1
|
Ferrara F, Valacchi G. Role of microbiota in the GUT-SKIN AXIS responses to outdoor stressors. Free Radic Biol Med 2024:S0891-5849(24)01025-6. [PMID: 39505118 DOI: 10.1016/j.freeradbiomed.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Beside the respiratory tract, the skin and the gut represent the first defensive lines of our body against the external insults displaying many important biochemical features able to maintain the epithelial barrier integrity and to regulate the tissue immune responses. The human microbiome is essential in maintaining the tissue homeostasis and its dysregulation may lead to tissue conditions including inflammatory pathologies. Among all external insults, air pollutants have been shown to cause oxidative stress damage within the target tissues via an OxInflammatory response. Dysregulation of the gut microbiome (dysbiosis) by outdoor stressors, including air pollutants, may promote the exacerbation of the skin tissue damage via the interplay between the gut-skin axis. The intent of this review is to highlight the ability of exogenous stressors to modulate the human gut-skin axis via a redox regulated mechanism affecting the microbiome and therefore contributing to the development and aggravation of gut and skin conditions.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Chemical, Pharmaceuticals and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy; Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA; Kyung Hee University, Department of Food and Nutrition, Seoul, South Korea.
| |
Collapse
|
2
|
Pignatelli P, Mrakic-Sposta S, Bondi D, D’Antonio DL, Piattelli A, Santangelo C, Verratti V, Curia MC. The Effect of Acute High-Altitude Exposure on Oral Pathogenic Bacteria and Salivary Oxi-Inflammatory Markers. J Clin Med 2024; 13:6266. [PMID: 39458216 PMCID: PMC11508378 DOI: 10.3390/jcm13206266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The environment can alter the homeostasis of humans and human microbiota. Oral health is influenced by high altitude through symptoms of periodontitis, barodontalgia, dental barotrauma, and a decrease in salivary flow. Microbiota and inflammatory state are connected in the oral cavity. This study aimed to explore the effect of acute high-altitude exposure on the salivary microbiome and inflammatory indicators. Methods: Fifteen healthy expeditioners were subjected to oral examination, recording the plaque index (PII), gingival index (GI), the simplified oral hygiene index (OHI-S), and the number of teeth; unstimulated saliva samples were collected at an altitude of 1191 m (T1) and 4556 m (T2). TNF-α, sICAM1, ROS, and the oral bacterial species Porphyromonas gingivalis (Pg) and Fusobacterium nucleatum (Fn) were quantified. Results: At T2, slCAM, TNF, and ROS increased by 85.5% (IQR 74%), 84% (IQR 409.25%), and 53.5% (IQR 68%), respectively, while Pg decreased by 92.43% (IQR 102.5%). The decrease in Pg was greater in the presence of low OHI-S. The increase in slCAM1 correlated with the reduction in Fn. Individuals with high GI and OHI-S had a limited increase in TNF-α at T2. Conclusion: Short-term exposures can affect the concentration of pathogenic periodontal bacteria and promote local inflammation.
Collapse
Affiliation(s)
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20162 Milan, Italy;
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” Chieti—Pescara, 66100 Chieti, Italy; (D.B.); (C.S.)
| | - Domenica Lucia D’Antonio
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti—Pescara, 66100 Chieti, Italy;
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy;
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” Chieti—Pescara, 66100 Chieti, Italy; (D.B.); (C.S.)
| | - Vittore Verratti
- Department of Psychology, University “G. d’Annunzio” Chieti—Pescara, 66100 Chieti, Italy;
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti—Pescara, 66100 Chieti, Italy;
| |
Collapse
|
3
|
Vallese A, Cordone V, Ferrara F, Guiotto A, Gemmo L, Cervellati F, Hayek J, Pecorelli A, Valacchi G. NLRP3 inflammasome-mitochondrion loop in autism spectrum disorder. Free Radic Biol Med 2024; 225:581-594. [PMID: 39433111 DOI: 10.1016/j.freeradbiomed.2024.10.297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and the presence of restricted interests and repetitive behavior. To date, no single cause has been demonstrated but both genetic and environmental factors are believed to be involved in abnormal brain development. In recent years, immunological and mitochondrial dysfunctions acquired particular interest in the study of the molecular mechanisms underlying the pathophysiology of ASD. For this reason, our study focused on evaluating the mitochondrial component and activation of the NLRP3 inflammasome, a critical player of the innate immune system. The assembly of NLRP3 with ASC mediates activation of Caspase-1, which in turn, by proteolytic cleavage, activates Gasdermin D and the proinflammatory cytokines IL-1β/IL-18 with their subsequent secretion. Using primary fibroblasts of autistic and control patients we studied basal and stimulated conditions. Specifically, LPS and ATP were used to activate the NLRP3 inflammasome and MCC950 for its inhibition. In addition, FCCP was used as a mitochondrial stressor and MitoTEMPO as a scavenger of mitochondrial ROS. Our results showed a hyperactivation of NLRP3 inflammasome in ASDs, as evidenced by the co-localization of the two main components, NLRP3 and ASC, by the higher levels of ASC specks, oligomers and dimers and by the increased amounts of active Caspase-1 and IL-1β. In addition, increased mitochondrial superoxide anion and reduced mitochondrial membrane potential were detected in ASD cells. These data are in accordance with the abnormal mitochondrial morphology evidenced by transmission electron microscopy analysis. Interestingly, NLRP3 inflammasome inhibition with MCC950 improved mitochondrial parameters, while the use of MitoTEMPO, in addition to decrease mitochondrial ROS production, was able to prevent NLRP3 inflammasome activation suggesting for the first time an abnormal bidirectional crosstalk between mitochondria and NLRP3 inflammasome in ASD.
Collapse
Affiliation(s)
- Andrea Vallese
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy; Animal Science Dept., Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Valeria Cordone
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Dept. of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Anna Guiotto
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy; Animal Science Dept., Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Laura Gemmo
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Franco Cervellati
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Alessandra Pecorelli
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy; Dept. of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA.
| | - Giuseppe Valacchi
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy; Animal Science Dept., Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA; Dept. of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
4
|
Zakic T, Pekovic-Vaughan V, Cvoro A, Korac A, Jankovic A, Korac B. Redox and metabolic reprogramming in breast cancer and cancer-associated adipose tissue. FEBS Lett 2024; 598:2106-2134. [PMID: 38140817 DOI: 10.1002/1873-3468.14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Redox and metabolic processes are tightly coupled in both physiological and pathological conditions. In cancer, their integration occurs at multiple levels and is characterized by synchronized reprogramming both in the tumor tissue and its specific but heterogeneous microenvironment. In breast cancer, the principal microenvironment is the cancer-associated adipose tissue (CAAT). Understanding how the redox-metabolic reprogramming becomes coordinated in human breast cancer is imperative both for cancer prevention and for the establishment of new therapeutic approaches. This review aims to provide an overview of the current knowledge of the redox profiles and regulation of intermediary metabolism in breast cancer while considering the tumor and CAAT of breast cancer as a unique Warburg's pseudo-organ. As cancer is now recognized as a systemic metabolic disease, we have paid particular attention to the cell-specific redox-metabolic reprogramming and the roles of estrogen receptors and circadian rhythms, as well as their crosstalk in the development, growth, progression, and prognosis of breast cancer.
Collapse
Affiliation(s)
- Tamara Zakic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Vanja Pekovic-Vaughan
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, UK
| | | | | | - Aleksandra Jankovic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Bato Korac
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Serbia
| |
Collapse
|
5
|
Ferrara F, Yan X, Pecorelli A, Guiotto A, Colella S, Pasqui A, Lynch S, Ivarsson J, Anderias S, Choudhary H, White S, Valacchi G. Combined exposure to UV and PM affect skin oxinflammatory responses and it is prevented by antioxidant mix topical application: Evidences from clinical study. J Cosmet Dermatol 2024; 23:2644-2656. [PMID: 38590207 DOI: 10.1111/jocd.16321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Exposure to environmental stressors like particulate matter (PM) and ultraviolet radiation (UV) induces cutaneous oxidative stress and inflammation and leads to skin barrier dysfunction and premature aging. Metals like iron or copper are abundant in PM and are known to contribute to reactive oxygen species (ROS) production. AIMS Although it has been suggested that topical antioxidants may be able to help in preventing and/or reducing outdoor skin damage, limited clinical evidence under real-life exposure conditions have been reported. The aim of the present study was to evaluate the ability of a topical serum containing 15% ascorbic acid, 0.5% ferulic acid, and 1% tocopherol (CF Mix) to prevent oxinflammatory skin damage and premature aging induced by PM + UV in a human clinical trial. METHODS A 4-day single-blinded, clinical study was conducted on the back of 15 females (18-40 years old). During the 4 consecutive days, the back test zones were treated daily with or without the CF Mix, followed by with/without 2 h of PM and 5 min of UV daily exposure. RESULTS Application of the CF Mix prevented PM + UV-induced skin barrier perturbation (Involucrin and Loricrin), lipid peroxidation (4HNE), inflammatory markers (COX2, NLRP1, and AhR), and MMP9 activation. In addition, CF Mix was able to prevent Type I Collagen loss. CONCLUSION This is the first human study confirming multipollutant cutaneous damage and suggesting the utility of a daily antioxidant topical application to prevent pollution induced skin damage.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Xi Yan
- L'Oréal Research and Innovation, Clark, New Jersey, USA
| | - Alessandra Pecorelli
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Anna Guiotto
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Sante Colella
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences, University of Siena, Siena, Italy
| | | | - Stephen Lynch
- L'Oréal Research and Innovation, Clark, New Jersey, USA
| | - John Ivarsson
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA
| | - Sara Anderias
- L'Oréal Research and Innovation, Clark, New Jersey, USA
| | | | | | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
6
|
Ivarsson J, Bennett A, Ferrara F, Strauch R, Vallase A, Iorizzo M, Pecorelli A, Lila MA, Valacchi G. Gut-derived wild blueberry phenolic acid metabolites modulate extrinsic cutaneous damage. Food Funct 2024; 15:7849-7864. [PMID: 38962816 DOI: 10.1039/d4fo01874e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
As the first line of defense, the skin is equipped with various physiological mechanisms positioned to prevent incoming oxidative damage from numerous environmental insults. With persistent exposure to the environment, understanding ways to augment the skin defenses is paramount in protecting from premature aging. In this study, we investigated the ability of five dietary phenolic metabolites, typically found in the bloodstream after wild blueberry consumption, to successfully defend the skin from UV light exposure in a novel ex vivo co-culture model of human skin explants and primary endothelial cells. Skin explants, placed in transwell inserts, were exposed to UV, and subsequently co-cultured with endothelial cells. When the endothelial cells had been pretreated with the bioactive metabolites at physiological concentrations (hippuric acid 3000 nM, isoferulic acid 1000 nM, salicylic acid 130 nM, benzoic acid 900 nM, α-hydroxyhippuric acid 400 nM) cutaneous damage was prevented on the co-cultured with UV-challenged skin explants. Co-culture with non-pretreated endothelial cells did not protect skin explants. Specifically, the pretreatment was able to reduce skin lipid peroxidation (measured as 4-hydroxynonenal protein adducts), and pro-inflammatory enzymes such as cyclooxygenase 2 (COX-2) and NADPH oxidase 4 (NOX-4). Furthermore, pretreatment with the metabolites prevented UV-induced release of inflammatory cytokines such as IL-1β and IL-8 as well as nitric oxides (NO) levels. In addition, the metabolites showed an impressive ability to prevent the loss of cutaneous structural proteins including involucrin and collagen type 1. Of note, endothelial cells cultured with UV exposed skin explants exhibited increased oxidative stress demonstrated by heme oxygenase-1 (HO-1) up-regulation which was significantly prevented in the metabolite treated models. These findings highlight the ability of dietary polyphenolic metabolites to improve cutaneous defenses against extrinsic stressors.
Collapse
Affiliation(s)
- John Ivarsson
- Department of Animal Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA.
- Department of Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Abby Bennett
- Department of Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Renee Strauch
- Department of Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Andrea Vallase
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Iorizzo
- Department of Horticultural Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Alessandra Pecorelli
- Department of Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Mary Ann Lila
- Department of Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Giuseppe Valacchi
- Department of Animal Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA.
