pediatrics, Montreal Children’s Hospital, McGill University, 1001 Décarie Blvd, Montreal, QC H4A 3J1, Canada
| | - Mireia Perera-Gonzalez
- Center for Biomedical Research, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Ouafa Hamza
- Center for Biomedical Research, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Theresa König
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Michael B. Bober
- Skeletal Dysplasia Program, Nemours Children’s Hospital, 1600 Rockland Road, Wilmington, DE 19803, USA
| | - Tiscar Cavallé-Garrido
- Department of Pediatrics, Division of Cardiology, Montreal Children’s Hospital, McGill University, 1001 Décarie Blvd, Montreal, QC H4A 3J1, Canada
| | - Nancy E. Braverman
- Department of Human Genetics and Pediatrics, Montreal Children’s Hospital, McGill University, 1001 Décarie Blvd, Montreal, QC H4A 3J1, Canada
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Christian Pifl
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Reginald E. Bittner
- Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Währinger Straße 13, 1090 Vienna, Austria
| | - Thomas H. Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Bruno K. Podesser
- Center for Biomedical Research, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Hannes Todt
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Währingerstrasse 13a, 1090 Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| |
Collapse
|
15
|
Kankuri E, Karjalainen P, Vento A. Atrial Appendage-Derived Cardiac Micrografts: An Emerging Cellular Therapy for Heart Failure. CARDIOVASCULAR APPLICATIONS OF STEM CELLS 2023:155-181. [DOI: 10.1007/978-981-99-0722-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Doccini S, Marchese M, Morani F, Gammaldi N, Mero S, Pezzini F, Soliymani R, Santi M, Signore G, Ogi A, Rocchiccioli S, Kanninen KM, Simonati A, Lalowski MM, Santorelli FM. Lysosomal Proteomics Links Disturbances in Lipid Homeostasis and Sphingolipid Metabolism to CLN5 Disease. Cells 2022; 11:1840. [PMID: 35681535 PMCID: PMC9180748 DOI: 10.3390/cells11111840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022] Open
Abstract
CLN5 disease (MIM: 256731) represents a rare late-infantile form of neuronal ceroid lipofuscinosis (NCL), caused by mutations in the CLN5 gene that encodes the CLN5 protein (CLN5p), whose physiological roles stay unanswered. No cure is currently available for CLN5 patients and the opportunities for therapies are lagging. The role of lysosomes in the neuro-pathophysiology of CLN5 disease represents an important topic since lysosomal proteins are directly involved in the primary mechanisms of neuronal injury occurring in various NCL forms. We developed and implemented a lysosome-focused, label-free quantitative proteomics approach, followed by functional validations in both CLN5-knockout neuronal-like cell lines and Cln5-/- mice, to unravel affected pathways and modifying factors involved in this disease scenario. Our results revealed a key role of CLN5p in lipid homeostasis and sphingolipid metabolism and highlighted mutual NCL biomarkers scored with high lysosomal confidence. A newly generated cln5 knockdown zebrafish model recapitulated most of the pathological features seen in NCL disease. To translate the findings from in-vitro and preclinical models to patients, we evaluated whether two FDA-approved drugs promoting autophagy via TFEB activation or inhibition of the glucosylceramide synthase could modulate in-vitro ROS and lipid overproduction, as well as alter the locomotor phenotype in zebrafish. In summary, our data advance the general understanding of disease mechanisms and modifying factors in CLN5 disease, which are recurring in other NCL forms, also stimulating new pharmacological treatments.
Collapse
Affiliation(s)
- Stefano Doccini
- Molecular Medicine–IRCCS Stella Maris, 56128 Pisa, Italy; (M.M.); (N.G.); (S.M.); (A.O.)
| | - Maria Marchese
- Molecular Medicine–IRCCS Stella Maris, 56128 Pisa, Italy; (M.M.); (N.G.); (S.M.); (A.O.)
| | - Federica Morani
- Department of Biology, University of Pisa, 56126 Pisa, Italy;
| | - Nicola Gammaldi
- Molecular Medicine–IRCCS Stella Maris, 56128 Pisa, Italy; (M.M.); (N.G.); (S.M.); (A.O.)
- Ph.D. Program in Neuroscience, University of Florence, 50121 Florence, Italy
| | - Serena Mero
- Molecular Medicine–IRCCS Stella Maris, 56128 Pisa, Italy; (M.M.); (N.G.); (S.M.); (A.O.)
| | - Francesco Pezzini
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37129 Verona, Italy; (F.P.); (A.S.)
| | - Rabah Soliymani
- HiLIFE, Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Melissa Santi
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, 56127 Pisa, Italy;
| | | | - Asahi Ogi
- Molecular Medicine–IRCCS Stella Maris, 56128 Pisa, Italy; (M.M.); (N.G.); (S.M.); (A.O.)
| | | | - Katja M. Kanninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Alessandro Simonati
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37129 Verona, Italy; (F.P.); (A.S.)
| | - Maciej M. Lalowski
- HiLIFE, Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
- Institute of Bioorganic Chemistry, PAS, Department of Biomedical Proteomics, 61-704 Poznan, Poland
| | - Filippo M. Santorelli
- Molecular Medicine–IRCCS Stella Maris, 56128 Pisa, Italy; (M.M.); (N.G.); (S.M.); (A.O.)
| |
Collapse
|
17
|
Metabolic Determinants in Cardiomyocyte Function and Heart Regenerative Strategies. Metabolites 2022; 12:metabo12060500. [PMID: 35736435 PMCID: PMC9227827 DOI: 10.3390/metabo12060500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Heart disease is the leading cause of mortality in developed countries. The associated pathology is characterized by a loss of cardiomyocytes that leads, eventually, to heart failure. In this context, several cardiac regenerative strategies have been developed, but they still lack clinical effectiveness. The mammalian neonatal heart is capable of substantial regeneration following injury, but this capacity is lost at postnatal stages when cardiomyocytes become terminally differentiated and transit to the fetal metabolic switch. Cardiomyocytes are metabolically versatile cells capable of using an array of fuel sources, and the metabolism of cardiomyocytes suffers extended reprogramming after injury. Apart from energetic sources, metabolites are emerging regulators of epigenetic programs driving cell pluripotency and differentiation. Thus, understanding the metabolic determinants that regulate cardiomyocyte maturation and function is key for unlocking future metabolic interventions for cardiac regeneration. In this review, we will discuss the emerging role of metabolism and nutrient signaling in cardiomyocyte function and repair, as well as whether exploiting this axis could potentiate current cellular regenerative strategies for the mammalian heart.
