1
|
El-Sayed MM, Bianco JR, Li Y, Fabian Z. Tumor-Agnostic Therapy-The Final Step Forward in the Cure for Human Neoplasms? Cells 2024; 13:1071. [PMID: 38920700 PMCID: PMC11201516 DOI: 10.3390/cells13121071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Cancer accounted for 10 million deaths in 2020, nearly one in every six deaths annually. Despite advancements, the contemporary clinical management of human neoplasms faces a number of challenges. Surgical removal of tumor tissues is often not possible technically, while radiation and chemotherapy pose the risk of damaging healthy cells, tissues, and organs, presenting complex clinical challenges. These require a paradigm shift in developing new therapeutic modalities moving towards a more personalized and targeted approach. The tumor-agnostic philosophy, one of these new modalities, focuses on characteristic molecular signatures of transformed cells independently of their traditional histopathological classification. These include commonly occurring DNA aberrations in cancer cells, shared metabolic features of their homeostasis or immune evasion measures of the tumor tissues. The first dedicated, FDA-approved tumor-agnostic agent's profound progression-free survival of 78% in mismatch repair-deficient colorectal cancer paved the way for the accelerated FDA approvals of novel tumor-agnostic therapeutic compounds. Here, we review the historical background, current status, and future perspectives of this new era of clinical oncology.
Collapse
Affiliation(s)
| | | | | | - Zsolt Fabian
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (M.M.E.-S.); (J.R.B.); (Y.L.)
| |
Collapse
|
2
|
Cavanagh RJ, Monteiro PF, Moloney C, Travanut A, Mehradnia F, Taresco V, Rahman R, Martin SG, Grabowska AM, Ashford MB, Alexander C. Free drug and ROS-responsive nanoparticle delivery of synergistic doxorubicin and olaparib combinations to triple negative breast cancer models. Biomater Sci 2024; 12:1822-1840. [PMID: 38407276 DOI: 10.1039/d3bm01931d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Combinations of the topoisomerase II inhibitor doxorubicin and the poly (ADP-ribose) polymerase inhibitor olaparib offer potential drug-drug synergy for the treatment of triple negative breast cancers (TNBC). In this study we performed in vitro screening of combinations of these drugs, administered directly or encapsulated within polymer nanoparticles, in both 2D and in 3D spheroid models of breast cancer. A variety of assays were used to evaluate drug potency, and calculations of combination index (CI) values indicated that synergistic effects of drug combinations occurred in a molar-ratio dependent manner. It is suggested that the mechanisms of synergy were related to enhancement of DNA damage as shown by the level of double-strand DNA breaks, and mechanisms of antagonism associated with mitochondrial mediated cell survival, as indicated by reactive oxygen species (ROS) generation. Enhanced drug delivery and potency was observed with nanoparticle formulations, with a greater extent of doxorubicin localised to cell nuclei as evidenced by microscopy, and higher cytotoxicity at the same time points compared to free drugs. Together, the work presented identifies specific combinations of doxorubicin and olaparib which were most effective in a panel of TNBC cell lines, explores the mechanisms by which these combined agents might act, and shows that formulation of these drug combinations into polymeric nanoparticles at specific ratios conserves synergistic action and enhanced potency in vitro compared to the free drugs.
Collapse
Affiliation(s)
| | - Patrícia F Monteiro
- School of Pharmacy, University of Nottingham, NG7 2RD, UK.
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Cara Moloney
- School of Pharmacy, University of Nottingham, NG7 2RD, UK.
