1
|
Lang A, Oehler D, Benkhoff M, Reinders Y, Barcik M, Shahrjerdi K, Kaldirim M, Sickmann A, Dannenberg L, Polzin A, Pfeiler S, Kelm M, Grandoch M, Jung C, Gerdes N. Mitochondrial Creatine Kinase 2 (Ckmt2) as a Plasma-Based Biomarker for Evaluating Reperfusion Injury in Acute Myocardial Infarction. Biomedicines 2024; 12:2368. [PMID: 39457679 PMCID: PMC11504053 DOI: 10.3390/biomedicines12102368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Acute myocardial infarction (AMI), characterized by irreversible heart muscle damage and impaired cardiac function caused by myocardial ischemia, is a leading cause of global mortality. The damage associated with reperfusion, particularly mitochondrial dysfunction and reactive oxygen species (ROS) formation, has emerged as a crucial factor in the pathogenesis of cardiac diseases, leading to the recognition of mitochondrial proteins as potential markers for myocardial damage. This study aimed to identify differentially expressed proteins based on the type of cardiac injury, in particular those with and without reperfusion. METHODS Male C57Bl/6J mice were either left untreated, sham-operated, received non-reperfused AMI, or reperfused AMI. Twenty-four hours after the procedures, left ventricular (LV) function and morphological changes including infarct size were determined using echocardiography and triphenyl tetrazolium chloride (TTC) staining, respectively. In addition, plasma was isolated and subjected to untargeted mass spectrometry and, further on, the ELISA-based validation of candidate proteins. RESULTS We identified mitochondrial creatine kinase 2 (Ckmt2) as a differentially regulated protein in plasma of mice with reperfused but not non-reperfused AMI. Elevated levels of Ckmt2 were significantly associated with infarct size and impaired LV function following reperfused AMI, suggesting a specific involvement in reperfusion damage. CONCLUSIONS Our study highlights the potential of plasma Ckmt2 as a biomarker for assessing reperfusion injury and its impact on cardiac function and morphology in the acute phase of MI.
Collapse
Affiliation(s)
- Alexander Lang
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
| | - Daniel Oehler
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
| | - Marcel Benkhoff
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
| | - Yvonne Reinders
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., 44139 Dortmund, Germany; (Y.R.); (A.S.)
| | - Maike Barcik
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
| | - Khatereh Shahrjerdi
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
| | - Madlen Kaldirim
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., 44139 Dortmund, Germany; (Y.R.); (A.S.)
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Lisa Dannenberg
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
| | - Amin Polzin
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany;
| | - Susanne Pfeiler
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
| | - Malte Kelm
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany;
| | - Maria Grandoch
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany;
- Institute for Translational Pharmacology, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Christian Jung
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany;
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany;
| |
Collapse
|
2
|
Hu Y, Zou Y, Qiao L, Lin L. Integrative proteomic and metabolomic elucidation of cardiomyopathy with in vivo and in vitro models and clinical samples. Mol Ther 2024; 32:3288-3312. [PMID: 39233439 PMCID: PMC11489546 DOI: 10.1016/j.ymthe.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/16/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Cardiomyopathy is a prevalent cardiovascular disease that affects individuals of all ages and can lead to life-threatening heart failure. Despite its variety in types, each with distinct characteristics and causes, our understanding of cardiomyopathy at a systematic biology level remains incomplete. Mass spectrometry-based techniques have emerged as powerful tools, providing a comprehensive view of the molecular landscape and aiding in the discovery of biomarkers and elucidation of mechanisms. This review highlights the significant potential of integrating proteomic and metabolomic approaches with specialized databases to identify biomarkers and therapeutic targets across different types of cardiomyopathies. In vivo and in vitro models, such as genetically modified mice, patient-derived or induced pluripotent stem cells, and organ chips, are invaluable in exploring the pathophysiological complexities of this disease. By integrating omics approaches with these sophisticated modeling systems, our comprehension of the molecular underpinnings of cardiomyopathy can be greatly enhanced, facilitating the development of diagnostic markers and therapeutic strategies. Among the promising therapeutic targets are those involved in extracellular matrix remodeling, sarcomere damage, and metabolic remodeling. These targets hold the potential to advance precision therapy in cardiomyopathy, offering hope for more effective treatments tailored to the specific molecular profiles of patients.
Collapse
Affiliation(s)
- Yiwei Hu
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China
| | - Yunzeng Zou
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| | - Liang Qiao
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| | - Ling Lin
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| |
Collapse
|
3
|
Karpov OA, Stotland A, Raedschelders K, Chazarin B, Ai L, Murray CI, Van Eyk JE. Proteomics of the heart. Physiol Rev 2024; 104:931-982. [PMID: 38300522 PMCID: PMC11381016 DOI: 10.1152/physrev.00026.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/25/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Mass spectrometry-based proteomics is a sophisticated identification tool specializing in portraying protein dynamics at a molecular level. Proteomics provides biologists with a snapshot of context-dependent protein and proteoform expression, structural conformations, dynamic turnover, and protein-protein interactions. Cardiac proteomics can offer a broader and deeper understanding of the molecular mechanisms that underscore cardiovascular disease, and it is foundational to the development of future therapeutic interventions. This review encapsulates the evolution, current technologies, and future perspectives of proteomic-based mass spectrometry as it applies to the study of the heart. Key technological advancements have allowed researchers to study proteomes at a single-cell level and employ robot-assisted automation systems for enhanced sample preparation techniques, and the increase in fidelity of the mass spectrometers has allowed for the unambiguous identification of numerous dynamic posttranslational modifications. Animal models of cardiovascular disease, ranging from early animal experiments to current sophisticated models of heart failure with preserved ejection fraction, have provided the tools to study a challenging organ in the laboratory. Further technological development will pave the way for the implementation of proteomics even closer within the clinical setting, allowing not only scientists but also patients to benefit from an understanding of protein interplay as it relates to cardiac disease physiology.
