1
|
Chen X, Bai Y, Ma J, Wang A, Xu D. Comparative transcriptome analysis of gill tissue response to hypoxia stress in the Chinese mitten crab (Eriocheir sinensis). Comp Biochem Physiol C Toxicol Pharmacol 2025; 288:110081. [PMID: 39566594 DOI: 10.1016/j.cbpc.2024.110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Crustaceans often encounter the occurrence of various hypoxic situations, and in order to cope with this situation, they have evolved a series of antioxidant defenses against hypoxic stress. The present study was conducted to investigate the physiological and molecular regulation of hypoxic stress in the Chinese mitten crab (Eriocheir sinensis). We used the method of reducing dissolved oxygen in water to treat the juvenile E. sinensis with hypoxia. The results showed that total antioxidant capacity, superoxide dismutase, catalase and malondialdehyde contents in the gills of juvenile crabs were significantly elevated under hypoxia. In addition, gill tissues from normoxic control (NC), hypoxia-sensitive (HS) and hypoxia-tolerant (HT) groups were analysed using transcriptomic sequencing. The results revealed that 2124, 2946 and 2309 differentially expressed genes (DEGs) were found in NC vs. HS, NC vs. HT and HS vs. HT, respectively. The analysis of KEGG pathway enrichment indicated DEGs were predominantly enriched in oxidative phosphorylation, adipocytokine signaling pathway, and protein processing in endoplasmic reticulum in HS vs. HT. Enrichment of the MAPK signaling pathway, apoptosis, glucagon signaling pathway, and arachidonic acid metabolism was also found in the comparisons of NC vs. HS and NC vs. HT. The DEGs in these pathways may play a key role in gill tolerance to hypoxia. These results provide new insights and references for the oxidative defense and adaptive regulatory mechanisms of gill tissues of juvenile E. sinensis in response to hypoxic stress.
Collapse
Affiliation(s)
- Xue Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yulin Bai
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Junlei Ma
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Anqi Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Dongpo Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| |
Collapse
|
2
|
Yan FY, Xu YF, Feng WR, He QH, Hua GA, Li WJ, Xu P, Zhou J, Tang YK. Genomic analysis of hypoxia-tolerant population of the Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109931. [PMID: 39343063 DOI: 10.1016/j.fsi.2024.109931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/01/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Hypoxic stress, triggered by a multitude of factors, has inflicted significant economic repercussions on the aquaculture of Eriocheir sinensis. In this research, we sequenced a collective of 60 samples from both hypoxia-sensitive and hypoxia-resistant groups utilizing streamlined genome sequencing techniques. Subsequently, we delved into population evolution, scrutinized the selective sweep within these populations, and performed a genome-wide association study (GWAS) focused on the hypoxia tolerance traits within the population, all through the lens of SNPs molecular markers. This comprehensive analysis aimed to uncover the SNPs and pinpoint the pertinent candidate genes that influence the hypoxia tolerance capabilities of E. sinensis. The selective sweep analysis revealed that genes harboring potential genetic variations within the two populations were predominantly enriched in areas such as signaling molecules and interactions, energy metabolism, glycolipid metabolism, and immune response. In the genome-wide association study focusing on hypoxia tolerance traits, we identified four SNPs significantly associated with hypoxia resistance. Furthermore, one potential candidate gene, Dscam2, which is believed to influence hypoxia tolerance, was discovered within a 50 kb vicinity of these SNPs. These identified SNPs can serve as molecular markers for screening hypoxia tolerance, offering valuable insights for the genetic improvement of E. sinensis.
Collapse
Affiliation(s)
- Feng-Yuan Yan
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yuan-Feng Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Wen-Rong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Qing-Hong He
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Guo-An Hua
- Jiangsu Haorun Biological Industry Group Co., Ltd, Taizhou, 225500, China
| | - Wen-Jing Li
- Jiangsu Haorun Biological Industry Group Co., Ltd, Taizhou, 225500, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jun Zhou
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China.
| | - Yong-Kai Tang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
3
|
Zhao A, Zhang C, Chen Y, Sun Y, Liu C, Cheng Y. Comparison of behavioral responses, respiratory metabolism-related enzyme activities, and metabolomics of the juvenile Chinese mitten crab Eriocheir sinensis with different tolerance to air exposure. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111040. [PMID: 39426614 DOI: 10.1016/j.cbpb.2024.111040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Air exposure is a common stressor for Chinese mitten crab (Eriocheir sinensis) during rearing and transport, and air exposure tolerance can serve as a crucial indicator for assessing the quality of juvenile E. sinensis. In this study, juvenile E. sinensis were divided into two groups based on their behavioral responses: Group S, which exhibited strong tolerance to air exposure, and Group W, which exhibited weak tolerance. Immersed crabs, not exposed to air, served as a control group (Group C). Whole body morphological characteristics and enzyme activities related to respiratory metabolism in the hemolymph and anterior gills were compared among the three groups. Non-targeted LC-MS metabolomic analysis was conducted on anterior gills. The results showed that, independent of developmental stage, crabs that were larger and had higher condition factor were more tolerant to air exposure. Additionally, compared to Group W, air exposure had a relatively small effect on glycolysis and anaerobic respiratory metabolic processes in the hemolymph and anterior gills of Group S. In response to air exposure, E. sinensis experienced increased energy demand, and switched from aerobic to anaerobic respiration to increase energy supply. Simultaneously, air exposure induced oxidative stress in the hemolymph and anterior gills. This study enhances our understanding of the response mechanism of E. sinensis to air exposure and provides a theoretical reference for the identification of high-quality juvenile E. sinensis.
Collapse
Affiliation(s)
- Aoxi Zhao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Chengyu Zhang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuqing Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yunfei Sun
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Chuang Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yongxu Cheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
4
|
Lee Y, Kim DH, Lee JS, Lee MC, Kim HS, Maszczyk P, Sakakura Y, Yang Z, Hagiwara A, Park HG, Lee JS. Oxidative stress-mediated deleterious effects of hypoxia in the brackish water flea Diaphanosoma celebensis. MARINE POLLUTION BULLETIN 2024; 205:116633. [PMID: 38936003 DOI: 10.1016/j.marpolbul.2024.116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/25/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
In this study, we investigated the acute toxicity, in vivo effects, oxidative stress, and gene expression changes caused by hypoxia on the brackish water flea Diaphanosoma celebensis. The no-observed-effect concentration (NOEC) of 48 h of hypoxia exposure was found to be 2 mg/L O2. Chronic exposure to NOEC caused a significant decline in lifespan but had no effect on total fecundity. The induction of reactive oxygen species increased in a time-dependent manner over 48 h, whereas the content of antioxidant enzymes (superoxide dismutase and catalase) decreased. The transcription and translation levels were modulated by hypoxia exposure. In particular, a significant increase in hemoglobin level was followed by up-regulation of hypoxia-inducible factor 1α gene expression and activation of the mitogen-activated protein kinase pathway. In conclusion, our findings provide a better understanding of the molecular mechanism of the adverse effects of hypoxia in brackish water zooplankton.