Collapse
|
18
|
Jiang S, Feng W, Chang C, Li G. Modeling Human Heart Development and Congenital Defects Using Organoids: How Close Are We? J Cardiovasc Dev Dis 2022; 9:jcdd9050125. [PMID: 35621836 PMCID: PMC9145739 DOI: 10.3390/jcdd9050125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
The emergence of human-induced Pluripotent Stem Cells (hiPSCs) has dramatically improved our understanding of human developmental processes under normal and diseased conditions. The hiPSCs have been differentiated into various tissue-specific cells in vitro, and the advancement in three-dimensional (3D) culture has provided a possibility to generate those cells in an in vivo-like environment. Tissues with 3D structures can be generated using different approaches such as self-assembled organoids and tissue-engineering methods, such as bioprinting. We are interested in studying the self-assembled organoids differentiated from hiPSCs, as they have the potential to recapitulate the in vivo developmental process and be used to model human development and congenital defects. Organoids of tissues such as those of the intestine and brain were developed many years ago, but heart organoids were not reported until recently. In this review, we will compare the heart organoids with the in vivo hearts to understand the anatomical structures we still lack in the organoids. Specifically, we will compare the development of main heart structures, focusing on their marker genes and regulatory signaling pathways.
Collapse
|
19
|
Tan J, Yang M, Wang H, Shen C, Wu M, Xu H, Wu Y, Li Y, Li X, Huang T, Deng S, Yang Z, Gao S, Li H, Zhou J, Chen H, Cao N, Cai W. Moderate heart rate reduction promotes cardiac regeneration through stimulation of the metabolic pattern switch. Cell Rep 2022; 38:110468. [PMID: 35263588 DOI: 10.1016/j.celrep.2022.110468] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 12/19/2021] [Accepted: 02/10/2022] [Indexed: 01/07/2023] Open
Abstract
As a biological pump, the heart needs to consume a substantial amount of energy to maintain sustained beating. Myocardial energy metabolism was recently reported to be related to the loss of proliferative capacity in cardiomyocytes (CMs). However, the intrinsic relationship between beating rate and proliferation in CMs and whether energy metabolism can regulate this relationship remains unclear. In this study, we find that moderate heart rate reduction (HRR) induces CM proliferation under physiological conditions and promotes cardiac regenerative repair after myocardial injury. Mechanistically, moderate HRR induces G1/S transition and increases the expression of glycolytic enzymes in CMs. Furthermore, moderate HRR induces a metabolic pattern switch, activating glucose metabolism and increasing the relative proportion of ATP production by the glycolytic pathway for biosynthesis of substrates needed for proliferative CMs. These results highlight the potential therapeutic role of HRR in not only acute myocardial protection but also long-term CM restoration.
Collapse
Affiliation(s)
- Jing Tan
- Laboratory Animal Center and Department of Biochemistry, Institute of Guangdong Engineering and Technology Research Center for Disease-Model Animals, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ming Yang
- Laboratory Animal Center and Department of Biochemistry, Institute of Guangdong Engineering and Technology Research Center for Disease-Model Animals, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Haiping Wang
- Laboratory Animal Center and Department of Biochemistry, Institute of Guangdong Engineering and Technology Research Center for Disease-Model Animals, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Conghui Shen
- Laboratory Animal Center and Department of Biochemistry, Institute of Guangdong Engineering and Technology Research Center for Disease-Model Animals, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Maoxiong Wu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - He Xu
- Program of Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Yandi Wu
- Laboratory Animal Center and Department of Biochemistry, Institute of Guangdong Engineering and Technology Research Center for Disease-Model Animals, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuanlong Li
- Laboratory Animal Center and Department of Biochemistry, Institute of Guangdong Engineering and Technology Research Center for Disease-Model Animals, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xinghui Li
- Laboratory Animal Center and Department of Biochemistry, Institute of Guangdong Engineering and Technology Research Center for Disease-Model Animals, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Tongsheng Huang
- Laboratory Animal Center and Department of Biochemistry, Institute of Guangdong Engineering and Technology Research Center for Disease-Model Animals, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Shijie Deng
- Laboratory Animal Center and Department of Biochemistry, Institute of Guangdong Engineering and Technology Research Center for Disease-Model Animals, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhenyu Yang
- Laboratory Animal Center and Department of Biochemistry, Institute of Guangdong Engineering and Technology Research Center for Disease-Model Animals, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Saifei Gao
- Laboratory Animal Center and Department of Biochemistry, Institute of Guangdong Engineering and Technology Research Center for Disease-Model Animals, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Li
- Laboratory Animal Center and Department of Biochemistry, Institute of Guangdong Engineering and Technology Research Center for Disease-Model Animals, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiaguo Zhou
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Hui Chen
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Nan Cao
- Program of Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China.
