1
|
Vargas-Molina S, García-Sillero M, Bonilla DA, Petro JL, García-Romero J, Benítez-Porres J. The effect of the ketogenic diet on resistance training load management: a repeated-measures clinical trial in trained participants. J Int Soc Sports Nutr 2024; 21:2306308. [PMID: 38285913 PMCID: PMC10826788 DOI: 10.1080/15502783.2024.2306308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND The effect of low-carbohydrate high-fat dietary manipulation, such as the ketogenic diet (KD), on muscle strength assessment in resistance-training (RT) participants has focused on the one-repetition maximum test (1-RM). However, a pre-specified 1-RM value during an exercise training program disregards several confounding factors (i.e. sleep, diet, and training-induced fatigue) that affect the exerciser's "true" load and daily preparedness. We aimed to evaluate the effect of a 6-week RT program on load control-related variables in trained subjects following a KD intervention. METHODS Fourteen resistance-trained individuals (3F, 11 M; 30.1 [6.2] years; 174.2 [7.6] cm; 75.7 [10.8] kg; BMI 24.8 [2.1] kg·m-2) completed this single-arm repeated-measures clinical trial. Load management variables included volume load, number of repetitions, perceived exertion (RPE), movement velocity loss, and exertion index. These primary outcomes were assessed weekly before, during, and at the end of a 6-week RT program that included traditional RT exercises (bench press, femoral lying down, lat pulldown, leg extension, and back squat). RESULTS There was a significant difference in RPE between weeks (p = 0.015, W = 0.19) with a slight trend in decreasing RPE. We found differences in the volume load per week (p < 0.001; W = 0.73 and p < 0.001, W = 0.81, respectively), with an increase in the last weeks. In the control of the load based on movement velocity, we did not find significant differences between weeks (p = 0.591, W = 0.06), although significant differences were found in the effort index (p = 0.026, W = 0.17). CONCLUSIONS A KD diet in recreational strength participants does not appear to lead to performance losses during a RT program aimed at improving body composition. However, the lack of adherence and familiarity with the ketogenic diet must be considered specially during first weeks.
Collapse
Affiliation(s)
- Salvador Vargas-Molina
- University of Málaga, Physical education and sport area, Faculty of Medicine, Málaga, Spain
- Physical education and sport, EADE-University of Wales Trinity Saint David, Málaga, Spain
| | - Manuel García-Sillero
- Physical education and sport, EADE-University of Wales Trinity Saint David, Málaga, Spain
| | - Diego A. Bonilla
- Dynamical Business & Science Society – DBSS International SAS, Research Division, Bogotá, Colombia
- Universidad de Córdoba, Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Montería, Colombia
| | - Jorge L. Petro
- Dynamical Business & Science Society – DBSS International SAS, Research Division, Bogotá, Colombia
- Universidad de Córdoba, Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Montería, Colombia
| | - Jerónimo García-Romero
- University of Málaga, Physical education and sport area, Faculty of Medicine, Málaga, Spain
| | - Javier Benítez-Porres
- University of Málaga, Physical education and sport area, Faculty of Medicine, Málaga, Spain
| |
Collapse
|
2
|
Leaf A, Rothschild JA, Sharpe TM, Sims ST, Macias CJ, Futch GG, Roberts MD, Stout JR, Ormsbee MJ, Aragon AA, Campbell BI, Arent SM, D’Agostino DP, Barrack MT, Kerksick CM, Kreider RB, Kalman DS, Antonio J. International society of sports nutrition position stand: ketogenic diets. J Int Soc Sports Nutr 2024; 21:2368167. [PMID: 38934469 PMCID: PMC11212571 DOI: 10.1080/15502783.2024.2368167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
POSITION STATEMENT The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the use of a ketogenic diet in healthy exercising adults, with a focus on exercise performance and body composition. However, this review does not address the use of exogenous ketone supplements. The following points summarize the position of the ISSN. 1. A ketogenic diet induces a state of nutritional ketosis, which is generally defined as serum ketone levels above 0.5 mM. While many factors can impact what amount of daily carbohydrate intake will result in these levels, a broad guideline is a daily dietary carbohydrate intake of less than 50 grams per day. 2. Nutritional ketosis achieved through carbohydrate restriction and a high dietary fat intake is not intrinsically harmful and should not be confused with ketoacidosis, a life-threatening condition most commonly seen in clinical populations and metabolic dysregulation. 3. A ketogenic diet has largely neutral or detrimental effects on athletic performance compared to a diet higher in carbohydrates and lower in fat, despite achieving significantly elevated levels of fat oxidation during exercise (~1.5 g/min). 4. The endurance effects of a ketogenic diet may be influenced by both training status and duration of the dietary intervention, but further research is necessary to elucidate these possibilities. All studies involving elite athletes showed a performance decrement from a ketogenic diet, all lasting six weeks or less. Of the two studies lasting more than six weeks, only one reported a statistically significant benefit of a ketogenic diet. 5. A ketogenic diet tends to have similar effects on maximal strength or strength gains from a resistance training program compared to a diet higher in carbohydrates. However, a minority of studies show superior effects of non-ketogenic comparators. 6. When compared to a diet higher in carbohydrates and lower in fat, a ketogenic diet may cause greater losses in body weight, fat mass, and fat-free mass, but may also heighten losses of lean tissue. However, this is likely due to differences in calorie and protein intake, as well as shifts in fluid balance. 7. There is insufficient evidence to determine if a ketogenic diet affects males and females differently. However, there is a strong mechanistic basis for sex differences to exist in response to a ketogenic diet.