Collapse
Affiliation(s)
- Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Food and Nutrition, College of Bio-Nano Technology, Gachon University, Seongnam 13120, South Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Piotr Maszczyk
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw 02-089, Poland
| | - Yoshitaka Sakakura
- Graduate School of Integrated Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, 8 Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Atsushi Hagiwara
- Graduate School of Integrated Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Heum Gi Park
- Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
5
|
Wang Y, Jiang P, Xia F, Bai Q, Zhang X. Transcriptional and physiological profiles reveal the respiratory, antioxidant and metabolic adaption to intermittent hypoxia in the clam Tegillarca granosa. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101215. [PMID: 38359602 DOI: 10.1016/j.cbd.2024.101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Tegillarca granosa can survive intermittent hypoxia for a long-term. We used the clam T. granosa as model to investigate the respiratory, antioxidant and metabolic responses to consecutive hypoxia-reoxygenation (H/R) stress at both physiological and transcriptional levels. The results showed that the clams were able to rapidly regulate oxygen consumption and ammonia excretion during H/R stress, and alleviate oxidative stress during the second-time challenge. The clams also efficiently balanced energy metabolism through the rapid conversion and decomposition of glycogen. According to the transcriptome profile, KEGG pathways of starch and sucrose metabolism, ECM-receptor interaction, and protein processing in endoplasmic reticulum were significantly enriched in H group (the second-time 24 h hypoxia exposure), while pathways associated with lipid metabolism were significantly enriched in h group (the first-time 24 h hypoxia exposure). DEGs including hspa5, birc2/3, and map3k5 might play important roles in alleviating endoplasmic reticulum stress, cpla2 and pla2g16 might mitigate oxidative stress by adjusting the composition of cellular membrane. In conclusions, our findings suggest that rapid adjustment of oxygen consumption, ammonia metabolism, glycogen metabolism, and the ability to adjust the composition of the membrane lipid may be critical for T. granosa in maintaining energy homeostasis and reducing oxidative damage during intermittent H/R exposure. This study preliminarily clarified the response of T. granosa to intermittent hypoxia stress on the physiological and molecular levels, offering insights into the hypoxia-tolerant mechanisms in this species and providing a reference for the following study on the other hypoxic-tolerant species.
Collapse
Affiliation(s)
- Yihang Wang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Puyuan Jiang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Feiyu Xia
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qingqing Bai
- The Government of Guanhaiwei Town, Cixi 315315, China
| | - Xiumei Zhang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
6
|
Ao T, Liu A, Soko WC, Bi H. Impact of the rearing environment on the metabolism of shrimps and tracing the origins and species of shrimps using specific metabolites. Analyst 2024; 149:2887-2897. [PMID: 38568716 DOI: 10.1039/d4an00186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Herein, the link between rearing environmental condition and metabolism was explored. Metabolite fingerprint datasets of black tiger shrimp (Penaeus monodon) from three production sites were collected and studied using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) and HPLC-MS/MS. Two compounds, benzisothiazolinone and hippuric acid, were identified to be potentially related to pollution in the rearing environment and showed different abundances in the analysed shrimp samples with different origins. Furthermore, metabolomic analysis on three shrimp species, black tiger shrimp, kuruma shrimp (Penaeus japonicus) and sword shrimp (Parapenaeopsis hardwickii), under an identical rearing environment was also conducted. Two compounds, diethanolamine and benzisothiazolinone, potentially linked with pollution in the rearing environment were identified. The present protocol holds promise to be extended to the studies of exploring the relationship between rearing environmental conditions and metabolism. Furthermore, the analysis of single-blind samples was conducted. The results show that specific metabolites can be utilized as markers for tracing the origins of shrimp samples. The present protocol holds potential for application in tracing the origin and species of certain seafoods.
Collapse
Affiliation(s)
- Tongtala Ao
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, 201306 Shanghai, China.
| | - Aolin Liu
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, 201306 Shanghai, China.
| | - Winnie C Soko
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, 201306 Shanghai, China.
| | - Hongyan Bi
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, 201306 Shanghai, China.
| |
Collapse
|
7
|
Jiang L, Shang Y, Shi Y, Ma X, Khalid MS, Huang M, Fang JKH, Wang Y, Tan K, Hu M. Impact of hypoxia on glucose metabolism and hypoxia signaling pathways in juvenile horseshoe crabs Tachypleus tridentatus. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106467. [PMID: 38520956 DOI: 10.1016/j.marenvres.2024.106467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Marine hypoxia poses a significant challenge in the contemporary marine environment. The horseshoe crab, an ancient benthic marine organism, is confronted with the potential threat of species extinction due to hypoxia, making it an ideal candidate for studying hypoxia tolerance mechanisms. In this experiment, juvenile Tachypleus tridentatus were subjected to a 21-day trial at DO:2 mg/L (hypoxia) and DO:6 mg/L conditions. The experimental timeline included a 14-day exposure phase followed by a 7-day recovery period. Sampling occurred on days 0, 7, 14, and 21, where the period from day 14 to day 21 corresponds to seven days of recuperation. Several enzymatic activities of important proteins throughout this investigation were evaluated, such as succinate dehydrogenase (SDH), phosphofructokinase (PFK), hexokinase (HK), lactate dehydrogenase (LDH), and pyruvate kinase (PK). Concurrently, the relative expression of hexokinase-1 (HK), hypoxia-inducible factor 1-alpha inhibitor (FIH), and hypoxia-inducible factor 1-alpha (HIF-1α), pyruvate dehydrogenase phosphatase (PDH), succinate dehydrogenase assembly factor 4 (SDH), and Glucose-6-phosphatase (G6Pase) were also investigated. These analyses aimed to elucidate alterations in the hypoxia signaling pathway and respiratory energy metabolism. It is revealed that juvenile T. tridentatus initiated the HIF pathway under hypoxic conditions, resulting in an upregulation of HIF-1α and FIH-1 gene expression, which in turn, influenced a shift in metabolic patterns. Particularly, the activity of glycolysis-related enzymes was promoted significantly, including PK, HK, PKF, LDH, and the related HK gene. In contrast, enzymes linked to aerobic respiration, PDH, and SDH, as well as the related PDH and SDH genes, displayed down-regulation, signifying a transition from aerobic to anaerobic metabolism. Additionally, the activity of gluconeogenesis-related enzymes such as PK and G6Pase gene expression were significantly elevated, indicating the activation of gluconeogenesis and glycogenolysis pathways. Consequently, juvenile T. tridentatus demonstrated an adaptive response to hypoxic conditions, marked by changes in respiratory energy metabolism modes and the activation of hypoxia signaling pathways.
Collapse
Affiliation(s)
- Lingfeng Jiang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
| | - Yueyong Shang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuntian Shi
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaowan Ma
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China
| | - Malik ShahZaib Khalid
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
| | - Meilian Huang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
| | - Kianann Tan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, Guangxi, China.