| | - Weibin Cai
- Laboratory Animal Center and Department of Biochemistry, Institute of Guangdong Engineering and Technology Research Center for Disease-Model Animals, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
20
|
Yang H, Shao N, Holmström A, Zhao X, Chour T, Chen H, Itzhaki I, Wu H, Ameen M, Cunningham NJ, Tu C, Zhao MT, Tarantal AF, Abilez OJ, Wu JC. Transcriptome analysis of non human primate-induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer culture vs. 3D engineered heart tissue. Cardiovasc Res 2021; 117:2125-2136. [PMID: 33002105 PMCID: PMC8318103 DOI: 10.1093/cvr/cvaa281] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/27/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
AIMS Stem cell therapy has shown promise for treating myocardial infarction via re-muscularization and paracrine signalling in both small and large animals. Non-human primates (NHPs), such as rhesus macaques (Macaca mulatta), are primarily utilized in preclinical trials due to their similarity to humans, both genetically and physiologically. Currently, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are delivered into the infarcted myocardium by either direct cell injection or an engineered tissue patch. Although both approaches have advantages in terms of sample preparation, cell-host interaction, and engraftment, how the iPSC-CMs respond to ischaemic conditions in the infarcted heart under these two different delivery approaches remains unclear. Here, we aim to gain a better understanding of the effects of hypoxia on iPSC-CMs at the transcriptome level. METHODS AND RESULTS NHP iPSC-CMs in both monolayer culture (2D) and engineered heart tissue (EHT) (3D) format were exposed to hypoxic conditions to serve as surrogates of direct cell injection and tissue implantation in vivo, respectively. Outcomes were compared at the transcriptome level. We found the 3D EHT model was more sensitive to ischaemic conditions and similar to the native in vivo myocardium in terms of cell-extracellular matrix/cell-cell interactions, energy metabolism, and paracrine signalling. CONCLUSION By exposing NHP iPSC-CMs to different culture conditions, transcriptome profiling improves our understanding of the mechanism of ischaemic injury.
Collapse
Affiliation(s)
- Huaxiao Yang
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Department of Biomedical Engineering, University of North Texas, 390 N. Elm Street K240B, Denton, TX 76207-7102, USA
| | - Ningyi Shao
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Alexandra Holmström
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Xin Zhao
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Tony Chour
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Haodong Chen
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Ilanit Itzhaki
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Haodi Wu
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Mohamed Ameen
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Nathan J Cunningham
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Chengyi Tu
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Ming-Tao Zhao
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Alice F Tarantal
- Department of Pediatrics, School of Medicine, One Shields Avenue, Davis, CA 95616-8542, USA
- Department Cell Biology and Human Anatomy, School of Medicine, One Shields Avenue, Davis, CA 95616-8542, USA
- California National Primate Research Center, UC Davis, One Shields Avenue, Davis, CA 95616-8542, USA
| | - Oscar J Abilez
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| |
Collapse
|
21
|
Annandale M, Daniels LJ, Li X, Neale JPH, Chau AHL, Ambalawanar HA, James SL, Koutsifeli P, Delbridge LMD, Mellor KM. Fructose Metabolism and Cardiac Metabolic Stress. Front Pharmacol 2021; 12:695486. [PMID: 34267663 PMCID: PMC8277231 DOI: 10.3389/fphar.2021.695486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease is one of the leading causes of mortality in diabetes. High fructose consumption has been linked with the development of diabetes and cardiovascular disease. Serum and cardiac tissue fructose levels are elevated in diabetic patients, and cardiac production of fructose via the intracellular polyol pathway is upregulated. The question of whether direct myocardial fructose exposure and upregulated fructose metabolism have potential to induce cardiac fructose toxicity in metabolic stress settings arises. Unlike tightly-regulated glucose metabolism, fructose bypasses the rate-limiting glycolytic enzyme, phosphofructokinase, and proceeds through glycolysis in an unregulated manner. In vivo rodent studies have shown that high dietary fructose induces cardiac metabolic stress and functional disturbance. In vitro, studies have demonstrated that cardiomyocytes cultured in high fructose exhibit lipid accumulation, inflammation, hypertrophy and low viability. Intracellular fructose mediates post-translational modification of proteins, and this activity provides an important mechanistic pathway for fructose-related cardiomyocyte signaling and functional effect. Additionally, fructose has been shown to provide a fuel source for the stressed myocardium. Elucidating the mechanisms of fructose toxicity in the heart may have important implications for understanding cardiac pathology in metabolic stress settings.
Collapse
Affiliation(s)
- M Annandale
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - L J Daniels
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - X Li
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - J P H Neale
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - A H L Chau
- Department of Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - H A Ambalawanar
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - S L James
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - P Koutsifeli
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - L M D Delbridge
- Department of Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - K M Mellor
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Department of Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Caufield JH, Sigdel D, Fu J, Choi H, Guevara-Gonzalez V, Wang D, Ping P. Cardiovascular Informatics: building a bridge to data harmony. Cardiovasc Res 2021; 118:732-745. [PMID: 33751044 DOI: 10.1093/cvr/cvab067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
The search for new strategies for better understanding cardiovascular disease is a constant one, spanning multitudinous types of observations and studies. A comprehensive characterization of each disease state and its biomolecular underpinnings relies upon insights gleaned from extensive information collection of various types of data. Researchers and clinicians in cardiovascular biomedicine repeatedly face questions regarding which types of data may best answer their questions, how to integrate information from multiple datasets of various types, and how to adapt emerging advances in machine learning and/or artificial intelligence to their needs in data processing. Frequently lauded as a field with great practical and translational potential, the interface between biomedical informatics and cardiovascular medicine is challenged with staggeringly massive datasets. Successful application of computational approaches to decode these complex and gigantic amounts of information becomes an essential step toward realizing the desired benefits. In this review, we examine recent efforts to adapt informatics strategies to cardiovascular biomedical research: automated information extraction and unification of multifaceted -omics data. We discuss how and why this interdisciplinary space of Cardiovascular Informatics is particularly relevant to and supportive of current experimental and clinical research. We describe in detail how open data sources and methods can drive discovery while demanding few initial resources, an advantage afforded by widespread availability of cloud computing-driven platforms. Subsequently, we provide examples of how interoperable computational systems facilitate exploration of data from multiple sources, including both consistently-formatted structured data and unstructured data. Taken together, these approaches for achieving data harmony enable molecular phenotyping of cardiovascular (CV) diseases and unification of cardiovascular knowledge.