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
- Kyung Hee University, Department of Food and Nutrition, Seoul, South Korea
| |
Collapse
|
7
|
Liu D, Fang L. Oxidative stress-related genes score predicts prognosis and immune cell infiltration landscape characterization in breast cancer. Heliyon 2024; 10:e34046. [PMID: 39071696 PMCID: PMC11283013 DOI: 10.1016/j.heliyon.2024.e34046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Background The tumor microenvironment (TME) typically experiences oxidative stress (OS), marked by a high level of reactive oxygen species (ROS) that can impact tumor advancement and prognosis by modulating the behavior of tumor cells and various immune cells. Oxidative stress-related genes (OSRG) encompass a range of genes involved in ROS pathways, and their specific roles in breast cancer (BC) necessitate further investigation. Methods Univariate Cox analysis was performed on genes linked to the OS pathway in the Gene Set Enrichment Analysis (GSEA) database, leading to the identification of 29 significant OSRG in BC. OSRG was divided into three distinct clusters according to the expression and the OSRG score based on the differentially expressed genes (DEGs) was further calculated by principal component analysis (PCA). The correlation between OSRG score and BC clinical features, mutation characteristics, immune checkpoints and immune cell infiltration was analyzed. Establish a multiariable Cox regression model to predict OSRG score effects on clinical characteristics. Results Significant differences were observed in survival analysis, enriched pathways, and immune infiltration among the three OSRG clusters based on 29 genes. Gene clusters were identified through the final selected 395 DEGs, revealing three distinct OSRG expression patterns. An OSRG score model was constructed using DEGs, demonstrating a significant association between high OSRG score and poor prognosis. Significantly, immune checkpoint-related genes exhibited a notable upregulation in the high OSRG score cohort. Additionally, a positive correlation was observed between the OSRG score and tumor mutation burden (TMB) in BC. The OSRG score holds potential implications for clinical immunotherapy in BC patients, and a nomogram was constructed with robust predictive capability for evaluating patient prognosis. Conclusions This study elucidated the features of OSRG within BC TME and their possible prognostic significance, offering valuable insights for the development of more targeted immunotherapy approaches for individuals with BC.
Collapse
Affiliation(s)
- Diya Liu
- Department of Thyroid and Breast Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Lin Fang
- Department of Thyroid and Breast Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
8
|
Lopes FB, Sarandy MM, Novaes RD, Valacchi G, Gonçalves RV. OxInflammatory Responses in the Wound Healing Process: A Systematic Review. Antioxidants (Basel) 2024; 13:823. [PMID: 39061892 PMCID: PMC11274091 DOI: 10.3390/antiox13070823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/11/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Significant sums are spent every year to find effective treatments to control inflammation and speed up the repair of damaged skin. This study investigated the main mechanisms involved in the skin wound cure. Consequently, it offered guidance to develop new therapies to control OxInflammation and infection and decrease functional loss and cost issues. This systematic review was conducted using the PRISMA guidelines, with a structured search in the MEDLINE (PubMed), Scopus, and Web of Science databases, analyzing 23 original studies. Bias analysis and study quality were assessed using the SYRCLE tool (Prospero number is CRD262 936). Our results highlight the activation of membrane receptors (IFN-δ, TNF-α, toll-like) in phagocytes, especially macrophages, during early wound healing. The STAT1, IP3, and NF-kβ pathways are positively regulated, while Ca2+ mobilization correlates with ROS production and NLRP3 inflammasome activation. This pathway activation leads to the proteolytic cleavage of caspase-1, releasing IL-1β and IL-18, which are responsible for immune modulation and vasodilation. Mediators such as IL-1, iNOS, TNF-α, and TGF-β are released, influencing pro- and anti-inflammatory cascades, increasing ROS levels, and inducing the oxidation of lipids, proteins, and DNA. During healing, the respiratory burst depletes antioxidant defenses (SOD, CAT, GST), creating a pro-oxidative environment. The IFN-δ pathway, ROS production, and inflammatory markers establish a positive feedback loop, recruiting more polymorphonuclear cells and reinforcing the positive interaction between oxidative stress and inflammation. This process is crucial because, in the immune system, the vicious positive cycle between ROS, the oxidative environment, and, above all, the activation of the NLRP3 inflammasome inappropriately triggers hypoxia, increases ROS levels, activates pro-inflammatory cytokines and inhibits the antioxidant action and resolution of anti-inflammatory cytokines, contributing to the evolution of chronic inflammation and tissue damage.
Collapse
Affiliation(s)
- Fernanda Barbosa Lopes
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| | - Mariáurea Matias Sarandy
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
- Plants for Human Health Institute, Animal Science Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Rômulo Dias Novaes
- Department of Structural Biology, Federal University of Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
- Department of Animal Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Animal Science Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Reggiani Vilela Gonçalves
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
- Plants for Human Health Institute, Animal Science Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Department of Animal Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| |
Collapse
|
9
|
Esposito E, Pecorelli A, Ferrara F, Lila MA, Valacchi G. Feeding the Body Through the Skin: Ethosomes and Transethosomes as a New Topical Delivery System for Bioactive Compounds. Annu Rev Food Sci Technol 2024; 15:53-78. [PMID: 38941493 DOI: 10.1146/annurev-food-072023-034528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Because the feeding of our body through the oral route can be associated with many drawbacks due to the degradation of natural molecules during transit in the gastrointestinal tract, a transdermal delivery strategy, usually employed in the pharmaceutical field, can present an effective alternative for delivery of bioactives and nutrients from foods. In this review, the chance to feed the body with nutritive and bioactive molecules from food through transdermal administration is discussed. Various nanotechnological devices employed for topical and transdermal delivery of bioactive compounds are described. In addition, mechanisms underlying their potential use in the delivery of nutritive molecules, as well as their capability to efficaciously reach the dermis and promote systemic distribution, are detailed.
Collapse
Affiliation(s)
- Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mary Ann Lila
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, North Carolina, USA
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
- Department of Animal Science, North Carolina State University, Kannapolis, North Carolina, USA;
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
10
|
Caroli C, Baron G, Cappellucci G, Brighenti V, Della Vedova L, Fraulini F, Oliaro-Bosso S, Alessandrini A, Zambon A, Lusvardi G, Aldini G, Biagi M, Corsi L, Pellati F. Extraction, purification and in vitro assessment of the antioxidant and anti-inflammatory activity of policosanols from non-psychoactive Cannabis sativa L. Heliyon 2024; 10:e30291. [PMID: 38737258 PMCID: PMC11088244 DOI: 10.1016/j.heliyon.2024.e30291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
Policosanols (PCs) are bioactive compounds extracted from different natural waxes. In this work, the purification, characterization and assessment of the antioxidant and anti-inflammatory activity was carried out on PCs from an innovative source, i.e. a waxy material from supercritical-fluid extraction (SFE) of non-psychoactive Cannabis sativa L. (hemp) inflorescences. Starting from this material, PCs were obtained by microwave-assisted trans-esterification and hydrolysis, followed by preparative liquid chromatography under normal phase conditions. The purified product was characterized using high-performance liquid chromatography (HPLC) with an evaporative light scattering detector (ELSD). In vitro cell-free and cell-based antioxidant and anti-inflammatory assays were then performed to assess their bioactivity. HPLC-ELSED analysis of the purified mixture from hemp wax revealed C26OH and C28OH as the main compounds. In vitro assays indicated an inhibition of intracellular reactive oxygen species (ROS) production, a reduction of nuclear factor kappa B (NF-κB) activation and of the activity of the neutrophil elastase. Immunoblotting assays allowed us to hypothesize the mechanism of action of the compounds of interest, given the higher levels of MAPK-activated protein kinase 2 (MK2) and heme oxygenase-1 (HO-1) protein expression in the PC pretreated HaCaT cells. In conclusion, even if more research is needed to unveil other molecular mechanisms involved in hemp PC activity, the results of this work suggest that these compounds may have potential for use in oxinflammation processes.
Collapse
Affiliation(s)
- Clarissa Caroli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103-287, 41125, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio, Via Giuseppe Campi 287, 41125, Modena, Italy
| | - Giovanna Baron
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133, Milan, Italy
| | - Giorgio Cappellucci
- Department of Physical Sciences, Earth and Environment, University of Siena, Via Laterina, 8, 53100, Siena, Italy
| | - Virginia Brighenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103-287, 41125, Modena, Italy
| | - Larissa Della Vedova
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133, Milan, Italy
| | - Francesca Fraulini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Simonetta Oliaro-Bosso
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125, Turin, Italy
| | - Andrea Alessandrini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Giuseppe Campi 213/A, 41125, Modena, Italy
- National Institute of Biostructures e Biosystems (INBB), 00136, Roma, Italy
| | - Alfonso Zambon
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Gigliola Lusvardi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133, Milan, Italy
| | - Marco Biagi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Lorenzo Corsi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103-287, 41125, Modena, Italy
- National Institute of Biostructures e Biosystems (INBB), 00136, Roma, Italy
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103-287, 41125, Modena, Italy
| |
Collapse
|
11
|
Reis ASLDS, Furtado GE, Menuchi MRTP, Borges GF. The Impact of Exercise on Interleukin-6 to Counteract Immunosenescence: Methodological Quality and Overview of Systematic Reviews. Healthcare (Basel) 2024; 12:954. [PMID: 38786366 PMCID: PMC11121001 DOI: 10.3390/healthcare12100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE This study evaluated the methodological quality of published systematic reviews on randomized and non-randomized clinical trials to synthesize evidence on the association between IL-6, immunosenescence, and aerobic and/or resistance exercise. METHOD The Preferred Reporting Items for Overviews of Systematic Reviews (PRIO-harms) guideline was used, with registration number CRD42022346142-PROSPERO. Relevant databases such as Cochrane Library, PubMed, Web of Science, Scopus, and Google Scholar were searched using English Medical Subject Headings terms. Inclusion criteria were systematic reviews analyzing aerobic exercise, resistance exercise, or a combination of both and assessing IL-6 as a biomarker of cellular immunosenescence in humans. The Measurement Tool to Assess Systematic Reviews 2 (AMSTAR-2) was employed. RESULTS Out of 742 identified articles, 18 were eligible, and 13 were selected for analysis. Sample sizes ranged from 249 to 1421 participants, mostly female, with ages ranging from 17 to 95 years. Aerobic exercise was the most studied type (46.15%), followed by combined exercise (38.46%) and resistance exercise (15.38%). Aerobic exercise showed a statistically significant reduction in IL-6, C-reactive protein (CRP), and tumor necrosis factor-alpha (TNF-α) levels. Among the 13 reviews analyzed using AMSTAR-2, 8 were rated as critically low quality, and 5 were classified as low quality. CONCLUSION Aerobic exercise has anti-inflammatory properties and the potential to modulate IL-6, CRP, and TNF-α levels in immunosenescence. However, the limited methodological quality of the analyzed systematic reviews highlights the urgent need for robust, high-quality studies to improve access to information and facilitate evidence-based decision-making in healthcare.
Collapse
Affiliation(s)
- Anne Sulivan Lopes da Silva Reis
- Postgraduate Program in Physical Education, The State University of Santa Cruz (PPGEF/UESB/UESC), Ilhéus 45650-000, BA, Brazil; (A.S.L.d.S.R.); (M.R.T.P.M.)
| | - Guilherme Eustáquio Furtado
- Polytechnic Institute of Coimbra, Applied Research Institute, Rua da Misericórdia, Lagar dos Cortiços-S. Martinho do Bispo, 3045-093 Coimbra, Portugal;
- Research Centre for Natural Resources Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Bencanta, 3045-601 Coimbra, Portugal
- Sport Physical Activity and Health Research & Inovation Center, 4960-320 Melgaço, Portugal
| | | | - Grasiely Faccin Borges
- Postgraduate Program in Physical Education, The State University of Santa Cruz (PPGEF/UESB/UESC), Ilhéus 45650-000, BA, Brazil; (A.S.L.d.S.R.); (M.R.T.P.M.)
- Center for Public Policies and Social Technologies, Federal University of Southern Bahia, Praça José Bastos, s/n, Centro, Itabuna 45600-923, BA, Brazil
| |
Collapse
|
12
|
Amadio P, Sandrini L, Zarà M, Barbieri SS, Ieraci A. NADPH-oxidases as potential pharmacological targets for thrombosis and depression comorbidity. Redox Biol 2024; 70:103060. [PMID: 38310682 PMCID: PMC10848036 DOI: 10.1016/j.redox.2024.103060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024] Open
Abstract
There is a complex interrelationship between the nervous system and the cardiovascular system. Comorbidities of cardiovascular diseases (CVD) with mental disorders, and vice versa, are prevalent. Adults with mental disorders such as anxiety and depression have a higher risk of developing CVD, and people with CVD have an increased risk of being diagnosed with mental disorders. Oxidative stress is one of the many pathways associated with the pathophysiology of brain and cardiovascular disease. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is one of the major generators of reactive oxygen species (ROS) in mammalian cells, as it is the enzyme that specifically produces superoxide. This review summarizes recent findings on the consequences of NOX activation in thrombosis and depression. It also discusses the therapeutic effects and pharmacological strategies of NOX inhibitors in CVD and brain disorders. A better comprehension of these processes could facilitate the development of new therapeutic approaches for the prevention and treatment of the comorbidity of thrombosis and depression.