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China.
| |
Collapse
|
8
|
Lee Y, Byeon E, Kim DH, Maszczyk P, Wang M, Wu RSS, Jeung HD, Hwang UK, Lee JS. Hypoxia in aquatic invertebrates: Occurrence and phenotypic and molecular responses. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106685. [PMID: 37690363 DOI: 10.1016/j.aquatox.2023.106685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Global deoxygenation in aquatic systems is an increasing environmental problem, and substantial oxygen loss has been reported. Aquatic animals have been continuously exposed to hypoxic environments, so-called "dead zones," in which severe die-offs among organisms are driven by low-oxygen events. Multiple studies of hypoxia exposure have focused on in vivo endpoints, metabolism, oxidative stress, and immune responses in aquatic invertebrates such as molluscs, crustaceans, echinoderms, and cnidarians. They have shown that acute and chronic exposure to hypoxia induces significant decreases in locomotion, respiration, feeding, growth, and reproduction rates. Also, several studies have examined the molecular responses of aquatic invertebrates, such as anaerobic metabolism, reactive oxygen species induction, increased antioxidant enzymes, immune response mechanisms, regulation of hypoxia-inducible factor 1-alpha (HIF-1α) genes, and differently expressed hemoglobin/hemocyanin. The genetic basis of those molecular responses involves HIF-1α pathway genes, which are highly expressed in hypoxic conditions. However, the identification of HIF-1α-related genes and understanding of their applications in some aquatic invertebrates remain inadequate. Also, some species of crustaceans, rotifers, sponges, and ctenophores that lack HIF-1α are thought to have alternative defense mechanisms to cope with hypoxia, but those factors are still unclear. This review covers the formation of hypoxia in aquatic environments and the various adverse effects of hypoxia on aquatic invertebrates. The limitations of current hypoxia research and genetic information about the HIF-1α pathway are also discussed. Finally, this paper explains the underlying processes of the hypoxia response and presents an integrated program for research about the molecular mechanisms of hypoxic stresses in aquatic invertebrates.
Collapse
Affiliation(s)
- Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Piotr Maszczyk
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| | - Minghua Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Rudolf Shiu Sun Wu
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hee-Do Jeung
- Tidal Flat Research Center, National Institute of Fisheries Science, Gunsan 54001, South Korea
| | - Un-Ki Hwang
- Tidal Flat Research Center, National Institute of Fisheries Science, Gunsan 54001, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
9
|
Wang J, He Z, Cui M, Sun J, Jiang L, Zhuang N, Zhu F, Zhang X, Song H, Cheng C. Hypoxia-induced HIF-1α promotes Listeria monocytogenes invasion into tilapia. Microbiol Spectr 2023; 11:e0140523. [PMID: 37681973 PMCID: PMC10580874 DOI: 10.1128/spectrum.01405-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/06/2023] [Indexed: 09/09/2023] Open
Abstract
HIF-1α is a nuclear transcription factor, and its activity is tightly regulated by the level of available oxygen in cells. Here, we investigated the roles of HIF-1α in the invasion of Listeria monocytogenes into tilapia under hypoxic environments. We found that the expression levels of HIF-1α in examined tissues of hypoxic tilapia were significantly upregulated, indicating that the tissue cells have been in hypoxic conditions. After 24-h infection with L. monocytogenes, we found that bacterial burden counts increased significantly in all examined tissues of hypoxic fish. To explore why the bacterial count increased significantly in the tissues of hypoxic fish, we modulated HIF-1α expression through RNAi technology. The results indicated that c-Met expression levels were positively related to HIF-1α expression. Since c-Met is the receptor of InlB that plays critical roles in the adhesion and invasion of L. monocytogenes, the ∆InlB strain was used to further explore the reason for the significant increase in bacterial counts in hypoxic fish. As expected, the decrease in the adhesion ability of ∆InlB suggested that InlB mediates L. monocytogenes infection in tilapia. After being infected with ∆InlB strain, we found that the bacterial counts in hypoxic fish were not affected by hypoxic conditions or HIF-1α expression levels. These findings indicate that HIF-1α may promote the internalization of InlB by upregulating c-Met expression and therefore contributes to the invasion of L. monocytogenes into hypoxic tilapia. IMPORTANCE Listeria monocytogenes is a zoonotic food-borne bacterial pathogen with a solid pathogenicity for humans. After ingestion of highly contaminated food, L. monocytogenes is able to cross the intestine invading phagocytic and nonphagocytic cells and causes listeriosis. China is the world's largest supplier of tilapia. The contamination rate of L. monocytogenes to tilapia products was as high as 2.81%, causing a severe threat to public health. This study revealed the underlying regulatory mechanisms of HIF-1α in the invasion of L. monocytogenes into tilapia under hypoxic environments. This study will be helpful for better understanding the molecular mechanisms of hypoxic environments in L. monocytogenes infection to tilapia. More importantly, our data will provide novel insights into the prevention and control of this pathogen in aquaculture.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zhan He
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Mingzhu Cui
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jing Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Lingli Jiang
- Ningbo College of Health Sciences, Ningbo, Zhejiang Province, China
| | - Nanxi Zhuang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Fuxin Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Xian Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Wang L, Guan T, Wang G, Gu J, Wu N, Zhu C, Wang H, Li J. Effects of copper on gill function of juvenile oriental river prawn (Macrobrachium nipponense): Stress and toxic mechanism. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106631. [PMID: 37422926 DOI: 10.1016/j.aquatox.2023.106631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
As an important trace element and the accessory factor of many enzymatic processes, heavy metal copper is essential to aquatic animals. The toxic mechanism of copper on gill function of M. nipponense was clarified for the first time in terms of histopathological analysis, physiology, biochemistry and the expression of important genes. The results obtained by present in present research showed that heavy metal copper could affect normal respiratory and metabolic activities in M. nipponense. Copper stress could cause damage to the mitochondrial membrane of gill cells in M. nipponense, and the activity of mitochondrial respiratory chain complex could be inhibited by copper. Copper could affect normal electron transport and mitochondrial oxidative phosphorylation, resulting in the inhibition of energy production. High concentrations of copper could disrupt intracellular ion balance and induce cytotoxicity. The oxidative stress could be induced by copper, leading to excessive ROS. Copper could reduce the mitochondrial membrane potential, lead to the leakage of apoptotic factors, and induce apoptosis. Copper could damage structure of gill, affect normal respiration of gill. This study provided fundamental data for exploring impacts of copper on gill function in aquatic organisms and potential mechanisms of copper toxicity.
Collapse
Affiliation(s)
- Long Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Jiangsu Engineering Center for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an 223300, Jiangsu Province, China
| | - Tianyu Guan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Jiangsu Engineering Center for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an 223300, Jiangsu Province, China
| | - Guiling Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jieyi Gu
- Jiangsu Engineering Center for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an 223300, Jiangsu Province, China
| | - Nan Wu
- Jiangsu Engineering Center for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an 223300, Jiangsu Province, China
| | - Chuankun Zhu
- Jiangsu Engineering Center for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an 223300, Jiangsu Province, China
| | - Hui Wang
- Jiangsu Engineering Center for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an 223300, Jiangsu Province, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
11
|
Ning X, Han B, Shi Y, Qian X, Zhang K, Yin S. Hypoxia stress induces complicated miRNA responses in the gill of Chinese mitten crab (Eriocheir sinensis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106619. [PMID: 37379777 DOI: 10.1016/j.aquatox.2023.106619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Hypoxia caused by global climate change and human activities has become a growing concern eliciting serious damages to aquatic animals. microRNAs (miRNAs) as non-coding regulatory RNAs exert vital effects on hypoxia responses. Chinese mitten crab (Eriocheir sinensis) with the habitat on the sediment surface or the pond bottom is susceptible to oxygen deficiency. However, whether miRNAs are involved in the response of the crabs to hypoxia stress remains enigmas. In this study, we conducted the whole transcriptome-based miRNA-mRNA integrated analysis of Chinese mitten crab gill under hypoxic condition for 3 h and 24 h We found that the acute hypoxia induces complex miRNA responses with the extensive influences on their target genes that engaged in various bio-processes, especially those associated with immunity, metabolism and endocrine. The impact of hypoxia on crab miRNAs is severer, as the exposure lasts longer. In response to the dissolved oxygen fluctuation, the HIF-1 signaling is activated by miRNAs to cope with the hypoxia stress through strategies including balancing inflammatory and autophagy involved in immunity, changing metabolism to reducing energy consumption, and enhancing oxygen-carrying and delivering capacities. The miRNAs and their corresponding target genes engaged in hypoxia response were intertwined into an intricate network. Moreover, the top hub molecular, miR-998-y and miR-275-z, discovered from the network might serve as biomarkers for hypoxia response in crabs. Our study provides the first systemic miRNA profile of Chinese mitten crab induced by hypoxia stress, and the identified miRNAs and the interactive network add new insights into the mechanism of hypoxia response in crabs.