Collapse
Affiliation(s)
- J Harry Caufield
- NHLBI Integrated Cardiovascular Data Science Training Program at University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.,Departments of Physiology at UCLA School of Medicine, Los Angeles, CA, 90095, USA
| | - Dibakar Sigdel
- NHLBI Integrated Cardiovascular Data Science Training Program at University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.,Departments of Physiology at UCLA School of Medicine, Los Angeles, CA, 90095, USA
| | - John Fu
- NHLBI Integrated Cardiovascular Data Science Training Program at University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Howard Choi
- NHLBI Integrated Cardiovascular Data Science Training Program at University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Vladimir Guevara-Gonzalez
- NHLBI Integrated Cardiovascular Data Science Training Program at University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Ding Wang
- Departments of Physiology at UCLA School of Medicine, Los Angeles, CA, 90095, USA
| | - Peipei Ping
- NHLBI Integrated Cardiovascular Data Science Training Program at University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.,Departments of Physiology at UCLA School of Medicine, Los Angeles, CA, 90095, USA.,Department of Medicine (Cardiology) at UCLA School of Medicine, Los Angeles, CA, 90095, USA.,Bioinformatics and Medical Informatics, Los Angeles, CA, 90095, USA.,Scalable Analytics Institute (ScAi) at UCLA School of Engineering, Los Angeles, CA, 90095, USA
| |
Collapse
|
23
|
A Sweet Story of Metabolic Innovation in the Naked Mole-Rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:271-286. [PMID: 34424520 DOI: 10.1007/978-3-030-65943-1_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The naked mole-rat's (Heterocephalus glaber) social and subterranean lifestyle imposes several evolutionary pressures which have shaped its physiology. One example is low oxygen availability in a crowded burrow system which the naked mole-rat has adapted to via several mechanisms. Here we describe a metabolic rewiring which enables the naked mole-rat to switch substrates in glycolysis from glucose to fructose thereby circumventing feedback inhibition at phosphofructokinase (PFK1) to allow unrestrained glycolytic flux and ATP supply under hypoxia. Preferential shift to fructose metabolism occurs in other species and biological systems as a means to provide fuel, water or like in the naked mole-rat, protection in a low oxygen environment. We review fructose metabolism through an ecological lens and suggest that the metabolic adaptation to utilize fructose in the naked mole-rat may have evolved to simultaneously combat multiple challenges posed by its hostile environment.
Collapse
|
24
|
McNally LA, Altamimi TR, Fulghum K, Hill BG. Considerations for using isolated cell systems to understand cardiac metabolism and biology. J Mol Cell Cardiol 2020; 153:26-41. [PMID: 33359038 DOI: 10.1016/j.yjmcc.2020.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Changes in myocardial metabolic activity are fundamentally linked to cardiac health and remodeling. Primary cardiomyocytes, induced pluripotent stem cell-derived cardiomyocytes, and transformed cardiomyocyte cell lines are common models used to understand how (patho)physiological conditions or stimuli contribute to changes in cardiac metabolism. These cell models are helpful also for defining metabolic mechanisms of cardiac dysfunction and remodeling. Although technical advances have improved our capacity to measure cardiomyocyte metabolism, there is often heterogeneity in metabolic assay protocols and cell models, which could hinder data interpretation and discernment of the mechanisms of cardiac (patho)physiology. In this review, we discuss considerations for integrating cardiomyocyte cell models with techniques that have become relatively common in the field, such as respirometry and extracellular flux analysis. Furthermore, we provide overviews of metabolic assays that complement XF analyses and that provide information on not only catabolic pathway activity, but biosynthetic pathway activity and redox status as well. Cultivating a more widespread understanding of the advantages and limitations of metabolic measurements in cardiomyocyte cell models will continue to be essential for the development of coherent metabolic mechanisms of cardiac health and pathophysiology.
Collapse
Affiliation(s)
- Lindsey A McNally
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Tariq R Altamimi
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Kyle Fulghum
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Bradford G Hill
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
25
|
Arasu UT, Deen AJ, Pasonen-Seppänen S, Heikkinen S, Lalowski M, Kärnä R, Härkönen K, Mäkinen P, Lázaro-Ibáñez E, Siljander PRM, Oikari S, Levonen AL, Rilla K. HAS3-induced extracellular vesicles from melanoma cells stimulate IHH mediated c-Myc upregulation via the hedgehog signaling pathway in target cells. Cell Mol Life Sci 2020; 77:4093-4115. [PMID: 31820036 PMCID: PMC7532973 DOI: 10.1007/s00018-019-03399-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 11/11/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
Abstract
Intercellular communication is fundamental to the survival and maintenance of all multicellular systems, whereas dysregulation of communication pathways can drive cancer progression. Extracellular vesicles (EVs) are mediators of cell-to-cell communication that regulate a variety of cellular processes involved in tumor progression. Overexpression of a specific plasma membrane enzyme, hyaluronan synthase 3 (HAS3), is one of the factors that can induce EV shedding. HAS3, and particularly its product hyaluronan (HA), are carried by EVs and are known to be associated with the tumorigenic properties of cancer cells. To elucidate the specific effects of cancerous, HAS3-induced EVs on target cells, normal human keratinocytes and melanoma cells were treated with EVs derived from GFP-HAS3 expressing metastatic melanoma cells. We found that the HA receptor CD44 participated in the regulation of EV binding to target cells. Furthermore, GFP-HAS3-positive EVs induced HA secretion, proliferation and invasion of target cells. Our results suggest that HAS3-EVs contains increased quantities of IHH, which activates the target cell hedgehog signaling cascade and leads to the activation of c-Myc and regulation of claspin expression. This signaling of IHH in HAS3-EVs resulted in increased cell proliferation. Claspin immunostaining correlated with HA content in human cutaneous melanocytic lesions, supporting our in vitro findings and suggesting a reciprocal regulation between claspin expression and HA synthesis. This study shows for the first time that EVs originating from HAS3 overexpressing cells carry mitogenic signals that induce proliferation and epithelial-to-mesenchymal transition in target cells. The study also identifies a novel feedback regulation between the hedgehog signaling pathway and HA metabolism in melanoma, mediated by EVs carrying HA and IHH.