- School of Medicine, BioDiscovery Institute, University of Nottingham, NG7 2RD, UK
| | | | | | | | - Ruman Rahman
- School of Medicine, BioDiscovery Institute, University of Nottingham, NG7 2RD, UK
| | - Stewart G Martin
- School of Medicine, BioDiscovery Institute, University of Nottingham, NG7 2RD, UK
| | - Anna M Grabowska
- School of Medicine, BioDiscovery Institute, University of Nottingham, NG7 2RD, UK
| | - Marianne B Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | | |
Collapse
|
3
|
Inhibition of poly (ADP-ribose) Polymerase-1 (PARP-1) improves endothelial function in pulmonary hypertension. Pulm Pharmacol Ther 2023; 80:102200. [PMID: 36842770 DOI: 10.1016/j.pupt.2023.102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 02/27/2023]
Abstract
Endothelial dysfunction is critical in the pulmonary vasculature during pulmonary hypertension (PH). Moreover, in PH, increased inflammation and oxidative/nitrosative stress cause DNA damage, activating poly (ADP-ribose) polymerase-1 (PARP-1). Meloche et al. (2014) and our previous research have shown that inhibiting PARP-1 is protective in PH and associated RV hypertrophy. However, the role of PARP-1 in pulmonary arterial endothelial dysfunction has not been explored completely. Therefore, the current study aims to investigate the involvement of PARP-1 in endothelial dysfunction associated with PH. Hypoxia (1% O2) was used to induce a PH-like phenotype in human pulmonary artery endothelial cells (HPAECs), and PARP-1 inhibition was achieved via siRNA (60 nM). For the in vivo study, male Sprague Dawley rats were administered monocrotaline (MCT; 60 mg/kg, SC, once) to induce PH, and 1, 5-isoquinolinediol (ISO; 3 mg/kg) was administered daily intraperitoneally to inhibit PARP-1. PARP-1 inhibition decreased proliferation and inflammation, as well as improved mitochondrial dysfunction in hypoxic HPAECs. Furthermore, PARP-1 inhibition also promoted apoptosis by increasing DNA damage in hypoxic HPAECs. In addition, inhibition of PARP-1 reduced cell migration, VEGF expression, and tubule formation in hypoxic HPAECs. In in vivo studies, PARP-1 inhibition by ISO significantly decreased the RVP and RVH as well as improved endothelial function by increasing the pulmonary vascular reactivity and expression of p-eNOS in MCT-treated rats.
Collapse
|
4
|
Gupte R, Lin KY, Nandu T, Lea JS, Kraus WL. Combinatorial Treatment with PARP-1 Inhibitors and Cisplatin Attenuates Cervical Cancer Growth through Fos-Driven Changes in Gene Expression. Mol Cancer Res 2022; 20:1183-1192. [PMID: 35503086 PMCID: PMC9357060 DOI: 10.1158/1541-7786.mcr-22-0111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/10/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023]
Abstract
Cervical cancer continues to be a significant cause of cancer-related deaths in women. The most common treatment for cervical cancer involves the use of the drug cisplatin in conjunction with other therapeutics. However, the development of cisplatin resistance in patients can hinder the efficacy of these treatments, so alternatives are needed. In this study, we found that PARP inhibitors (PARPi) could attenuate the growth of cells representing cervical adenocarcinoma and cervical squamous cell carcinoma. Moreover, a combination of PARPi with cisplatin increased cisplatin-mediated cytotoxicity in cervical cancer cells. This was accompanied by a dramatic alteration of the transcriptome. The FOS gene, which encodes the transcription factor Fos, was one of the most highly upregulated genes in the dual treatment condition, leading to increased Fos protein levels, greater Fos binding to chromatin, and the subsequent induction of Fos target genes. Increased expression of Fos was sufficient to hinder cervical cancer growth, as shown by ectopic expression of Fos in cervical cancer cells. Conversely, Fos knockdown enhanced cell growth. Collectively, these results indicate that by inducing FOS expression, PARPi treatment in combination with cisplatin leads to inhibition of cervical cancer proliferation, likely through a Fos-specific gene expression program. IMPLICATIONS Our observations, which link the gene regulatory effects of PARPi + cisplatin to the growth inhibitory effects of FOS expression in cervical cancer cells, strengthen the rationale for using PARPi with cisplatin as a therapy for cervical cancer.