Collapse
Affiliation(s)
- Xianhui Ning
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Bing Han
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Yaxuan Shi
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Xiaobin Qian
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Kai Zhang
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China.
| |
Collapse
|
12
|
Jiang S, Zhang W, Qian X, Ji J, Ning X, Zhu F, Yin S, Zhang K. Effects of hypoxia and reoxygenation on apoptosis, oxidative stress, immune response and gut microbiota of Chinese mitten crab, Eriocheir sinensis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106556. [PMID: 37182272 DOI: 10.1016/j.aquatox.2023.106556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Hypoxia causes irreversible damage to aquatic animals. However, few reports have explored the effect of hypoxia stress and reoxygenation on intestinal homeostatic imbalance and consequent hepatopancreas-intestine axis health in crustacean. Herein, 180 Chinese mitten crabs (Eriocheir sinensis) were equally divided into control (DO 7.0 ± 0.2 mg/L) and treatment groups. The treatment group was exposed with continuous hypoxic stress (DO 3.0 ± 0.1 mg/L) for 96 h and then reoxygenated (DO 6.9 ± 0.1 mg/L) for 96 h. The effects on intestines and hepatopancreas of Chinese mitten crab were investigated, and the role of gut microbiota in hypoxia induced damages was explored. Hypoxia impaired intestinal tissue structure, and decreased swelling and the number of goblet cells, which are features that did not significantly improve after reoxygenation. With prolonged hypoxic stress, the activities of antioxidant enzymes (LDH, SOD and CAT) and MDA content in intestine were significantly elevated. Moreover, the level of oxidative stress increased, which led to upregulated apoptosis rate and expression of apoptosis-related genes (Caspase 3, Caspase 8 and BAX). In addition, the expression of immune related genes (MyD88, ALF1, Relish and Crustin) in hepatopancreas and intestine was both significantly induced under hypoxia, which activated the immune defense mechanism of Chinese mitten crab to adapt to the hypoxic environment. Furthermore, diversity and relative abundance of gut microbiota decreased noticeably during hypoxic stress; the number of beneficial bacteria downregulated. Finally, KEGG pathway analysis revealed that nine pathways were significantly enriched in intestinal microorganisms, including autoimmune disease and environmental adaptation. Collectively, these results suggested that hypoxia negatively affected E. sinensis health by triggering oxidative stress, altering the composition of the gut microbiota and inhibiting the immune response.
Collapse
Affiliation(s)
- Su Jiang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Weijian Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Xiaobin Qian
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Jie Ji
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China
| | - Xianhui Ning
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China
| | - Fei Zhu
- Marine Fisheries Research Institute of Jiangsu Province, Nantong 226007, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China.
| | - Kai Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China.
| |
Collapse
|
13
|
Zhang C, Liu J, Wang X, Li E, Song M, Yang Y, Qin C, Qin J, Chen L. Comprehensive transcriptional and metabolomic analysis reveals the neuroprotective mechanism of dietary gamma-aminobutyric acid response to hypoxic stress in the Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2023; 135:108663. [PMID: 36898515 DOI: 10.1016/j.fsi.2023.108663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/07/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Hypoxia is one of the serious stress challenges that aquatic animals face throughout their life. Our previous study found that hypoxia stress could induce neural excitotoxicity and neuronal apoptosis in Eriocheir sinensis, and observed that gamma-aminobutyric acid (GABA) has a positive neuroprotective effect on juvenile crabs under hypoxia. To reveal the neuroprotective pathway and metabolic regulatory mechanism of GABA in E. sinensis exposed to hypoxia stress, an 8-week feeding trial and acute hypoxia challenge were performed. Subsequently, we performed a comprehensive transcriptomic and metabolomic analysis of the thoracic ganglia of juvenile crabs. Differential genes and differential metabolites were co-annotated to 11 KEGG pathways, and further significant analysis showed that only the sphingolipid signaling pathway and the arachidonic acid metabolism pathway were significantly enriched. In the sphingolipid signaling pathway, GABA treatment significantly increased long-chain ceramide content in thoracic ganglia, which exerted neuroprotective effects by activating downstream signals to inhibit hypoxia-induced apoptosis. Moreover, in the arachidonic acid metabolism pathway, GABA could increase the content of neuroprotective active substances and reduce the content of harmful metabolites by regulating the metabolism of arachidonic acid for inflammatory regulation and neuroprotection. Furthermore, the decrease of glucose and lactate levels in the hemolymph suggests the positive role of GABA in metabolic regulation. This study reveals the neuroprotective pathways and possible mechanisms of GABA in juvenile E. sinensis exposed to hypoxia stress and inspires the discovery of new targets for improving hypoxia tolerance in aquatic animals.
Collapse
Affiliation(s)
- Cong Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Jiadai Liu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Mingqi Song
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Yiwen Yang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Sichuan, 641100, PR China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China.
| |
Collapse
|
14
|
Wang F, Yang Z, Li J, Ma Y, Tu Y, Zeng X, Wang Q, Jiang Y, Huang S, Yi Q. The involvement of hypoxia inducible factor-1α on the proportion of three types of haemocytes in Chinese mitten crab under hypoxia stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104598. [PMID: 36511346 DOI: 10.1016/j.dci.2022.104598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Hypoxia triggers diverse cell physiological processes, and the hypoxia inducible factors (HIFs) are a family of heterodimeric transcription factors that function as master regulators to respond to hypoxia in different cells. However, the knowledge about the hypoxic responses especially cell alteration mediated by HIFs under hypoxia stress is still limited in crustaceans. In the present study, a hypoxia-inducible factor-1α (HIF-1α) gene was identified (designed as EsHIF-1α). The relative mRNA expression level of EsHIF-1α was highest in hyalinocytes and lowest in granulocytes among three types of haemocytes in crabs. Hypoxia could significantly increase the EsHIF-1α protein expression level in haemocytes. Meanwhile, the proportion of hyalinocytes began to increase from 3 h post hypoxia treatment, and reached the highest level at 24 h. However, the opposite variation in proportion of granulocytes was observed under hypoxia stress. Further investigation showed that the inhibition of EsHIF-1α induced by KC7F2 (HIF-1α inhibitor) could lead to the significant decrease in the proportion of hyalinocytes under hypoxia stress, and also resulted in an increase of granulocytes proportion. While, after EsHIF-1α was activated by IOX4 (HIF-1α activator), the proportion of hyalinocytes was significantly up-regulated and the proportion of granulocytes was significantly down-regulated under post hypoxia treatment. These results collectively suggested that EsHIF-1α was involved in the regulation of proportion of three types of haemocytes induced by hypoxia stress, which provided vital insight into the understanding of the crosstalk between hypoxia and cell development in invertebrates.