Collapse
Affiliation(s)
- Alex Leaf
- Alex Leaf LLC, Scientific Affairs, Scottsdale, AZ, USA
| | - Jeffrey A. Rothschild
- Auckland University of Technology, Sports Performance Research Institute New Zealand, Auckland, New Zealand
- High Performance Sport New Zealand, Performance Nutrition, Auckland, New Zealand
| | - Tim M. Sharpe
- University of Western States, Human Nutrition and Functional Medicine, Portland, OR, USA
| | - Stacy T. Sims
- Auckland University of Technology, Sports Performance Research Institute New Zealand, Auckland, New Zealand
- Stanford University, Stanford Lifestyle Medicine, Palo Alto, CA, USA
| | - Chad J. Macias
- University of Western States, Human Nutrition and Functional Medicine, Portland, OR, USA
| | - Geoff G. Futch
- Springfield College, Department of Exercise Science and Athletic Training, Springfield, MA, USA
- FitPro Analytics, Scientific Affairs, Springfield, MA, USA
| | | | - Jeffrey R. Stout
- University of Central Florida, School of Kinesiology and Rehabilitation Sciences, Orlando, FL, USA
| | - Michael J. Ormsbee
- Florida State University, Institute of Sports Sciences & Medicine, Tallahassee, FL, USA
- University of KwaZulu Natal, Discipline of Biokinetics, Exercise and Leisure Sciences, Durban, South Africa
| | | | - Bill I. Campbell
- University of South Florida, Performance and Physique Enhancement Laboratory, Exercise Science Program, Tampa, FL, USA
| | - Shawn M. Arent
- University of South Carolina, Department of Exercise Science, Arnold School of Public Health, Columbia, SC, USA
| | - Dominic P. D’Agostino
- Institute for Human and Machine Cognition, Human Healthspan, Resilience, and Performance, Pensacola, FL, USA
- University of South Florida, Department of Molecular Pharmacology and Physiology, Tampa, FL, USA
| | - Michelle T. Barrack
- California State University, Department of Family and Consumer Sciences, Long Beach, CA, USA
| | - Chad M. Kerksick
- Lindenwood University, Exercise and Performance Nutrition Laboratory, College of Science, Technology, and Health, St. Charles, MO, USA
| | - Richard B. Kreider
- Texas A&M University, Exercise and Sport Nutrition Lab, Department of Kinesiology and Sports Management, College Station, TX, USA
| | - Douglas S. Kalman
- Nova Southeastern University, Department of Nutrition. Dr. Kiran C. Patel College of Osteopathic Medicine. Davie, FL, USA
| | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL, USA
| |
Collapse
|
3
|
Volek JS, Kackley ML, Buga A. Nutritional Considerations During Major Weight Loss Therapy: Focus on Optimal Protein and a Low-Carbohydrate Dietary Pattern. Curr Nutr Rep 2024; 13:422-443. [PMID: 38814519 PMCID: PMC11327213 DOI: 10.1007/s13668-024-00548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE OF REVIEW Considering the high prevalence of obesity and related metabolic impairments in the population, the unique role nutrition has in weight loss, reversing metabolic disorders, and maintaining health cannot be overstated. Normal weight and well-being are compatible with varying dietary patterns, but for the last half century there has been a strong emphasis on low-fat, low-saturated fat, high-carbohydrate based approaches. Whereas low-fat dietary patterns can be effective for a subset of individuals, we now have a population where the vast majority of adults have excess adiposity and some degree of metabolic impairment. We are also entering a new era with greater access to bariatric surgery and approval of anti-obesity medications (glucagon-like peptide-1 analogues) that produce substantial weight loss for many people, but there are concerns about disproportionate loss of lean mass and nutritional deficiencies. RECENT FINDINGS No matter the approach used to achieve major weight loss, careful attention to nutritional considerations is necessary. Here, we examine the recent findings regarding the importance of adequate protein to maintain lean mass, the rationale and evidence supporting low-carbohydrate and ketogenic dietary patterns, and the potential benefits of including exercise training in the context of major weight loss. While losing and sustaining weight loss has proven challenging, we are optimistic that application of emerging nutrition science, particularly personalized well-formulated low-carbohydrate dietary patterns that contain adequate protein (1.2 to 2.0 g per kilogram reference weight) and achieve the beneficial metabolic state of euketonemia (circulating ketones 0.5 to 5 mM), is a promising path for many individuals with excess adiposity.
Collapse
Affiliation(s)
- Jeff S Volek
- Department of Human Sciences, The Ohio State University, 305 Annie & John Glenn Ave, Columbus, OH, 43210, USA.
| | - Madison L Kackley
- Department of Human Sciences, The Ohio State University, 305 Annie & John Glenn Ave, Columbus, OH, 43210, USA
| | - Alex Buga
- Department of Human Sciences, The Ohio State University, 305 Annie & John Glenn Ave, Columbus, OH, 43210, USA
| |
Collapse
|
4
|
Cho W, Jung H, Hong S, Yang HI, Park DH, Suh SH, Lee DH, Choe YS, Kim JY, Lee W, Jeon JY. The effect of a short-term ketogenic diet on exercise efficiency during graded exercise in healthy adults. J Int Soc Sports Nutr 2023; 20:2264278. [PMID: 37791478 PMCID: PMC10552596 DOI: 10.1080/15502783.2023.2264278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/22/2023] [Indexed: 10/05/2023] Open
Abstract
OBJECTIVE We examined the effects of short-term KD on exercise efficiency and hormonal response during and after the graded exercise testing. METHODS Fourteen untrained healthy adults (8 males, 6 females, age 26.4 ± 3.1 [SD] years; BMI 24.8 ± 4.6 kg/m2; peak VO2max 54.0 ± 5.8 ml/kg FFM/min) completed 3-days of a mixed diet (MD) followed by another 3-days of KD after 3-days of washout period. Upon completion of each diet arm, participants underwent graded exercise testing with low- (LIE; 40% of VO2max), moderate- (MIE; 55%), and high-intensity exercise (HIE; 70%). Exercise efficiency was calculated as work done (kcal/min)/energy expenditure (kcal/min). RESULTS Fat oxidation during the recovery period was higher in KD vs. MD. Despite identical workload during HIE, participants after having KD vs. MD showed higher energy expenditure and lower exercise efficiency (10.1 ± 0.7 vs. 12.5 ± 0.3%, p < .01). After KD, free fatty acid (FFA) concentrations were higher during MIE and recovery vs. resting, and beta-hydroxybutylate (BOHB) was lower at HIE vs. resting. Cortisol concentrations after KD was higher during recovery vs. resting, with no significant changes during graded exercise testing after MD. CONCLUSIONS Our data suggest that short-term KD is favorable to fat metabolism leading increased circulating FFA and BOHB during LIE to MIE. However, it is notable that KD may cause 1) exercise inefficiency manifested by increased energy expenditure and 2) elevated exercise stress during HIE and recovery. Trial registration: KCT0005172, International Clinical Trials Registry Platform.
