1
|
Srinivasagan R, Galmés S, Vasileva D, Rubí P, Palou A, Amengual J, Ribot J, von Lintig J, Bonet ML. Maternal genetics and diet modulate vitamin A homeostasis of the offspring and affect the susceptibility to obesity in adulthood in mice. Am J Physiol Endocrinol Metab 2024; 327:E258-E270. [PMID: 39017681 PMCID: PMC11427103 DOI: 10.1152/ajpendo.00116.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/04/2024] [Accepted: 07/06/2024] [Indexed: 07/18/2024]
Abstract
Perinatal nutrition exerts a profound influence on adult metabolic health. This study aimed to investigate whether increased maternal vitamin A (VA) supply can lead to beneficial metabolic phenotypes in the offspring. The researchers utilized mice deficient in the intestine-specific homeobox (ISX) transcription factor, which exhibits increased intestinal VA retinoid production from dietary β-carotene (BC). ISX-deficient dams were fed a VA-sufficient or a BC-enriched diet during the last week of gestation and the whole lactation period. Total retinol levels in milk and weanling livers were 2- to 2.5-fold higher in the offspring of BC-fed dams (BC offspring), indicating increased VA supplies during late gestation and lactation. The corresponding VA-sufficient and BC offspring (males and females) were compared at weaning and adulthood after being fed either a standard or high-fat diet (HFD) with regular VA content for 13 weeks from weaning. HFD-induced increases in adiposity metrics, such as fat depot mass and adipocyte diameter, were more pronounced in males than females and were attenuated or suppressed in the BC offspring. Notably, the BC offspring were protected from HFD-induced increases in circulating triacylglycerol levels and hepatic steatosis. These protective effects were associated with reduced food efficiency, enhanced capacity for thermogenesis and mitochondrial oxidative metabolism in adipose tissues, and increased adipocyte hyperplasia rather than hypertrophy in the BC offspring. In conclusion, maternal VA nutrition influenced by genetics may confer metabolic benefits to the offspring, with mild increases in late gestation and lactation protecting against obesity and metabolic dysregulation in adulthood.NEW & NOTEWORTHY A genetic mouse model, deficient in intestine-specific homeobox (ISX) transcription factor, is used to show that a mildly increased maternal vitamin A supply from β-carotene feeding during late gestation and lactation programs energy and lipid metabolism in tissues and protects the offspring from diet-induced hypertrophic obesity and hepatic steatosis. This knowledge may have implications for human populations where polymorphisms in ISX and ISX target genes involved in vitamin A homeostasis are prevalent.
Collapse
Affiliation(s)
- Ramkumar Srinivasagan
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United State
| | - Sebastià Galmés
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Palma, Spain
| | - Denitsa Vasileva
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
| | - Paula Rubí
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Palma, Spain
| | - Jaume Amengual
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Palma, Spain
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United State
| | - M Luisa Bonet
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Palma, Spain
| |
Collapse
|
2
|
Bonet ML, Ribot J, Sánchez J, Palou A, Picó C. Early Life Programming of Adipose Tissue Remodeling and Browning Capacity by Micronutrients and Bioactive Compounds as a Potential Anti-Obesity Strategy. Cells 2024; 13:870. [PMID: 38786092 PMCID: PMC11120104 DOI: 10.3390/cells13100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
The early stages of life, especially the period from conception to two years, are crucial for shaping metabolic health and the risk of obesity in adulthood. Adipose tissue (AT) plays a crucial role in regulating energy homeostasis and metabolism, and brown AT (BAT) and the browning of white AT (WAT) are promising targets for combating weight gain. Nutritional factors during prenatal and early postnatal stages can influence the development of AT, affecting the likelihood of obesity later on. This narrative review focuses on the nutritional programming of AT features. Research conducted across various animal models with diverse interventions has provided insights into the effects of specific compounds on AT development and function, influencing the development of crucial structures and neuroendocrine circuits responsible for energy balance. The hormone leptin has been identified as an essential nutrient during lactation for healthy metabolic programming against obesity development in adults. Studies have also highlighted that maternal supplementation with polyunsaturated fatty acids (PUFAs), vitamin A, nicotinamide riboside, and polyphenols during pregnancy and lactation, as well as offspring supplementation with myo-inositol, vitamin A, nicotinamide riboside, and resveratrol during the suckling period, can impact AT features and long-term health outcomes and help understand predisposition to obesity later in life.