Collapse
Affiliation(s)
- Fengchi Wang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zhichao Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jiaming Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Ma
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Tu
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Xiaorui Zeng
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Qingyao Wang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yusheng Jiang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Shu Huang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China.
| | - Qilin Yi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China.
| |
Collapse
|
15
|
Deng F, Liu J, Xie Z, Li S, Hu M, Lin D, Wang Y. nTiO 2 alleviates the toxic effects of TCPP on mussels by adjusting respiratory metabolism and gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158176. [PMID: 35995159 DOI: 10.1016/j.scitotenv.2022.158176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
As a good carrier of contaminants, nanotitanium dioxide (nTiO2) can absorb organic pollutants, producing toxicological effects on organisms. However, the complex effects of nTiO2 with contaminants on marine mussels are still unclear. In this study, we exposed mussels to tris (2-chloropropyl) phosphate (TCPP) 100 μg/L (T1), 0.5 mg/L nTiO2 + 100 μg/L TCPP (T2), 1.0 mg/L nTiO2 + 100 μg/L TCPP (T3) and control (0 nTiO2 + 0 μg/L TCPP) treatments, and assessed the combined effects of TCPP with nTiO2 on the thick-shelled mussel Mytilus coruscus by detecting the activities of gill pyruvate kinase (PK), hexokinase (HK), lactate dehydrogenase (LDH) and succinate dehydrogenase (SDH), also gill acetylcholine (Ach) and muscle lactic acid (LD) contents and gut microbiota after 14-d exposure. Compared with the control group, PK activity was increased significantly, but SDH, LDH activities and LD content were decreased significantly in T1, with the addition of nTiO2, there were not significantly different in T3. However, Ach content in T3 was significantly higher than the control and T1. Moreover, KEGG of the gut microbiota via 16 s rRNA sequencing showed that most pathways returned to the control level in T3. The results showed that TCPP affected the respiratory metabolism of mussels, changed the community structure of intestinal microflora in mussels, and nTiO2 alleviated the toxicity of TCPP. Our study provides new insights for ecological risk assessment of TCPP in bivalves in the complex aquatic environment and the novel role of nTiO2 in regulating the toxicity of TCPP.
Collapse
Affiliation(s)
- Fujing Deng
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jiani Liu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhe Xie
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Saishuai Li
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
16
|
Zhang C, He J, Wang X, Yang Y, Huang Q, Qiao F, Shi Q, Qin J, Chen L. Gamma-aminobutyric acid enhances hypoxia tolerance of juvenile Chinese mitten crab (Eriocheir sinensis) by regulating respiratory metabolism and alleviating neural excitotoxicity. Comp Biochem Physiol C Toxicol Pharmacol 2022; 260:109409. [PMID: 35830953 DOI: 10.1016/j.cbpc.2022.109409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
With climate change and intensive aquaculture development, environmental hypoxia in aquaculture water has become a common challenge for many aquatic species. Therefore, it is crucial to improve the hypoxic tolerance of animals through nutritional strategies. This study explored the positive role of dietary gamma-aminobutyric acid (GABA) supplementation in enhancing hypoxia tolerance of juvenile Eriocheir sinensis through respiratory regulation and alleviation of hypoxia-induced neural excitotoxicity. Acute hypoxia stress significantly up-regulated the mRNA expression level of hypoxia-inducible factor 1α, oxygen consumption rate and anaerobic respiratory metabolism-related enzyme activities. On the other hand, aerobic respiratory metabolism-related enzyme activities were significantly decreased. However, dietary GABA supplementation remodeled the respiratory metabolism pattern of juvenile crabs exposed to hypoxia stress. In addition, acute hypoxic stress significantly increased the contents of free glutamate and GABA in the nervous tissue. The expression levels of N-Methyl-d-aspartate-related receptor genes and calcium-dependent degradation enzyme-related genes were significantly up-regulated. Similarly, neuronal apoptosis rates, expression levels of apoptosis-related genes, and vesicular glutamate transporter genes were also significantly increased. The high-affinity neuronal glutamate transporter decreased significantly in the crabs exposed to hypoxia stress. However, dietary GABA supplementation could effectively prevent acute hypoxia stress-induced neural excitotoxicity. Furthermore, dietary GABA could significantly improve the redox status in vivo exposed to hypoxia stress. In conclusion, acute hypoxia stress can affect respiratory metabolism and redox state and induce neural excitotoxicity in juvenile E. sinensis. GABA supplementation could improve hypoxia tolerance through multiple physiological regulation pathways.
Collapse
Affiliation(s)
- Cong Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Jiaqi He
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| | - Yiwen Yang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Qincheng Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Qingchao Shi
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Sichuan 641100, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| |
Collapse
|
17
|
Cao G, Bao J, Feng C, Li X, Lang Y, Xing Y, Jiang H. First report of Metschnikowia bicuspidata infection in Chinese grass shrimp (Palaemonetes sinensis) in China. Transbound Emerg Dis 2022; 69:3133-3141. [PMID: 35076183 DOI: 10.1111/tbed.14460] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/31/2021] [Accepted: 01/19/2022] [Indexed: 11/30/2022]
Abstract
The Chinese grass shrimp (Palaemonetes sinensis) was found with white turbidity appearance in the Panjin area. After dissection, typical symptoms of milky disease with hemolymph emulsification and noncoagulation were observed; however, the pathogen was unknown. In this study, we aimed to isolate the pathogen of the diseased P. sinensis. We found that the pathogen could grow on the fungal medium Bengal red, and microscopic examination showed that it reproduced by budding. Molecular identification of the isolated and purified yeast strain LNMB2021 based on 26S rDNA sequence showed that the pathogenic pathogen was Metschnikowia bicuspidata (GenBank OK094821), with 98.74% homology with M. bicuspidata strain LNES0119 (GenBank OK073903) and 98.56% with M. bicuspidata strain Liao (GenBank MT856369). The results of an artificial infection test showed that M. bicuspidata caused the same clinical symptoms in P. sinensis, and the isolated pathogen was still the same, which proved that P. sinensis was a new host of M. bicuspidata. Histopathological analysis showed that there were obvious pathological changes in the hepatopancreas and muscle tissue of the diseased P. sinensis. Identification of the pathogen is essential for the prevention and control of the disease and the healthy culture of P. sinensis. Furthermore, considering the transmissibility and cross-host transmission of M. bicuspidata, its risk of infecting other aquatic animals deserves high attention. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gangnan Cao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, P R China
| | - Jie Bao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, P R China
| | - Chengcheng Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, P R China
| | - Xiaodong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, P R China
| | - Yuxi Lang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, P R China
| | - Yuenan Xing
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, P R China
| | - Hongbo Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, P R China
| |
Collapse
|
18
|
Integrated Metabolomics and Transcriptomic Analysis of Hepatopancreas in Different Living Status Macrobrachium nipponense in Response to Hypoxia. Antioxidants (Basel) 2021; 11:antiox11010036. [PMID: 35052540 PMCID: PMC8772856 DOI: 10.3390/antiox11010036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 12/16/2022] Open
Abstract
As the basic element of aerobic animal life, oxygen participates in most physiological activities of animals. Hypoxia stress is often the subject of aquatic animal research. Macrobrachium nipponense, an economically important aquatic animal in southern China, has been affected by hypoxia for many years and this has resulted in a large amount of economic loss due to its sensitivity to hypoxia; Metabolism and transcriptome data were combined in the analysis of the hepatopancreas of M. nipponense in different physiological states under hypoxia; A total of 108, 86, and 48 differentially expressed metabolites (DEMs) were found in three different comparisons (survived, moribund, and dead shrimps), respectively. Thirty-two common DEMs were found by comparing the different physiological states of M. nipponense with the control group in response to hypoxia. Twelve hypoxia-related genes were identified by screening and analyzing common DEMs. GTP phosphoenolpyruvate carboxykinase (PEPCK) was the only differentially expressed gene that ranked highly in transcriptome analysis combined with metabolome analysis. PEPCK ranked highly both in transcriptome analysis and in combination with metabolism analysis; therefore, it was considered to have an important role in hypoxic response. This manuscript fills the one-sidedness of the gap in hypoxia transcriptome analysis and reversely deduces several new genes related to hypoxia from metabolites. This study contributes to the clarification of the molecular process associated with M. nipponense under hypoxic stress.