Collapse
Affiliation(s)
- Oleg A Karpov
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Aleksandr Stotland
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Koen Raedschelders
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Blandine Chazarin
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Lizhuo Ai
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Christopher I Murray
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| |
Collapse
|
4
|
Waknitz M, Berg Luecke L, Mesidor R, Wojtkiewicz M, Castro C, Gundry RL. The GENTIL Method for Isolation of Human Adult Cardiomyocytes from Cryopreserved Tissue for Proteomic Analyses. Methods Mol Biol 2024; 2735:145-167. [PMID: 38038848 PMCID: PMC11232436 DOI: 10.1007/978-1-0716-3527-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Heart failure is a serious clinical and economic health care problem, and its clinical progression is linked to pathological cardiac remodeling. Due to the heterogeneity of heart failure, lack of animal models to accurately represent advanced heart failure, and limited access to fresh human cardiac tissue, little is known regarding cell-type-specific mechanisms and context-specific functions of cardiomyocytes during disease development processes. While mass spectrometry has been increasingly applied to unravel changes in the proteome associated with cardiovascular physiology and disease, most studies have used homogenized tissue. Therefore, new studies using isolated cardiomyocytes are necessary to gain a better understanding of the intricate cell-type-specific molecular mechanisms underlying the pathophysiology of heart failure. This chapter describes the GENTIL method, which incorporates recent technological developments in sample handling, for isolation of cardiomyocytes from cryopreserved human cardiac tissues for use in proteomic analyses.
Collapse
Affiliation(s)
- Michelle Waknitz
- CardiOmics Program, Center for Heart and Vascular Research; Division of Cardiovascular Medicine; and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Linda Berg Luecke
- CardiOmics Program, Center for Heart and Vascular Research; Division of Cardiovascular Medicine; and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Roneldine Mesidor
- CardiOmics Program, Center for Heart and Vascular Research; Division of Cardiovascular Medicine; and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Melinda Wojtkiewicz
- CardiOmics Program, Center for Heart and Vascular Research; Division of Cardiovascular Medicine; and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Chase Castro
- CardiOmics Program, Center for Heart and Vascular Research; Division of Cardiovascular Medicine; and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rebekah L Gundry
- CardiOmics Program, Center for Heart and Vascular Research; Division of Cardiovascular Medicine; and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
5
|
Xiong H, Zheng Z, Zhao C, Zhao M, Wang Q, Zhang P, Li Y, Zhu Y, Zhu S, Li J. Insight into the underlying molecular mechanism of dilated cardiomyopathy through integrative analysis of data mining, iTRAQ-PRM proteomics and bioinformatics. Proteome Sci 2023; 21:13. [PMID: 37740197 PMCID: PMC10517512 DOI: 10.1186/s12953-023-00214-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/28/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND DCM is a common cardiomyopathy worldwide, which is characterized by ventricular dilatation and systolic dysfunction. DCM is one of the most widespread diseases contributing to sudden death and heart failure. However, our understanding of its molecular mechanisms is limited because of its etiology and underlying mechanisms. Hence, this study explored the underlying molecular mechanism of dilated cardiomyopathy through integrative analysis of data mining, iTRAQ-PRM proteomics and bioinformatics METHODS: DCM target genes were downloaded from the public databases. Next, DCM was induced in 20 rats by 8 weeks doxorubicin treatment (2.5 mg/kg/week). We applied isobaric tags for a relative and absolute quantification (iTRAQ) coupled with proteomics approach to identify differentially expressed proteins (DEPs) in myocardial tissue. After association analysis of the DEPs and the key target genes, subsequent analyses, including functional annotation, pathway enrichment, validation, were performed. RESULTS Nine hundred thirty-five genes were identified as key target genes from public databases. Meanwhile, a total of 782 DEPs, including 348 up-regulated and 434 down-regulated proteins, were identified in our animal experiment. The functional annotation of these DEPs revealed complicated molecular mechanisms including TCA cycle, Oxidative phosphorylation, Cardiac muscle contraction. Moreover, the DEPs were analyzed for association with the key target genes screened in the public dataset. We further determined the importance of these three pathways. CONCLUSION Our results demonstrate that TCA cycle, Oxidative phosphorylation, Cardiac muscle contraction played important roles in the detailed molecular mechanisms of DCM.
Collapse
Affiliation(s)
- Hongli Xiong
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhe Zheng
- Department of Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Congcong Zhao
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Minzhu Zhao
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qi Wang
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Peng Zhang
- Department of Forensic Medicine, Hainan Medical University, Haikou, 571100, China
| | - Yongguo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Ying Zhu
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Shisheng Zhu
- Faculty of Basic Medical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China.
| | - Jianbo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
6
|
Reitz C, Tavassoli M, Kim D, Shah S, Lakin R, Teng A, Zhou YQ, Li W, Hadipour-Lakmehsari S, Backx P, Emili A, Oudit G, Kuzmanov U, Gramolini A. Proteomics and phosphoproteomics of failing human left ventricle identifies dilated cardiomyopathy-associated phosphorylation of CTNNA3. Proc Natl Acad Sci U S A 2023; 120:e2212118120. [PMID: 37126683 PMCID: PMC10175742 DOI: 10.1073/pnas.2212118120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023] Open
Abstract
The prognosis and treatment outcomes of heart failure (HF) patients rely heavily on disease etiology, yet the majority of underlying signaling mechanisms are complex and not fully elucidated. Phosphorylation is a major point of protein regulation with rapid and profound effects on the function and activity of protein networks. Currently, there is a lack of comprehensive proteomic and phosphoproteomic studies examining cardiac tissue from HF patients with either dilated dilated cardiomyopathy (DCM) or ischemic cardiomyopathy (ICM). Here, we used a combined proteomic and phosphoproteomic approach to identify and quantify more than 5,000 total proteins with greater than 13,000 corresponding phosphorylation sites across explanted left ventricle (LV) tissue samples, including HF patients with DCM vs. nonfailing controls (NFC), and left ventricular infarct vs. noninfarct, and periinfarct vs. noninfarct regions of HF patients with ICM. Each pair-wise comparison revealed unique global proteomic and phosphoproteomic profiles with both shared and etiology-specific perturbations. With this approach, we identified a DCM-associated hyperphosphorylation cluster in the cardiomyocyte intercalated disc (ICD) protein, αT-catenin (CTNNA3). We demonstrate using both ex vivo isolated cardiomyocytes and in vivo using an AAV9-mediated overexpression mouse model, that CTNNA3 phosphorylation at these residues plays a key role in maintaining protein localization at the cardiomyocyte ICD to regulate conductance and cell-cell adhesion. Collectively, this integrative proteomic/phosphoproteomic approach identifies region- and etiology-associated signaling pathways in human HF and describes a role for CTNNA3 phosphorylation in the pathophysiology of DCM.