Collapse
Affiliation(s)
- Uma Thanigai Arasu
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| | - Ashik Jawahar Deen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Sami Heikkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Maciej Lalowski
- Faculty of Medicine, Biochemistry and Developmental Biology, Meilahti Clinical Proteomics Core Facility, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Riikka Kärnä
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Kai Härkönen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Petri Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elisa Lázaro-Ibáñez
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Centre for Drug Research, University of Helsinki, Helsinki, Finland
| | - Pia R-M Siljander
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Centre for Drug Research, University of Helsinki, Helsinki, Finland
- EV Group and EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sanna Oikari
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
26
|
Dittrich A, Hansen K, Simonsen MIT, Busk M, Alstrup AKO, Lauridsen H. Intrinsic Heart Regeneration in Adult Vertebrates May be Strictly Limited to Low-Metabolic Ectotherms. Bioessays 2020; 42:e2000054. [PMID: 32914411 DOI: 10.1002/bies.202000054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/12/2020] [Indexed: 01/24/2023]
Abstract
The heart has a high-metabolic rate, and its "around-the-clock" vital role to sustain life sets it apart in a regenerative setting from other organs and appendages. The landscape of vertebrate species known to perform intrinsic heart regeneration is strongly biased toward ectotherms-for example, fish, salamanders, and embryonic/neonatal ectothermic mammals. It is hypothesized that intrinsic heart regeneration is exclusively limited to the low-metabolic hearts of ectotherms. The biomedical field of regenerative medicine seeks to devise biologically inspired regenerative therapies to diseased human hearts. Falsification of the ectothermy dependency for heart regeneration hypothesis may be a crucial prerequisite to meaningfully seek inspiration in established ectothermic regenerative animal models. Otherwise, engineering approaches to construct artificial heart components may constitute a more viable path toward regenerative therapies. A more strict definition of regenerative phenomena is generated and several testable sub-hypotheses and experimental avenues are put forward to elucidate the link between heart regeneration and metabolism. Also see the video abstract here https://youtu.be/fZcanaOT5z8.
Collapse
Affiliation(s)
- Anita Dittrich
- Department of Clinical Medicine (Comparative Medicine Lab), Aarhus University, Aarhus N, 8200, Denmark
| | - Kasper Hansen
- Department of Clinical Medicine (Comparative Medicine Lab), Aarhus University, Aarhus N, 8200, Denmark.,Department of Forensic Medicine, Aarhus University, Aarhus N, 8200, Denmark.,Department of Biology (Zoophysiology), Aarhus University, Aarhus C, 8000, Denmark.,Leicester Royal Infirmary (East Midlands Forensic Pathology Unit), University of Leicester, Leicester, LE2 7LX, UK
| | | | - Morten Busk
- Department of Oncology (Experimental Clinical Oncology), Aarhus University Hospital, Aarhus N, 8200, Denmark.,Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus N, 8200, Denmark
| | | | - Henrik Lauridsen
- Department of Clinical Medicine (Comparative Medicine Lab), Aarhus University, Aarhus N, 8200, Denmark
| |
Collapse
|
27
|
Identifying the key regulators that promote cell-cycle activity in the hearts of early neonatal pigs after myocardial injury. PLoS One 2020; 15:e0232963. [PMID: 32730272 PMCID: PMC7392272 DOI: 10.1371/journal.pone.0232963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/24/2020] [Indexed: 12/25/2022] Open
Abstract
Mammalian cardiomyocytes exit the cell cycle shortly after birth. As a result, an occurrence of coronary occlusion-induced myocardial infarction often results in heart failure, postinfarction LV dilatation, or death, and represents one of the most significant public health morbidities worldwide. Interestingly however, the hearts of neonatal pigs have been shown to regenerate following an acute myocardial infarction (MI) occuring on postnatal day 1 (P1); a recovery period which is accompanied by an increased expression of markers for cell-cycle activity, and suggests that early postnatal myocardial regeneration may be driven in part by the MI-induced proliferation of pre-existing cardiomyocytes. In this study, we identified signaling pathways known to regulate the cell cycle, and determined of these, the pathways persistently upregulated in response to MI injury. We identified five pathways (mitogen associated protein kinase [MAPK], Hippo, cyclic [cAMP], Janus kinase/signal transducers and activators of transcription [JAK-STAT], and Ras) which were comprehensively upregulated in cardiac tissues collected on day 7 (P7) and/or P28 of the P1 injury hearts. Several of the initiating master regulators (e.g., CSF1/CSF1R, TGFB, and NPPA) and terminal effector molecules (e.g., ATF4, FOS, RELA/B, ITGB2, CCND1/2/3, PIM1, RAF1, MTOR, NKF1B) in these pathways were persistently upregulated at day 7 through day 28, suggesting there exists at least some degree of regenerative activity up to 4 weeks following MI at P1. Our observations provide a list of key regulators to be examined in future studies targeting cell-cycle activity as an avenue for myocardial regeneration.