Collapse
|
19
|
Wang F, Nian L, Wang M, Xie Y, Yuan B, Cheng S, Cao C. An oxygen‐releasing tablet to reduce the hypoxia‐induced damage of Chinese mitten crabs (
Eriocheir sinensis
). J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fenfen Wang
- Department of Food Quality and Safety/National R&D Center Herbal Medicine Processing College of Engineering China Pharmaceutical University Nanjing China
| | - Linyu Nian
- Department of Food Quality and Safety/National R&D Center Herbal Medicine Processing College of Engineering China Pharmaceutical University Nanjing China
| | - Mengjun Wang
- Department of Food Quality and Safety/National R&D Center Herbal Medicine Processing College of Engineering China Pharmaceutical University Nanjing China
| | - Yao Xie
- Department of Food Quality and Safety/National R&D Center Herbal Medicine Processing College of Engineering China Pharmaceutical University Nanjing China
| | - Biao Yuan
- Department of Food Quality and Safety/National R&D Center Herbal Medicine Processing College of Engineering China Pharmaceutical University Nanjing China
| | - Shujie Cheng
- Department of Food Quality and Safety/National R&D Center Herbal Medicine Processing College of Engineering China Pharmaceutical University Nanjing China
| | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center Herbal Medicine Processing College of Engineering China Pharmaceutical University Nanjing China
| |
Collapse
|
20
|
Zhao Y, Zhu X, Jiang Y, Li Z, Li X, Xu W, Wei H, Li Y, Li X. Genetic diversity and variation of seven Chinese grass shrimp (Palaemonetes sinensis) populations based on the mitochondrial COI gene. BMC Ecol Evol 2021; 21:167. [PMID: 34488635 PMCID: PMC8422745 DOI: 10.1186/s12862-021-01893-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 08/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chinese grass shrimp (Palaemonetes sinensis) is an important species widely distributed throughout China, which is ecologically relevant and possesses ornamental and economic value. These organisms have experienced a sharp decline in population due to overfishing. Therefore interest in P. sinensis aquaculture has risen in an effort to alleviate fishing pressure on wild populations. Therefore, we investigated the genetic diversity and variation of P. sinensis to verify the accuracy of previous research results, as well as to assess the risk of diversity decline in wild populations and provide data for artificial breeding. METHODS Palaemonetes sinensis specimens from seven locations were collected and their genetic variability was assessed based on mitochondrial COI gene segments. DNA sequence polymorphisms for each population were estimated using DNASP 6.12. The demographic history and genetic variation were evaluated using Arlequin 3.11. At last, the pairwise genetic distance (Ds) values and dendrograms were constructed with the MEGA 11 software package. RESULTS Our study obtained sequences from 325 individuals, and 41 haplotypes were identified among the populations. The haplotype diversity (Hd) and nucleotide diversity (π) indices ranged from 0.244 ± 0.083 to 0.790 ± 0.048 and from 0.0004 ± 0.0001 to 0.0028 ± 0.0006, respectively. Haplotype network analyses identified haplotype Hap_1 as a potential maternal ancestral haplotype for the studied populations. AMOVA results indicated that genetic variations mainly occurred within populations (73.07%). Moreover, according to the maximum variation among groups (FCT), analysis of molecular variance using the optimal two-group scheme indicated that the maximum variation occurred among groups (53.36%). Neutrality and mismatch distribution tests suggested that P. sinensis underwent a recent population expansion. Consistent with the SAMOVA analysis and haplotype network analyses, the Ds and FST between the population pairs indicated that the JN population was distinctive from the others. CONCLUSIONS Our study conducted a comprehensive characterization of seven wild P. sinensis populations, and our findings elucidated highly significant differences within populations. The JN population was differentiated from the other six populations, as a result of long-term geographical separation. Overall, the present study provided a valuable basis for the management of genetic resources and a better understanding of the ecology and evolution of this species.
Collapse
Affiliation(s)
- Yingying Zhao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaochen Zhu
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5024, Australia
| | - Ye Jiang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhi Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xin Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Weibin Xu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hua Wei
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yingdong Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaodong Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China. .,Panjin Guanghe Crab Industry Co. Ltd., Panjin, 124000, China.
| |
Collapse
|
21
|
Jie YK, Cheng CH, Wang LC, Ma HL, Deng YQ, Liu GX, Feng J, Guo ZX, Ye LT. Hypoxia-induced oxidative stress and transcriptome changes in the mud crab (Scylla paramamosain). Comp Biochem Physiol C Toxicol Pharmacol 2021; 245:109039. [PMID: 33785424 DOI: 10.1016/j.cbpc.2021.109039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/04/2021] [Accepted: 03/20/2021] [Indexed: 02/08/2023]
Abstract
Mud crab (Scylla paramamosain) is an economically important cultured species in China. Hypoxia is a major environmental stressor during mud crab culture. In the present study, we investigated the oxidative stress and transcriptome changes in the gills of mud crab after intermediate hypoxia stress with dissolved oxygen (DO) 3.0 ± 0.2 mg/L (named as "DO3") and acute hypoxia stress with DO 1.0 ± 0.2 mg/L (named as "DO1") for 0, 3, 6, 12 and 24 h. The superoxide dismutase (SOD) activity of DO1 increased significantly at 3, 6 and 24 h after hypoxia stress, while SOD activity of DO3 increased significantly at 6 and 24 h. The total antioxidant capacity (T-AOC) increased significantly at 6, 12 and 24 h after hypoxia stress. The malondialdehyde (MDA) concentration of DO1 increased significantly at 6, 12 and 24 h after hypoxia stress, while MDA concentration of DO3 only increased significantly at 6 h. The lactate dehydrogenase (LDH) activity of DO1 increased significantly at 3, 6, 12 and 24 h after hypoxia stress, while LDH activity of DO3 increased significantly at 12 and 24 h. Transcriptomic analysis was conducted at 24 h of gill tissues after hypoxia stress. A total of 1052 differentially expressed genes (DEGs) were obtained, including 394 DEGs between DO1 and DO3, 481 DEGs between DO1 and control group, 177 DEGs between DO3 and control group. DEGs were enriched in the pathways related to metabolism, immune functions, ion transport, and signal transduction. Transcriptional analysis showed that glycolysis and tricarboxylic acid cycle genes were the key factors in regulating the adaptation of mud crab to hypoxia stress.