Collapse
Affiliation(s)
- M. Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| |
Collapse
|
3
|
Nagy L, Rauch B, Szerafin T, Uray K, Tóth A, Bai P. Nicotinamide-riboside shifts the differentiation of human primary white adipocytes to beige adipocytes impacting substrate preference and uncoupling respiration through SIRT1 activation and mitochondria-derived reactive species production. Front Cell Dev Biol 2022; 10:979330. [PMID: 36072335 PMCID: PMC9441796 DOI: 10.3389/fcell.2022.979330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Beige adipocytes play key roles in organismal energy and metabolic balance. In this study, we assessed whether the supplementation of human white adipocytes, differentiated from human adipose tissue-derived stem cells, with nicotinamide riboside (NR), a potent NAD + precursor, can shift differentiation to beige adipocytes (beiging). NR induced mitochondrial biogenesis and the expression of beige markers (TBX1 and UCP1) in white adipocytes demonstrating that NR can declutch beiging. NR did not induce PARP activity but supported SIRT1 induction, which plays a key role in beiging. NR induced etomoxir-resistant respiration, suggesting increases in the oxidation of carbohydrates, carbohydrate breakdown products, or amino acids. Furthermore, NR boosted oligomycin-resistant respiration corresponding to uncoupled respiration. Enhanced etomoxir and oligomycin-resistant respiration were dependent on mitochondrial reactive-species production. Taken together, NR supplementation can induce beiging and uncoupled respiration, which are beneficial for combatting metabolic diseases.
Collapse
Affiliation(s)
- Lilla Nagy
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Boglárka Rauch
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Szerafin
- Department of Cardiology and Heart Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Tóth
- Section of Clinical Physiology, Department of Cardiology and Heart Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group ELKH, Debrecen, Hungary
- Correspondence: Péter Bai,
| |
Collapse
|
4
|
Sexual Dimorphism in Brown Adipose Tissue Activation and White Adipose Tissue Browning. Int J Mol Sci 2022; 23:ijms23158250. [PMID: 35897816 PMCID: PMC9368277 DOI: 10.3390/ijms23158250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023] Open
Abstract
The present narrative review gathers the studies reported so far, addressing sex differences in the effects of cold exposure, feeding pattern and age on brown adipose tissue (BAT) thermogenesis and white adipose tissue (WAT) browning. In rodents, when exposed to decreasing temperatures, females activate thermogenesis earlier. Results obtained in humans go in the same line, although they do not provide results as solid as those obtained in rodents. Regarding the effects of overfeeding, interesting sex differences on BAT thermogenic capacity have been reported, and the greater or lower sensitivity of each sex to this dietary situation seems to be dependent on the type of feeding. In the case of energy restriction, females are more sensitive than males. In addition, sex differences have also been observed in thermogenesis changes induced by phenolic compound administration. During sexual development, an increase in BAT mass and BAT activity takes place. This phenomenon is greater in boys than in girls, probably due to its relation to muscle-mass growth. The opposite situation takes place during ageing, a lifespan period where thermogenic capacity declines, this being more acute in men than in women. Finally, the vast majority of the studies have reported a higher susceptibility to developing WAT browning amongst females. The scarcity of results highlights the need for further studies devoted to analysing this issue, in order to provide valuable information for a more personalised approach.