Collapse
Affiliation(s)
- Wonhee Cho
- Syracuse University, Department of Exercise Science, David B. Falk College of Sport and Human Dynamics, Syracuse, NY, USA
- Yonsei University, Department of Sport Industries, Seoul, South Korea
| | - Hwaebong Jung
- Yonsei University, Department of Materials Science and Engineering, Seoul, South Korea
| | - Sunghyun Hong
- Yonsei University, Department of Sport Industries, Seoul, South Korea
| | - Hyuk In Yang
- Yonsei University, Department of Sport Industries, Seoul, South Korea
| | - Dong-Hyuk Park
- Yonsei University, Department of Sport Industries, Seoul, South Korea
| | - Sang-Hoon Suh
- Yonsei University, Department of Physical Education, Seoul, South Korea
| | - Dong Hoon Lee
- Yonsei University, Department of Sport Industries, Seoul, South Korea
- Harvard T.H. Chan School of Public Health, Department of Nutrition, Boston, MA, USA
- Nanyang Technological University, Lee Kong Chian School of Medicine, Nanyang, Singapore
| | | | - Joon Young Kim
- Syracuse University, Department of Exercise Science, David B. Falk College of Sport and Human Dynamics, Syracuse, NY, USA
| | - Wooyoung Lee
- Yonsei University, Department of Materials Science and Engineering, Seoul, South Korea
| | - Justin Y. Jeon
- Yonsei University, Department of Sport Industries, Seoul, South Korea
- Yonsei University College of Medicine, Cancer Prevention Center, Yonsei Cancer Center, Seoul, South Korea
- Yonsei University, Exercise Medicine Center for Diabetes and Cancer Patients, ICONS, Seoul, South Korea
| |
Collapse
|
5
|
Wang Y, Zhou K, Wang V, Bao D, Zhou J. The Effects of Concurrent Training Combined with Low-Carbohydrate High-Fat Ketogenic Diet on Body Composition and Aerobic Performance: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11542. [PMID: 36141816 PMCID: PMC9517144 DOI: 10.3390/ijerph191811542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 05/22/2023]
Abstract
(1) Background: Recently, studies have emerged to explore the effects of concurrent training (CT) with a low-carb, high-fat ketogenic diet (LCHF) on body composition and aerobic performance and observed its benefits. However, a large variance in the study design and observations is presented, which needs to be comprehensively assessed. We here thus completed a systematic review and meta-analysis to characterize the effects of the intervention combining CT and LCHF on body composition and aerobic capacity in people with training experience as compared to that combining CT and other dietary strategies. (2) Methods: A search strategy based on the PICOS principle was used to find literature in the databases of PubMed, Web of Science, EBSCO, Sport-discuss, and Medline. The quality and risk of bias in the studies were independently assessed by two researchers. (3) Result: Eight studies consisting of 170 participants were included in this work. The pooled results showed no significant effects of CT with LCHF on lean mass (SMD = -0.08, 95% CI -0.44 to 0.3, p = 0.69), body fat percentage (SMD = -0.29, 95% CI -0.66 to 0.08, p = 0.13), body mass (SMD = -0.21, 95% CI -0.53 to 0.11, p = 0.2), VO2max (SMD = -0.01, 95% CI -0.4 to 0.37, p = 0.95), and time (or distance) to complete the aerobic tests (SMD = -0.02, 95% CI -0.41 to 0.37, p = 0.1). Subgroup analyses also showed that the training background of participants (i.e., recreationally trained participants or professionally trained participants) and intervention duration (e.g., > or ≤six weeks) did not significantly affect the results. (4) Conclusions: This systematic review and meta-analysis provide evidence that compared to other dietary strategies, using LCHF with CT cannot induce greater benefits for lean mass, body fat percentage, body mass, VO2max, and aerobic performance in trained participants.
Collapse
Affiliation(s)
- Yubo Wang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
| | - Kaixiang Zhou
- Sports Health College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Vienna Wang
- College of Engineering, California State University, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA
| | - Dapeng Bao
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
| | - Junhong Zhou
- Hebrew Senior Life Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Abstract
Obesity remains a serious relevant public health concern throughout the world despite related countermeasures being well understood (i.e. mainly physical activity and an adjusted diet). Among different nutritional approaches, there is a growing interest in ketogenic diets (KD) to manipulate body mass (BM) and to enhance fat mass loss. KD reduce the daily amount of carbohydrate intake drastically. This results in increased fatty acid utilisation, leading to an increase in blood ketone bodies (acetoacetate, 3-β-hydroxybutyrate and acetone) and therefore metabolic ketosis. For many years, nutritional intervention studies have focused on reducing dietary fat with little or conflicting positive results over the long term. Moreover, current nutritional guidelines for athletes propose carbohydrate-based diets to augment muscular adaptations. This review discusses the physiological basis of KD and their effects on BM reduction and body composition improvements in sedentary individuals combined with different types of exercise (resistance training or endurance training) in individuals with obesity and athletes. Ultimately, we discuss the strengths and the weaknesses of these nutritional interventions together with precautionary measures that should be observed in both individuals with obesity and athletic populations. A literature search from 1921 to April 2021 using Medline, Google Scholar, PubMed, Web of Science, Scopus and Sportdiscus Databases was used to identify relevant studies. In summary, based on the current evidence, KD are an efficient method to reduce BM and body fat in both individuals with obesity and athletes. However, these positive impacts are mainly because of the appetite suppressive effects of KD, which can decrease daily energy intake. Therefore, KD do not have any superior benefits to non-KD in BM and body fat loss in individuals with obesity and athletic populations in an isoenergetic situation. In sedentary individuals with obesity, it seems that fat-free mass (FFM) changes appear to be as great, if not greater, than decreases following a low-fat diet. In terms of lean mass, it seems that following a KD can cause FFM loss in resistance-trained individuals. In contrast, the FFM-preserving effects of KD are more efficient in endurance-trained compared with resistance-trained individuals.