Collapse
Affiliation(s)
- Patrizia Amadio
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Leonardo Sandrini
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Marta Zarà
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Silvia S Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy.
| | - Alessandro Ieraci
- Department of Theoretical and Applied Sciences, eCampus University, 22060, Novedrate (CO), Italy; Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy.
| |
Collapse
|
13
|
Vezzoli A, Mrakic-Sposta S, Brizzolari A, Balestra C, Camporesi EM, Bosco G. Oxy-Inflammation in Humans during Underwater Activities. Int J Mol Sci 2024; 25:3060. [PMID: 38474303 DOI: 10.3390/ijms25053060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Underwater activities are characterized by an imbalance between reactive oxygen/nitrogen species (RONS) and antioxidant mechanisms, which can be associated with an inflammatory response, depending on O2 availability. This review explores the oxidative stress mechanisms and related inflammation status (Oxy-Inflammation) in underwater activities such as breath-hold (BH) diving, Self-Contained Underwater Breathing Apparatus (SCUBA) and Closed-Circuit Rebreather (CCR) diving, and saturation diving. Divers are exposed to hypoxic and hyperoxic conditions, amplified by environmental conditions, hyperbaric pressure, cold water, different types of breathing gases, and air/non-air mixtures. The "diving response", including physiological adaptation, cardiovascular stress, increased arterial blood pressure, peripheral vasoconstriction, altered blood gas values, and risk of bubble formation during decompression, are reported.
Collapse
Affiliation(s)
- Alessandra Vezzoli
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20142 Milano, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20142 Milano, Italy
| | - Andrea Brizzolari
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
| | | | - Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
14
|
Babington S, Tilbrook AJ, Maloney SK, Fernandes JN, Crowley TM, Ding L, Fox AH, Zhang S, Kho EA, Cozzolino D, Mahony TJ, Blache D. Finding biomarkers of experience in animals. J Anim Sci Biotechnol 2024; 15:28. [PMID: 38374201 PMCID: PMC10877933 DOI: 10.1186/s40104-023-00989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/28/2023] [Indexed: 02/21/2024] Open
Abstract
At a time when there is a growing public interest in animal welfare, it is critical to have objective means to assess the way that an animal experiences a situation. Objectivity is critical to ensure appropriate animal welfare outcomes. Existing behavioural, physiological, and neurobiological indicators that are used to assess animal welfare can verify the absence of extremely negative outcomes. But welfare is more than an absence of negative outcomes and an appropriate indicator should reflect the full spectrum of experience of an animal, from negative to positive. In this review, we draw from the knowledge of human biomedical science to propose a list of candidate biological markers (biomarkers) that should reflect the experiential state of non-human animals. The proposed biomarkers can be classified on their main function as endocrine, oxidative stress, non-coding molecular, and thermobiological markers. We also discuss practical challenges that must be addressed before any of these biomarkers can become useful to assess the experience of an animal in real-life.
Collapse
Affiliation(s)
- Sarah Babington
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Alan J Tilbrook
- Centre for Animal Science, The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Shane K Maloney
- School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Jill N Fernandes
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Tamsyn M Crowley
- School of Medicine, Deakin University, Geelong, VIC, 3217, Australia
- Poultry Hub Australia, University of New England, Armidale, NSW, 2350, Australia
| | - Luoyang Ding
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Archa H Fox
- School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Song Zhang
- School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Elise A Kho
- Centre for Animal Science, The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Timothy J Mahony
- Centre for Animal Science, The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Dominique Blache
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia.
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
15
|
Balestra C, Baldelli S, Virgili F, Salvagno M, Mrakic-Sposta S, Fratantonio D. Pulsed Hyperoxia Acts on Plasmatic Advanced Glycation End Products and Advanced Oxidation Protein Products and Modulates Mitochondrial Biogenesis in Human Peripheral Blood Mononuclear Cells: A Pilot Study on the "Normobaric Oxygen Paradox". Int J Mol Sci 2024; 25:2394. [PMID: 38397071 PMCID: PMC10889761 DOI: 10.3390/ijms25042394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The "normobaric oxygen paradox" (NOP) describes the response to the return to normoxia after a hyperoxic event, sensed by tissues as an oxygen shortage, up-regulating redox-sensitive transcription factors. We have previously characterized the time trend of oxygen-sensitive transcription factors in human PBMCs, in which the return to normoxia after 30% oxygen is sensed as a hypoxic trigger, characterized by hypoxia-induced factor (HIF-1) activation. On the contrary, 100% and 140% oxygen induce a shift toward an oxidative stress response, characterized by NRF2 and NF-kB activation in the first 24 h post exposure. Herein, we investigate whether this paradigm triggers Advanced Glycation End products (AGEs) and Advanced Oxidation Protein Products (AOPPs) as circulating biomarkers of oxidative stress. Secondly, we studied if mitochondrial biogenesis was involved to link the cellular response to oxidative stress in human PBMCs. Our results show that AGEs and AOPPs increase in a different manner according to oxygen dose. Mitochondrial levels of peroxiredoxin (PRX3) supported the cellular response to oxidative stress and increased at 24 h after mild hyperoxia, MH (30% O2), and high hyperoxia, HH (100% O2), while during very high hyperoxia, VHH (140% O2), the activation was significantly high only at 3 h after oxygen exposure. Mitochondrial biogenesis was activated through nuclear translocation of PGC-1α in all the experimental conditions. However, the consequent release of nuclear Mitochondrial Transcription Factor A (TFAM) was observed only after MH exposure. Conversely, HH and VHH are associated with a progressive loss of NOP response in the ability to induce TFAM expression despite a nuclear translocation of PGC-1α also occurring in these conditions. This study confirms that pulsed high oxygen treatment elicits specific cellular responses, according to its partial pressure and time of administration, and further emphasizes the importance of targeting the use of oxygen to activate specific effects on the whole organism.
Collapse
Affiliation(s)
- Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1090 Brussels, Belgium
| | - Sara Baldelli
- Department of Human Sciences and Promotion of the Quality of Life, IRCCS San Raffaele Pisana, San Raffaele Roma Open University, 00163 Rome, Italy
| | - Fabio Virgili
- Interuniversitary Consortium "National Institute for Bio-Structures and Bio-Systems"-I.N.B.B., 13, 00136 Rome, Italy
| | - Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy
| | - Deborah Fratantonio
- Department of Medicine and Surgery, LUM University, S.S. 100 Km 18, 70100 Casamassima, Italy
| |
Collapse
|
16
|
Jankovic A, Kalezic A, Korac A, Buzadzic B, Storey KB, Korac B. Integrated Redox-Metabolic Orchestration Sustains Life in Hibernating Ground Squirrels. Antioxid Redox Signal 2024; 40:345-368. [PMID: 36802926 DOI: 10.1089/ars.2021.0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Significance: The ultimate manifestations of life, birth, survival under various environmental pressures and death are based on bioenergetics. Hibernation is a unique survival strategy for many small mammals that is characterised by severe metabolic depression and transition from euthermia to hypothermia (torpor) at body temperatures close to 0°C. These manifestations of life were made possible by the remarkable "social" behavior of biomolecules during billions of years of evolution: the evolution of life with oxygen. Oxygen was necessary for energy production and the evolutionary explosion of aerobic organisms. Recent Advances: Nevertheless, reactive oxygen species, formed through oxidative metabolism, are dangerous-they can kill a cell and, on the other hand, play a plethora of fundamentally valuable roles. Therefore, the evolution of life depended on energy metabolism and redox-metabolic adaptations. The more extreme the conditions for survival are, the more sophisticated the adaptive responses of organisms become. Hibernation is a beautiful illustration of this principle. Hibernating animals use evolutionarily conserved molecular mechanisms to survive adverse environmental conditions, including reducing body temperature to ambient levels (often to ∼0°C) and severe metabolic depression. This long-built secret of life lies at the intersection of oxygen, metabolism, and bioenergetics, and hibernating organisms have learned to exploit all the underlying capacities of molecular pathways to survive. Critical Issues: Despite such drastic changes in phenotype, tissues and organs of hibernators sustain no metabolic or histological damage during hibernation or upon awakening from hibernation. This was made possible by the fascinating integration of redox-metabolic regulatory networks whose molecular mechanisms remain undisclosed to this day. Future Directions: Discovering these molecular mechanisms is not warranted only to understand hibernation in itself but to help explain complex medical conditions (hypoxia/reoxygenation, organ transplantation, diabetes, and cancer) and to even help overcome limitations associated with space travel. This is a review of integrated redox-metabolic orchestration in hibernation. Antioxid. Redox Signal. 40, 345-368.
Collapse
Affiliation(s)
- Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Andjelika Kalezic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Biljana Buzadzic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Bato Korac
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
17
|
Sarandy MM, Gonçalves RV, Valacchi G. Cutaneous Redox Senescence. Biomedicines 2024; 12:348. [PMID: 38397950 PMCID: PMC10886899 DOI: 10.3390/biomedicines12020348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Our current understanding of skin cell senescence involves the role of environmental stressors (UV, O3, cigarette smoke, particulate matter, etc.), lifestyle (diet, exercise, etc.) as well as genetic factors (metabolic changes, hormonal, etc.). The common mechanism of action of these stressors is the disturbance of cellular redox balance characterized by increased free radicals and reactive oxygen species (ROS), and when these overload the intrinsic antioxidant defense system, it can lead to an oxidative stress cellular condition. The main redox mechanisms that activate cellular senescence in the skin involve (1) the oxidative damage of telomeres causing their shortening; (2) the oxidation of proteomes and DNA damage; (3) an a in lysosomal mass through the increased activity of resident enzymes such as senescence-associated β-galactosidase (SA-β-gal) as well as other proteins that are products of lysosomal activity; (4) and the increased expression of SASP, in particular pro-inflammatory cytokines transcriptionally regulated by NF-κB. However, the main targets of ROS on the skin are the proteome (oxi-proteome), followed by telomeres, nucleic acids (DNAs), lipids, proteins, and cytoplasmic organelles. As a result, cell cycle arrest pathways, lipid peroxidation, increased lysosomal content and dysfunctional mitochondria, and SASP synthesis occur. Furthermore, oxidative stress in skin cells increases the activity of p16INK4A and p53 as inhibitors of Rb and CDks, which are important for maintaining the cell cycle. p53 also promotes the inactivation of mTOR-mediated autophagic and apoptotic pathways, leading to senescence. However, these markers alone cannot establish the state of cellular senescence, and multiple analyses are encouraged for confirmation. An updated and more comprehensive approach to investigating skin senescence should include further assays of ox-inflammatory molecular pathways that can consolidate the understanding of cutaneous redox senescence.
Collapse
Affiliation(s)
- Mariáurea Matias Sarandy
- Department of Animal Science, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | - Reggiani Vilela Gonçalves
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
- Department of Animal Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | - Giuseppe Valacchi
- Department of Animal Science, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of Environment and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
18
|
Pasqui A, Cicaloni V, Tinti L, Guiotto A, Tinti C, Mori A, Bruttini M, Hayek J, Pecorelli A, Salvini L, Valacchi G. A proteomic approach to investigate the role of the MECP2 gene mutation in Rett syndrome redox regulatory pathways. Arch Biochem Biophys 2024; 752:109860. [PMID: 38110111 DOI: 10.1016/j.abb.2023.109860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Mutations in the X-linked methyl-CpG-binding 2 (MECP2) gene lead to Rett Syndrome (RTT; OMIM 312750), a devasting neurodevelopmental disorder. RTT clinical manifestations are complex and with different degrees of severity, going from autistic-like behavior to loss of acquired speech, motor skills and cardiac problems. Furthermore, the correlation between the type of MECP2 mutation and the clinical phenotype is still not fully understood. Contextually, different genotypes can differently affect the patient's phenotype and omics methodologies such as proteomics could be an important tool for a molecular characterization of genotype/phenotype correlation. The aim of our study was focused on evaluating RTT oxidative stress (OS) responses related to specific MECP2 gene mutations by using proteomics and bioinformatics approaches. Primary fibroblasts isolated from patients affected by R133C and R255× mutations were compared to healthy controls (HC). After clustering primary dermal fibroblasts based on their specific MECP2 mutations, fibroblast-derived protein samples were qualitative and quantitative analyzed, using a label free quantification (LFQ) analysis by mass spectrometry (MS), achieving a preliminary correlation for RTT genotype/phenotype. Among the identified proteins involved in redox regulation pathways, NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1) was found to be absent in R255× cells, while it was present in R133C and in HC fibroblasts. Moreover, NQO1 aberrant gene regulation was also confirmed when cells were challenged with 100 μM hydrogen peroxide (H2O2). In conclusion, by employing a multidisciplinary approach encompassing proteomics and bioinformatics analyses, as well as molecular biology assays, the study uncovered phenotypic responses linked to specific MECP2 gene mutations. These findings contribute to a better understanding of the complexity of RTT molecular pathways, confirming the high heterogeneity among the patients.