Collapse
|
5
|
Nicotinamide Riboside Supplementation to Suckling Male Mice Improves Lipid and Energy Metabolism in Skeletal Muscle and Liver in Adulthood. Nutrients 2022; 14:nu14112259. [PMID: 35684059 PMCID: PMC9182637 DOI: 10.3390/nu14112259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Nicotinamide riboside, an NAD+ precursor, has been attracting a lot of attention in recent years due to its potential benefits against multiple metabolic complications and age-related disorders related to NAD+ decline in tissues. The metabolic programming activity of NR supplementation in early-life stages is much less known. Here, we studied the long-term programming effects of mild NR supplementation during the suckling period on lipid and oxidative metabolism in skeletal muscle and liver tissues using an animal model. Suckling male mice received a daily oral dose of NR or vehicle (water) from day 2 to 20 of age, were weaned at day 21 onto a chow diet, and at day 90 were distributed to either a high-fat diet (HFD) or a normal-fat diet for 10 weeks. Compared to controls, NR-treated mice were protected against HFD-induced triacylglycerol accumulation in skeletal muscle and displayed lower triacylglycerol levels and steatosis degree in the liver and distinct capacities for fat oxidation and decreased lipogenesis in both tissues, paralleling signs of enhanced sirtuin 1 and AMP-dependent protein kinase signaling. These pre-clinical findings suggest that mild NR supplementation in early postnatal life beneficially impacts lipid and energy metabolism in skeletal muscle and liver in adulthood, serving as a potential preventive strategy against obesity-related disorders characterized by ectopic lipid accumulation.
Collapse
|
6
|
Kim MB, Pham TX, van Luling M, Kostour V, Kang H, Corvino O, Jang H, Odell W, Park YK, Lee JY. Nicotinamide riboside supplementation exerts an anti-obesity effect and prevents inflammation and fibrosis in white adipose tissue of female diet-induced obesity mice. J Nutr Biochem 2022; 107:109058. [DOI: 10.1016/j.jnutbio.2022.109058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/13/2022] [Accepted: 04/17/2022] [Indexed: 12/18/2022]
|
7
|
The capacity of differentiation of stromal vascular fraction cells into beige adipocytes is markedly reduced in subjects with overweight/obesity and insulin resistance: effect of genistein. Int J Obes (Lond) 2021; 45:2471-2481. [PMID: 34331001 DOI: 10.1038/s41366-021-00921-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Dietary bioactive compounds have been demonstrated to produce several health benefits. Genistein, an isoflavone of soy protein, and resveratrol, a polyphenol from grapes, have been shown to improve insulin sensitivity and to stimulate white adipose tissue (WAT) browning, leading to increased energy expenditure. However, it has not been demonstrated in humans whether genistein or resveratrol have the capacity to stimulate the differentiation of stromal vascular fraction (SVF) cells from white fat into beige adipocytes. SUBJECTS/METHODS With this aim, we assessed whether stromal vascular fraction cells obtained from biopsies of the subdermal fat depots of subjects with normal body weight (NW) or from subjects with overweight/obesity with (OIR) or without (OIS) insulin resistance were able to differentiate into the beige adipose tissue lineage in vitro, by exposing the cells to genistein, resveratrol, or the combination of both. RESULTS The results showed that SVF cells obtained from NW or OIS subjects were able to differentiate into beige adipocytes according to an increased expression of beige biomarkers including UCP1, PDRM-16, PGC1α, CIDEA, and SHOX2 upon exposure to genistein. However, SVF cells from OIR subjects were unable to differentiate into beige adipocytes with any of the inducers. Exposure to resveratrol or the combination of resveratrol/genistein did not significantly stimulate the expression of browning markers in any of the groups studied. We found that the non-responsiveness of the SVF from subjects with obesity and insulin resistance to any of the inducers was associated with an increase in the expression of endoplasmic reticulum stress markers. CONCLUSION Consumption of genistein may stimulate WAT browning mainly in NW or OIS subjects. Thus, obesity associated with insulin resistance may be considered as a condition that prevents some beneficial effects of some dietary bioactive compounds.