Collapse
|
7
|
Koerich ACC, Borszcz FK, Thives Mello A, de Lucas RD, Hansen F. Effects of the ketogenic diet on performance and body composition in athletes and trained adults: a systematic review and Bayesian multivariate multilevel meta-analysis and meta-regression. Crit Rev Food Sci Nutr 2022; 63:11399-11424. [PMID: 35757868 DOI: 10.1080/10408398.2022.2090894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This systematic review with meta-analysis aimed to determine the effects of the ketogenic diet (KD) against carbohydrate (CHO)-rich diets on physical performance and body composition in trained individuals. The MEDLINE, EMBASE, CINAHL, SPORTDiscus, and The Cochrane Library were searched. Randomized and non-randomized controlled trials in athletes/trained adults were included. Meta-analytic models were carried out using Bayesian multilevel models. Eighteen studies were included providing estimates on cyclic exercise modes and strength one-maximum repetition (1-RM) performances and for total, fat, and free-fat masses. There were more favorable effects for CHO-rich than KD on time-trial performance (mode [95% credible interval]; -3.3% [-8.5%, 1.7%]), 1-RM (-5.7% [-14.9%, 2.6%]), and free-fat mass (-0.8 [-3.4, 1.9] kg); effects were more favorable to KD on total (-2.4 [-6.2, 1.8] kg) and fat mass losses (-2.4 [-5.4, 0.2] kg). Likely modifying effects on cyclic performance were the subject's sex and VO2max, intervention and performance durations, and mode of exercise. The intervention duration and subjects' sex were likely to modify effects on total body mass. KD can be a useful strategy for total and fat body losses, but a small negative effect on free-fat mass was observed. KD was not suitable for enhancing strength 1-RM or high-intensity cyclic performances.
Collapse
Affiliation(s)
- Ana Clara C Koerich
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, Santa Catarina, Brazil
| | - Fernando Klitzke Borszcz
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, University Campus, Pantanal, Florianópolis, Santa Catarina, Brazil
| | - Arthur Thives Mello
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, Santa Catarina, Brazil
| | - Ricardo Dantas de Lucas
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, University Campus, Pantanal, Florianópolis, Santa Catarina, Brazil
| | - Fernanda Hansen
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
8
|
Moreno-Villanueva A, Rico-González M, Pino-Ortega J. The Effects of a Ketogenic Diet on Anthropometric Parameters, Metabolic Adaptation, and Physical Fitness Performance in Amateur Endurance Athletes: A Systematic Review. Strength Cond J 2022. [DOI: 10.1519/ssc.0000000000000647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Noakes TD. What Is the Evidence That Dietary Macronutrient Composition Influences Exercise Performance? A Narrative Review. Nutrients 2022; 14:862. [PMID: 35215511 PMCID: PMC8875928 DOI: 10.3390/nu14040862] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 01/06/2023] Open
Abstract
The introduction of the needle muscle biopsy technique in the 1960s allowed muscle tissue to be sampled from exercising humans for the first time. The finding that muscle glycogen content reached low levels at exhaustion suggested that the metabolic cause of fatigue during prolonged exercise had been discovered. A special pre-exercise diet that maximized pre-exercise muscle glycogen storage also increased time to fatigue during prolonged exercise. The logical conclusion was that the athlete's pre-exercise muscle glycogen content is the single most important acutely modifiable determinant of endurance capacity. Muscle biochemists proposed that skeletal muscle has an obligatory dependence on high rates of muscle glycogen/carbohydrate oxidation, especially during high intensity or prolonged exercise. Without this obligatory carbohydrate oxidation from muscle glycogen, optimum muscle metabolism cannot be sustained; fatigue develops and exercise performance is impaired. As plausible as this explanation may appear, it has never been proven. Here, I propose an alternate explanation. All the original studies overlooked one crucial finding, specifically that not only were muscle glycogen concentrations low at exhaustion in all trials, but hypoglycemia was also always present. Here, I provide the historical and modern evidence showing that the blood glucose concentration-reflecting the liver glycogen rather than the muscle glycogen content-is the homeostatically-regulated (protected) variable that drives the metabolic response to prolonged exercise. If this is so, nutritional interventions that enhance exercise performance, especially during prolonged exercise, will be those that assist the body in its efforts to maintain the blood glucose concentration within the normal range.
Collapse
Affiliation(s)
- Timothy David Noakes
- Department of Applied Design, Cape Peninsula University of Technology, Cape Town 8000, South Africa
| |
Collapse
|
10
|
Cipryan L, Dostal T, Litschmannova M, Hofmann P, Maffetone PB, Laursen PB. Effects of a Very Low-Carbohydrate High-Fat Diet and High-Intensity Interval Training on Visceral Fat Deposition and Cardiorespiratory Fitness in Overfat Individuals: A Randomized Controlled Clinical Trial. Front Nutr 2021; 8:785694. [PMID: 34993222 PMCID: PMC8724307 DOI: 10.3389/fnut.2021.785694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose: This randomized controlled parallel-group study examined the effects of a very low-carbohydrate high-fat (VLCHF) diet and high-intensity interval training (HIIT) program over 12 weeks on visceral adipose tissue (VAT) and cardiorespiratory fitness (CRF) level in overfat individuals. Methods: Ninety-one participants were randomly allocated to the HIIT (N = 22), VLCHF (N = 25), VLCHF+HIIT (N = 25), or control (N = 19) groups for 12 weeks. Body composition and CRF were analyzed before the experimental period and after 4, 8, and 12 weeks. Dual-energy X-ray absorptiometry (DXA) and graded exercise test (GXT) to volitional exhaustion were used for the body composition and CRF assessments, respectively. Results: There were significant between-group differences in the VAT mass and body composition outcome changes. VAT mass decreased after 12 weeks only in the VLCHF and VLCHF+HIIT groups (p < 0.001, median [95% CI]: VLCHF: -142.0 [-187.0; -109.5] g; VLCHF+HIIT: -104.0 [-135.0; -71.0] g). Similarly, changes in body mass, total body fat, trunk fat mass, waist and hip circumferences were distinctly decreased in the VLCHF and VLCHF+HIIT groups, when compared to HIIT and Control groups. Total lean mass significantly decreased in the VLCHF and VLCHF+HIIT groups (-2.1 [-3.0; -1.6] kg and -2.5 [-3.6; -1.8] kg, respectively) after 12 weeks. While the HIIT program significantly increased total time to exhaustion in the GXT, peak oxygen uptake was unchanged. Conclusions: A VLCHF diet, either in isolation or in combination with HIIT, was shown to induce a significant reduction in VAT mass and body composition variables. HIIT alone did not cause such effects on body composition, but improved exercise capacity. Our findings indicate that the VLCHF diet and exercise training provoked different and isolated effects on body composition and CRF. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT03934476, identifier: NCT03934476.