Collapse
Affiliation(s)
- Cristine J. Reitz
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Marjan Tavassoli
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Da Hye Kim
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Saumya Shah
- Department of Medicine, University of Alberta, Edmonton, ABT6G 2R3
| | - Robert Lakin
- Department of Biology, York University, Toronto, ONM3J 1P3
| | - Allen C. T. Teng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Yu-Qing Zhou
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Wenping Li
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Sina Hadipour-Lakmehsari
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Peter H. Backx
- Department of Biology, York University, Toronto, ONM3J 1P3
| | - Andrew Emili
- Department of Biochemistry, Boston University School of Medicine, Boston, MA02118
- Department of Biology, Boston University School of Medicine, Boston, MA02118
- The Centre for Network Systems Biology, Boston University School of Medicine, Boston, MA02118
| | - Gavin Y. Oudit
- Department of Medicine, University of Alberta, Edmonton, ABT6G 2R3
- Mazankowski Alberta Heart Institute, Edmonton, ABT6G 2B7
| | - Uros Kuzmanov
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Anthony O. Gramolini
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| |
Collapse
|
7
|
Shen Y, Kim IM, Weintraub NL, Tang Y. Identification of the metabolic state of surviving cardiomyocytes in the human infarcted heart by spatial single-cell transcriptomics. CARDIOLOGY PLUS 2023; 8:18-26. [PMID: 37187809 PMCID: PMC10180026 DOI: 10.1097/cp9.0000000000000038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/07/2023] [Indexed: 05/17/2023] Open
Abstract
The metabolic status of surviving cardiomyocytes (CM) in the myocardial tissues of patients who sustained myocardial infarction (MI) is largely unknown. Spatial single-cell RNA-sequencing (scRNA-seq) is a novel tool that enables the unbiased analysis of RNA signatures within intact tissues. We employed this tool to assess the metabolic profiles of surviving CM in the myocardial tissues of patients post-MI. Methods A spatial scRNA-seq dataset was used to compare the genetic profiles of CM from patients with MI and control patients; we analyzed the metabolic adaptations of surviving CM within the ischemic niche. A standard pipeline in Seurat was used for data analysis, including normalization, feature selection, and identification of highly variable genes using principal component analysis (PCA). Harmony was used to remove batch effects and integrate the CM samples based on annotations. Uniform manifold approximation and projection (UMAP) was used for dimensional reduction. The Seurat "FindMarkers" function was used to identify differentially expressed genes (DEGs), which were analyzed by the Gene Ontology (GO) enrichment pathway. Finally, the scMetabolism R tool pipeline with parameters method = VISION (Vision is a flexible system that utilizes a high-throughput pipeline and an interactive web-based report to annotate and explore scRNA-seq datasets in a dynamic manner) and metabolism.type = Kyoto Encyclopedia of Genes and Genomes (KEGG) was used to quantify the metabolic activity of each CM. Results Analysis of spatial scRNA-seq data showed fewer surviving CM in infarcted hearts than in control hearts. GO analysis revealed repressed pathways in oxidative phosphorylation, cardiac cell development, and activated pathways in response to stimuli and macromolecular metabolic processes. Metabolic analysis showed downregulated energy and amino acid pathways and increased purine, pyrimidine, and one-carbon pool by folate pathways in surviving CM. Conclusions Surviving CM within the infarcted myocardium exhibited metabolic adaptations, as evidenced by the downregulation of most pathways linked to oxidative phosphorylation, glucose, fatty acid, and amino acid metabolism. In contrast, pathways linked to purine and pyrimidine metabolism, fatty acid biosynthesis, and one-carbon metabolism were upregulated in surviving CM. These novel findings have implications for the development of effective strategies to improve the survival of hibernating CM within the infarcted heart.
Collapse
Affiliation(s)
- Yan Shen
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Il-man Kim
- Anatomy, Cell Biology & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Neal L. Weintraub
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yaoliang Tang
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
8
|
Valero-Muñoz M, Saw EL, Hekman RM, Blum BC, Hourani Z, Granzier H, Emili A, Sam F. Proteomic and phosphoproteomic profiling in heart failure with preserved ejection fraction (HFpEF). Front Cardiovasc Med 2022; 9:966968. [PMID: 36093146 PMCID: PMC9452734 DOI: 10.3389/fcvm.2022.966968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Although the prevalence of heart failure with preserved ejection fraction (HFpEF) is increasing, evidence-based therapies for HFpEF remain limited, likely due to an incomplete understanding of this disease. This study sought to identify the cardiac-specific features of protein and phosphoprotein changes in a murine model of HFpEF using mass spectrometry. HFpEF mice demonstrated moderate hypertension, left ventricle (LV) hypertrophy, lung congestion and diastolic dysfunction. Proteomics analysis of the LV tissue showed that 897 proteins were differentially expressed between HFpEF and Sham mice. We observed abundant changes in sarcomeric proteins, mitochondrial-related proteins, and NAD-dependent protein deacetylase sirtuin-3 (SIRT3). Upregulated pathways by GSEA analysis were related to immune modulation and muscle contraction, while downregulated pathways were predominantly related to mitochondrial metabolism. Western blot analysis validated SIRT3 downregulated cardiac expression in HFpEF vs. Sham (0.8 ± 0.0 vs. 1.0 ± 0.0; P < 0.001). Phosphoproteomics analysis showed that 72 phosphosites were differentially regulated between HFpEF and Sham LV. Aberrant phosphorylation patterns mostly occurred in sarcomere proteins and nuclear-localized proteins associated with contractile dysfunction and cardiac hypertrophy. Seven aberrant phosphosites were observed at the z-disk binding region of titin. Additional agarose gel analysis showed that while total titin cardiac expression remained unaltered, its stiffer N2B isoform was significantly increased in HFpEF vs. Sham (0.144 ± 0.01 vs. 0.127 ± 0.01; P < 0.05). In summary, this study demonstrates marked changes in proteins related to mitochondrial metabolism and the cardiac contractile apparatus in HFpEF. We propose that SIRT3 may play a role in perpetuating these changes and may be a target for drug development in HFpEF.