Collapse
Affiliation(s)
- Arianna Pasqui
- Toscana Life Science Foundation, Siena, Italy; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | | | - Laura Tinti
- Toscana Life Science Foundation, Siena, Italy
| | - Anna Guiotto
- Plants for Human Health Institute, Animal Science Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA; Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | | | - Alessia Mori
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy; Tuscany Centre for Precision Medicine (CReMeP), Siena 53100, Italy
| | - Marco Bruttini
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy; Tuscany Centre for Precision Medicine (CReMeP), Siena 53100, Italy
| | | | - Alessandra Pecorelli
- Plants for Human Health Institute, Animal Science Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA; Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy.
| | | | - Giuseppe Valacchi
- Plants for Human Health Institute, Animal Science Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA; Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
19
|
Ferrara F, Pecorelli A, Pambianchi E, White S, Choudhary H, Casoni A, Valacchi G. Vitamin C compounds mixture prevents skin barrier alterations and inflammatory responses upon real life multi pollutant exposure. Exp Dermatol 2024; 33:e15000. [PMID: 38284201 DOI: 10.1111/exd.15000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
Cutaneous tissues is among the main target of outdoor stressors such as ozone (O3 ), particulate matter (PM), and ultraviolet radiation (UV) all involved in inducing extrinsic skin aging. Only a few reports have studied the multipollutant interaction and its effect on skin damage. In the present work, we intended to evaluate the ability of pollutants such as O3 and PM to further aggravate cutaneous UV damage. In addition, the preventive properties of a cosmeceutical formulation mixture (AOX mix) containing 15% vitamin C (L-ascorbic acid), 1% vitamin E (α-tocopherol) and 0.5% ferulic acid was also investigated. Skin explants obtained from three different subjects were exposed to 200 mJ UV light, 0.25 ppm O3 for 2 h, and 30 min of diesel engine exhaust (DEE), alone or in combination for 4 days (time point D1 and D4). The results showed a clear additive effect of O3 and DEE in combination with UV in terms of keratin 10, Desmocollin and Claudin loss. In addition, the multipollutant exposure significantly induced the inflammatory response measured as NLRP1/ASC co-localization suggesting the activation of the inflammasome machinery. Finally, the loss of Aquaporin3 was also affected by the combined outdoor stressors. Furthermore, daily topical pre-treatment with the AOX Mix significantly prevented the cutaneous changes induced by the multipollutants. In conclusion, this study is among the first to investigate the combined effects of three of the most harmful outdoor stressors on human skin and confirms that daily topical of an antioxidant application may prevent pollution-induced skin damage.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Erika Pambianchi
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA
| | | | | | - Alice Casoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
20
|
Radtke MD, Steinberg FM, Scherr RE. Methods for Assessing Health Outcomes Associated with Food Insecurity in the United States College Student Population: A Narrative Review. Adv Nutr 2024; 15:100131. [PMID: 37865221 PMCID: PMC10831897 DOI: 10.1016/j.advnut.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023] Open
Abstract
In the United States, college students experience disproportionate food insecurity (FI) rates compared to the national prevalence. The experience of acute and chronic FI has been associated with negative physical and mental health outcomes in this population. This narrative review aims to summarize the current methodologies for assessing health outcomes associated with the experience of FI in college students in the United States. To date, assessing the health outcomes of FI has predominately consisted of subjective assessments, such as self-reported measures of dietary intake, perceived health status, stress, depression, anxiety, and sleep behaviors. This review, along with the emergence of FI as an international public health concern, establishes the need for novel, innovative, and objective biomarkers to evaluate the short- and long-term impacts of FI on physical and mental health outcomes in college students. The inclusion of objective biomarkers will further elucidate the relationship between FI and a multitude of health outcomes to better inform strategies for reducing the pervasiveness of FI in the United States college student population.
Collapse
Affiliation(s)
- Marcela D Radtke
- Propel Postdoctoral Fellow, Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford University, Palo Alto, CA, USA 94305
| | | | - Rachel E Scherr
- Family, Interiors, Nutrition & Apparel Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA, USA, 94132; Scherr Nutrition Science Consulting, San Francisco, CA, 94115.
| |
Collapse
|
21
|
Sadikan MZ, Abdul Nasir NA. Diabetic retinopathy: emerging concepts of current and potential therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3395-3406. [PMID: 37401966 DOI: 10.1007/s00210-023-02599-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of permanent central blindness worldwide. Despite the complexity and inadequate understanding of DR pathogenesis, many of the underlying pathways are currently partially understood and may offer potential targets for future treatments. Anti-VEGF medications are currently the main medication for this problem. This article provides an overview of the established pharmacological treatments and those that are being developed to cure DR. We firstly reviewed the widely utilized approaches including pan-retinal photocoagulation therapy, anti-VEGF therapy, corticosteroid therapy, and surgical management of DR. Next, we discussed the mechanisms of action and prospective benefits of novel candidate medications. Current management are far from being a perfect treatment for DR, despite mild-term favorable efficiency and safety profiles. Pharmacological research should work toward developing longer-lasting treatments or new drug delivery systems, as well as on identifying new molecular targets in the pathogenetical mechanism for DR. In order to find a treatment that is specifically designed for each patient, it is also necessary to properly characterize patients, taking into account elements like hereditary factors and intraretinal neovascularization stages for effective utilization of drugs. The current and potential approaches for diabetic retinopathy. Image was constructed using Biorender.com.
Collapse
Affiliation(s)
- Muhammad Zulfiqah Sadikan
- Department of Pharmacology, Faculty of Medicine, Manipal University College Malaysia (MUCM), Bukit Baru, 75150, Malacca, Malaysia
| | - Nurul Alimah Abdul Nasir
- Department of Medical Education, Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh, Selangor, Malaysia.
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh, Selangor, Malaysia.
| |
Collapse
|
22
|
Cervellati C, Zuliani G, Valacchi G. OxInflammation in Alzheimer's disease. Neural Regen Res 2023; 18:2709-2710. [PMID: 37449634 DOI: 10.4103/1673-5374.374144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Affiliation(s)
- Carlo Cervellati
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Giovanni Zuliani
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy; Plants for Human Health Institute, Animal Science Department, NC State University, Kannapolis, NC, USA; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
23
|
Pinkston R, Penn AL, Noël A. Increased oxidative stress responses in murine macrophages exposed at the air-liquid interface to third- and fourth-generation electronic nicotine delivery system (ENDS) aerosols. Toxicol Rep 2023; 11:40-57. [PMID: 37405056 PMCID: PMC10315815 DOI: 10.1016/j.toxrep.2023.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023] Open
Abstract
Background New fourth generation electronic nicotine delivery system (ENDS) devices contain high levels of nicotine salt (up to 60 mg/mL), whose cellular and molecular effects on immune cells are currently unknown. Here, we used a physiologically-relevant in vitro air-liquid interface (ALI) exposure model to assess the toxicity of distinct ENDS, a 3rd-generation electronic-cigarette (e-cig) and two 4th-generation ENDS devices (JUUL and Posh Plus). Methods Murine macrophages (RAW 264.7) were exposed at the ALI to either air, Menthol or Crème Brûlée-flavored ENDS aerosols generated from those devices for 1-hour per day for 1 or 3 consecutive days. Cellular and molecular toxicity was evaluated 24 h post-exposure. Results 1-day of Menthol-flavored JUUL aerosol exposure significantly decreased cell viability and significantly increased lactate dehydrogenase (LDH) levels compared to air controls. Further, JUUL Menthol elicited significantly increased reactive oxygen species (ROS) and nitric oxide (NO) production compared to air controls. Posh Crème Brûlée-flavored aerosols displayed significant cytotoxicity - decreased cell viability and increased LDH levels -after 1- and 3-day exposures, while the Crème Brûlée-flavored aerosol produced by the 3rd-generation e-cig device only displayed significant cytotoxicity after 3 days compared to air controls. Further, both Posh and third-generation e-cig Crème Brûlée flavored-aerosols elicited significantly increased ROS plus high levels of 8-isoprostane after 1 and 3 days compared to air controls, indicating increased oxidative stress. Posh and third-generation e-cig Crème Brûlée flavored-aerosols elicited reduction in NO levels after one day, but elicited increase in NO after 3 days. Genes in common dysregulated by both devices after 1 day included α7nAChR, Cyp1a1, Ahr, Mmp12, and iNos. Conclusion Our results suggest that ENDS Menthol and Crème Brûlée-flavored aerosol exposures from both 3rd- and 4th-generation ENDS devices are cytotoxic to macrophages and cause oxidative stress. This can translate into macrophage dysfunction. Although 4th-generation disposable ENDS devices have no adjustable operational settings and are considered low-powered ENDS devices, their aerosols can induce cellular toxicity compared to air-exposed control cells. This study provides scientific evidence for regulation of nicotine salt-based disposable ENDS products.
Collapse
Affiliation(s)
- Rakeysha Pinkston
- Department of Environmental Toxicology, Southern University and A & M College, Baton Rouge, LA 70813, USA
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA 70803, USA
| | - Arthur L. Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA 70803, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA 70803, USA
| |
Collapse
|
24
|
Fan H, Yang Y, Bai Q, Wang D, Shi X, Zhang L, Yang Y. Neuroprotective Effects of Sinomenine on Experimental Autoimmune Encephalomyelitis via Anti-Inflammatory and Nrf2-Dependent Anti-Oxidative Stress Activity. Neuromolecular Med 2023; 25:545-562. [PMID: 37735290 DOI: 10.1007/s12017-023-08756-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system (CNS). Sinomenine (SIN), a bioactive alkaloid extracted from the Chinese medicinal plant Sinomenium acutum, has powerful anti-inflammatory and immunosuppressive therapeutic benefits. In our previous research, we found that SIN increased resistance to oxidative stress via the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in PC12 neuronal cells. However, whether SIN can improve the symptoms and pathological features of experimental autoimmune encephalomyelitis (EAE), a murine model of MS, via the Nrf2 signaling pathway remains unclear. EAE was immunized followed by SIN treatment. Then we evaluated the effects of SIN in EAE. Subsequently, primary microglia were cultured to explore the effect of SIN on microglia activation. Further, the levels of Nrf2 and its downstream molecules were detected to assess the molecular mechanisms of SIN. We demonstrated that SIN effectively ameliorated the severity of EAE, accompanied by a reduction in the demyelination, axonal damage and inhibition of inflammatory cell infiltration. Mechanistically, SIN decreased the inflammatory cytokines expression, and suppressed microglia and astrocytes activation in EAE mice. Furthermore, SIN suppressed lipopolysaccharide (LPS)-induced microglial activation and the production of pro-inflammatory factors in vitro. Moreover, SIN inhibited oxidative stress via the activation of the Nrf2 signaling pathway. Our work proves that SIN exerts its neuroprotective effects by the Nrf2-dependent anti-oxidative stress and diminishing neuroinflammation, suggesting that the "antioxiflammation" effect of SIN is expected to be an ideal treatment strategy for MS/EAE.
Collapse
Affiliation(s)
- Hua Fan
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Yang Yang
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Qianqian Bai
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Dongmei Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Lele Zhang
- Department of traditional Chinese medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yanhui Yang
- Department of Trauma center, The First Affiliated Hospital, College of Clinical Medicine , Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
25
|
Ivarsson J, Ferrara F, Vallese A, Guiotto A, Colella S, Pecorelli A, Valacchi G. Comparison of Pollutant Effects on Cutaneous Inflammasomes Activation. Int J Mol Sci 2023; 24:16674. [PMID: 38068996 PMCID: PMC10706824 DOI: 10.3390/ijms242316674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
The skin is the outermost layer of the body and, therefore, is exposed to a variety of stressors, such as environmental pollutants, known to cause oxinflammatory reactions involved in the exacerbation of several skin conditions. Today, inflammasomes are recognized as important modulators of the cutaneous inflammatory status in response to air pollutants and ultraviolet (UV) light exposure. In this study, human skin explants were exposed to the best-recognized air pollutants, such as microplastics (MP), cigarette smoke (CS), diesel engine exhaust (DEE), ozone (O3), and UV, for 1 or 4 days, to explore how each pollutant can differently modulate markers of cutaneous oxinflammation. Exposure to environmental pollutants caused an altered oxidative stress response, accompanied by increased DNA damage and signs of premature skin aging. The effect of specific pollutants being able to exert different inflammasomes pathways (NLRP1, NLRP3, NLRP6, and NLRC4) was also investigated in terms of scaffold formation and cell pyroptosis. Among all environmental pollutants, O3, MP, and UV represented the main pollutants affecting cutaneous redox homeostasis; of note, the NLRP1 and NLRP6 inflammasomes were the main ones modulated by these outdoor stressors, suggesting their role as possible molecular targets in preventing skin disorders and the inflammaging events associated with environmental pollutant exposure.
Collapse
Affiliation(s)
- John Ivarsson
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA;
| | - Francesca Ferrara
- Department of Chemical, Pharmaceuticals and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Andrea Vallese
- Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA; (A.V.); (A.G.); (A.P.)
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Anna Guiotto
- Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA; (A.V.); (A.G.); (A.P.)
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Sante Colella
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences, University of Siena, 53100 Siena, Italy;
| | - Alessandra Pecorelli
- Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA; (A.V.); (A.G.); (A.P.)
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA; (A.V.); (A.G.); (A.P.)