Collapse
|
8
|
Serrano A, Ribot J, Palou A, Bonet ML. Long-term programming of skeletal muscle and liver lipid and energy metabolism by resveratrol supplementation to suckling mice. J Nutr Biochem 2021; 95:108770. [PMID: 34000411 DOI: 10.1016/j.jnutbio.2021.108770] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 03/04/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Metabolic programming by dietary chemicals consumed in early life stages is receiving increasing attention. We here studied long-term effects of mild resveratrol (RSV) supplementation during lactation on muscular and hepatic lipid metabolism in adulthood. Newborn male mice received RSV or vehicle from day 2-20 of age, were weaned onto a chow diet on day 21, and were assigned to either a high-fat diet (HFD) or a normal-fat diet on day 90 of age for 10 weeks. RSV-treated mice showed in adulthood protection against HFD-induced triacylglycerol accumulation in skeletal muscle, enhanced muscular capacities for fat oxidation and mitochondria activity, signs of enhanced sirtuin 1 and AMP-dependent protein kinase signaling in muscle, and increased fat oxidation capacities and a decreased capacity for lipogenesis in liver compared with controls. Thus, RSV supplementation in early postnatal life may help preventing later diet-related disorders linked to ectopic lipid accumulation in muscle and liver tissues.
Collapse
Affiliation(s)
- Alba Serrano
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Joan Ribot
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain.
| | - Andreu Palou
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - M Luisa Bonet
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| |
Collapse
|
9
|
Marinescu AG, Chen J, Holmes HE, Guarente L, Mendes O, Morris M, Dellinger RW. Safety Assessment of High-Purity, Synthetic Nicotinamide Riboside (NR-E) in a 90-Day Repeated Dose Oral Toxicity Study, With a 28-Day Recovery Arm. Int J Toxicol 2021; 39:307-320. [PMID: 32715855 DOI: 10.1177/1091581820927406] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nicotinamide riboside (NR) is a naturally occurring form of vitamin B3 shown to preferentially elevate the nicotinamide adenine dinucleotide (NAD+) metabolome compared to other vitamin B3 forms (nicotinic acid and nicotinamide). Although daily requirements of vitamin B3 are typically met through the diet, recent studies have shown that additional supplementation with NR may be an effective method to counter the age-related decline in NAD+ levels as NR bypasses the rate-limiting step in NAD+ biosynthesis. Furthermore, pharmaceutical applications of NR for age-related disorders have been proposed. In this study, the safety of a high-purity, nature-identical, synthetic NR (NR-E), manufactured under the guidelines of good manufacturing practices for dietary supplements (21 CFR 111) as well as for drugs (21 CFR 210), was investigated in a 90-day oral toxicity study in Sprague Dawley rats at 300, 500, and 1,200 mg/kg/d. There were no mortality or clinical observations attributable to the test substance at any dose. A small but statistically significant decrease in body weight was observed at day 92 in the 1,200 mg/kg/d NR-treated male rats only. In contrast to a previously published safety assessment using a different synthetic NR (NIAGEN), whose no-observed-adverse-effect-level (NOAEL) was reported to be 300 mg/kg/d, there were no adverse changes in clinical pathology parameters and no notable macroscopic or microscopic findings or treatment-related effects at similar doses. In the current study, the NOAEL for systemic toxicity of NR-E in Sprague-Dawley rats was conservatively determined to be 500 mg/kg/d for males (solely based on body weight) and 1,200 mg/kg/d for females.