Collapse
Affiliation(s)
- Yu-Kun Jie
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Chang-Hong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China.
| | - Li-Cang Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Hong-Ling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Yi-Qin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Guang-Xin Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Zhi-Xun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China.
| | - Ling-Tong Ye
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| |
Collapse
|
22
|
Mohsen M, Zhang L, Sun L, Lin C, Wang Q, Liu S, Sun J, Yang H. Effect of chronic exposure to microplastic fibre ingestion in the sea cucumber Apostichopus japonicus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111794. [PMID: 33348256 DOI: 10.1016/j.ecoenv.2020.111794] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) in the form of microfibres (MFs) are of great concern because of their size and increasing abundance, which increase their potential to interact with or be ingested by aquatic organisms. Although MFs are the dominant shape of MPs ingested by sea cucumbers in habitats, their effect on sea cucumbers remains unclear. This study examined the effect of dietary exposure to MFs on the growth and physiological status of both juvenile and adult Apostichopus japonicus sea cucumbers. MFs were mixed into the diet of sea cucumbers for 60 d at environmentally relevant concentrations of 0.6 MFs g-1, 1.2 MFs g-1 and 10 MFs g-1. Dietary exposure to MFs, with concentrations at or above those commonly found in the habitats, did not significantly affect the growth and faecal production rate of either juvenile or adult sea cucumbers. However, a disruption in immunity indices (acid phosphatase and alkaline phosphatase activity) and oxidative stress indices (total antioxidant capacity and malondialdehyde content) was observed in juvenile and adult sea cucumbers, indicating that these indices might be useful as potential biomarkers of the exposure to MF ingestion in sea cucumbers. This study provides insights into the toxicity mechanism of MF ingestion in a commercially and ecologically important species.
Collapse
Affiliation(s)
- Mohamed Mohsen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China; Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Chenggang Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China.
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Jinchun Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
23
|
Xu Y, Miao Z, Li X, Lin H, Cheng Y, Pan J, Xu Z. Hypoxia-reoxygenation stress modulates the hepatopancreas transcriptome of Chinese mitten crab Eriocheir sinensis. Gene 2020; 771:145361. [PMID: 33338508 DOI: 10.1016/j.gene.2020.145361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022]
Abstract
Hypoxia is a critical, but frequently overlooked problem, which commonly exists in Chinese mitten crab rearing. However, little information is available on the molecular mechanisms of the detrimental effects of hypoxia in this species. In the present study, crabs were subjected to acute hypoxia stress (DO 1.0 mg/L), followed by reoxygenation (DO 6.8 mg/L). Hepatopancreas from five groups of crabs (three to four crabs per group), including normoxia, hypoxia for one and six hours, and reoxygenation for one and 12 h, were used for transcriptome sequencing. The pooled total RNA of all samples were utilized to reconstruct a reference transcriptome with PacBio RS II sequencing, obtaining 49.19 G clean data, with a mean length of 2,180 bp. Seventeen cDNA libraries were constructed and sequenced to identify differentially expressed genes (DEGs) among the different samples (FDR < 0.05 and |log2 fold change| ≥1). A total of 103 and 251 DEGs were identified when exposed to hypoxia for one and six hours, respectively. Totally 462 and 673 DEGs were identified during reoxygenation at 1 and 12 h, respectively. Among these DEGs, two transcripts with complete ORFs were identified to encode hypoxia-inducible factor 1 (Es-Hif-1α/β), which is a transcriptional activator of various genes correlated to the cellular adaptive responses to hypoxia. Es-Hif-1a/β expressions were significantly upregulated when exposed to hypoxia treatment, and no significant difference was observed for Es-Hif-1α between hypoxic treatment for 6 h and reoxygenation. The significant KEGG enrichment revealed that the DEGs under hypoxia were mainly enriched in "PPAR signaling pathway", "Gap junction" and "Phototransduction-fly". Compared with crabs in normoxia, even with 12 h of reoxygenation, the hepatopancreas transcriptome under hypoxia remained severely affected, implying its adverse effect on growth and development, or increased susceptibility to diseases.
Collapse
Affiliation(s)
- Yu Xu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Zhen Miao
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xuguang Li
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Hai Lin
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Yu Cheng
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Jianlin Pan
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Zhiqiang Xu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
24
|
Jiang H, Chen Y, Bao J, Li X, Feng C, Xing Y, Chen Q. Isolation of the Parasite Enterocytospora artemiae From Chinese Grass Shrimp ( Palaemonetes sinensis)-First Report in Asia. Front Cell Infect Microbiol 2020; 10:580088. [PMID: 33365276 PMCID: PMC7750389 DOI: 10.3389/fcimb.2020.580088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Abstract
Chinese grass shrimp (Palaemonetes sinensis) is an economically important crustacean in Chinese aquaculture. Recently, we found that shrimp in Panjin city were infected with microsporidia, a group of fungi. The hepatopancreas of several infected shrimp showed white turbidity and pathological changes that negatively affected the health and appearance of the shrimp. Histopathology and transmission electron microscopy were used to examine the development of the parasite within its parasitophorous vacuole. Our results indicated that microsporidia developed asynchronously within the same parasitophorous vacuole. The spores were predominantly small, and rod or oval-shaped. The sizes of fresh spores were approximately 3.1 × 2.4 μm and fixed spores were 1.9 × 1.1 μm. The polar filament was isofilar with 5-6 coils and the thickness was 103.2 nm. Merogonial divisions occurred by binary fission and sporogonial division occurred by plasmotomy. The small subunit ribosomal DNA sequence (1295 bp) from the parasite was highly similar to the previously reported parasite Enterocytospora artemiae (99% nucleotide identity, JX915760). Using maximum likelihood to analyze the phylogenetic relationships, we found that this microsporidian should be grouped within Clade IV, an Enterocytospora-like clade, of the Microsporidia phylum. Based on this parasite's life cycle characteristics, morphology, and small subunit ribosomal DNA sequence, the parasite described here is likely E. artemiae, which has previously only been described in Europe and North America. Thus, this is the first report of E. artemiae both in Asia and economically important shrimp.