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 26723, Republic of Korea
| |
Collapse
|
26
|
Sguizzato M, Ferrara F, Baraldo N, Bondi A, Guarino A, Drechsler M, Valacchi G, Cortesi R. Bilosomes and Biloparticles for the Delivery of Lipophilic Drugs: A Preliminary Study. Antioxidants (Basel) 2023; 12:2025. [PMID: 38136145 PMCID: PMC10741235 DOI: 10.3390/antiox12122025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, bile acid-based vesicles and nanoparticles (i.e., bilosomes and biloparticles) are studied to improve the water solubility of lipophilic drugs. Ursodeoxycholic acid, sodium cholate, sodium taurocholate and budesonide were used as bile acids and model drugs, respectively. Bilosomes and biloparticles were prepared following standard protocols with minor changes, after a preformulation study. The obtained systems showed good encapsulation efficiency and dimensional stability. Particularly, for biloparticles, the increase in encapsulation efficiency followed the order ursodeoxycholic acid < sodium cholate < sodium taurocholate. The in vitro release of budesonide from both bilosytems was performed by means of dialysis using either a nylon membrane or a portion of Wistar rat small intestine and two receiving solutions (i.e., simulated gastric and intestinal fluids). Both in gastric and intestinal fluid, budesonide was released from bilosystems more slowly than the reference solution, while biloparticles showed a significant improvement in the passage of budesonide into aqueous solution. Immunofluorescence experiments indicated that ursodeoxycholic acid bilosomes containing budesonide are effective in reducing the inflammatory response induced by glucose oxidase stimuli and counteract ox-inflammatory damage within intestinal cells.
Collapse
Affiliation(s)
- Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (F.F.); (N.B.); (A.B.)
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (F.F.); (N.B.); (A.B.)
| | - Nada Baraldo
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (F.F.); (N.B.); (A.B.)
| | - Agnese Bondi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (F.F.); (N.B.); (A.B.)
| | - Annunziata Guarino
- Department of Neurosciences and Rehabilitation, University of Ferrara, I-44121 Ferrara, Italy;
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI), Keylab “Electron and Optical Microscopy”, University of Bayreuth, D-95440 Bayreuth, Germany;
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy;
- Animal Science Department NC Research Campus, Plants for Human Health Institute, NC State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul S02447, Republic of Korea
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (F.F.); (N.B.); (A.B.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
| |
Collapse
|
27
|
Ates I, Yılmaz AD, Buttari B, Arese M, Saso L, Suzen S. A Review of the Potential of Nuclear Factor [Erythroid-Derived 2]-like 2 Activation in Autoimmune Diseases. Brain Sci 2023; 13:1532. [PMID: 38002492 PMCID: PMC10669303 DOI: 10.3390/brainsci13111532] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 11/26/2023] Open
Abstract
An autoimmune disease is the consequence of the immune system attacking healthy cells, tissues, and organs by mistake instead of protecting them. Inflammation and oxidative stress (OS) are well-recognized processes occurring in association with acute or chronic impairment of cell homeostasis. The transcription factor Nrf2 (nuclear factor [erythroid-derived 2]-like 2) is of major importance as the defense instrument against OS and alters anti-inflammatory activities related to different pathological states. Researchers have described Nrf2 as a significant regulator of innate immunity. Growing indications suggest that the Nrf2 signaling pathway is deregulated in numerous diseases, including autoimmune disorders. The advantageous outcome of the pharmacological activation of Nrf2 is an essential part of Nrf2-based chemoprevention and intervention in other chronic illnesses, such as neurodegeneration, cardiovascular disease, autoimmune diseases, and chronic kidney and liver disease. Nevertheless, a growing number of investigations have indicated that Nrf2 is already elevated in specific cancer and disease steps, suggesting that the pharmacological agents developed to mitigate the potentially destructive or transformative results associated with the protracted activation of Nrf2 should also be evaluated. The activators of Nrf2 have revealed an improvement in the progress of OS-associated diseases, resulting in immunoregulatory and anti-inflammatory activities; by contrast, the depletion of Nrf2 worsens disease progression. These data strengthen the growing attention to the biological properties of Nrf2 and its possible healing power on diseases. The evidence supporting a correlation between Nrf2 signaling and the most common autoimmune diseases is reviewed here. We focus on the aspects related to the possible effect of Nrf2 activation in ameliorating pathologic conditions based on the role of this regulator of antioxidant genes in the control of inflammation and OS, which are processes related to the progression of autoimmune diseases. Finally, the possibility of Nrf2 activation as a new drug development strategy to target pathogenesis is proposed.
Collapse
Affiliation(s)
- Ilker Ates
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey
| | - Ayşe Didem Yılmaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey; (A.D.Y.); (S.S.)
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Italian National Institute of Health, 00161 Rome, Italy;
| | - Marzia Arese
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzae Aldo Moro 5, 00185 Rome, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology ‘‘Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey; (A.D.Y.); (S.S.)
| |
Collapse
|
28
|
Ferrara F, Pecorelli A, Valacchi G. Redox Regulation of Nucleotide-Binding and Oligomerization Domain-Like Receptors Inflammasome. Antioxid Redox Signal 2023; 39:744-770. [PMID: 37440315 DOI: 10.1089/ars.2022.0180] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Significance: Inflammasomes are multimeric complexes that, as part of the innate immune response, sense a wide range of pathogenic and sterile stimuli. They consist of three components, namely a sensor protein, an adaptor, and procaspase-1, which once activated result in secretion of proinflammatory interleukin (IL)-1β and IL-18 and, eventually, in a gasdermin D-dependent lytic cell death called pyroptosis. Recent Advances: Since their discovery 20 years ago, the molecular mechanisms underlying the regulation of inflammasomes have been extensively studied. Oxidative stress appears as a major contributor to modulate inflammasomes, especially NLRP3 as well as NLRP1, NLRP6, and NLRC4. Growing evidence supports the idea that the positive feedback between redox imbalance and inflammasome-driven inflammation fuels an OxInflammatory state in a variety of human pathologies. Critical Issues: The current knowledge about the redox signaling pathways involved in inflammasomes activation and functions are here highlighted. In addition, we discuss the role of this complex molecular network interaction in the onset and progression of pathological conditions including neurological and metabolic diseases as well as skin disorders, also with an insight on COVID-19-related pathology. Finally, the therapeutic strategies able to mitigate the redox-mediated inflammasome activation with synthetic and natural compounds as well as by acting on inflammasome-related post-translational modifications and microRNAs are also addressed. Future Directions: Further investigations leading to a deeper understanding of the reciprocal interaction between inflammasomes and reactive oxygen species will help identify other molecular targets for modulating their hyperactivated state, and to design novel therapeutics for chronic OxInflammatory conditions. Antioxid. Redox Signal. 39, 744-770.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
- Plants for Human Health Institute, Animal Science Dept., North Carolina State University, Kannapolis, North Carolina, USA
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
- Plants for Human Health Institute, Animal Science Dept., North Carolina State University, Kannapolis, North Carolina, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Vallese A, Cordone V, Pecorelli A, Valacchi G. Ox-inflammasome involvement in neuroinflammation. Free Radic Biol Med 2023; 207:161-177. [PMID: 37442280 DOI: 10.1016/j.freeradbiomed.2023.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Neuroinflammation plays a crucial role in the onset and the progression of several neuropathologies, from neurodegenerative disorders to migraine, from Rett syndrome to post-COVID 19 neurological manifestations. Inflammasomes are cytosolic multiprotein complexes of the innate immune system that fuel inflammation. They have been under study for the last twenty years and more recently their involvement in neuro-related conditions has been of great interest as possible therapeutic target. The role of oxidative stress in inflammasome activation has been described, however the exact way of action of specific endogenous and exogenous oxidants needs to be better clarified. In this review, we provide the current knowledge on the involvement of inflammasome in the main neuropathologies, emphasizing the importance to further clarify the role of oxidative stress in its activation including the role of mitochondria in inflammasome-induced neuroinflammation.
Collapse
Affiliation(s)
- Andrea Vallese
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Valeria Cordone
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy; Department of Animal Science, North Carolina State University, 28081, Kannapolis, USA; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
30
|
Pambianchi E, Hagenberg Z, Pecorelli A, Pasqui A, Therrien JP, Valacchi G. Tension as a key factor in skin responses to pollution. Sci Rep 2023; 13:16013. [PMID: 37749125 PMCID: PMC10519937 DOI: 10.1038/s41598-023-42629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
Being the more apparent organ exposed to the outdoor stressors, the effect of pollution on the skin has been widely studied in the last few decades. Although UV light is known as the most aggressive stressor to which our cutaneous tissue is daily exposed, other components of the tropospheric pollution have also shown to affect skin health and functionality. Among them, ozone has been proven to be one of the most toxic due to its high reactivity with the epidermal lipids. Studying the cutaneous effect of pollution in a laboratory setting presents challenges, therefore it becomes critical to employ appropriate and tailored models that aim to answer specific questions. Several skin models are available nowadays: in vitro models (2D cell lines and 3D cutaneous tissues), ex vivo skin explants and in vivo approaches (animals and humans). Although in the last 20 years researchers developed skin models that closely resemble human skin (3D cutaneous tissues), ex vivo skin explants still remain one of the best models to study cutaneous responses. Unfortunately, one important cutaneous property that is not present in the traditional ex vivo human skin explants is the physiological tension, which has been shown to be a cardinal player in skin structure, homeostasis, functional properties and responses to external stimuli. For this reason, in this study, to confirm and further comprehend the harmful mechanism of ozone exposure on the integumentary system, we have performed experiments using the state of art in cutaneous models: the innovative TenSkin™ model in which ex vivo human skin explants are cultured under physiologically relevant tension during the whole experimental procedure. Specifically, we were interested in corroborating previous findings showing that ozone exposure modulates the expression of cutaneous antimicrobial peptides (AMPs). The present work demonstrates that cutaneous exposure to ozone induces AMPs gene and protein levels (CAMP/LL-37, hBD2, hBD3) and that the presence of tension can further modulate their expression. In addition, different responses between tension and non-tension cultured skin were also observed during the evaluation of OxInflammatory markers [cyclooxygenase-2 (COX2), aryl hydrocarbon receptor (AhR), matrix-metallo-proteinase 9 (MMP9) and 4-hydroxy-nonenal (4HNE)]. This current study supports our previous findings confirming the ability of pollution to induce the cutaneous expression of AMPs via redox signaling and corroborates the principle that skin explants are a good and reliable model to study skin responses even though it underlines the need to holistically consider the role of skin tension before extrapolating the data to real life.
Collapse
Affiliation(s)
- Erika Pambianchi
- Department of Animal Science, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Zachary Hagenberg
- Department of Animal Science, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Alessandra Pecorelli
- Department of Animal Science, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
- Toscana Life Sciences Foundation, 53100, Siena, Italy
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Arianna Pasqui
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
- Toscana Life Sciences Foundation, 53100, Siena, Italy
| | - Jean-Philippe Therrien
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Giuseppe Valacchi
- Department of Animal Science, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA.
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121, Ferrara, Italy.
- Department of Food and Nutrition, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
31
|
Liu L, Hou Q, Chen B, Lai X, Wang H, Liu H, Wu L, Liu S, Luo K, Liu J. Identification of molecular subgroups and establishment of risk model based on the response to oxidative stress to predict overall survival of patients with lung adenocarcinoma. Eur J Med Res 2023; 28:333. [PMID: 37689745 PMCID: PMC10492289 DOI: 10.1186/s40001-023-01290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023] Open
Abstract
OBJECTIVE Oxidative stress is associated with the occurrence and development of lung cancer. However, the specific association between lung cancer and oxidative stress is unclear. This study aimed to investigate the role of oxidative stress in the progression and prognosis of lung adenocarcinoma (LUAD). METHODS The gene expression profiles and corresponding clinical information were collected from GEO and TCGA databases. Differentially expressed oxidative stress-related genes (OSRGs) were identified between normal and tumor samples. Consensus clustering was applied to identify oxidative stress-related molecular subgroups. Functional enrichment analysis, GSEA, and GSVA were performed to investigate the potential mechanisms. xCell was used to assess the immune status of the subgroups. A risk model was developed by the LASSO algorithm and validated using TCGA-LUAD, GSE13213, and GSE30219 datasets. RESULTS A total of 40 differentially expressed OSRGs and two oxidative stress-associated subgroups were identified. Enrichment analysis revealed that cell cycle-, inflammation- and oxidative stress-related pathways varied significantly in the two subgroups. Furthermore, a risk model was developed and validated based on the OSRGs, and findings indicated that the risk model exhibits good prediction and diagnosis values for LUAD patients. CONCLUSION The risk model based on the oxidative stress could act as an effective prognostic tool for LUAD patients. Our findings provided novel genetic biomarkers for prognosis prediction and personalized clinical treatment for LUAD patients.