Collapse
|
28
|
Hulmi JJ, Penna F, Pöllänen N, Nissinen TA, Hentilä J, Euro L, Lautaoja JH, Ballarò R, Soliymani R, Baumann M, Ritvos O, Pirinen E, Lalowski M. Muscle NAD + depletion and Serpina3n as molecular determinants of murine cancer cachexia-the effects of blocking myostatin and activins. Mol Metab 2020; 41:101046. [PMID: 32599075 PMCID: PMC7364159 DOI: 10.1016/j.molmet.2020.101046] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/26/2022] Open
Abstract
Objective Cancer cachexia and muscle loss are associated with increased morbidity and mortality. In preclinical animal models, blocking activin receptor (ACVR) ligands has improved survival and prevented muscle wasting in cancer cachexia without an effect on tumour growth. However, the underlying mechanisms are poorly understood. This study aimed to identify cancer cachexia and soluble ACVR (sACVR) administration-evoked changes in muscle proteome. Methods Healthy and C26 tumour-bearing (TB) mice were treated with recombinant sACVR. The sACVR or PBS control were administered either prior to the tumour formation or by continued administration before and after tumour formation. Muscles were analysed by quantitative proteomics with further examination of mitochondria and nicotinamide adenine dinucleotide (NAD+) metabolism. To complement the first prophylactic experiment, sACVR (or PBS) was injected as a treatment after tumour cell inoculation. Results Muscle proteomics in TB cachectic mice revealed downregulated signatures for mitochondrial oxidative phosphorylation (OXPHOS) and increased acute phase response (APR). These were accompanied by muscle NAD+ deficiency, alterations in NAD+ biosynthesis including downregulation of nicotinamide riboside kinase 2 (Nrk2), and decreased muscle protein synthesis. The disturbances in NAD+ metabolism and protein synthesis were rescued by treatment with sACVR. Across the whole proteome and APR, in particular, Serpina3n represented the most upregulated protein and the strongest predictor of cachexia. However, the increase in Serpina3n expression was associated with increased inflammation rather than decreased muscle mass and/or protein synthesis. Conclusions We present evidence implicating disturbed muscle mitochondrial OXPHOS proteome and NAD+ homeostasis in experimental cancer cachexia. Treatment of TB mice with a blocker of activin receptor ligands restores depleted muscle NAD+ and Nrk2, as well as decreased muscle protein synthesis. These results indicate putative new treatment therapies for cachexia and that although acute phase protein Serpina3n may serve as a predictor of cachexia, it more likely reflects a condition of elevated inflammation. Cachectic muscle proteome shows decreased OXPHOS and increased acute phase response. Cancer cachexia is characterized by lowered muscle Nrk2 expression and NAD+ levels. Blocking activin receptor 2B ligands rescues muscle NAD+ homeostasis in cachexia. Blocking activin receptor 2B ligands prevents affected protein synthesis in cachexia. Serpina3n predicts cachexia and cancer-induced APR independently from muscle atrophy.
Collapse
Affiliation(s)
- J J Hulmi
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - F Penna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - N Pöllänen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - T A Nissinen
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - J Hentilä
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - L Euro
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J H Lautaoja
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - R Ballarò
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - R Soliymani
- Meilahti Clinical Proteomics Core Facility, HiLIFE, Faculty of Medicine, Biochemistry and Developmental biology, University of Helsinki, Helsinki, Finland
| | - M Baumann
- Meilahti Clinical Proteomics Core Facility, HiLIFE, Faculty of Medicine, Biochemistry and Developmental biology, University of Helsinki, Helsinki, Finland
| | - O Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - E Pirinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Lalowski
- Meilahti Clinical Proteomics Core Facility, HiLIFE, Faculty of Medicine, Biochemistry and Developmental biology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Sampaio-Pinto V, Ruiz-Villalba A, Nascimento DS, Pérez-Pomares JM. Bone marrow contribution to the heart from development to adulthood. Semin Cell Dev Biol 2020; 112:16-26. [PMID: 32591270 DOI: 10.1016/j.semcdb.2020.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
Cardiac chamber walls contain large numbers of non-contractile interstitial cells, including fibroblasts, endothelial cells, pericytes and significant populations of blood lineage-derived cells. Blood cells first colonize heart tissues a few days before birth, although their recruitment from the bloodstream to the cardiac interstitium is continuous and extends throughout adult life. The bone marrow, as the major hematopoietic site of adult individuals, is in charge of renewing all circulating cell types, and it therefore plays a pivotal role in the incorporation of blood cells to the heart. Bone marrow-derived cells are instrumental to tissue homeostasis in the steady-state heart, and are major effectors in cardiac disease progression. This review will provide a comprehensive approach to bone marrow-derived blood cell functions in the heart, and discuss aspects related to hot topics in the cardiovascular field like cell-based heart regeneration strategies.
Collapse
Affiliation(s)
- Vasco Sampaio-Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal; Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, the Netherlands
| | - Adrián Ruiz-Villalba
- Department of Animal Biology, Institute of Biomedicine of Málaga (IBIMA), Faculty of Sciences, University of Málaga, Málaga, Spain; Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Campanillas, Málaga, Spain
| | - Diana S Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal.
| | - José M Pérez-Pomares
- Department of Animal Biology, Institute of Biomedicine of Málaga (IBIMA), Faculty of Sciences, University of Málaga, Málaga, Spain; Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Campanillas, Málaga, Spain.