Collapse
Affiliation(s)
- María Valero-Muñoz
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Eng Leng Saw
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Ryan M. Hekman
- Department of Biology, Boston University, Boston, MA, United States
- Department of Biochemistry, Cell Biology and Genomics, Boston University, Boston, MA, United States
| | - Benjamin C. Blum
- Department of Biochemistry, Cell Biology and Genomics, Boston University, Boston, MA, United States
- Center for Network Systems Biology, Boston University, Boston, MA, United States
| | - Zaynab Hourani
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, United States
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, United States
| | - Andrew Emili
- Department of Biology, Boston University, Boston, MA, United States
- Department of Biochemistry, Cell Biology and Genomics, Boston University, Boston, MA, United States
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
9
|
Marwarha G, Røsand Ø, Slagsvold KH, Høydal MA. GSK3β Inhibition Is the Molecular Pivot That Underlies the Mir-210-Induced Attenuation of Intrinsic Apoptosis Cascade during Hypoxia. Int J Mol Sci 2022; 23:ijms23169375. [PMID: 36012628 PMCID: PMC9409400 DOI: 10.3390/ijms23169375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Apoptotic cell death is a deleterious consequence of hypoxia-induced cellular stress. The master hypoxamiR, microRNA-210 (miR-210), is considered the primary driver of the cellular response to hypoxia stress. We have recently demonstrated that miR-210 attenuates hypoxia-induced apoptotic cell death. In this paper, we unveil that the miR-210-induced inhibition of the serine/threonine kinase Glycogen Synthase Kinase 3 beta (GSK3β) in AC-16 cardiomyocytes subjected to hypoxia stress underlies the salutary protective response of miR-210 in mitigating the hypoxia-induced apoptotic cell death. Using transient overexpression vectors to augment miR-210 expression concomitant with the ectopic expression of the constitutive active GSK3β S9A mutant (ca-GSK3β S9A), we exhaustively performed biochemical and molecular assays to determine the status of the hypoxia-induced intrinsic apoptosis cascade. Caspase-3 activity analysis coupled with DNA fragmentation assays cogently demonstrate that the inhibition of GSK3β kinase activity underlies the miR-210-induced attenuation in the hypoxia-driven apoptotic cell death. Further elucidation and delineation of the upstream cellular events unveiled an indispensable role of the inhibition of GSK3β kinase activity in mediating the miR-210-induced mitigation of the hypoxia-driven BAX and BAK insertion into the outer mitochondria membrane (OMM) and the ensuing Cytochrome C release into the cytosol. Our study is the first to unveil that the inhibition of GSK3β kinase activity is indispensable in mediating the miR-210-orchestrated protective cellular response to hypoxia-induced apoptotic cell death.
Collapse
Affiliation(s)
- Gurdeep Marwarha
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Øystein Røsand
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Katrine Hordnes Slagsvold
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
- Department of Cardiothoracic Surgery, St. Olavs University Hospital, 7030 Trondheim, Norway
| | - Morten Andre Høydal
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
- Correspondence: ; Tel.: +47-48134843
| |
Collapse
|
10
|
Boteanu RM, Suica VI, Uyy E, Ivan L, Cerveanu-Hogas A, Mares RG, Simionescu M, Schiopu A, Antohe F. Short-Term Blockade of Pro-Inflammatory Alarmin S100A9 Favorably Modulates Left Ventricle Proteome and Related Signaling Pathways Involved in Post-Myocardial Infarction Recovery. Int J Mol Sci 2022; 23:ijms23095289. [PMID: 35563680 PMCID: PMC9103348 DOI: 10.3390/ijms23095289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 02/01/2023] Open
Abstract
Prognosis after myocardial infarction (MI) varies greatly depending on the extent of damaged area and the management of biological processes during recovery. Reportedly, the inhibition of the pro-inflammatory S100A9 reduces myocardial damage after MI. We hypothesize that a S100A9 blockade induces changes of major signaling pathways implicated in post-MI healing. Mass spectrometry-based proteomics and gene analyses of infarcted mice left ventricle were performed. The S100A9 blocker (ABR-23890) was given for 3 days after coronary ligation. At 3 and 7 days post-MI, ventricle samples were analyzed versus control and Sham-operated mice. Blockade of S100A9 modulated the expressed proteins involved in five biological processes: leukocyte cell–cell adhesion, regulation of the muscle cell apoptotic process, regulation of the intrinsic apoptotic signaling pathway, sarcomere organization and cardiac muscle hypertrophy. The blocker induced regulation of 36 proteins interacting with or targeted by the cellular tumor antigen p53, prevented myocardial compensatory hypertrophy, and reduced cardiac markers of post-ischemic stress. The blockade effect was prominent at day 7 post-MI when the quantitative features of the ventricle proteome were closer to controls. Blockade of S100A9 restores key biological processes altered post-MI. These processes could be valuable new pharmacological targets for the treatment of ischemic heart. Mass spectrometry data are available via ProteomeXchange with identifier PXD033683.
Collapse
Affiliation(s)
- Raluca Maria Boteanu
- Department of Proteomics, Institute of Cellular Biology and Pathology “N. Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (R.M.B.); (V.-I.S.); (E.U.); (L.I.); (A.C.-H.); (M.S.)
| | - Viorel-Iulian Suica
- Department of Proteomics, Institute of Cellular Biology and Pathology “N. Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (R.M.B.); (V.-I.S.); (E.U.); (L.I.); (A.C.-H.); (M.S.)
| | - Elena Uyy
- Department of Proteomics, Institute of Cellular Biology and Pathology “N. Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (R.M.B.); (V.-I.S.); (E.U.); (L.I.); (A.C.-H.); (M.S.)
| | - Luminita Ivan
- Department of Proteomics, Institute of Cellular Biology and Pathology “N. Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (R.M.B.); (V.-I.S.); (E.U.); (L.I.); (A.C.-H.); (M.S.)
| | - Aurel Cerveanu-Hogas
- Department of Proteomics, Institute of Cellular Biology and Pathology “N. Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (R.M.B.); (V.-I.S.); (E.U.); (L.I.); (A.C.-H.); (M.S.)
| | - Razvan Gheorghita Mares
- Department of Pathophysiology, University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania; (R.G.M.); (A.S.)
| | - Maya Simionescu
- Department of Proteomics, Institute of Cellular Biology and Pathology “N. Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (R.M.B.); (V.-I.S.); (E.U.); (L.I.); (A.C.-H.); (M.S.)
| | - Alexandru Schiopu
- Department of Pathophysiology, University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania; (R.G.M.); (A.S.)
- Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden
| | - Felicia Antohe
- Department of Proteomics, Institute of Cellular Biology and Pathology “N. Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (R.M.B.); (V.-I.S.); (E.U.); (L.I.); (A.C.-H.); (M.S.)
- Correspondence: ; Tel.: +40-213-192-737
| |
Collapse
|
11
|
Saril A, Kocaturk M, Shimada K, Uemura A, Akgün E, Levent P, Baykal AT, Prieto AM, Agudelo CF, Tanaka R, Ceron JJ, Koch J, Yilmaz Z. Serum Proteomic Changes in Dogs with Different Stages of Chronic Heart Failure. Animals (Basel) 2022; 12:ani12040490. [PMID: 35203200 PMCID: PMC8868296 DOI: 10.3390/ani12040490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Canine MMVD is a progressive chronic disease with variable clinical signs, with some patients remaining completely asymptomatic while others develop CHF. Here, the aims of the pilot study were to evaluate serum proteins by proteomic analysis in dogs at different stages of chronic heart failure (CHF) due to degenerative mitral valve disease (MMVD), and how these proteins can change after a conventional treatment. Study revealed 157 different proteins; 11 were up- and 21 down-regulated at a statistically significant level in dogs with CHF compared to controls. Based on the bioinformatic analysis, protein–protein interactions between complement proteins, fibrinogen subtypes and others (albumin precursor, serpins, inter-alpha-trypsin inhibitor heavy chain, fetuin, clusterin, apolipoproteins, and alpha-glycoproteins) showed that pathophysiology of CHF seems to be more sophisticated than we had thought. These proteins are associated with several cellular, biologic, and metabolic processes such as immune-inflammatory responses, hemostasis, oxidative stress, and energy metabolism, which might be detrimental in the progression of canine CHF. Their molecular and biological functions as well as roles in the signaling pathways, such as inflammation, cadherin signaling, nicotinic acetylcholine receptor signaling and Wnt signaling make them possible biomarkers and therapeutic targets for the diagnosis and treatments in dogs with different stages of CHF. Abstract MMVD, the most common cause of CHF in dogs, is a chronic disease with variable clinical signs, with some patients remaining asymptomatic while others develop CHF. Here, we aimed to evaluate serum proteins by proteomic analysis in dogs at different stages of CHF due to MMVD, and proteome behaviors after conventional treatment. A total of 32 dogs were divided equally into four groups—stage A (healthy/controls), stage B2 (asymptomatic), stage C and stage D (symptomatic)—according to the ACVIM consensus. Serum proteomes were evaluated using LC/MS-based label-free differential proteome analysis. The study revealed 157 different proteins; 11 were up- and 21 down-regulated in dogs with CHF compared to controls. In stage B2 dogs, angiotensinogen (AGT) was up-regulated, but immunoglobulin iota chain-like, lipopolysaccharide-binding protein, and carboxypeptidase (CPN) were down-regulated. In stage C dogs, complement C3 (C3) and inter-alpha-trypsin inhibitor heavy chain were up-regulated, but hemopexin, and actin-cytoplasmic-1 (ACT-1) were down-regulated. In stage D dogs, AGT was up-regulated, whereas tetranectin, paraoxonase-1, adiponectin and ACT-1 were down-regulated. A decrease in CPN, C3 and AGT and an increase in ACT-1 were observed after treatment of dogs in stage C. This pilot study identified that dogs at different stages of CHF show different serum protein composition which has potential to be biomarker for diagnose and treatment monitorization.
Collapse
Affiliation(s)
- Ahmet Saril
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey; (A.S.); (M.K.); (P.L.); (Z.Y.)
| | - Meric Kocaturk
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey; (A.S.); (M.K.); (P.L.); (Z.Y.)
| | - Kazumi Shimada
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
- Correspondence:
| | - Akiko Uemura
- Laboratory of Veterinary Surgery, Department of Clinical Veterinary Medicine, Division of Veterinary Research, Obihiro University of Agriculture and Veterinary Medicine, Sapporo 080-8555, Japan;
| | - Emel Akgün
- Department of Medical Biochemistry, Acibadem University School of Medicine, Istanbul 34750, Turkey; (E.A.); (A.T.B.)
| | - Pinar Levent
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey; (A.S.); (M.K.); (P.L.); (Z.Y.)
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Acibadem University School of Medicine, Istanbul 34750, Turkey; (E.A.); (A.T.B.)
| | - Alberto Muñoz Prieto
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Carlos Fernando Agudelo
- Small Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackého Tř. 1946/1, 612 42 Brno, Czech Republic;
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| | - Jose Joaquin Ceron
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence, University of Murcia, Espinardo, 30100 Murcia, Spain;
| | - Jorgen Koch
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark;
| | - Zeki Yilmaz
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey; (A.S.); (M.K.); (P.L.); (Z.Y.)
| |
Collapse
|
12
|
Liu J, Lian H, Yu J, Wu J, Chen X, wang P, tian L, Yang Y, Yang J, Li D, Guo S. Study on diverse pathological characteristics of heart failure in different stages based on proteomics. J Cell Mol Med 2022; 26:1169-1182. [PMID: 35048506 PMCID: PMC8831959 DOI: 10.1111/jcmm.17170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
Heart failure is a process characterized by significant disturbance of protein turnover. To elucidate the alterations in cardiac protein expression during the various phases of heart failure and to understand the nature of the processes involved, we analysed the proteome in an established heart failure model at different time points to monitor thousands of different proteins simultaneously. Here, heart failure was induced by transverse aortic constriction (TAC) in KM mice. At 2, 4 and 12 weeks after operation, protein expression profiles were determined in sham‐operated (controls) and TAC mice, using label‐free quantitative proteomics, leading to identification and quantification of almost 4000 proteins. The results of the KEGG pathway enrichment analysis and GO function annotation revealed critical pathways associated with the transition from cardiac hypertrophy to heart failure, such as energy pathways and matrix reorganization. Our study suggests that in the pathophysiology of heart failure, alterations of protein groups related to cardiac energy substrate metabolism and cytoskeleton remodelling could play the more dominant roles for the signalling that eventually results in contractile dysfunction and heart failure.