Collapse
Affiliation(s)
- Linzhuang Liu
- Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, 518036, Guangdong, China
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Qinghua Hou
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Baorong Chen
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Xiyi Lai
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Hanwen Wang
- Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, 518036, Guangdong, China
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Haozhen Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Liusheng Wu
- Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, 518036, Guangdong, China
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Sheng Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Kelin Luo
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Jixian Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China.
| |
Collapse
|
32
|
Aboderin FI, Oduola T, Davison GM, Oguntibeju OO. A Review of the Relationship between the Immune Response, Inflammation, Oxidative Stress, and the Pathogenesis of Sickle Cell Anaemia. Biomedicines 2023; 11:2413. [PMID: 37760854 PMCID: PMC10525295 DOI: 10.3390/biomedicines11092413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Sickle cell anaemia (SCD) is a life-threatening haematological disorder which is predominant in sub-Saharan Africa and is triggered by a genetic mutation of the β-chain haemoglobin gene resulting in the substitution of glutamic acid with valine. This mutation leads to the production of an abnormal haemoglobin molecule called haemoglobin S (HbS). When deoxygenated, haemoglobin S (HbS) polymerises and results in a sickle-shaped red blood cell which is rigid and has a significantly shortened life span. Various reports have shown a strong link between oxidative stress, inflammation, the immune response, and the pathogenesis of sickle cell disease. The consequence of these processes leads to the development of vasculopathy (disease of the blood vessels) and several other complications. The role of the immune system, particularly the innate immune system, in the pathogenesis of SCD has become increasingly clear in recent years of research; however, little is known about the roles of the adaptive immune system in this disease. This review examines the interaction between the immune system, inflammation, oxidative stress, blood transfusion, and their effects on the pathogenesis of sickle cell anaemia.
Collapse
Affiliation(s)
- Florence Ifechukwude Aboderin
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Taofeeq Oduola
- Department of Chemical Pathology, Usmanu Danfodiyo University, Sokoto 840004, Nigeria;
| | - Glenda Mary Davison
- SAMRC/CPUT Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Oluwafemi Omoniyi Oguntibeju
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| |
Collapse
|
33
|
Piotrowska K, Zgutka K, Tkacz M, Tarnowski M. Physical Activity as a Modern Intervention in the Fight against Obesity-Related Inflammation in Type 2 Diabetes Mellitus and Gestational Diabetes. Antioxidants (Basel) 2023; 12:1488. [PMID: 37627482 PMCID: PMC10451679 DOI: 10.3390/antiox12081488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Diabetes is one of the greatest healthcare problems; it requires an appropriate approach to the patient, especially when it concerns pregnant women. Gestational diabetes mellitus (GDM) is a common metabolic condition in pregnancy that shares many features with type 2 diabetes mellitus (T2DM). T2DM and GDM induce oxidative stress, which activates cellular stress signalling. In addition, the risk of diabetes during pregnancy can lead to various complications for the mother and foetus. It has been shown that physical activity is an important tool to not only treat the negative effects of diabetes but also to prevent its progression or even reverse the changes already made by limiting the inflammatory process. Physical activity has a huge impact on the immune status of an individual. Various studies have shown that regular training sessions cause changes in circulating immune cell levels, cytokine activation, production and secretion and changes in microRNA, all of which have a positive effect on the well-being of the diabetic patient, mother and foetus.
Collapse
Affiliation(s)
- Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University in Szczecin, al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Katarzyna Zgutka
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Zolnierska 54, 70-210 Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Zolnierska 54, 70-210 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Zolnierska 54, 70-210 Szczecin, Poland
| |
Collapse
|
34
|
Hvozda Arana AG, Lerner SF, Reides CG, Contin M, Tripodi V, Lasagni Vitar RM, Ferreira SM. Experimental glaucoma triggers a pro-oxidative and pro-inflammatory state in the rat cornea. Biochim Biophys Acta Gen Subj 2023:130426. [PMID: 37451477 DOI: 10.1016/j.bbagen.2023.130426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Increasing evidence suggests that glaucoma affects the ocular surface. We aimed to investigate the cellular mechanisms underlying the glaucoma-associated corneal alterations in an animal model. METHODS Wistar rats underwent the cauterization of two episcleral veins of the left eye to elevate the intraocular pressure (ipsilateral, G-IL). Control animals received a sham procedure (C-IL). Contralateral eyes did not receive any procedure (G-CL or C-CL). Enzymes related to the redox status, oxidative damage to macromolecules, and inflammatory markers were assessed in corneal lysates. RESULTS Compared to C-IL, NOX4, NOX2, and iNOS expression was increased in G-IL (68%, p < 0.01; 247%, p < 0.01; and 200%, p < 0.001, respectively). We found an increase in SOD activity in G-IL (60%, p < 0.05). The GSH/GSSG ratio decreased in G-IL (80%, p < 0.05), with a decrease in GR activity (40%, p < 0.05). G-IL displayed oxidative (90%, p < 0.01) and nitrosative (40%, p < 0.05) protein damage, and enhanced lipid peroxidation (100%, p < 0.01). G-IL group showed an increased in CD45, CD68 and F4/80 expression (50%, p < 0.05; 190%, p < 0.001 and 110%, p < 0.05, respectively). G-CL displayed a higher expression of Nrf2 (60%, p < 0.001) and increased activity of SOD, CAT, and GPx (60%, p < 0.05; 90%, p < 0.01; and 50%, p < 0.05, respectively). CONCLUSIONS Glaucoma induces a redox imbalance in the ipsilateral cornea with an adaptive response of the contralateral one. GENERAL SIGNIFICANCE Our study provides a possible mechanism involving oxidative stress and inflammation that explains the corneal alterations observed in glaucoma. We demonstrate that these changes extend not only to the ipsilateral but also to the contralateral cornea.
Collapse
Affiliation(s)
- Ailen G Hvozda Arana
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Departamento de Ciencias Químicas. Cátedra de Química General e Inorgánica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - S Fabián Lerner
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Departamento de Ciencias Químicas. Cátedra de Química General e Inorgánica, Buenos Aires, Argentina
| | - Claudia G Reides
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Departamento de Ciencias Químicas. Cátedra de Química General e Inorgánica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Mario Contin
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires, Argentina
| | - Valeria Tripodi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires, Argentina
| | - Romina M Lasagni Vitar
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Departamento de Ciencias Químicas. Cátedra de Química General e Inorgánica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Sandra M Ferreira
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Departamento de Ciencias Químicas. Cátedra de Química General e Inorgánica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina.
| |
Collapse
|
35
|
Sguizzato M, Ferrara F, Drechsler M, Baldisserotto A, Montesi L, Manfredini S, Valacchi G, Cortesi R. Lipid-Based Nanosystems for the Topical Application of Ferulic Acid: A Comparative Study. Pharmaceutics 2023; 15:1940. [PMID: 37514126 PMCID: PMC10385185 DOI: 10.3390/pharmaceutics15071940] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, we examined and compared two different lipid-based nanosystems (LBNs), namely Transferosomes (TFs) and Monoolein Aqueous Dispersions (MADs), as delivery systems for the topical application of Ferulic Acid (FA), an antioxidant molecule derived from natural sources. Our results, as demonstrated through Franz-cell experiments, indicate that the LBNs produced with poloxamer 188 in their composition create a multilamellar system. This system effectively controls the release of the drug. Nonetheless, we found that the type of non-ionic surfactant can impact the drug release rate. Regarding FA diffusion from the MAD, this showed a lower diffusion rate compared with the TF. In terms of an in vivo application, patch tests revealed that all LBN formulations tested were safe when applied under occlusive conditions for 48 h. Additionally, human skin biopsies were used to determine whether FA-containing formulations could influence skin tissue morphology or provide protection against O3 exposure. Analyses suggest that treatment with TFs composed of poloxamer 188 and MAD formulations might protect against structural skin damage (as observed in hematoxylin/eosin staining) and the development of an oxidative environment (as indicated by 4-hyroxinonenal (4HNE) expression levels) induced by O3 exposure. In contrast, formulations without the active ingredient did not offer protection against the detrimental effects of O3 exposure.Inizio modulo.
Collapse
Affiliation(s)
- Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI) Keylab "Electron and Optical Microscopy", University of Bayreuth, D-95440 Bayreuth, Germany
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| | - Leda Montesi
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, I-44121 Ferrara, Italy
- Plants for Human Health Institute, Department of Animal Science, NC Research Campus Kannapolis, NC State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
| |
Collapse
|
36
|
Benedusi M, Kerob D, Guiotto A, Cervellati F, Ferrara F, Pambianchi E. Topical Application of M89PF Containing Vichy Mineralising Water and Probiotic Fractions Prevents Cutaneous Damage Induced by Exposure to UV and O 3. Clin Cosmet Investig Dermatol 2023; 16:1769-1776. [PMID: 37448587 PMCID: PMC10337690 DOI: 10.2147/ccid.s414011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Purpose Exposure of the skin to ultraviolet radiation (UV) or ozone (O3) results in stressed skin, leading to the alteration of the skin physical barrier and defence functions. In this work, the preventive benefit of a dermocosmetic, M89PF, containing Vichy mineralising water, probiotic fractions, antioxidant vitamins and hyaluronic acid, in the alteration of skin physical barrier and skin defence functions after exposure to O3 and UV, alone or combined, was assessed. Methods Untreated and treated (M89PF) skin explants were exposed to O3, to UV rays or to O3+UV. Immunofluorescence was performed for skin barrier, oxidative stress, and inflammatory markers after one and four days of exposure to the pollutants. Results M89PF significantly (p≤0.05) prevented the decrease of the expression level of different skin barrier markers, and significantly (p≤0.05) prevented the induction of OxInflammatory markers and inflammasome components by UV, O3, or both combined. Conclusion M89PF prevents skin barrier damage, as well as oxidative stress and inflammatory markers induced by exposome factors, such as UV, O3, or both combined.
Collapse
Affiliation(s)
- Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Anna Guiotto
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Franco Cervellati
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Erika Pambianchi
- North Carolina Research Campus, Plants for Human Health Institute, Animal Science, North Carolina State University, Kannapolis, NC, 28081, USA
| |
Collapse
|
37
|
Alhamad S, Elmasry Y, Uwagboe I, Chekmeneva E, Sands C, Cooper BW, Camuzeaux S, Salam A, Parsons M. B7-H3 Associates with IMPDH2 and Regulates Cancer Cell Survival. Cancers (Basel) 2023; 15:3530. [PMID: 37444640 DOI: 10.3390/cancers15133530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Lung cancer is one of the most common cancers worldwide, and despite improvements in treatment regimens, patient prognosis remains poor. Lung adenocarcinomas develop from the lung epithelia and understanding how specific genetic and environmental factors lead to oncogenic transformation in these cells is of great importance to define the pathways that contribute to tumorigenesis. The recent rise in the use of immunotherapy to treat different cancers has prompted the exploration of immune modulators in tumour cells that may provide new targets to manipulate this process. Of these, the B7 family of cell surface receptors, which includes PD-1, is of particular interest due to its role in modulating immune cell responses within the tumour microenvironment. B7-H3 (CD276) is one family member that is upregulated in many cancer types and suggested to contribute to tumour-immune interactions. However, the function and ligand(s) for this receptor in normal lung epithelia and the mechanisms through which the overexpression of B7-H3 regulate cancer progression in the absence of immune cell interactions remain unclear. Here, we present evidence that B7-H3 is associated with one of the key rate-limiting metabolic enzymes IMPDH2, and the localisation of this complex is altered in human lung cancer cells that express high levels of B7-H3. Mechanistically, the IMPDH2:B7-H3 complex provides a protective role in cancer cells to escape oxidative stress triggered by chemotherapy, thus leading to cell survival. We further demonstrate that the loss of B7-H3 in cancer cells has no effect on growth or migration in 2D but promotes the expansion of 3D spheroids in an IMPDH2-dependent manner. These findings provide new insights into the B7-H3 function in the metabolic homeostasis of normal and transformed lung cancer cells, and whilst this molecule remains an interesting target for immunotherapy, these findings caution against the use of anti-B7-H3 therapies in certain clinical settings.