| |
Collapse
|
30
|
Li J, Jia L, Hao Z, Xu Y, Shen J, Ma C, Wu J, Zhao T, Zhi Y, Li P, Li J, Zhu B, Sun S. Site-Specific N-Glycoproteomic Analysis Reveals Upregulated Sialylation and Core Fucosylation during Transient Regeneration Loss in Neonatal Mouse Hearts. J Proteome Res 2020; 19:3191-3200. [PMID: 32425043 DOI: 10.1021/acs.jproteome.0c00172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Myocardial infarction (MI) is one of the leading causes of deaths worldwide. Because of the incapability of regeneration, the cardiomyocyte loss with MI is replaced by fibrotic scar tissue, which eventually leads to heart failure. Reconstructing regeneration of an adult human heart has been recognized as a promising strategy for cardiac therapeutics. A neonatal mouse heart, which possesses transient regenerative capacity at the first week after birth, represents an ideal model to investigate processes associated with cardiac regeneration. In this work, an integrated glycoproteomic and proteomic analysis was performed to investigate the differences in glycoprotein abundances and site-specific glycosylation between postneonatal day 1 (P1) and day 7 (P7) of mouse hearts. By large-scale profiling and quantifying more than 2900 intact N-glycopeptides in neonatal mouse hearts, we identified 227 altered N-glycopeptides between P1 and P7 hearts. By extracting protein changes from the global proteome data, the normalized glycosylation changes for site-specific glycans were obtained, which showed heterogeneity on glycosites and glycoproteins. Systematic analysis of the glycosylation changes demonstrated an overall upregulation of sialylation and core fucosylation in P7 mice. Notably, the upregulated sialylation was a comprehensive result of increased sialylated glycans with Neu5Gc, with both Neu5Gc and core fucose, and decreased sialylated glycans with Neu5Ac. The upregulated core fucosylation resulted from the increase of glycans containing both core fucose and Neu5Gc but not glycans containing sole core fucose. These data provide a valuable resource for future functional and mechanism studies on heart regeneration and discovery of novel therapeutic targets. All mass spectrometry proteomic data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD017139.
Collapse
Affiliation(s)
- Jun Li
- College of Life Science, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Li Jia
- College of Life Science, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Zhifang Hao
- College of Life Science, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Yintai Xu
- College of Life Science, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Jiechen Shen
- College of Life Science, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Chen Ma
- College of Life Science, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Jingyu Wu
- College of Life Science, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Ting Zhao
- College of Life Science, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Yuan Zhi
- College of Life Science, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Pengfei Li
- College of Life Science, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Jing Li
- College of Life Science, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Bojing Zhu
- College of Life Science, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Shisheng Sun
- College of Life Science, Northwest University, Xi'an, Shaanxi province 710069, China
| |
Collapse
|
31
|
|
32
|
Epicardial transplantation of atrial appendage micrograft patch salvages myocardium after infarction. J Heart Lung Transplant 2020; 39:707-718. [PMID: 32334944 DOI: 10.1016/j.healun.2020.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/06/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ischemic heart disease remains the leading cause of mortality and morbidity worldwide despite improved possibilities in medical care. Alongside interventional therapies, such as coronary artery bypass grafting, adjuvant tissue-engineered and cell-based treatments can provide regenerative improvement. Unfortunately, most of these advanced approaches require multiple lengthy and costly preparation stages without delivering significant clinical benefits. METHODS We evaluated the effect of epicardially delivered minute pieces of atrial appendage tissue material, defined as atrial appendage micrografts (AAMs), in a mouse myocardial infarction model. An extracellular matrix patch was used to cover and fix the AAMs onto the surface of the infarcted heart. RESULTS The matrix-covered AAMs salvaged the heart from the infarction-induced loss of functional myocardium and attenuated scarring. Site-selective proteomics of injured ischemic and uninjured distal myocardium from AAMs-treated and -untreated tissue sections revealed increased expression of several cardiac regeneration-associated proteins (i.e., periostin, transglutaminases, and glutathione peroxidases) and activation of pathways responsible for angiogenesis and cardiogenesis in relation to AAMs therapy. CONCLUSIONS Epicardial delivery of AAMs encased in an extracellular matrix patch scaffold salvages functional cardiac tissue from ischemic injury and restricts fibrosis after myocardial infarction. Our results support the use of AAMs as tissue-based therapy adjuvants for salvaging the ischemic myocardium.
Collapse
|
33
|
Cardiac regeneration as an environmental adaptation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118623. [DOI: 10.1016/j.bbamcr.2019.118623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
|
34
|
Doccini S, Morani F, Nesti C, Pezzini F, Calza G, Soliymani R, Signore G, Rocchiccioli S, Kanninen KM, Huuskonen MT, Baumann MH, Simonati A, Lalowski MM, Santorelli FM. Proteomic and functional analyses in disease models reveal CLN5 protein involvement in mitochondrial dysfunction. Cell Death Discov 2020; 6:18. [PMID: 32257390 PMCID: PMC7105465 DOI: 10.1038/s41420-020-0250-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
CLN5 disease is a rare form of late-infantile neuronal ceroid lipofuscinosis (NCL) caused by mutations in the CLN5 gene that encodes a protein whose primary function and physiological roles remains unresolved. Emerging lines of evidence point to mitochondrial dysfunction in the onset and progression of several forms of NCL, offering new insights into putative biomarkers and shared biological processes. In this work, we employed cellular and murine models of the disease, in an effort to clarify disease pathways associated with CLN5 depletion. A mitochondria-focused quantitative proteomics approach followed by functional validations using cell biology and immunofluorescence assays revealed an impairment of mitochondrial functions in different CLN5 KO cell models and in Cln5 - /- cerebral cortex, which well correlated with disease progression. A visible impairment of autophagy machinery coupled with alterations of key parameters of mitophagy activation process functionally linked CLN5 protein to the process of neuronal injury. The functional link between impaired cellular respiration and activation of mitophagy pathways in the human CLN5 disease condition was corroborated by translating organelle-specific proteome findings to CLN5 patients' fibroblasts. Our study highlights the involvement of CLN5 in activation of mitophagy and mitochondrial homeostasis offering new insights into alternative strategies towards the CLN5 disease treatment.