Collapse
Affiliation(s)
- Rebecca Gupte
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ken Y. Lin
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9032
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jayanthi S. Lea
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9032
| | - W. Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Address for manuscript correspondence and publication: W. Lee Kraus, Ph.D., Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-8511, Phone: 214-648-2388, Fax: 214-648-0383,
| |
Collapse
|
5
|
Vianello C, Cocetta V, Catanzaro D, Dorn GW, De Milito A, Rizzolio F, Canzonieri V, Cecchin E, Roncato R, Toffoli G, Quagliariello V, Di Mauro A, Losito S, Maurea N, Scaffa C, Sales G, Scorrano L, Giacomello M, Montopoli M. Cisplatin resistance can be curtailed by blunting Bnip3-mediated mitochondrial autophagy. Cell Death Dis 2022; 13:398. [PMID: 35459212 PMCID: PMC9033831 DOI: 10.1038/s41419-022-04741-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023]
Abstract
Cisplatin (CDDP) is commonly used to treat a multitude of tumors including sarcomas, ovarian and cervical cancers. Despite recent investigations allowed to improve chemotherapy effectiveness, the molecular mechanisms underlying the development of CDDP resistance remain a major goal in cancer research. Here, we show that mitochondrial morphology and autophagy are altered in different CDDP resistant cancer cell lines. In CDDP resistant osteosarcoma and ovarian carcinoma, mitochondria are fragmented and closely juxtaposed to the endoplasmic reticulum; rates of mitophagy are also increased. Specifically, levels of the mitophagy receptor BNIP3 are higher both in resistant cells and in ovarian cancer patient samples resistant to platinum-based treatments. Genetic BNIP3 silencing or pharmacological inhibition of autophagosome formation re-sensitizes these cells to CDDP. Our study identifies inhibition of BNIP3-driven mitophagy as a potential therapeutic strategy to counteract CDDP resistance in ovarian carcinoma and osteosarcoma.
Collapse
Affiliation(s)
- Caterina Vianello
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, 35131, Padova, Italy
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35131, Padova, Italy
| | - Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, 35131, Padova, Italy
| | - Daniela Catanzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, 35131, Padova, Italy
| | - Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Angelo De Milito
- Sprint Bioscience, Huddinge, Sweden
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172, Venice, Italy
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081, Aviano, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081, Aviano, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149, Trieste, Italy
| | - Erika Cecchin
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081, Aviano, Italy
| | - Rossana Roncato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081, Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081, Aviano, Italy
| | - Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Annabella Di Mauro
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Simona Losito
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Cono Scaffa
- Gynecologic Oncology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Gabriele Sales
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35131, Padova, Italy
| | - Luca Scorrano
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35131, Padova, Italy
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129, Padova, Italy
| | - Marta Giacomello
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35131, Padova, Italy.
- Department of Biomedical Sciences, Via Ugo Bassi 58B, 35131, Padova, Italy.
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, 35131, Padova, Italy.
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129, Padova, Italy.
| |
Collapse
|
6
|
Öcal Ö, Nazıroğlu M. Eicosapentaenoic acid enhanced apoptotic and oxidant effects of cisplatin via activation of TRPM2 channel in brain tumor cells. Chem Biol Interact 2022; 359:109914. [PMID: 35395232 DOI: 10.1016/j.cbi.2022.109914] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 11/03/2022]
Abstract
Cisplatin (CiSP) induced-overload Ca2+ entry results in the increase of mitochondrial oxidative stress and apoptosis in the cancer cell. TRPM2 cation channel is gated by the cytosolic ADP-ribose (ADPR) and reactive oxygen species (ROS). The high content of polyunsaturated fatty acid (PUFA) in the brain is a main target of ROS. Eicosapentaenoic acid (EPA) induces oxidant action via the enhance of PUFA content in the glioblastoma (DBTRG) cells. We hypothesized that a combination of CiSP and EPA may offer a potential therapy in the DBTRG cell by exerting the antitumor, oxidant, and apoptotic actions and stimulating Ca2+ influx and TRPM2 activity. In the DBTRG cells, we induced four groups as control, EPA (30 μM for 24 h), CiSP (25 μM for 24 h), and CiSP + EPA. The CiSP-induced intracellular Ca2+ responses to the TRPM2 activation were increased in the DBTRG cells from coming H2O2 and ADPR. The responses were decreased in the cells by the inhibitions of TRPM2 (ACA and 2/APB) and PARP/1 (DPQ and PJ34). The incubation of EPA further increased the intracellular Ca2+ responses, mitochondria function, and the generation of ROS in the DBTRGs. After the treatment of EPA, lipid peroxidation, apoptosis, cell death, caspase -3, -8, and -9 levels were further increased in the cells, although the levels of glutathione, glutathione peroxidase, cell numbers, and viability were further decreased in the cells. In summary, anticancer, apoptotic, and oxidant actions of CiSP were further increased via the activation of TRPM2 channel in the DBTRGs. Hence, TRPM2 stimulation via EPA could be used as an effective agent in the treatment of glioblastoma tumors with CiSP.