Collapse
Affiliation(s)
- Salwa Alhamad
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, New Hunts House, London SE1 1UL, UK
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Yassmin Elmasry
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, New Hunts House, London SE1 1UL, UK
| | - Isabel Uwagboe
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, New Hunts House, London SE1 1UL, UK
| | - Elena Chekmeneva
- National Phenome Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, IRDB Building, 5th Floor, Du Cane Road, London W12 0NN, UK
| | - Caroline Sands
- National Phenome Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, IRDB Building, 5th Floor, Du Cane Road, London W12 0NN, UK
| | - Benjamin W Cooper
- National Phenome Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, IRDB Building, 5th Floor, Du Cane Road, London W12 0NN, UK
| | - Stephane Camuzeaux
- National Phenome Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, IRDB Building, 5th Floor, Du Cane Road, London W12 0NN, UK
| | - Ash Salam
- National Phenome Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, IRDB Building, 5th Floor, Du Cane Road, London W12 0NN, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, New Hunts House, London SE1 1UL, UK
| |
Collapse
|
38
|
Veshkini A, Gnott M, Vogel L, Kröger-Koch C, Tuchscherer A, Tröscher A, Bernabucci U, Trevisi E, Starke A, Mielenz M, Bachmann L, Hammon HM. Abomasal infusion of essential fatty acids and conjugated linoleic acid during late pregnancy and early lactation affects immunohematological and oxidative stress markers in dairy cows. J Dairy Sci 2023:S0022-0302(23)00231-X. [PMID: 37173257 DOI: 10.3168/jds.2022-22514] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/05/2023] [Indexed: 05/15/2023]
Abstract
Oxidative stress and inflammation, as natural parts of metabolic adaptations during the transition from late gestation to early lactation, are critical indicators of dairy cows' metabolic health. This study was designed to investigate the effects of abomasal infusion of essential fatty acids (EFA), particularly α-linolenic acid, and conjugated linoleic acid (CLA) on plasma, erythrocyte, and liver markers of oxidative stress in dairy cows during the transition period. Rumen-cannulated German Holstein cows (n = 38) in their second lactation (11,101 ± 1,118 kg milk/305 d, mean ± standard deviation) were abomasally infused with one of the following treatments from d -63 antepartum until d 63 postpartum (PP): CTRL (n = 9; 76 g/d coconut oil); EFA (n = 9; 78 g/d linseed plus 4 g/d safflower oil); CLA (n = 10; isomers cis-9,trans-11 and trans-10,cis-12 CLA; 38 g/d); and EFA+CLA (n = 10; 120 g/d). Hematological parameters as well as markers of oxidative status were measured in plasma, erythrocytes, and liver before and after calving. Immunohematological parameters, including erythrocyte number, hematocrit, hemoglobin, mean corpuscular hemoglobin, leukocytes, and basophils, were affected by time, and their peak levels were observed on the day after calving. The oxidative stress markers glutathione peroxidase 1 and reactive oxygen metabolites in plasma and erythrocytes were both affected by time, exhibiting the highest levels on d 1 PP, whereas β-carotene, retinol, and tocopherol were at their lowest levels at the same time. Immunohematological parameters were only marginally affected by fatty acid treatment in a time-dependent manner. As such, lymphocyte and atypical lymphocyte counts were both significantly highest in the groups that received EFA at d 1 PP. Moreover, EFA supplementation increased the mean corpuscular volume and showed a trend for induction of mean corpuscular hemoglobin compared with the CLA group during the transition period. The PP mean thrombocyte volume was higher in the EFA than in the CLA group (except for d 28) and both EFA and CLA reduced number of thrombocytes and thrombocrit at distinct time points. Hepatic mRNA abundance of markers related to oxidative status, including glutathione peroxidase (GPX-1) and catalase (CAT), was lower (P < 0.05) in EFA-treated than non-EFA-treated cows at d 28 PP. Dairy cows at the onset of lactation were characterized by induced markers of both oxidative stress and inflammation. Supplementing EFA and CLA had minor and time-dependent effects on markers of oxidative stress in plasma, erythrocytes, and liver. A comparison of EFA supplementation with CLA or CTRL showed higher immunohematological response at d 1 PP and lower hepatic antioxidant levels by d 28 PP. Supplementation with EFA+CLA had only a minor effect on oxidative markers, which were more similar to those with the EFA treatment. Altogether, despite the time-dependent differences, the current findings show only minor effects of EFA and CLA supplementation in the prevention of early lactation-induced oxidative stress.
Collapse
Affiliation(s)
- A Veshkini
- Institute of Nutritional Physiology "Oskar Kellner," Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - M Gnott
- Institute of Nutritional Physiology "Oskar Kellner," Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - L Vogel
- Institute of Nutritional Physiology "Oskar Kellner," Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - C Kröger-Koch
- Institute of Nutritional Physiology "Oskar Kellner," Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Tuchscherer
- Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | | | - U Bernabucci
- Department of Agronomic and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - A Starke
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - M Mielenz
- Institute of Nutritional Physiology "Oskar Kellner," Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - L Bachmann
- Institute of Nutritional Physiology "Oskar Kellner," Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; Faculty of Agriculture and Food Sciences, University of Applied Science Neubrandenburg, 17033 Neubrandenburg, Germany
| | - H M Hammon
- Institute of Nutritional Physiology "Oskar Kellner," Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
39
|
Dzięgielewska-Gęsiak S, Muc-Wierzgoń M. Inflammation and Oxidative Stress in Frailty and Metabolic Syndromes-Two Sides of the Same Coin. Metabolites 2023; 13:475. [PMID: 37110134 PMCID: PMC10144989 DOI: 10.3390/metabo13040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
In developed countries, aging is often seen as typical, but it is made complicated by many disorders and co-morbidities. Insulin resistance seems to be an underlying pathomechanism in frailty and metabolic syndromes. The decline in insulin sensitivity leads to changes in the oxidant-antioxidant balance and an accelerated inflammatory response, especially by adipocytes and macrophages in adipose tissue, as well as muscle mass density. Thus, in the pathophysiology of syndemic disorders-the metabolic syndrome and frailty syndrome-an extremely important role may be played by increased oxidative stress and pro-inflammatory state. Papers included in this review explored available full texts and the reference lists of relevant studies from the last 20 years, before the end of 2022; we also investigated the PubMed and Google Scholar electronic databases. The online resources describing an elderly population (≥65 years old) published as full texts were searched for the following terms: "oxidative stress and/or inflammation", "frailty and/or metabolic syndrome". Then, all resources were analyzed and narratively described in the context of oxidative stress and/or inflammation markers which underlie pathomechanisms of frailty and/or metabolic syndromes in elderly patients. So far, different metabolic pathways discussed in this review show that a similar pathogenesis underlies the development of the metabolic as well as frailty syndromes in the context of increased oxidative stress and acceleration of inflammation. Thus, we argue that the syndemia of the syndromes represents two sides of the same coin.
Collapse
Affiliation(s)
- Sylwia Dzięgielewska-Gęsiak
- Department of Internal Medicine Prevention, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | | |
Collapse
|
40
|
Melloni M, Sergi D, Simioni C, Passaro A, Neri LM. Microalgae as a Nutraceutical Tool to Antagonize the Impairment of Redox Status Induced by SNPs: Implications on Insulin Resistance. BIOLOGY 2023; 12:449. [PMID: 36979141 PMCID: PMC10044993 DOI: 10.3390/biology12030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Microalgae represent a growing innovative source of nutraceuticals such as carotenoids and phenolic compound which are naturally present within these single-celled organisms or can be induced in response to specific growth conditions. The presence of the unfavourable allelic variant in genes involved in the control of oxidative stress, due to one or more SNPs in gene encoding protein involved in the regulation of redox balance, can lead to pathological conditions such as insulin resistance, which, in turn, is directly involved in the pathogenesis of type 2 diabetes mellitus. In this review we provide an overview of the main SNPs in antioxidant genes involved in the promotion of insulin resistance with a focus on the potential role of microalgae-derived antioxidant molecules as novel nutritional tools to mitigate oxidative stress and improve insulin sensitivity.
Collapse
Affiliation(s)
- Mattia Melloni
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.M.); (D.S.)
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.M.); (D.S.)
| | - Carolina Simioni
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.M.); (D.S.)
- Medical Department, University Hospital of Ferrara Arcispedale Sant’Anna, Via Aldo Moro 8, 44124 Ferrara, Italy
- Research and Innovation Section, University Hospital of Ferrara Arcispedale Sant’Anna, Via Aldo Moro 8, 44124 Ferrara, Italy
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.M.); (D.S.)
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
41
|
Sarkar P, Pecorelli A, Woodby B, Pambianchi E, Ferrara F, Duary RK, Valacchi G. Evaluation of Anti-Oxinflammatory and ACE-Inhibitory Properties of Protein Hydrolysates Obtained from Edible Non-Mulberry Silkworm Pupae (Antheraea assama and Philosomia ricinii). Nutrients 2023; 15:1035. [PMID: 36839393 PMCID: PMC9964498 DOI: 10.3390/nu15041035] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Food-derived bioactive peptides (BAPs) obtained from edible insect-protein hold multiple activities promising the potential to target complex pathological mechanisms responsible for chronic health conditions such as hypertension development. In this study, enzymatic protein hydrolysates from non-mulberry edible silkworm Antheraea assama (Muga) and Philosomia ricini (Eri) pupae, specifically Alcalase (A. assama) and Papain (P. ricini) hydrolysates obtained after 60 and 240 min, exhibited the highest ACE-inhibitory and antioxidant properties. The hydrolysates' fractions (<3, 3-10 and >10 kDa), specifically Alc_M60min_F3 (≤3 kDa) and Pap_E240min_F3 (≤3 kDa), showed the highest antioxidant and ACE-inhibitory activities, respectively. Further RP-HPLC purified sub-fractions F4 and F6 showed the highest ACE inhibition as well as potent anti-oxinflammatory activities in lipopolysaccharide (LPS)-treated endothelial cells. Indeed, F4 and F6 ACE-inhibitory peptide fractions were effective in preventing p65 nuclear translocation after 3 h of LPS stimulation along with the inhibition of p38 MAPK phosphorylation in HUVEC cells. In addition, pretreatment with F4 and F6 ACE-inhibitory peptide fractions significantly prevented the LPS-induced upregulation of COX-2 expression and IL-1β secretion, while the expression of NRF2 (nuclear factor erythroid 2-related factor 2)-regulated enzymes such as HO-1 and NQO1 was induced by both peptide fractions. The derived peptides from edible pupae protein hydrolysates have potentialities to be explored as nutritional approaches against hypertension and related cardiovascular diseases.
Collapse
Affiliation(s)
- Preeti Sarkar
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Napaam 784028, Assam, India
| | - Alessandra Pecorelli
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Brittany Woodby
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Erika Pambianchi
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Francesca Ferrara
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Raj Kumar Duary
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Napaam 784028, Assam, India
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
42
|
Chiarello DI, Ustáriz J, Marín R, Carrasco-Wong I, Farías M, Giordano A, Gallardo FS, Illanes SE, Gutiérrez J. Cellular mechanisms linking to outdoor and indoor air pollution damage during pregnancy. Front Endocrinol (Lausanne) 2023; 14:1084986. [PMID: 36875486 PMCID: PMC9974835 DOI: 10.3389/fendo.2023.1084986] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Pregnancies are a critical window period for environmental influences over the mother and the offspring. There is a growing body of evidence associating indoor and outdoor air pollution exposure to adverse pregnancy outcomes such as preterm birth and hypertensive disorders of pregnancy. Particulate matter (PM) could trigger oxi-inflammation and could also reach the placenta leading to placental damage with fetal consequences. The combination of strategies such as risk assessment, advise about risks of environmental exposures to pregnant women, together with nutritional strategies and digital solutions to monitor air quality can be effective in mitigating the effects of air pollution during pregnancy.
Collapse
Affiliation(s)
- Delia I. Chiarello
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Javier Ustáriz
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Reinaldo Marín
- Center for Biophysics and Biochemistry (CBB), Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Ivo Carrasco-Wong
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Marcelo Farías
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ady Giordano
- Inorganic Chemistry Department, Faculty of Chemistry and of Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe S. Gallardo
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastián E. Illanes
- Reproductive Biology Program, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Jaime Gutiérrez
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
43
|
Ruiz-Iglesias P, Massot-Cladera M, Pérez-Cano FJ, Castell M. Influence of Diets Enriched with Flavonoids (Cocoa and Hesperidin) on the Systemic Immunity of Intensively Trained and Exhausted Rats. Biomolecules 2022; 12:1893. [PMID: 36551321 PMCID: PMC9775336 DOI: 10.3390/biom12121893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to establish the influence of flavonoid-enriched diets on the immune alterations induced by an intensive training and a final exhaustion test in rats. A flavanol-enriched diet (with 10% cocoa, C10 diet) and a flavanol and flavanone-enriched diet (C10 plus 0.5% hesperidin, CH diet) were used. Lewis rats were fed either a standard diet, C10 diet or CH diet while they were submitted to an intensive running training on a treadmill. After 6 weeks, samples were obtained 24 h after performing a regular training (T groups) and after carrying out a final exhaustion test (TE groups). The C10 diet attenuated the increase in plasma cortisol induced by exhaustion, while both the C10 and the CH diets prevented the alterations in the spleen Th cell proportion. The experimental diets also induced an increase in serum immunoglobulin concentration and an enhancement of spleen natural killer cytotoxicity, which may be beneficial in situations with a weakened immunity. Most of the effects observed in the CH groups seem to be due to the cocoa content. Overall, a dietary intervention with flavonoids enhances immune function, partially attenuating the alterations in systemic immunity induced by intensive training or exhausting exercise.