Collapse
Affiliation(s)
- Jinying Liu
- College of Traditional Chinese Medicine Chengde Medical University Chengde Hebei Province China
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Hongjian Lian
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
- Alexa League Central Hospital Inner Mongolia China
| | - Jiang Yu
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Jie Wu
- College of Traditional Chinese Medicine Chengde Medical University Chengde Hebei Province China
| | - Xiangyang Chen
- Youcare Pharmaceutical Group Drug Research Institute Beijing China
| | - Peng wang
- College of Traditional Chinese Medicine Chengde Medical University Chengde Hebei Province China
| | - Lei tian
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Yunfei Yang
- Beijing Qinglian Biotech Co., Ltd Beijing China
| | - Jiaqi Yang
- College of Traditional Chinese Medicine Chengde Medical University Chengde Hebei Province China
| | - Dong Li
- School of Basic Medical Sciences Anhui Medical University Hefei China
- State Key Laboratory of Proteomics Beijing Proteome Research Center National Center for Protein Sciences (PHOENIX Center) Beijing Institute of Lifeomics Beijing China
| | - Shuzhen Guo
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| |
Collapse
|
13
|
Wu Q, Chen H, Zhang Z, Chen C, Yu F, Guy RD. Effects of Fruit Shading on Gene and Protein Expression During Starch and Oil Accumulation in Developing Styrax tonkinensis Kernels. FRONTIERS IN PLANT SCIENCE 2022; 13:905633. [PMID: 35720550 PMCID: PMC9201641 DOI: 10.3389/fpls.2022.905633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/06/2022] [Indexed: 05/03/2023]
Abstract
Styrax tonkinensis has great potential as a biofuel feedstock source having industrial oilseeds with excellent fatty acids (FAs) composition and good fuel properties. Photosynthesis in the developing pericarp could affect the carbon distribution in kernel. During kernel development, more carbon sources are allocated to starch rather than lipid, when the pericarp photosynthesis is reduced by fruit shading treatment. After shading the fruits at 50 days after flowering (DAF), samples of shaded fruit (FSK) and controls (CK) were collected at 80 DAF and analyzed using the proteomic method. We identified 3,181 proteins, of which 277 were differentially expressed proteins, all downregulated in the FSK group. There were 56 proteins found involved in carbohydrate metabolism and lipid biosynthesis leading to oil accumulation with their iTRAQ ratios of FSK/CK ranging from 0.7123 to 1.1075. According to the qRT-PCR analyses, the key genes related to FA and triacylglycerol (TAG) biosynthesis were significantly downregulated between 60 and 90 DAF especially at 80 DAF, while the key genes involved in starch biosynthesis and FA desaturase had no significant difference between the two groups at 80 DAF. Fruit shading is a negative treatment for lipid accumulation but not starch accumulation by restraining enzymic protein expression involved in FA and TAG biosynthesis during S. tonkinensis kernel development.
Collapse
Affiliation(s)
- Qikui Wu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, China
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Hong Chen
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing, China
| | - Zihan Zhang
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing, China
- State Key Laboratory of Tree Genetics and Breeding and Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Chen Chen
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing, China
| | - Fangyuan Yu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing, China
- *Correspondence: Fangyuan Yu,
| | - Robert D. Guy
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
- Robert D. Guy,
| |
Collapse
|
14
|
Zhao D, Liu Y, Xu Z, Shen H, Chen S, Zhang S, Li Y, Zhang H, Zou C, Ma X. Integrative Bioinformatics Analysis Revealed Mitochondrial Defects Underlying Hypoplastic Left Heart Syndrome. Int J Gen Med 2021; 14:9747-9760. [PMID: 34934349 PMCID: PMC8684406 DOI: 10.2147/ijgm.s345921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/02/2021] [Indexed: 12/15/2022] Open
Abstract
Background Hypoplastic left heart syndrome (HLHS) is one of the most complex congenital cardiac malformations, and the molecular mechanism of heart failure (HF) in HLHS is still elusive. Methods Integrative bioinformatics analysis was performed to unravel the underlying genes and mechanisms involved in HF in HLHS. Microarray dataset GSE23959 was screened out for the differentially expressed genes (DEGs), after which the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were carried out using the Metascape. The protein-protein interaction (PPI) network was generated, and the modules and hub genes were identified with the Cytoscape-plugin. And the integrated network of transcription factor (TF)-DEGs and miRNA-DEGs was constructed, respectively. Results A total of 210 DEGs were identified, including 135 up-regulated and 75 down-regulated genes. The functional enrichment analysis of DEGs pointed towards the mitochondrial-related biological processes, cellular components, molecular functions and signaling pathways. A PPI network was constructed including 155 nodes as well as 363 edges. And 15 hub genes, such as NDUFB6, UQCRQ, SDHD, ATP5H, were identified based on three topological analysis methods and mitochondrial components and functions were the most relevant. Furthermore, by integrating network interaction construction, 23 TFs (NFKB1, RELA, HIF1A, VHL, GATA1, PPAR-γ, etc.) as well as several miRNAs (hsa-miR-155-5p, hsa-miR-191-5p, hsa-mir-124-3p, hsa-miR-1-3p, etc.) were detected and indicated the possible involvement of NF-κB signaling pathways in mitochondrial dysfunction in HLHS. Conclusion The present study applied the integrative bioinformatics analysis and revealed the mitochondrial-related key genes, regulatory pathways, TFs and miRNAs underlying the HF in HLHS, which improved the understanding of disease mechanisms and the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Diming Zhao
- Department of Cardiovascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yilin Liu
- Department of Ophthalmology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Zhenqiang Xu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.,Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Hechen Shen
- Department of Cardiovascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Shanghao Chen
- Department of Cardiovascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Shijie Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yi Li
- Department of Cardiovascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Haizhou Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.,Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Chengwei Zou
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.,Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Xiaochun Ma
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.,Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| |
Collapse
|
15
|
Wojtkiewicz M, Berg Luecke L, Castro C, Burkovetskaya M, Mesidor R, Gundry RL. Bottom-up proteomic analysis of human adult cardiac tissue and isolated cardiomyocytes. J Mol Cell Cardiol 2021; 162:20-31. [PMID: 34437879 PMCID: PMC9620472 DOI: 10.1016/j.yjmcc.2021.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/07/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022]
Abstract
The heart is composed of multiple cell types, each with a specific function. Cell-type-specific approaches are necessary for defining the intricate molecular mechanisms underlying cardiac development, homeostasis, and pathology. While single-cell RNA-seq studies are beginning to define the chamber-specific cellular composition of the heart, our views of the proteome are more limited because most proteomics studies have utilized homogenized human cardiac tissue. To promote future cell-type specific analyses of the human heart, we describe the first method for cardiomyocyte isolation from cryopreserved human cardiac tissue followed by flow cytometry for purity assessment. We also describe a facile method for preparing isolated cardiomyocytes and whole cardiac tissue homogenate for bottom-up proteomic analyses. Prior experience in dissociating cardiac tissue or proteomics is not required to execute these methods. We compare different sample preparation workflows and analysis methods to demonstrate how these can impact the depth of proteome coverage achieved. We expect this how-to guide will serve as a starting point for investigators interested in general and cell-type-specific views of the cardiac proteome.