Collapse
Affiliation(s)
- Özgür Öcal
- Department of Neurosurgery, Ankara City State Hospital, Ankara, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey; BSN Health, Analysis and Innovation Ltd., Isparta, Turkey.
| |
Collapse
|
7
|
Metformin Affects Olaparib Sensitivity through Induction of Apoptosis in Epithelial Ovarian Cancer Cell Lines. Int J Mol Sci 2021; 22:ijms221910557. [PMID: 34638899 PMCID: PMC8508816 DOI: 10.3390/ijms221910557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
This study examined the effect of combination treatment with the poly (ADP-ribose) polymerase inhibitor olaparib and metformin on homologous recombination (HR)-proficient epithelial ovarian cancer (EOC). Ovarian cancer cell lines (OV-90 and SKOV-3) were treated with olaparib, metformin, or a combination of both. Cell viability was assessed by MTT and colony formation assays. The production of reactive oxygen species (ROS) and changes in mitochondrial membrane potential were examined using the specific fluorescence probes, DCFH2-DA (2′,7′-dichloro-dihydrofluorescein diacetate) and JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine). Apoptotic and necrotic changes were measured by double staining with Hoechst 33258 and propidium iodide, orange acridine and ethidium bromide staining, phosphatidylserine externalization, TUNEL assay, caspase 3/7 activity, and cytochrome c and p53 expression. Compared with single-drug treatment, the combination of olaparib and metformin significantly inhibited cell proliferation and colony formation in HR-proficient ovarian cancer cells. ROS production preceded a decrease in mitochondrial membrane potential. The changes in ROS levels suggested their involvement in inducing apoptosis in response to combination treatment. The present results indicate a shift towards synergism in cells with mutant or null p53, treated with olaparib combined with metformin, providing a new approach to the treatment of gynecologic cancers. Taken together, the results support the use of metformin to sensitize EOC to olaparib therapy.
Collapse
|
8
|
Andreidesz K, Koszegi B, Kovacs D, Bagone Vantus V, Gallyas F, Kovacs K. Effect of Oxaliplatin, Olaparib and LY294002 in Combination on Triple-Negative Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22042056. [PMID: 33669671 PMCID: PMC7921931 DOI: 10.3390/ijms22042056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has a poor prognosis as the therapy has several limitations, most importantly, treatment resistance. In this study we examined the different responses of triple-negative breast cancer line MDA-MB-231 and hormone receptor-positive breast cancer line MCF7 to a combined treatment including olaparib, a poly-(ADP ribose) polymerase (PARP) inhibitor, oxaliplatin, a third-generation platinum compound and LY294002, an Akt pathway inhibitor. We applied the drugs in a single, therapeutically relevant concentration individually and in all possible combinations, and we assessed the viability, type of cell death, reactive oxygen species production, cell-cycle phases, colony formation and invasive growth. In agreement with the literature, the MDA-MB-231 cells were more treatment resistant than the MCF7 cells. However, and in contrast with the findings of others, we detected no synergistic effect between olaparib and oxaliplatin, and we found that the Akt pathway inhibitor augmented the cytostatic properties of the platinum compound and/or prevented the cytoprotective effects of PARP inhibition. Our results suggest that, at therapeutically relevant concentrations, the cytotoxicity of the platinum compound dominated over that of the PARP inhibitor and the PI3K inhibitor, even though a regression-based model could have indicated an overall synergy at lower and/or higher concentrations.