Collapse
Affiliation(s)
- Patricia Ruiz-Iglesias
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain
| | - Malén Massot-Cladera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain
| | - Margarida Castell
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
44
|
Kopp W. Pathogenesis of (smoking-related) non-communicable diseases-Evidence for a common underlying pathophysiological pattern. Front Physiol 2022; 13:1037750. [PMID: 36589440 PMCID: PMC9798240 DOI: 10.3389/fphys.2022.1037750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Non-communicable diseases, like diabetes, cardiovascular diseases, cancer, stroke, chronic obstructive pulmonary disease, osteoporosis, arthritis, Alzheimer's disease and other more are a leading cause of death in almost all countries. Lifestyle factors, especially poor diet and tobacco consumption, are considered to be the most important influencing factors in the development of these diseases. The Western diet has been shown to cause a significant distortion of normal physiology, characterized by dysregulation of the sympathetic nervous system, renin-angiotensin aldosterone system, and immune system, as well as disruption of physiological insulin and oxidant/antioxidant homeostasis, all of which play critical roles in the development of these diseases. This paper addresses the question of whether the development of smoking-related non-communicable diseases follows the same pathophysiological pattern. The evidence presented shows that exposure to cigarette smoke and/or nicotine causes the same complex dysregulation of physiology as described above, it further shows that the factors involved are strongly interrelated, and that all of these factors play a key role in the development of a broad spectrum of smoking-related diseases. Since not all smokers develop one or more of these diseases, it is proposed that this disruption of normal physiological balance represents a kind of pathogenetic "basic toolkit" for the potential development of a range of non-communicable diseases, and that the decision of whether and what disease will develop in an individual is determined by other, individual factors ("determinants"), such as the genome, epigenome, exposome, microbiome, and others. The common pathophysiological pattern underlying these diseases may provide an explanation for the often poorly understood links between non-communicable diseases and disease comorbidities. The proposed pathophysiological process offers new insights into the development of non-communicable diseases and may influence the direction of future research in both prevention and therapy.
Collapse
|
45
|
Costa S, Tedeschi P, Ferraro L, Beggiato S, Grandini A, Manfredini S, Buzzi R, Sacchetti G, Valacchi G. Biological activity of new bioactive steroids deriving from biotransformation of cortisone. Microb Cell Fact 2022; 21:250. [PMID: 36419154 PMCID: PMC9685055 DOI: 10.1186/s12934-022-01967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
Cortisone is a metabolite belonging to the corticosteroid class that is used pharmaceutically directly as a drug or prodrug. In addition to its large consumption, its use is linked to several side effects, so pharmaceutical research aims to develop effective drugs with low or no side effects, alternative compounds to cortisone are part of an active investment in ongoing research on drug discovery. Since biotransformation can be considered a source of new molecules with potential therapeutic use, the present work focuses on a preliminary in vitro study aimed at evaluating the mutagenic, anti-inflammatory, antioxidant and neuroprotective activity of SCA and SCB molecules obtained from the biotransformation of cortisone using Rh. Rhodnii strain DSM 43960. The results obtained are very encouraging due to the safety of biotransformed compounds with reference to genotoxicity checked by Ames test, to the very high antioxidant capacity and to the anti-inflammatory activity. In fact, thecompounds inhibited both the TNFα-stimulated expression and secretion of NFkB target cytokines, and COX activity, and can activate the glucocorticoid receptor. Finally SCA and SCB exhibited neuroprotective properties.
Collapse
Affiliation(s)
- Stefania Costa
- grid.8484.00000 0004 1757 2064Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46 Ferrara, 44121 Ferrara, Italy ,grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46 Ferrara, 44121 Ferrara, Italy
| | - Paola Tedeschi
- grid.8484.00000 0004 1757 2064Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46 Ferrara, 44121 Ferrara, Italy
| | - Luca Ferraro
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46 Ferrara, 44121 Ferrara, Italy ,grid.8484.00000 0004 1757 2064Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato Di Mortara 70, 44121 Ferrara, Italy
| | - Sarah Beggiato
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46 Ferrara, 44121 Ferrara, Italy
| | - Alessandro Grandini
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46 Ferrara, 44121 Ferrara, Italy
| | - Stefano Manfredini
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46 Ferrara, 44121 Ferrara, Italy
| | - Raissa Buzzi
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46 Ferrara, 44121 Ferrara, Italy
| | - Gianni Sacchetti
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46 Ferrara, 44121 Ferrara, Italy
| | - Giuseppe Valacchi
- grid.8484.00000 0004 1757 2064Department of Environmental Sciences and Prevention, University of Ferrara, Via L. Borsari, 46 Ferrara, 44121 Ferrara, Italy ,grid.40803.3f0000 0001 2173 6074North Carolina Research Campus, Plants for Human Health Institute, Animal Science, North Carolina State University, Kannapolis, NC 28081 USA ,grid.289247.20000 0001 2171 7818Department of Food and Nutrition, Kyung Hee University, Seoul, 02447 Korea
| |
Collapse
|
46
|
dos Santos de Souza RBM, Soares NMM, Bastos TS, Kaelle GCB, de Oliveira SG, Félix FAP. Effects of dietary supplementation with a blend of functional oils to fecal microbiota, and inflammatory and oxidative responses, of dogs submitted to a periodontal surgical challenge. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Inflammation in Pulmonary Hypertension and Edema Induced by Hypobaric Hypoxia Exposure. Int J Mol Sci 2022; 23:ijms232012656. [PMID: 36293512 PMCID: PMC9604159 DOI: 10.3390/ijms232012656] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/06/2022] Open
Abstract
Exposure to high altitudes generates a decrease in the partial pressure of oxygen, triggering a hypobaric hypoxic condition. This condition produces pathophysiologic alterations in an organism. In the lung, one of the principal responses to hypoxia is the development of hypoxic pulmonary vasoconstriction (HPV), which improves gas exchange. However, when HPV is exacerbated, it induces high-altitude pulmonary hypertension (HAPH). Another important illness in hypobaric hypoxia is high-altitude pulmonary edema (HAPE), which occurs under acute exposure. Several studies have shown that inflammatory processes are activated in high-altitude illnesses, highlighting the importance of the crosstalk between hypoxia and inflammation. The aim of this review is to determine the inflammatory pathways involved in hypobaric hypoxia, to investigate the key role of inflammation in lung pathologies, such as HAPH and HAPE, and to summarize different anti-inflammatory treatment approaches for these high-altitude illnesses. In conclusion, both HAPE and HAPH show an increase in inflammatory cell infiltration (macrophages and neutrophils), cytokine levels (IL-6, TNF-α and IL-1β), chemokine levels (MCP-1), and cell adhesion molecule levels (ICAM-1 and VCAM-1), and anti-inflammatory treatments (decreasing all inflammatory components mentioned above) seem to be promising mitigation strategies for treating lung pathologies associated with high-altitude exposure.
Collapse
|
48
|
Kuo CL, Ponneri Babuharisankar A, Lin YC, Lien HW, Lo YK, Chou HY, Tangeda V, Cheng LC, Cheng AN, Lee AYL. Mitochondrial oxidative stress in the tumor microenvironment and cancer immunoescape: foe or friend? J Biomed Sci 2022; 29:74. [PMID: 36154922 PMCID: PMC9511749 DOI: 10.1186/s12929-022-00859-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/19/2022] [Indexed: 12/07/2022] Open
Abstract
The major concept of "oxidative stress" is an excess elevated level of reactive oxygen species (ROS) which are generated from vigorous metabolism and consumption of oxygen. The precise harmonization of oxidative stresses between mitochondria and other organelles in the cell is absolutely vital to cell survival. Under oxidative stress, ROS produced from mitochondria and are the major mediator for tumorigenesis in different aspects, such as proliferation, migration/invasion, angiogenesis, inflammation, and immunoescape to allow cancer cells to adapt to the rigorous environment. Accordingly, the dynamic balance of oxidative stresses not only orchestrate complex cell signaling events in cancer cells but also affect other components in the tumor microenvironment (TME). Immune cells, such as M2 macrophages, dendritic cells, and T cells are the major components of the immunosuppressive TME from the ROS-induced inflammation. Based on this notion, numerous strategies to mitigate oxidative stresses in tumors have been tested for cancer prevention or therapies; however, these manipulations are devised from different sources and mechanisms without established effectiveness. Herein, we integrate current progress regarding the impact of mitochondrial ROS in the TME, not only in cancer cells but also in immune cells, and discuss the combination of emerging ROS-modulating strategies with immunotherapies to achieve antitumor effects.
Collapse
Affiliation(s)
- Cheng-Liang Kuo
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan
| | - Ananth Ponneri Babuharisankar
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan.,Joint PhD Program in Molecular Medicine, NHRI & NCU, Zhunan, Miaoli, 35053, Taiwan
| | - Ying-Chen Lin
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan
| | - Hui-Wen Lien
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan
| | - Yu Kang Lo
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan
| | - Han-Yu Chou
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan
| | - Vidhya Tangeda
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan.,Joint PhD Program in Molecular Medicine, NHRI & NCU, Zhunan, Miaoli, 35053, Taiwan
| | - Li-Chun Cheng
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - An Ning Cheng
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan. .,Joint PhD Program in Molecular Medicine, NHRI & NCU, Zhunan, Miaoli, 35053, Taiwan. .,Department of Life Sciences, College of Health Sciences and Technology, National Central University, Zhongli, Taoyuan, 32001, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan. .,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
49
|
Crescioli C. Vitamin D, exercise, and immune health in athletes: A narrative review. Front Immunol 2022; 13:954994. [PMID: 36211340 PMCID: PMC9539769 DOI: 10.3389/fimmu.2022.954994] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Vitamin D exerts important extra-skeletal effects, exhibiting an exquisite immune regulatory ability, affecting both innate and adaptive immune responses through the modulation of immunocyte function and signaling. Remarkably, the immune function of working skeletal muscle, which is fully recognized to behave as a secretory organ with immune capacity, is under the tight control of vitamin D as well. Vitamin D status, meaning hormone sufficiency or insufficiency, can push toward strengthening/stabilization or decline of immune surveillance, with important consequences for health. This aspect is particularly relevant when considering the athletic population: while exercising is, nowadays, the recommended approach to maintain health and counteract inflammatory processes, “too much” exercise, often experienced by athletes, can increase inflammation, decrease immune surveillance, and expose them to a higher risk of diseases. When overexercise intersects with hypovitaminosis D, the overall effects on the immune system might converge into immune depression and higher vulnerability to diseases. This paper aims to provide an overview of how vitamin D shapes human immune responses, acting on the immune system and skeletal muscle cells; some aspects of exercise-related immune modifications are addressed, focusing on athletes. The crossroad where vitamin D and exercise meet can profile whole-body immune response and health.
Collapse
|
50
|
Oxidative Stress Induces Bovine Endometrial Epithelial Cell Damage through Mitochondria-Dependent Pathways. Animals (Basel) 2022; 12:ani12182444. [PMID: 36139304 PMCID: PMC9495185 DOI: 10.3390/ani12182444] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Polymorphonuclear neutrophil (PMN) count is the main diagnostic method of bovine endometritis. High neutrophil PMN counts in the endometrium of cows affected by endometritis suggest the involvement of oxidative stress among the causes of impaired fertility. The damage mechanism of oxidative stress on bovine endometrial epithelial cells (BEECs) is still unelucidated. The objective of this experiment was to investigate the relationship between oxidative stress and graded endometritis in dairy uteri and the molecular mechanism of oxidative stress injury to BEECs. Our research showed that there was an imbalance of antioxidant stress in dairy cow uterine with endometritis, oxidative stress damaged dairy cow endometrial epithelial cells through mitochondria-dependent pathways. These findings may provide new insight into the therapeutic target of bovine endometrial cell injury. Abstract Bovine endometritis is a mucosal inflammation that is characterized by sustained polymorphonuclear neutrophil (PMN) infiltration. Elevated PMN counts in the uterine discharge of dairy cows affected by endometritis suggest that oxidative stress may be among the causes of impaired fertility due to the condition. Nevertheless, the effects of oxidative stress-mediated endometritis in dairy cows largely remain uninvestigated. Therefore, fresh uterine tissue and uterine discharge samples were collected to diagnose the severity of endometritis according to the numbers of inflammatory cells in the samples. Twenty-six fresh uteri were classified into healthy, mild, moderate, and severe endometritis groups based on hematoxylin and eosin stain characteristics and the percentage of PMNs in discharge. BEECs were treated with graded concentrations of H2O2 from 50 μM to 200 μM in vitro as a model to explore the mechanism of oxidative stress during bovine graded endometritis. The expressions of antioxidant stress kinases were detected by quantitative fluorescence PCR to verify the oxidative stress level in uteri with endometritis. Reactive oxygen species were detected by fluorescence microscope, and inflammation-related mRNA expression increased significantly after H2O2 stimulation. Moreover, mRNA expression levels of antioxidant oxidative stress-related enzymes (glutathione peroxidase, superoxide dismutase, and catalase) and mitochondrial membrane potential both decreased. Further investigation revealed that expression of the apoptosis regulator Bcl-2/Bax decreased, whereas expression of the mitochondrial apoptosis-related proteins cytochrome c and caspase-3 increased in response to oxidative stress. Our results indicate that an imbalance exists between oxidation and antioxidation during bovine endometritis. Moreover, apoptosis induced in vitro by oxidative stress was characterized by mitochondrial damage in BEECs.
Collapse
|