Collapse
Affiliation(s)
- Lukas Cipryan
- Department of Human Movement Studies & Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czechia
| | - Tomas Dostal
- Department of Human Movement Studies & Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czechia
| | - Martina Litschmannova
- Department of Applied Mathematics, VSB – Technical University of Ostrava, Ostrava, Czechia
| | - Peter Hofmann
- Institute of Human Movement Science, Sport & Health, Exercise Physiology, Training & Training Therapy Research Group, University of Graz, Graz, Austria
| | | | - Paul B. Laursen
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
11
|
The Comparison of the Effects between Continuous and Intermittent Energy Restriction in Short-Term Bodyweight Loss for Sedentary Population: A Randomized, Double-Blind, Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111645. [PMID: 34770157 PMCID: PMC8583133 DOI: 10.3390/ijerph182111645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022]
Abstract
Objective: To compare the effects of continuous energy restriction (CER) and intermittent energy restriction (IER) in bodyweight loss plan in sedentary individuals with normal bodyweight and explore the influence factors of effect and individual retention. Methods: 26 participants were recruited in this randomized controlled and double-blinded trial and allocated to CER and IER groups. Bodyweight (BW), body mass index (BMI), and resting metabolic rate (RMR) would be collected before and after a 4-week (28 days) plan which included energy restriction (CER or IER) and moderate-intensity exercise. Daily intake of three major nutrients (protein, carbohydrate, fat) and calories were recorded. Results: A significant decrease in BW and BMI were reported within each group. No statistically significant difference in the change of RMR in CERG. No statistically significant difference was reported in the effect between groups, neither as well the intake of total calories, three major nutrients, and individual plan retention. The influence factors of IER and CER are different. Conclusion: Both CER and IER are effective and safe energy restriction strategies in the short term. Daily energy intake and physical exercise are important to both IER and CER.
Collapse
|
12
|
Effects of a Low-Carbohydrate High-Fat Diet Combined with High-Intensity Interval Training on Body Composition and Maximal Oxygen Uptake: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010740. [PMID: 34682481 PMCID: PMC8535842 DOI: 10.3390/ijerph182010740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022]
Abstract
The low-carbohydrate high-fat (LCHF) diet has recently been subject to attention on account of its reported influences on body composition and physical performance. However, the combined effect of LCHF with high-intensity interval training (HIIT) is unclear. A systematic review and meta-analysis were conducted to explore the effect of the LCHF diet combined with HIIT on human body composition (i.e., body weight (BM), body mass index (BMI), fat mass (FM), body fat percentage (BFP), fat-free mass (FFM)) and maximal oxygen uptake (VO2max). Online libraries (PubMed, Web of Science, EMBASE, Cochrane Library, EBSCO, CNKI, Wan Fang) were used to search initial studies until July 2021, from which 10 out of 2440 studies were included. WMD served as the effect size with a confidence interval value of 95%. The results of meta-analysis showed a significant reduction in BM (WMD = −5.299; 95% CI: −7.223, −3.376, p = 0.000), BMI (WMD = −1.150; 95% CI: −2.225, −0.075, p = 0.036), BFP (WMD = −2.787; 95% CI: −4.738, −0.835, p = 0.005) and a significant increase in VO2max (WMD = 3.311; 95% CI: 1.705, 4.918, p = 0.000), while FM (WMD = −2.221; 95% CI: −4.582, 0.139, p = 0.065) and FFM (WMD = 0.487; 95% CI: −3.512, 4.469, p = 0.814) remained unchanged. In conclusion, the LCHF diet combined with HIIT can reduce weight and fat effectively. This combination is sufficient to prevent muscle mass loss during LCHF, and further enhance VO2max. Further research might be required to clarify the effect of other types of exercise on body composition and physical performance during LCHF.
Collapse
|
13
|
Cao J, Lei S, Wang X, Cheng S. The Effect of a Ketogenic Low-Carbohydrate, High-Fat Diet on Aerobic Capacity and Exercise Performance in Endurance Athletes: A Systematic Review and Meta-Analysis. Nutrients 2021; 13:2896. [PMID: 34445057 PMCID: PMC8400555 DOI: 10.3390/nu13082896] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/02/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
A low-carbohydrate, high-fat (LCHF) diet has been proposed to enhance the fat utilization of muscle and the aerobic capacity of endurance athletes, thereby improving their exercise performance. However, it remains uncertain how the macronutrient intake shift from carbohydrate to fat affects endurance exercise training and performance. This study performed a systematic review and meta-analysis to explore the effects of a ketogenic low-carbohydrate, high-fat (K-LCHF) diet on aerobic capacity and exercise performance among endurance athletes. Searches were carried out in five electronic databases, and we followed the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. The search included studies using an LCHF diet as an intervention protocol and compared data on factors such as maximum oxygen uptake (VO2max) and rating of perceived exertion (RPE) from the graded exercise test. In this case, 10 studies met the criteria and were included in the meta-analysis. We did not find a significant effect of K-LCHF diet interventions on VO2max, time to exhaustion, HRmax or RPE. However, a significant overall effect in the substrate oxidation response to respiratory exchange rate was observed. The meta-analysis showed that K-LCHF diets did not affect aerobic capacity and exercise performance. Therefore, high-quality interventions of a K-LCHF diet are needed to illustrate its effect on various endurance training programs.
Collapse
Affiliation(s)
- Jingguo Cao
- Exercise, Health and Technology Centre, Department of Physical Education, Shanghai Jiao Tong University, Shanghai 200240, China; (J.C.); (S.L.); (S.C.)
| | - Siman Lei
- Exercise, Health and Technology Centre, Department of Physical Education, Shanghai Jiao Tong University, Shanghai 200240, China; (J.C.); (S.L.); (S.C.)
- Faculty of Education, University of Macau, Macau SAR, China
| | - Xiuqiang Wang
- Exercise, Health and Technology Centre, Department of Physical Education, Shanghai Jiao Tong University, Shanghai 200240, China; (J.C.); (S.L.); (S.C.)
- Exercise Translational Medicine Centre, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sulin Cheng
- Exercise, Health and Technology Centre, Department of Physical Education, Shanghai Jiao Tong University, Shanghai 200240, China; (J.C.); (S.L.); (S.C.)