Collapse
Affiliation(s)
- Kitti Andreidesz
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary; (K.A.); (B.K.); (D.K.); (V.B.V.); (F.G.)
| | - Balazs Koszegi
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary; (K.A.); (B.K.); (D.K.); (V.B.V.); (F.G.)
| | - Dominika Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary; (K.A.); (B.K.); (D.K.); (V.B.V.); (F.G.)
| | - Viola Bagone Vantus
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary; (K.A.); (B.K.); (D.K.); (V.B.V.); (F.G.)
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary; (K.A.); (B.K.); (D.K.); (V.B.V.); (F.G.)
- Szentagothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, 1052 Budapest, Hungary
| | - Krisztina Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary; (K.A.); (B.K.); (D.K.); (V.B.V.); (F.G.)
- Correspondence: ; Tel.: +36-72-536-276; Fax: +36-72-535-277
| |
Collapse
|
9
|
The Modified Phenanthridine PJ34 Unveils an Exclusive Cell-Death Mechanism in Human Cancer Cells. Cancers (Basel) 2020; 12:cancers12061628. [PMID: 32575437 PMCID: PMC7352794 DOI: 10.3390/cancers12061628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
This overview summarizes recent data disclosing the efficacy of the PARP inhibitor PJ34 in exclusive eradication of a variety of human cancer cells without impairing healthy proliferating cells. Its cytotoxic activity in cancer cells is attributed to the insertion of specific un-repairable anomalies in the structure of their mitotic spindle, leading to mitotic catastrophe cell death. This mechanism paves the way to a new concept of cancer therapy.
Collapse
|
10
|
Kadam A, Jubin T, Roychowdhury R, Begum R. Role of PARP-1 in mitochondrial homeostasis. Biochim Biophys Acta Gen Subj 2020; 1864:129669. [PMID: 32553688 DOI: 10.1016/j.bbagen.2020.129669] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Nuclear poly(ADP-ribose) polymerase-1 (PARP-1) is a well characterised protein that accounts for the majority of PARylation reactions using NAD+ as a substrate, regulating diverse cellular functions. In addition to its nuclear functions, several recent studies have identified localization of PARP-1 in mitochondria and emphasized its possible role in maintaining mitochondrial homeostasis. Various reports suggest that nuclear PARP-1 has been implicated in diverse mitochondria-specific communication processes. SCOPE OF REVIEW The present review emphasizes on the potential role of PARP-1 in mitochondrial processes such as bioenergetics, mtDNA maintenance, cell death and mitophagy. MAJOR CONCLUSIONS The origin of mitochondrial PARP-1 is still an enigma; however researchers are trying to establish the cross-talk between nuclear and mitochondrial PARP-1 and how these PARP-1 pools modulate mitochondrial activity. GENERAL SIGNIFICANCE A better understanding of the possible role of PARP-1 in mitochondrial homeostasis helps us to explore the potential therapeutic targets to protect mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Tina Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Rittwika Roychowdhury
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India.