Collapse
Affiliation(s)
| | | | | | - Leonard Guarente
- Elysium Health, New York, NY, USA.,Department of Biology, MIT, Cambridge, MA, USA
| | | | | | | |
Collapse
|
10
|
Reguero M, Gómez de Cedrón M, Wagner S, Reglero G, Quintela JC, Ramírez de Molina A. Precision Nutrition to Activate Thermogenesis as a Complementary Approach to Target Obesity and Associated-Metabolic-Disorders. Cancers (Basel) 2021; 13:cancers13040866. [PMID: 33670730 PMCID: PMC7922953 DOI: 10.3390/cancers13040866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Regarding the pandemic of obesity and chronic diseases associated to metabolic alterations that occur nowadays worldwide, here, we review the most recent studies related to bioactive compounds and diet derived ingredients with potential effects to augment the systemic energy expenditure. We specifically focus in two processes: the activation of thermogenesis in adipose tissue and the enhancement of the mitochondrial oxidative phosphorylation capacity in muscles. This may provide relevant information to develop diets and supplements to conduct nutritional intervention studies with the objective to ameliorate the metabolic and chronic inflammation in the course of obesity and related disorders. Abstract Obesity is associated to increased incidence and poorer prognosis in multiple cancers, contributing to up to 20% of cancer related deaths. These associations are mainly driven by metabolic and inflammatory changes in the adipose tissue during obesity, which disrupt the physiologic metabolic homeostasis. The association between obesity and hypercholesterolemia, hypertension, cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) is well known. Importantly, the retrospective analysis of more than 1000 epidemiological studies have also shown the positive correlation between the excess of fatness with the risk of cancer. In addition, more important than weight, it is the dysfunctional adipose tissue the main driver of insulin resistance, metabolic syndrome and all cause of mortality and cancer deaths, which also explains why normal weight individuals may behave as “metabolically unhealthy obese” individuals. Adipocytes also have direct effects on tumor cells through paracrine signaling. Downregulation of adiponectin and upregulation of leptin in serum correlate with markers of chronic inflammation, and crown like structures (CLS) associated to the adipose tissue disfunction. Nevertheless, obesity is a preventable risk factor in cancer. Lifestyle interventions might contribute to reduce the adverse effects of obesity. Thus, Mediterranean diet interventional studies have been shown to reduce to circulation inflammatory factors, insulin sensitivity and cardiovascular function, with durable responses of up to 2 years in obese patients. Mediterranean diet supplemented with extra-virgin olive oil reduced the incidence of breast cancer compared with a control diet. Physical activity is another important lifestyle factor which may also contribute to reduced systemic biomarkers of metabolic syndrome associated to obesity. In this scenario, precision nutrition may provide complementary approaches to target the metabolic inflammation associated to “unhealthy obesity”. Herein, we first describe the different types of adipose tissue -thermogenic active brown adipose tissue (BAT) versus the energy storing white adipose tissue (WAT). We then move on precision nutrition based strategies, by mean of natural extracts derived from plants and/or diet derived ingredients, which may be useful to normalize the metabolic inflammation associated to “unhealthy obesity”. More specifically, we focus on two axis: (1) the activation of thermogenesis in BAT and browning of WAT; (2) and the potential of augmenting the oxidative capacity of muscles to dissipate energy. These strategies may be particularly relevant as complementary approaches to alleviate obesity associated effects on chronic inflammation, immunosuppression, angiogenesis and chemotherapy resistance in cancer. Finally, we summarize main studies where plant derived extracts, mainly, polyphenols and flavonoids, have been applied to increase the energy expenditure.
Collapse
Affiliation(s)
- Marina Reguero
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- NATAC BIOTECH, Electronica 7, Alcorcón, 28923 Madrid, Spain;
| | - Marta Gómez de Cedrón
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- Correspondence: (M.G.d.C.); (A.R.d.M.)
| | - Sonia Wagner
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- Medicinal Gardens SL, Marqués de Urquijo 47, 28008 Madrid, Spain
| | - Guillermo Reglero
- Production and Characterization of Novel Foods Department, Institute of Food Science Research CIAL, CEI UAM + CSIC, 28049 Madrid, Spain;
| | | | - Ana Ramírez de Molina
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- Correspondence: (M.G.d.C.); (A.R.d.M.)
| |
Collapse
|
11
|
DNA Methylation Changes are Associated with the Programming of White Adipose Tissue Browning Features by Resveratrol and Nicotinamide Riboside Neonatal Supplementations in Mice. Nutrients 2020; 12:nu12020461. [PMID: 32059412 PMCID: PMC7071331 DOI: 10.3390/nu12020461] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 12/22/2022] Open
Abstract
Neonatal supplementation with resveratrol (RSV) or nicotinamide riboside (NR) programs in male mice brown adipocyte-like features in white adipose tissue (WAT browning) together with improved metabolism in adulthood. We tested the involvement in this programming of long-term epigenetic changes in two browning-related genes that are overexpressed in WAT of supplemented mice, Slc27a1 and Prdm16. Suckling mice received orally the vehicle, RSV or NR from postnatal days 2-to-20. After weaning (d21) onto a chow diet, male mice were habituated to a normal-fat diet (NFD) starting d75, and split on d90 into continuation on the NFD or switching to a high-fat diet (HFD) until euthanization on d164. CpG methylation by bisulfite-sequencing was analyzed on inguinal WAT. Both treatments modified methylation marks in Slc27a1 and Prdm16 and the HFD-dependent dynamics of these marks in the adult WAT, with distinct and common effects. The treatments also affected gene expression of de novo DNA methylases in WAT of young animals (euthanized at d35 in independent experiments). Studies in 3T3-L1 adipocytes indicated the direct effects of RSV and NR on the DNA methylation machinery and favoring browning features. The results support epigenetic effects being involved in WAT programming by neonatal RSV or NR supplementation in male mice.