- Exercise Translational Medicine Centre, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Faculty of Sport and Health Science, University of Jyväskylä, 40014 Jyväskylä, Finland
| |
Collapse
|
14
|
Coleman JL, Carrigan CT, Margolis LM. Body composition changes in physically active individuals consuming ketogenic diets: a systematic review. J Int Soc Sports Nutr 2021; 18:41. [PMID: 34090453 PMCID: PMC8180141 DOI: 10.1186/s12970-021-00440-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/11/2021] [Indexed: 12/28/2022] Open
Abstract
Background To achieve ideal strength/power to mass ratio, athletes may attempt to lower body mass through reductions in fat mass (FM), while maintaining or increasing fat-free mass (FFM) by manipulating their training regimens and diets. Emerging evidence suggests that consumption of high-fat, ketogenic diets (KD) may be advantageous for reducing body mass and FM, while retaining FFM. Methods A systematic review of the literature was conducted using PubMed and Cochrane Library databases to compare the effects of KD versus control diets (CON) on body mass and composition in physically active populations. Randomized and non-randomized studies were included if participants were healthy (free of chronic disease), physically active men or women age ≥ 18 years consuming KD (< 50 g carbohydrate/d or serum or whole blood β-hydroxybutyrate (βhb) > 0.5 mmol/L) for ≥14 days. Results Thirteen studies (9 parallel and 4 crossover/longitudinal) that met the inclusion criteria were identified. Aggregated results from the 13 identified studies show body mass decreased 2.7 kg in KD and increased 0.3 kg in CON. FM decreased by 2.3 kg in KD and 0.3 kg in CON. FFM decreased by 0.3 kg in KD and increased 0.7 kg in CON. Estimated energy balance based on changes in body composition was − 339 kcal/d in KD and 5 kcal/d in CON. Risk of bias identified some concern of bias primarily due to studies which allowed participants to self-select diet intervention groups, as well as inability to blind participants to the study intervention, and/or longitudinal study design. Conclusion KD can promote mobilization of fat stores to reduce FM while retaining FFM. However, there is variance in results of FFM across studies and some risk-of-bias in the current literature that is discussed in this systematic review. Supplementary Information The online version contains supplementary material available at 10.1186/s12970-021-00440-6.
Collapse
Affiliation(s)
- Julie L Coleman
- U.S. Army Research Institute of Environmental Medicine, 10 General Greene Ave, Building 42, Natick, MA, 01760, USA.,Oak Ridge Institute of Science and Education, Belcamp, MD, USA
| | - Christopher T Carrigan
- U.S. Army Research Institute of Environmental Medicine, 10 General Greene Ave, Building 42, Natick, MA, 01760, USA
| | - Lee M Margolis
- U.S. Army Research Institute of Environmental Medicine, 10 General Greene Ave, Building 42, Natick, MA, 01760, USA.
| |
Collapse
|
15
|
Bjørklund G, Tippairote T, Dadar M, Lizcano F, Aaseth J, Borisova O. The Roles of Dietary, Nutritional and Lifestyle Interventions in Adipose Tissue Adaptation and Obesity. Curr Med Chem 2021; 28:1683-1702. [PMID: 32368968 DOI: 10.2174/0929867327666200505090449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/03/2020] [Accepted: 03/28/2020] [Indexed: 11/22/2022]
Abstract
The obesity and the associated non-communicable diseases (NCDs) are globally increasing in their prevalence. While the modern-day lifestyle required less ventilation of metabolic energy through muscular activities, this lifestyle transition also provided the unlimited accession to foods around the clock, which prolong the daily eating period of foods that contained high calorie and high glycemic load. These situations promote the high continuous flux of carbon substrate availability in mitochondria and induce the indecisive bioenergetic switches. The disrupted bioenergetic milieu increases the uncoupling respiration due to the excess flow of the substrate-derived reducing equivalents and reduces ubiquinones into the respiratory chain. The diversion of the uncoupling proton gradient through adipocyte thermogenesis will then alleviate the damaging effects of free radicals to mitochondria and other organelles. The adaptive induction of white adipose tissues (WAT) to beige adipose tissues (beAT) has shown beneficial effects on glucose oxidation, ROS protection and mitochondrial function preservation through the uncoupling protein 1 (UCP1)-independent thermogenesis of beAT. However, the maladaptive stage can eventually initiate with the persistent unhealthy lifestyles. Under this metabolic gridlock, the low oxygen and pro-inflammatory environments promote the adipose breakdown with sequential metabolic dysregulation, including insulin resistance, systemic inflammation and clinical NCDs progression. It is unlikely that a single intervention can reverse all these complex interactions. A comprehensive protocol that includes dietary, nutritional and all modifiable lifestyle interventions, can be the preferable choice to decelerate, stop, or reverse the NCDs pathophysiologic processes.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Torsak Tippairote
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Olga Borisova
- Odesa I. I. Mechnikov National University, Odessa, Ukraine
| |
Collapse
|
16
|
Autonomic and Perceptual Responses to Induction of a Ketogenic Diet in Free-Living Endurance Athletes: A Randomized, Crossover Trial. Int J Sports Physiol Perform 2021; 16:1603-1609. [PMID: 33873154 DOI: 10.1123/ijspp.2020-0814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE Considerable interindividual heterogeneity has been observed in endurance performance responses following induction of a ketogenic diet (KD). It is plausible that a physiological stress response in the period following the dramatic dietary shift associated with transition to a KD may explain this heterogeneity. METHODS In a randomized, crossover study design, 8 trained male runners completed an incremental exercise test and ran to exhaustion at 70%VO2max before and after a 31-day rigorously controlled habitual diet or KD intervention, and recorded heart rate variability (root mean square of the sum of successive differences in R-R intervals [rMSSD]) upon waking each morning along with the recovery-stress questionnaire for athletes each week. Data were analyzed using linear mixed models. RESULTS A significant reduction in rMSSD was observed in the KD (-9.77 [4.03] ms, P = .02), along with an increase in day-to-day variability in rMSSD (2.1% [1.0%], P = .03). The reduction in rMSSD in the KD for the subgroup of individuals exhibiting impaired exercise capacity following induction of the KD approached significance (Δ -22 [15] ms, P = .06, N = 4); whereas no effect was observed in those who exhibited unchanged exercise capacity (Δ 5 [18] ms, P = .61, N = 4). No main effects were observed for recovery-stress questionnaire for athletes. CONCLUSIONS Our data suggest those working with endurance athletes transitioning onto a KD may consider using noninvasive, inexpensive resting heart rate variability measures to gain individual-level insights into the likely short-term effects on exercise capacity.