Collapse
Affiliation(s)
- Melinda Wojtkiewicz
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Linda Berg Luecke
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chase Castro
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maria Burkovetskaya
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Roneldine Mesidor
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rebekah L Gundry
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
16
|
Yu Z, He H, Chen Y, Ji Q, Sun M. A novel ferroptosis related gene signature is associated with prognosis in patients with ovarian serous cystadenocarcinoma. Sci Rep 2021; 11:11486. [PMID: 34075060 PMCID: PMC8169824 DOI: 10.1038/s41598-021-90126-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer (OV) is a common type of carcinoma in females. Many studies have reported that ferroptosis is associated with the prognosis of OV patients. However, the mechanism by which this occurs is not well understood. We utilized Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) to identify ferroptosis-related genes in OV. In the present study, we applied Cox regression analysis to select hub genes and used the least absolute shrinkage and selection operator to construct a prognosis prediction model with mRNA expression profiles and clinical data from TCGA. A series of analyses for this signature was performed in TCGA. We then verified the identified signature using International Cancer Genome Consortium (ICGC) data. After a series of analyses, we identified six hub genes (DNAJB6, RB1, VIMP/ SELENOS, STEAP3, BACH1, and ALOX12) that were then used to construct a model using a training data set. The model was then tested using a validation data set and was found to have high sensitivity and specificity. The identified ferroptosis-related hub genes might play a critical role in the mechanism of OV development. The gene signature we identified may be useful for future clinical applications.
Collapse
Affiliation(s)
- Zhixiang Yu
- Basic Medicine College, The Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Haiyan He
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Yanan Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine,Nanjing University, Nanjing, Jiangsu, China
| | - Qiuhe Ji
- Department of Endocrinology and Metabolism, Xijing Hospital, The Air Force Military Medical University, Xi'an, Shaanxi, China.
| | - Min Sun
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
17
|
Tomin T, Schittmayer M, Sedej S, Bugger H, Gollmer J, Honeder S, Darnhofer B, Liesinger L, Zuckermann A, Rainer PP, Birner-Gruenberger R. Mass Spectrometry-Based Redox and Protein Profiling of Failing Human Hearts. Int J Mol Sci 2021; 22:1787. [PMID: 33670142 PMCID: PMC7916846 DOI: 10.3390/ijms22041787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress contributes to detrimental functional decline of the myocardium, leading to the impairment of the antioxidative defense, dysregulation of redox signaling, and protein damage. In order to precisely dissect the changes of the myocardial redox state correlated with oxidative stress and heart failure, we subjected left-ventricular tissue specimens collected from control or failing human hearts to comprehensive mass spectrometry-based redox and quantitative proteomics, as well as glutathione status analyses. As a result, we report that failing hearts have lower glutathione to glutathione disulfide ratios and increased oxidation of a number of different proteins, including constituents of the contractile machinery as well as glycolytic enzymes. Furthermore, quantitative proteomics of failing hearts revealed a higher abundance of proteins responsible for extracellular matrix remodeling and reduced abundance of several ion transporters, corroborating contractile impairment. Similar effects were recapitulated by an in vitro cell culture model under a controlled oxygen atmosphere. Together, this study provides to our knowledge the most comprehensive report integrating analyses of protein abundance and global and peptide-level redox state in end-stage failing human hearts as well as oxygen-dependent redox and global proteome profiles of cultured human cardiomyocytes.
Collapse
Affiliation(s)
- Tamara Tomin
- Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Vienna University of Technology-TU Wien, Getreidemarkt 9/164, 1060 Vienna, Austria;
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 6, 8010 Graz, Austria; (S.H.); (B.D.); (L.L.)
- BiotechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria;
| | - Matthias Schittmayer
- Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Vienna University of Technology-TU Wien, Getreidemarkt 9/164, 1060 Vienna, Austria;
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 6, 8010 Graz, Austria; (S.H.); (B.D.); (L.L.)
- BiotechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria;
| | - Simon Sedej
- BiotechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria;
- Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (H.B.); (J.G.)
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (H.B.); (J.G.)
| | - Johannes Gollmer
- Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (H.B.); (J.G.)
| | - Sophie Honeder
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 6, 8010 Graz, Austria; (S.H.); (B.D.); (L.L.)
- BiotechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria;
| | - Barbara Darnhofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 6, 8010 Graz, Austria; (S.H.); (B.D.); (L.L.)
- BiotechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria;
| | - Laura Liesinger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 6, 8010 Graz, Austria; (S.H.); (B.D.); (L.L.)
- BiotechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria;
| | - Andreas Zuckermann
- Cardiac Transplantation, Department of Cardiac Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria;
| | - Peter P. Rainer
- BiotechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria;
- Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (H.B.); (J.G.)
| | - Ruth Birner-Gruenberger
- Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Vienna University of Technology-TU Wien, Getreidemarkt 9/164, 1060 Vienna, Austria;
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 6, 8010 Graz, Austria; (S.H.); (B.D.); (L.L.)
- BiotechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria;
| |
Collapse
|
18
|
Park N, Marquez J, Garcia MVF, Shimizu I, Lee SR, Kim HK, Han J. Phosphorylation in Novel Mitochondrial Creatine Kinase Tyrosine Residues Render Cardioprotection against Hypoxia/Reoxygenation Injury. J Lipid Atheroscler 2021; 10:223-239. [PMID: 34095014 PMCID: PMC8159762 DOI: 10.12997/jla.2021.10.2.223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 11/09/2022] Open
Abstract
Objective Ischemic cardiomyopathy (ICM) is the leading cause of heart failure. Proteomic and genomic studies have demonstrated ischemic preconditioning (IPC) can assert cardioprotection against ICM through mitochondrial function regulation. Considering IPC is conducted in a relatively brief period, regulation of protein expression also occurs very rapidly, highlighting the importance of protein function modulation by post-translational modifications. This study aimed to identify and analyze novel phosphorylated mitochondrial proteins that can be harnessed for therapeutic strategies for preventing ischemia/reperfusion (I/R) injury. Methods Sprague-Dawley rat hearts were used in an ex vivo Langendorff system to simulate normal perfusion, I/R, and IPC condition, after which the samples were prepared for phosphoproteomic analysis. Employing human cardiomyocyte AC16 cells, we investigated the cardioprotective role of CKMT2 through overexpression and how site-directed mutagenesis of putative CKMT2 phosphorylation sites (Y159A, Y255A, and Y368A) can affect cardioprotection by measuring CKMT2 protein activity, mitochondrial function and protein expression changes. Results The phosphoproteomic analysis revealed dephosphorylation of mitochondrial creatine kinase (CKMT2) during ischemia and I/R, while preserving its phosphorylated state during IPC. CKMT2 overexpression conferred cardioprotection against hypoxia/reoxygenation (H/R) by increasing cell viability and mitochondrial adenosine triphosphate level, preserving mitochondrial membrane potential, and reduced reactive oxygen species (ROS) generation, while phosphomutations, especially in Y368, nullified cardioprotection by significantly reducing cell viability and increasing ROS production during H/R. CKMT2 overexpression increased mitochondrial function by mediating the proliferator-activated receptor γ coactivator-1α/estrogen-related receptor-α pathway, and these effects were mostly inhibited by Y368A mutation. Conclusion These results suggest that regulation of quantitative expression and phosphorylation site Y368 of CKMT2 offers a unique mechanism in future ICM therapeutics.
Collapse
Affiliation(s)
- Nammi Park
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University, Busan, Korea
| | - Jubert Marquez
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University, Busan, Korea.,Department of Health Sciences and Technology, Graduate School of Inje University, Busan, Korea
| | - Maria Victoria Faith Garcia
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University, Busan, Korea.,Department of Health Sciences and Technology, Graduate School of Inje University, Busan, Korea
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Sung Ryul Lee
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University, Busan, Korea
| | - Hyoung Kyu Kim
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University, Busan, Korea.,Department of Health Sciences and Technology, Graduate School of Inje University, Busan, Korea.,Department of Physiology, College of Medicine, Inje University, Busan, Korea
| | - Jin Han
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University, Busan, Korea.,Department of Health Sciences and Technology, Graduate School of Inje University, Busan, Korea.,Department of Physiology, College of Medicine, Inje University, Busan, Korea
| |
Collapse
|
19
|
Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid Improves Energetic Status and Cardiomyogenic Differentiation of Human Dilated Myocardium-Derived Primary Mesenchymal Cells. Int J Mol Sci 2020; 21:ijms21144845. [PMID: 32650632 PMCID: PMC7402340 DOI: 10.3390/ijms21144845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 02/08/2023] Open
Abstract
Background. In this study the effect of histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) on the energetic status and cardiomyogenic differentiation of human healthy and dilated myocardium-derived mesenchymal stromal cells (hmMSC) have been investigated. Methods. The hmMSC were isolated from the healthy and dilated post-operation heart biopsies by explant outgrowth method. Cell proliferation, HDAC activity, mitochondrial membrane potential, and level of adenosine triphosphate (ATP) were evaluated. The effect of SAHA on mitochondrial parameters has been investigated also by Seahorse XF analyzer and cardiomyogenic differentiation was confirmed by the expression of transcription factor NK2 Homeobox 5 (Nkx2.5), cardiac troponin T and alpha cardiac actin at gene and protein levels. Results. Dilated myocardium-derived hmMSC had almost 1.5 folds higher HDAC activity compared to the healthy cells and significantly lower mitochondrial membrane potential and ATP level. HDAC class I and II inhibitor SAHA improved energetic status of mitochondria in dilated myocardium-isolated hmMSC and increased expression of cardiac specific proteins during 14 days of exposure of cells to SAHA. Conclusions. HDAC inhibitor SAHA can be a promising therapeutic for dilated cardiomyopathy (DCM). Dilated hmMSC exposed to SAHA improved energetic status and, subsequently, cardiomyogenic differentiation. Data suggest that human dilated myocardium-derived MSC still have cardio tissue regenerative potential, which might be stimulated by HDAC inhibitors.
Collapse
|
20
|
Duan J, Dong W, Xie L, Fan S, Xu Y, Li Y. Integrative proteomics-metabolomics strategy reveals the mechanism of hepatotoxicity induced by Fructus Psoraleae. J Proteomics 2020; 221:103767. [DOI: 10.1016/j.jprot.2020.103767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/11/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
|
21
|
Jin Y, Shen Y, Su X, Cai J, Liu Y, Weintraub NL, Tang Y. The Small GTPases Rab27b Regulates Mitochondrial Fatty Acid Oxidative Metabolism of Cardiac Mesenchymal Stem Cells. Front Cell Dev Biol 2020; 8:209. [PMID: 32351955 PMCID: PMC7174509 DOI: 10.3389/fcell.2020.00209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiac mesenchymal stem cells (C-MSCs) are endogenous cardiac stromal cells that play a crucial role in maintaining normal cardiac function. Rab27b is a member of the small GTPase Rab family that controls membrane trafficking and the secretion of exosomes. However, its role in regulating energy metabolism in C-MSC is unclear. In this study, we analyzed mitochondrial oxidative phosphorylation by quantifying cellular oxygen consumption rate (OCR) and quantified the extracellular acidification rate (ECAR) in C-MSC with/without Rab27b knockdown. Knockdown of Rab27b increased glycolysis, but significantly reduced mitochondrial oxidative phosphorylation (OXPHOS) with loss of mitochondrial membrane potential in C-MSC. Furthermore, knockdown of Rab27b reduced H3k4me3 expression in C-MSC and selectively decreased the expression of the essential genes involved in β-oxidation, tricarboxylic acid cycle (TCA), and electron transport chain (ETC). Taken together, our findings highlight a novel role for Rab27b in maintaining fatty acid oxidation in C-MSCs.
Collapse
Affiliation(s)
- Yue Jin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yan Shen
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Xuan Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jingwen Cai
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yutao Liu
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Neal L. Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yaoliang Tang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|