Collapse
|
12
|
La Spina M, Galletta E, Azzolini M, Gomez Zorita S, Parrasia S, Salvalaio M, Salmaso A, Biasutto L. Browning Effects of a Chronic Pterostilbene Supplementation in Mice Fed a High-Fat Diet. Int J Mol Sci 2019; 20:ijms20215377. [PMID: 31671737 PMCID: PMC6862528 DOI: 10.3390/ijms20215377] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity and related comorbidities are a major health concern. The drugs used to treat these conditions are largely inadequate or dangerous, and a well-researched approach based on nutraceuticals would be highly useful. Pterostilbene (Pt), i.e., 3,5-dimethylresveratrol, has been reported to be effective in animal models of obesity, acting on different metabolic pathways. We investigate here its ability to induce browning of white adipose tissue. Pt (5 µM) was first tested on 3T3-L1 mature adipocytes, and then it was administered (352 µmol/kg/day) to mice fed an obesogenic high-fat diet (HFD) for 30 weeks, starting at weaning. In the cultured adipocytes, the treatment elicited a significant increase of the levels of Uncoupling Protein 1 (UCP1) protein—a key component of thermogenic, energy-dissipating beige/brown adipocytes. In vivo administration antagonized weight increase, more so in males than in females. Analysis of inguinal White Adipose Tissue (WAT) revealed a trend towards browning, with significantly increased transcription of several marker genes (Cidea, Ebf2, Pgc1α, PPARγ, Sirt1, and Tbx1) and an increase in UCP1 protein levels, which, however, did not achieve significance. Given the lack of known side effects of Pt, this study strengthens the candidacy of this natural phenol as an anti-obesity nutraceutical.
Collapse
Affiliation(s)
- Martina La Spina
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
| | - Eva Galletta
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Michele Azzolini
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
| | - Saioa Gomez Zorita
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria, Spain.
| | - Sofia Parrasia
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
| | - Marika Salvalaio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy.
| | - Andrea Salmaso
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
- Padova Unit, CNR Neuroscience Institute, 35131 Padova, Italy.
| | - Lucia Biasutto
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
- Padova Unit, CNR Neuroscience Institute, 35131 Padova, Italy.
| |
Collapse
|
13
|
Makarov MV, Harris NW, Rodrigues M, Migaud ME. Scalable syntheses of traceable ribosylated NAD + precursors. Org Biomol Chem 2019; 17:8716-8720. [PMID: 31538639 PMCID: PMC6786760 DOI: 10.1039/c9ob01981b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nicotinamide adenine dinucleotide, NAD+, is an essential cofactor and substrate for many cellular enzymes. Its sustained intracellular levels have been linked to improved physiological end points in a range of metabolic diseases. Biosynthetic precursors to NAD+ include nicotinic acid, nicotinamide, the ribosylated parents and the phosphorylated form of the ribosylated parents. By combining solvent-assisted mechanochemistry and sealed reaction conditions, access to the ribosylated NAD+ precursors and to the isotopologues of NAD+ precursors was achieved in high yields and levels of purity. The latter is critical as it offers means to better trace biosynthetic pathways to NAD+, investigate the multifaceted roles of the intracellular NAD+ pools, and better exploit NAD+ biology.
Collapse
Affiliation(s)
- M V Makarov
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, 36604 AL, USA.
| | - N W Harris
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, 36604 AL, USA.
| | - M Rodrigues
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, 36604 AL, USA.
| | - M E Migaud
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, 36604 AL, USA.
| |
Collapse
|