Collapse
Affiliation(s)
- Hongbo Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China
| | - Yuwen Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China
| | - Jie Bao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China
| | - Xiaodong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China
| | - Chengcheng Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China
| | - Yuenan Xing
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
25
|
Bao J, Xing Y, Feng C, Kou S, Jiang H, Li X. Acute and sub-chronic effects of copper on survival, respiratory metabolism, and metal accumulation in Cambaroides dauricus. Sci Rep 2020; 10:16700. [PMID: 33028908 PMCID: PMC7541448 DOI: 10.1038/s41598-020-73940-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/24/2020] [Indexed: 01/20/2023] Open
Abstract
Trace metal contamination in the aquatic ecosystem occurs worldwide: although copper is an essential trace metal, it is considered as a pollutant at certain levels in China. Freshwater crayfish Cambaroides dauricus is a commercially important wild species in northeastern China, in which is an important heavy industry area. The population of C. dauricus was decreasing sharply due to the environmental pollution and human intervention over the past 20 years. However, nothing is known regarding the responses of this species to trace metal toxicants. This study aimed to determine the acute and chronic toxicity of Cu and its toxicological effects on respiratory metabolism, as well as Cu accumulation in C. dauricus. The acute (96 h) median lethal concentration (LC50) value of 32.5 mg/L was detected in C. dauricus. Then, acute (96 h; 8.24, 16.48 mg/L) and sub-chronic (14 days; 2.06, 4.12 mg/L) exposure in Cu was investigated by estimating the oxygen consumption rate, ammonium excretion rate, and Cu accumulation. Both acute and sub-chronic Cu exposure induced an inhibition of the oxygen consumption rate and ammonium excretion rate, and thereby, an increased O:N ratio. The shift in O:N ratio indicated a metabolic substrate shift towards lipid and carbohydrate metabolism under Cu stress. Cu accumulation in the hepatopancreas and muscles throughout the study was found to be time-dependent and concentration-dependent. The maximum accumulation in the hepatopancreas and muscle were almost 31.6 folds of the control after 14 days' exposure to 4.12 mg/L concentration. Based on the present work, we suggest that crayfish be considered a potential bioindicator of environmental pollution in freshwater systems. The study provides basic information for further understanding of the toxicological responses of this species to trace metals.
Collapse
Affiliation(s)
- Jie Bao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuenan Xing
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, China
| | - Chengcheng Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shiyu Kou
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hongbo Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Xiaodong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
26
|
Li ZS, Ma S, Shan HW, Wang T, Xiao W. Responses of hemocyanin and energy metabolism to acute nitrite stress in juveniles of the shrimp Litopenaeus vannamei. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109753. [PMID: 31604159 DOI: 10.1016/j.ecoenv.2019.109753] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/21/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Nitrite is a common toxic substance in culture systems of Litopenaeus vannamei, and the stress may disturb hemocyanin synthesis and energy metabolism and result in shrimp death. In the present study, nitrite at concentrations of 0 (control), 3.3 (46.2 NO2-N mg/L), 6.6 (92.4) and 9.9 mM (138.6) was used to evaluate the responses of hemocyanin level and energy metabolism in L. vannamei (5.80 ± 0.44 cm, 1.88 ± 0.38 g) for 96 h. The mortality rate at 96 h increased with nitrite concentration (50% at 9.9 mM, 40% at 6.6 mM, 30% at 3.3 mM, and 10% at 0 mM). In general, HIF-1α and hemocyanin mRNA expression in the nitrite stress groups was upregulated from 6 to 12 h and downregulated from 24 to 96 h. In the hemolymph, nitrite levels were significantly elevated in a dose-dependent manner, and exposure to nitrite stress significantly decreased the oxyhemocyanin content from 24 to 96 h. The glucose and lactate levels in the hemolymph in the nitrite stress groups were higher than those in the control group from 12 to 96 h. Compared with the control group, the shrimp in the nitrite stress groups exhibited decreased glycogen concentrations in the hepatopancreas. The triglyceride (TG) levels in the nitrite stress groups were all higher than those in the control group from 48 to 96 h. The hexokinase (HK) activity in the hepatopancreas and muscle increased in the nitrite stress groups from 48 to 96 h. In general, nitrite stress enhanced the activities of pyruvate kinase (PK), phosphofructokinase (PFK) and lactate dehydrogenase (LDH) in muscle from 24 to 96 h. In addition, nitrite stress decreased the activities of succinate dehydrogenase (SDH) and fatty acid synthase (FAS) from 24 to 96 h in the hepatopancreas and muscle. This study indicates that exposure to nitrite stress can enhance the accumulation of nitrite in the hemolymph and then reduce oxygenation and hemocyanin synthesis, leading to tissue hypoxia and thereby resulting in accelerated anaerobic metabolism and the inhibition of aerobic metabolism. The effects of nitrite stress on hemocyanin synthesis and energy metabolism may be one of the reasons for the mortality of L. vannamei in culture systems.
Collapse
Affiliation(s)
- Z S Li
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| | - S Ma
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - H W Shan
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| | - T Wang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - W Xiao
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| |
Collapse
|
27
|
Bao J, Li X, Xing Y, Feng C, Jiang H. Respiratory Metabolism and Antioxidant Response in Chinese Mitten Crab Eriocheir sinensis During Air Exposure and Subsequent Reimmersion. Front Physiol 2019; 10:907. [PMID: 31379609 PMCID: PMC6652117 DOI: 10.3389/fphys.2019.00907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/01/2019] [Indexed: 12/04/2022] Open
Abstract
Chinese mitten crab, Eriocheir sinensis, often suffers from severe air exposure stress during transportation and culture; high mortality occurs due to desiccation. In this study, the effects of air exposure stress (0, 2, 4, 8, and 16 h) and reimmersion (2, 6, 12 h) on respiratory metabolism and antioxidant responses in Chinese mitten crabs were studied under laboratory conditions. The results showed that air exposure and reimmersion had a significant impact on the oxygen consumption rate (OCR), ammonia excretion rate (AER), oxygen to nitrogen ratio (O:N), superoxide dismutase (SOD), catalase (CAT), succinate dehydrogenase (SDH), and lactate dehydrogenase (LDH). Significant interaction between air exposure and reimmersion was observed for OCR, AER, O:N, SOD, CAT, SDH, and LDH in Chinese mitten crab. During the air exposure stage, SOD, CAT, and LDH activities in the gills and hepatopancreas first increased and then decreased as air exposure time increased. All of these parameters were significantly higher in the 4-h air exposure group than those in the control group. All the parameters were significantly lower in the 16-h air exposure group than those in the control group, except LDH in the hepatopancreas. However, SDH activity gradually decreased with increased air exposure time, and all the air exposure groups were markedly lower than those in the control group in the gills. During the reimmersion stage, OCR, AER, and O:N restored to normal levels after 12-h reimmersion, except in the 16-h air exposure group, where OCR and O:N were significantly higher than those in the control group and AER was significantly lower than that in the control group. The LDH activity in all groups restored to normal levels after 12-h reimmersion. The SDH, SOD, and CAT activities of the 2- and 4-h air-exposed groups returned to normal levels after 12-h reimmersion; however, these three parameters were still significantly higher in the 16-h air-exposed group than in the control group in the gills and hepatopancreas. Overall, Chinese mitten crabs reduce aerobic respiration and increase anaerobic respiration capacity during desiccation. Under air exposure stress, Chinese mitten crabs change their energy utilization mode to meet their energy demands and adjust their respiratory metabolism and antioxidant enzymes activities to adapt to adverse environments.
Collapse
Affiliation(s)
- Jie Bao
- Liaoning Provincial Key Laboratory of Zoonosis, Department of Aquaculture, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xiaodong Li
- Liaoning Provincial Key Laboratory of Zoonosis, Department of Aquaculture, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuenan Xing
- Liaoning Provincial Key Laboratory of Zoonosis, Department of Aquaculture, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chengcheng Feng
- Liaoning Provincial Key Laboratory of Zoonosis, Department of Aquaculture, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Hongbo Jiang
- Liaoning Provincial Key Laboratory of Zoonosis, Department of Aquaculture, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|