Collapse
Affiliation(s)
- Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Federica Morani
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Claudia Nesti
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Francesco Pezzini
- Neurology (Child Neurology and Neuropathology), Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Giulio Calza
- Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland
| | - Rabah Soliymani
- Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland
| | - Giovanni Signore
- NEST, Scuola Normale Superiore, Pisa, Italy
- Fondazione Pisana per la Scienza, Pisa, Italy
| | | | - Katja M. Kanninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko T. Huuskonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marc H. Baumann
- Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland
| | - Alessandro Simonati
- Neurology (Child Neurology and Neuropathology), Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Maciej M. Lalowski
- Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland
| | - Filippo M. Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Comprehensive analyses of the genome, transcriptome, proteome and metabolome are instrumental in identifying biomarkers of disease, to gain insight into mechanisms underlying the development of cardiovascular disease, and show promise for better stratifying patients according to disease subtypes. This review highlights recent 'omics' studies, including integration of multiple 'omics' that have advanced mechanistic understanding and diagnosis in humans and animal models. RECENT FINDINGS Transcriptome-based discovery continues to be a primary method to obtain data for hypothesis generation and the understanding of disease pathogenesis has been enhanced by single cell-based methods capable of revealing heterogeneity in cellular responses. Advances in proteome coverage and quantitation of individual protein species, together with enhanced methods for detecting posttranslational modifications, have improved discovery of protein-based biomarkers. SUMMARY High-throughput assays capable of quantitating the vast majority of any particular type of biomolecule within a tissue sample, isolated cells or plasma are now available. In order to make best use of the large amount of data that can be generated on given molecule types, as well as their interrelationships in disease, continued development of pattern-recognition algorithms ('machine learning') will be required and the subclassification of disease that is made possible by such algorithms will be likely to inform clinical practice, and vice versa.
Collapse
|
36
|
Leon-Mimila P, Wang J, Huertas-Vazquez A. Relevance of Multi-Omics Studies in Cardiovascular Diseases. Front Cardiovasc Med 2019; 6:91. [PMID: 31380393 PMCID: PMC6656333 DOI: 10.3389/fcvm.2019.00091] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death around the world. Despite the larger number of genes and loci identified, the precise mechanisms by which these genes influence risk of cardiovascular disease is not well understood. Recent advances in the development and optimization of high-throughput technologies for the generation of "omics data" have provided a deeper understanding of the processes and dynamic interactions involved in human diseases. However, the integrative analysis of "omics" data is not straightforward and represents several logistic and computational challenges. In spite of these difficulties, several studies have successfully applied integrative genomics approaches for the investigation of novel mechanisms and plasma biomarkers involved in cardiovascular diseases. In this review, we summarized recent studies aimed to understand the molecular framework of these diseases using multi-omics data from mice and humans. We discuss examples of omics studies for cardiovascular diseases focused on the integration of genomics, epigenomics, transcriptomics, and proteomics. This review also describes current gaps in the study of complex diseases using systems genetics approaches as well as potential limitations and future directions of this emerging field.
Collapse
Affiliation(s)
| | | | - Adriana Huertas-Vazquez
- Division of Cardiology, David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
37
|
Wang JZ, Zhang YH, Du WT, Liu G, Zhang XY, Cheng SZ, Guo XH. A post-surgical adjunctive hypoxic therapy for myocardial infarction: Initiate endogenous cardiomyocyte proliferation in adults. Med Hypotheses 2019; 125:16-20. [DOI: 10.1016/j.mehy.2019.02.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/01/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023]
|
38
|
Wang Z, Long DW, Huang Y, Chen WCW, Kim K, Wang Y. Decellularized neonatal cardiac extracellular matrix prevents widespread ventricular remodeling in adult mammals after myocardial infarction. Acta Biomater 2019; 87:140-151. [PMID: 30710713 DOI: 10.1016/j.actbio.2019.01.062] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/15/2022]
Abstract
Heart disease remains a leading killer in western society and irreversibly impacts the lives of millions of patients annually. While adult mammals do not possess the ability to regenerate functional cardiac tissue, neonatal mammals are capable of robust cardiomyocyte proliferation and regeneration within a week of birth. Given this change in regenerative function through development, the extracellular matrix (ECM) from adult tissues may not be conducive to promoting cardiac regeneration, although conventional ECM therapies rely exclusively on adult-derived tissues. Therefore the potential of ECM derived from neonatal mouse hearts (nmECM) to prevent adverse ventricular remodeling in adults was investigated using an in vivo model of acute myocardial infarction (MI). Following a single administration of nmECM, we observed a significant improvement in heart function while adult heart-derived ECM (amECM) did not improve these parameters. Treatment with nmECM limits scar expansion in the left ventricle and promotes revascularization of the injured region. Furthermore, nmECM induced expression of the ErbB2 receptor, simulating a neonatal-like environment and promoting neuregulin-1 associated cardiac function. Inhibition of the ErbB2 receptor effectively prevents these actions, suggesting its role in the context of nmECM as a therapy. This study shows the potential of a neonatal-derived biological material in vivo, diverting from the conventional use of adult-derived ECM therapies in research and the clinic. STATEMENT OF SIGNIFICANCE: The of use extracellular matrix biomaterials to aid tissue repair has been previously reported in many forms of injury. The majority of ECM studies to date utilized ECM derived from adult tissues that are not able to fully regenerate functional tissue. In contrast, this study tests the ability of ECM derived from a regenerative organ, the neonatal heart, to stimulate functional cardiac repair after MI. This study is the first to test its potential in vivo. Our results indicate that extracellular factors present in the neonatal environment can be used to alter the healing response in adults, and we have identified the role of ErbB2 in neonatal ECM-based cardiac repair.
Collapse
Affiliation(s)
- Zhouguang Wang
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325100, China
| | - Daniel W Long
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yan Huang
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325100, China
| | - William C W Chen
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kang Kim
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine and Heart and Vascular Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15260, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh and UPMC, Pittsburgh, PA 15260, USA
| | - Yadong Wang
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh and UPMC, Pittsburgh, PA 15260, USA.
| |
Collapse
|