| |
Collapse
|
11
|
Tang HL, Xu L, Chen XQ. [Bortezomib interferes with DNA repair and exerts synergistic anti-multiple myeloma activity with doxorubicin]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:417-421. [PMID: 32536140 PMCID: PMC7342068 DOI: 10.3760/cma.j.issn.0253-2727.2020.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Indexed: 12/30/2022]
Affiliation(s)
- H L Tang
- Department of Hematology, Xijing Hospital, Air Force Medical University, Hematologic Diseases Center of Chinese People's Liberation Army, Xi'an 710032, China
| | - L Xu
- Department of Hematology, Xijing Hospital, Air Force Medical University, Hematologic Diseases Center of Chinese People's Liberation Army, Xi'an 710032, China
| | - X Q Chen
- Department of Hematology, Xijing Hospital, Air Force Medical University, Hematologic Diseases Center of Chinese People's Liberation Army, Xi'an 710032, China
| |
Collapse
|
12
|
[Bortezomib interferes with DNA repair and exerts synergistic anti-multiple myeloma activity with doxorubicin]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41. [PMID: 32536140 PMCID: PMC7342068 DOI: 10.3760/cma.j.issn.0253-2727.2020.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Gallyas Jr. F, Sumegi B. Mitochondrial Protection by PARP Inhibition. Int J Mol Sci 2020; 21:ijms21082767. [PMID: 32316192 PMCID: PMC7215481 DOI: 10.3390/ijms21082767] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Inhibitors of the nuclear DNA damage sensor and signalling enzyme poly(ADP-ribose) polymerase (PARP) have recently been introduced in the therapy of cancers deficient in double-strand DNA break repair systems, and ongoing clinical trials aim to extend their use from other forms of cancer non-responsive to conventional treatments. Additionally, PARP inhibitors were suggested to be repurposed for oxidative stress-associated non-oncological diseases resulting in a devastating outcome, or requiring acute treatment. Their well-documented mitochondria- and cytoprotective effects form the basis of PARP inhibitors’ therapeutic use for non-oncological diseases, yet can limit their efficacy in the treatment of cancers. A better understanding of the processes involved in their protective effects may improve the PARP inhibitors’ therapeutic potential in the non-oncological indications. To this end, we endeavoured to summarise the basic features regarding mitochondrial structure and function, review the major PARP activation-induced cellular processes leading to mitochondrial damage, and discuss the role of PARP inhibition-mediated mitochondrial protection in several oxidative stress-associated diseases.
Collapse
Affiliation(s)
- Ferenc Gallyas Jr.
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary;
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary
- HAS-UP Nuclear-Mitochondrial Interactions Research Group, 1245 Budapest, Hungary
- Correspondence: ; Tel.: +36-72-536-278
| | - Balazs Sumegi
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary;
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary
- HAS-UP Nuclear-Mitochondrial Interactions Research Group, 1245 Budapest, Hungary
| |
Collapse
|
14
|
Role of Akt Activation in PARP Inhibitor Resistance in Cancer. Cancers (Basel) 2020; 12:cancers12030532. [PMID: 32106627 PMCID: PMC7139751 DOI: 10.3390/cancers12030532] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have recently been introduced in the therapy of several types of cancers not responding to conventional treatments. However, de novo and acquired PARP inhibitor resistance is a significant limiting factor in the clinical therapy, and the underlying mechanisms are not fully understood. Activity of the cytoprotective phosphatidylinositol-3 kinase (PI3K)-Akt pathway is often increased in human cancer that could result from mutation, expressional change, or amplification of upstream growth-related factor signaling elements or elements of the Akt pathway itself. However, PARP-inhibitor-induced activation of the cytoprotective PI3K-Akt pathway is overlooked, although it likely contributes to the development of PARP inhibitor resistance. Here, we briefly summarize the biological role of the PI3K-Akt pathway. Next, we overview the significance of the PARP-Akt interplay in shock, inflammation, cardiac and cerebral reperfusion, and cancer. We also discuss a recently discovered molecular mechanism that explains how PARP inhibition induces Akt activation and may account for apoptosis resistance and mitochondrial protection in oxidative stress and in cancer.