Collapse
|
17
|
Shaw DM, Merien F, Braakhuis A, Maunder E, Dulson DK. Exogenous Ketone Supplementation and Keto-Adaptation for Endurance Performance: Disentangling the Effects of Two Distinct Metabolic States. Sports Med 2021; 50:641-656. [PMID: 31820376 DOI: 10.1007/s40279-019-01246-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ketone bodies (KB) provide an alternative energy source and uniquely modulate substrate metabolism during endurance exercise. Nutritional ketosis (blood KBs > 0.5 mM) can be achieved within minutes via exogenous ketone supplementation or days-to-weeks via conforming to a very low-carbohydrate, ketogenic diet (KD). In contrast to short-term (< 2 weeks) KD ingestion, chronic adherence (> 3 weeks) leads to a state of keto-adaptation. However, despite elevating blood KBs to similar concentrations, exogenous ketone supplementation and keto-adaptation are not similar metabolic states as they elicit diverse and distinct effects on substrate availability and metabolism during exercise; meaning that their influence on endurance exercise performance is different. In contrast to contemporary, high(er)-carbohydrate fuelling strategies, inducing nutritional ketosis is rarely ergogenic irrespective of origin and, in fact, can impair endurance performance. Nonetheless, exogenous ketone supplementation and keto-adaptation possess utility for select endurance events and individuals, thus warranting further research into their performance effects and potential strategies for their optimisation. It is critical, however, that future research considers the limitations of measuring blood KB concentrations and their utilisation, and assess the effect of nutritional ketosis on performance using exercise protocols reflective of real-world competition. Furthermore, to reliably assess the effects of keto-adaptation, rigorous dietary-training controls of sufficient duration should be prioritised.
Collapse
Affiliation(s)
- David M Shaw
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.
| | - Fabrice Merien
- AUT-Roche Diagnostics Laboratory, School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Andrea Braakhuis
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ed Maunder
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Deborah K Dulson
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
18
|
Cipryan L, Dostal T, Plews DJ, Hofmann P, Laursen PB. Adiponectin/leptin ratio increases after a 12-week very low-carbohydrate, high-fat diet, and exercise training in healthy individuals: A non-randomized, parallel design study. Nutr Res 2020; 87:22-30. [PMID: 33596508 DOI: 10.1016/j.nutres.2020.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/16/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
This study aimed to investigate the effect of a 12-week very low-carbohydrate, high-fat (VLCHF) diet and exercise on biomarkers of inflammation in healthy individuals. Since the anti-inflammatory effects of a ketogenic diet have been established, we hypothesized that the VLCHF diet, along with exercise, would have an additional favorable effect on biomarkers of inflammation. Twenty-four healthy individuals were allocated to the VLCHF diet (VLCHF: N = 12, age 25.3 ± 2.0 years, body mass 66.7 ± 9.8 kg, fat mass 21.5% ± 4.9%), or habitual diet (HD: N = 12, age 23.9 ± 3.8 years, body mass 72.7 ± 15.0 kg, fat mass 23.4 ± 8.4 %) group. Biomarkers of inflammation (adiponectin, leptin, and high-sensitive interleukin-6 [hs-IL-6]) and substrate metabolism (glycated hemoglobin, fasting glucose, triacylglycerides, and cholesterol) were analyzed from blood at baseline and after 12 weeks. The adiponectin-leptin ratio significantly increased in the VLCHF group after the intervention period (ES [95% CL]: -0.90 [-0.96, -0.77], P ≤ .001, BF10 = 22.15). The adiponectin-leptin ratio changes were associated with both a significant increase in adiponectin (-0.79 [-0.91, -0.54], P ≤ .001, BF10 = 9.43) and a significant decrease in leptin (0.58 [0.19, 0.81], P = .014, BF10 = 2.70). There was moderate evidence of changes in total cholesterol (-1.15 [-2.01, -0.27], P = .010, BF10 = 5.20), and LDL cholesterol (-1.12 [-2.01, -0.21], P = .016, BF10 = 4.56) in the VLCHF group. Body weight (kg) and fat mass (%) decreased in the VLCHF group by 5.4% and 14.9%, respectively. We found that in healthy young individuals, consuming a VLCHF diet while performing regular exercise over a 12-week period produced favorable changes in body weight and fat mass along with beneficial changes in serum adiponectin and leptin concentrations. These data support the use of a VLCHF diet strategy for the primary prevention of chronic diseases associated with systemic low-grade inflammation.
Collapse
Affiliation(s)
- Lukas Cipryan
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic.
| | - Tomas Dostal
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic.
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.
| | - Peter Hofmann
- Institute of Human Movement Science, Sport and Health; Exercise Physiology, Training and Training Therapy Research Group, University of Graz, Graz, Austria.
| | - Paul B Laursen
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
19
|
Kaviani M, Izadi A, Heshmati J. Would creatine supplementation augment exercise performance during a low carbohydrate high fat diet? Med Hypotheses 2020; 146:110369. [PMID: 33214000 DOI: 10.1016/j.mehy.2020.110369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/06/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Low carbohydrate high fat (LCHF) diets are emerging in popularity. Several athletics have adopted LCHF diets in an attempt to improve exercise performance and body composition by enhancing fat utilization. However, these diets impair maximal and supramaximal exercise performance due to limited glycogen stores as well as increasing ratings of perceived exertion (RPE). All of these factors may impact training volume and compliance, leading to less optimal training adaptations over time. In contrast, LCHF diets is an effective strategy for weight and fat mass loss and is beneficial for a variety of metabolic processes. One potential nutritional strategy to off-set the negative aspects of a LCHF is creatine (Cr). Creatine supplementation has been shown to increase muscle power output and reduce the rate of fatigue; thereby allowing individuals to work at a higher intensity for a greater duration. Furthermore, Cr supplementation may positively enhance body composition (gains in muscle mass and possibly aid in fat mass loss). Despite the popularity of both LCHF and creatine supplementation, there is no data available investigating the effects of Cr supplementation on exercise performance and body composition during LCHF diets in humans. We would hypothesize that Cr supplementation may augment exercise performance (anerobic power and strength) during a LCHF diet compared to a LCHF diet and placebo. In addition, combining Cr with a LCHF diet would further increase body fat loss and improve body composition compared to a LCHF diet and/or low-fat diets (LFDs) placebo. Our hypotheses would be under the assumption that total caloric intake and protein intake are matched. Future research is warranted to examine chronic exercise with LCHF diets with and without creatine and compare performance and body composition changes to high carbohydrate diets.