Collapse
|
15
|
Fluzoparib increases radiation sensitivity of non-small cell lung cancer (NSCLC) cells without BRCA1/2 mutation, a novel PARP1 inhibitor undergoing clinical trials. J Cancer Res Clin Oncol 2019; 146:721-737. [PMID: 31786739 DOI: 10.1007/s00432-019-03097-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022]
Abstract
PROPOSE Poly (ADP-ribose) polymerase 1 inhibitors were originally investigated as anti-cancer therapeutics with BRCA1/2 genes mutation. Here, we investigate the effectiveness of a novel PARP1 inhibitor fluzoparib, for enhancing the radiation sensitivity of NSCLC cells lacking BRCA1/2 mutation. METHODS We used MTS assays, western blotting, colony formation assays, immunofluorescence staining, and flow cytometry to evaluate the radiosensitization of NSCLC cells to fluzoparib and explore the underlying mechanisms in vitro. Through BRCA1 and RAD50 genes knockdown, we established dysfunctional homologous recombination (HR) DNA repair pathway models in NSCLC cells. We next investigated the radiosensitization effect of fluzoparib in vivo using human NSCLC xenograft models in mice. The expression of PARP1 and BRCA1 in human NSCLC tumor samples was measured by immunohistochemistry. Furthermore, we sequenced HR-related gene mutations and analyzed their frequencies in advanced NSCLC. RESULTS In vitro experiments in NSCLC cell lines along with in vivo experiments using an NSCLC xenograft mouse model demonstrated the radiosensitization effect of fluzoparib. The underlying mechanisms involved increased apoptosis, cell-cycle arrest, enhanced irradiation-induced DNA damage, and delayed DNA-damage repair. Immunohistochemical staining showed no correlation between the expression of PARP1 and BRCA1. Moreover, our sequencing results revealed high mutation frequencies for the BRCA1/2, CHEK2, ATR, and RAD50 genes. CONCLUSION The potential therapeutic value of fluzoparib for increasing the radiation sensitivity of NSCLC is well confirmed. Moreover, our findings of high mutation frequencies among HR genes suggest that PARP1 inhibition may be an effective treatment strategy for advanced non-small cell lung cancer patients.
Collapse
|
16
|
Bose C, Singh SP, Igid H, Green WC, Singhal SS, Lee J, Palade PT, Rajan A, Ball S, Tonk V, Hindle A, Tarbox M, Awasthi S. Topical 2'-Hydroxyflavanone for Cutaneous Melanoma. Cancers (Basel) 2019; 11:cancers11101556. [PMID: 31615091 PMCID: PMC6826616 DOI: 10.3390/cancers11101556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/03/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022] Open
Abstract
2′-hydroxyflavanone (2HF) is a dietary flavonoid with anticancer activity towards multiple cancers. Here, we report that topically applied 2HF inhibits the growth of intradermal implants of melanoma in immunocompetent mice. 2HF induced apoptosis and inhibited the growth of the human SK-MEL-24 as well as murine B16-F0 and B16-F10 melanoma cell lines in vitro. Apoptosis was associated with depletion of caspase-3, caspase-9, and PARP1 in B16-F0 and SK-MEL-24 cells. Caspase-9 and MEKK-15 were undetected even in untreated B16-F10 cells. Signaling proteins TNFα, and phospho-PDGFR-β were depleted in all three cell lines; MEKK-15 was depleted by 2HF in SK-MEL-24 cells. 2HF enhanced sunitinib (an MEK and PDGFR-β inhibitor) and AZD 2461 (a PARP1 inhibitor) cytotoxicity. 2HF also depleted the Ral-regulated, stress-responsive, antiapoptotic endocytic protein RLIP76 (RALBP1), the inhibition of which has previously been shown to inhibit B16-F0 melanoma growth in vivo. Functional inhibition of RLIP76 was evident from inhibition of epidermal growth factor (EGF) endocytosis by 2HF. We found that topically applied 2HF–Pluronic Lecithin Organogel (PLO) gel inhibited B16-F0 and B16-F10 tumors implanted in mice and caused no overt toxicity despite significant systemic absorption. 2HF treatment reduced phospho-AKT, vimentin, fibronectin, CDK4, cyclinB1, and BCL2, whereas it increased BIM and phospho-AMPK in excised tumors. Several cancer signals are controlled by endocytosis, a process strongly inhibited by RLIP76 depletion. We conclude that 2HF–PLO gel may be useful for topical therapy of cutaneous metastases of melanoma and could enhance the antineoplastic effects of sunitinib and PARP1 inhibitors. The mechanism of action of 2HF in melanoma overlaps with RLI76 inhibitors.
Collapse
Affiliation(s)
- Chhanda Bose
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| | - Sharda P Singh
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| | - Henry Igid
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| | - William C Green
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| | - Sharad S Singhal
- Department of Medical Oncology and Therapeutic Research, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Jihyun Lee
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| | - Philip T Palade
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Aditya Rajan
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| | - Somedeb Ball
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| | - Vijay Tonk
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ashly Hindle
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| | - Michelle Tarbox
- Department of Dermatology and Dermatopathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Sanjay Awasthi
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| |
Collapse
|