Collapse
Affiliation(s)
- Mojtaba Kaviani
- School of Nutrition and Dietetics, Faculty of Pure and Applied Science, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada.
| | - Azimeh Izadi
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Javad Heshmati
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
20
|
Rothschild JA, Kilding AE, Plews DJ. Pre-Exercise Nutrition Habits and Beliefs of Endurance Athletes Vary by Sex, Competitive Level, and Diet. J Am Coll Nutr 2020; 40:517-528. [PMID: 32926647 DOI: 10.1080/07315724.2020.1795950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The purpose of this study was to determine the self-reported beliefs and practices relating to pre-exercise nutrition intake among endurance athletes of varying ages and competitive levels and examine differences based on sex, competitive level, and habitual dietary pattern. METHOD An anonymous online survey was circulated internationally in English and completed by 1950 athletes of varying competitive levels (51.0% female, mean age 40.9 years [range 18:78]). Survey questions included training background, determinants of pre-exercise nutrition intake and composition, and timing relative to exercise. RESULTS Prior to morning exercise, 36.4%, 36.0%, and 27.6% of athletes consumed carbohydrate-containing food/drinks before almost every workout, some of the time, and never/rarely, respectively, with significant effects of sex (p < 0.001, Cramer's V (ϕc) = 0.15) and competitive level (p < 0.001, ϕc = 0.09). Nutritional intake before exercise varied based on workout duration for 47.6% of athletes, with significant effects of sex (ϕc = 0.15) and habitual diet (ϕc = 0.19), and based on workout intensity for 39.1% of athletes, with significant effects of sex (ϕc = 0.13) and habitual diet (ϕc = 0.17, all p < 0.001). Additionally, 89.0% of athletes reported using at least some type of dietary supplement (including caffeine from coffee/tea) within 1 hour before exercise. CONCLUSIONS Overall, nearly all factors measured relating to pre-exercise nutrition intake varied by sex, competitive level, habitual dietary pattern, and/or intensity/duration of the training session and suggest a large number of athletes may not be following current recommendations for optimizing endurance training adaptations.
Collapse
Affiliation(s)
- Jeffrey A Rothschild
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Andrew E Kilding
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
21
|
Murphy NE, Carrigan CT, Margolis LM. High-Fat Ketogenic Diets and Physical Performance: A Systematic Review. Adv Nutr 2020; 12:223-233. [PMID: 32865567 PMCID: PMC7850028 DOI: 10.1093/advances/nmaa101] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/13/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Use of high-fat, ketogenic diets (KDs) to support physical performance has grown in popularity over recent years. While these diets enhance fat and reduce carbohydrate oxidation during exercise, the impact of a KD on physical performance remains controversial. The objective of this work was to assess the effect of KDs on physical performance compared with mixed macronutrient diets [control (CON)]. A systematic review of the literature was conducted using PubMed and Cochrane Library databases. Randomized and nonrandomized studies were included if participants were healthy (free of chronic disease), nonobese [BMI (kg/m2) <30], trained or untrained men or women consuming KD (<50 g carbohydrate/d or serum or whole-blood β-hydroxybutyrate >0.5 mmol/L) compared with CON (fat, 12-38% of total energy intake) diets for ≥14 d, followed by a physical performance test. Seventeen studies (10 parallel, 7 crossover) with 29 performance (13 endurance, 16 power or strength) outcomes were identified. Of the 13 endurance-type performance outcomes, 3 (1 time trial, 2 time-to-exhaustion) reported lower and 10 (4 time trials, 6 time-to-exhaustion) reported no difference in performance between the KD compared with CON. Of the 16 power or strength performance outcomes, 3 (1 power, 2 strength) reported lower, 11 (4 power, 7 strength) no difference, and 2 (power) enhanced performance in the KD compared with the CON. Risk of bias identified some concern of bias primarily due to studies allowing participants to self-select diet intervention groups and the inability to blind participants to the study intervention. Overall, the majority of null results across studies suggest that a KD does not have a positive or negative impact on physical performance compared with a CON diet. However, discordant results between studies may be due to multiple factors, such as the duration consuming study diets, training status, performance test, and sex differences, which will be discussed in this systematic review.
Collapse
Affiliation(s)
- Nancy E Murphy
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Christopher T Carrigan
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | | |
Collapse
|
22
|
McSwiney FT, Doyle L, Plews DJ, Zinn C. Impact Of Ketogenic Diet On Athletes: Current Insights. Open Access J Sports Med 2019; 10:171-183. [PMID: 31814784 PMCID: PMC6863116 DOI: 10.2147/oajsm.s180409] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/04/2019] [Indexed: 02/05/2023] Open
Abstract
The impact of a ketogenic diet (KD) (<50 g/d carbohydrate, >75% fat) on athletic performance has sparked much interest and self-experimentation in the past 3-4 years. Evidence shows 3-4-week adaptations to a KD in endurance-trained athletes were associated with maintenance of moderate (46-63% VO2max) and vigorous intensity (64-90% VO2max) endurance exercise, while at intensities >70% VO2max, increases in fat oxidation were associated with decreased economy (increased oxygen consumption), and in some cases, increased ratings of perceived exertion and heart rate. Two investigations in recreationally active endurance athletes noted no vigorous intensity exercise decrement following 3- and 12-week adaptations. Moderate (70-85% one repetition maximum) and near-maximal to maximal intensity (>85% 1RM) strength performance experienced no decrement following a 3-12-week KD adaptation. Beneficial effects were noted for 2000 m sprint and critical power test completed for short duration at vigorous intensity, while two additional tests noted no decrement. For sprint, near-maximal exercise (>91% VO2max), benefit of the KD was observed for six-second sprint, while no decrement in performance was noted for two additional maximal tests. When protein is equated (grams per kilogram), one investigation noted no decrement in muscle hypertrophy, while one noted a decrement. One investigation with matched protein noted the KD group lost more body fat. In conclusion, moderate-to-vigorous intensity exercise experiences no decrement following adaptation to a KD. Decreases in exercise economy are observed >70% VO2max in trained endurance athletes which may negate performance within field settings. Beneficial effects of the KD during short duration vigorous, and sprint bouts of exercises are often confounded by greater weight loss in the KD group. With more athletes pursuing carbohydrate-restricted diets (moderate and strict (KD)) for their proposed health benefits, more work is needed in the area to address both performance and health outcomes.
Collapse
Affiliation(s)
- Fionn T McSwiney
- School of Health and Human Performance, Dublin City University, Dublin, Ireland.,Setanta College, Thurlus, Tipperary, Ireland
| | - Lorna Doyle
- Department of Sport and Exercise Science, Waterford Institute of Technology, Waterford, Ireland
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Caryn Zinn
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|