1
|
Wang D, Qi W, Mao X, Zhang Y, Miao Z, Zhu C, Shao Y, Ge G, Zhang W, Jin H, Zhu H, Pan H. Gui Qi Zhuang Jin Decoction ameliorates mitochondrial dysfunction in sarcopenia mice via AMPK/PGC-1α/Nrf2 axis revealed by a metabolomics approach. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155908. [PMID: 39094439 DOI: 10.1016/j.phymed.2024.155908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/04/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE Sarcopenia, as a condition of muscle mass loss and functional decline typically diagnosed in elderly individuals, severely affects human physical activity, metabolic homeostasis, and quality of life. Gui Qi Zhuang Jin Decoction (GQZJD), an approved hospital-based prescription with years of clinical application, has been demonstrated to have a notable therapeutic effect on sarcopenia. However, its potential mechanism of action in the treatment of sarcopenia remains uncertain. METHODS Ultra-performance liquid chromatography paired with Q Exactive™ HF-X mass spectrometry (UPLC-QE-MS) was used to identify the ingredients of GQZJD. Subsequently, GQZJD observed the basic growth and muscles of the sarcopenia mouse, while the behavioral indicators were also tested. Muscle histopathology and serum oxidative stress biochemicals were also detected, and mitochondrial function and energy metabolism-related indicators in the gastrocnemius muscle were examined. Then, a metabolomics strategy was applied to predict possible pathways involving mitochondria by which GQZJD could improve sarcopenia. Finally, quantitative real-time polymerase chain reaction and western blot analyses were carried out to validate the effects of GQZJD on sarcopenia-induced mitochondrial dysfunction, together with uncovering the associated mechanisms. RESULTS Twenty-seven ingredients absorbed into the blood (IAIBs) of GQZJD were identified using UPLC-QE-MS, which were regarded as the main active ingredients behind its sarcopenia treatment effects. GQZJD administration increased the body weight, gastrocnemius muscle mass, and autonomic activity, mitigated muscle tissue morphology and pathology; and alleviated the oxidative stress levels in sarcopenia mice. Treatment with GQZJD also decreased the mitochondrial reactive oxygen species level and serum lipid peroxide Malonaldehyde concentration. and increased the mitochondrial membrane potential, adenosine triphosphate level, 8‑hydroxy-2-deoxyguanosine content, mitochondrial DNA copy number, and the mitochondrial fission factor dynamin-related protein 1. Non-targeted metabolomics suggested that the sarcopenia therapeutic effect of GQZJD on sarcopenia may occur through the glycerophospholipid metabolism, choline metabolism in cancer, phenylalanine metabolism and tyrosine metabolism pathways, implying an association with AMP-activated protein kinase (AMPK) and related signals. Further, the molecular docking results hinted that AMPK performed well in terms of binding energy with the 27 IAIBs of GQZJD (average binding energy, -7.5 kcal/mol). Finally, we determined that GQZJD significantly activated the key targets of the AMPK/peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)/nuclear factor erythroid 2-related factor 2 (Nrf2) axis.. CONCLUSIONS Our results demonstrated that GQZJD ameliorated d-galactose-induced sarcopenia by promoting the animal behaviours, facilitating mitochondrial function and restoring mitochondrial energy metabolism. with its effects mediated by the AMPK/PGC-1α/Nrf2 axis. Over all, GQZJD represents a promising therapeutic candidate that ameliorated sarcopenia in aging mice.
Collapse
Affiliation(s)
- Dong Wang
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, PR China; Department of Orthopaedics, Hangzhou Dingqiao Hospital, Hangzhou 310021, PR China; Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, PR China
| | - Weihui Qi
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, PR China
| | - Xinning Mao
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, PR China
| | - Yujun Zhang
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, PR China
| | - Zhimin Miao
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, PR China
| | - Chengyue Zhu
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, PR China; Department of Orthopaedics, Hangzhou Dingqiao Hospital, Hangzhou 310021, PR China; Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, PR China
| | - Yinyan Shao
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, PR China
| | - Guofen Ge
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, PR China
| | - Wei Zhang
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, PR China
| | - HongTing Jin
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, PR China; Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310007, PR China.
| | - Hang Zhu
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, PR China.
| | - Hao Pan
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, PR China; Department of Orthopaedics, Hangzhou Dingqiao Hospital, Hangzhou 310021, PR China; Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, PR China.
| |
Collapse
|
2
|
Liu W, Wang S, Zhang X, Ke Z, Wen X, Zhao J, Zhuang X, Liao L. Enhanced Cardiomyocyte NLRP3 Inflammasome-Mediated Pyroptosis Promotes d-Galactose-Induced Cardiac Aging. J Am Heart Assoc 2024; 13:e032904. [PMID: 38979831 PMCID: PMC11292767 DOI: 10.1161/jaha.123.032904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 06/03/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Cardiac aging represents an independent risk factor for aging-associated cardiovascular diseases. Although evidence suggests an association between NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome formation and numerous cardiovascular diseases, its role in cardiac aging remains largely unclear. METHODS AND RESULTS The longevity of mice with wild-type and NLRP3 knockout (NLRP3-/-) genotypes was assessed, with or without d-galactose treatment. Cardiac function was evaluated using echocardiography, and cardiac histopathology was examined through hematoxylin and eosin and Masson's trichrome staining. Senescence-associated β-galactosidase (SA-β-gal) staining was employed to detect cardiac aging. Western blotting was used to assess aging-related proteins (p53, p21) and pyroptosis-related proteins. Additionally, dihydroethidium staining, lactate dehydrogenase release, and interleukin-1β ELISA assays were performed, along with measurements of total superoxide dismutase and malondialdehyde levels. In vitro, H9c2 cells were exposed to d-galactose for 24 hours in the absence or presence of N-acetyl-l-cysteine (reactive oxygen species inhibitor), BAY-117082 (nuclear factor κ-light-chain enhancer of activated B cells inhibitor), MCC950 (NLRP3 inhibitor), and VX-765 (Caspase-1 inhibitor). Immunofluorescence staining was employed to detect p53, gasdermin D, and apoptosis-associated speck-like protein proteins. Intracellular reactive oxygen species levels were assessed using fluorescence microscopy and flow cytometry. Senescence-associated β-galactosidase staining and Western blotting were also employed in vitro for the same purpose. The results showed that NLRP3 upregulation was implicated in aging and cardiovascular diseases. Inhibition of NLRP3 extended life span, mitigated the aging phenotype, improved cardiac function and blood pressure, ameliorated lipid metabolism abnormalities, inhibited pyroptosis in cardiomyocytes, and ultimately alleviated cardiac aging. In vitro, the inhibition of reactive oxygen species, nuclear factor κ-light-chain enhancer of activated B cells, NLRP3, or caspase-1 attenuated NLRP3 inflammasome-mediated pyroptosis. CONCLUSIONS The reactive oxygen species/nuclear factor κ-light-chain enhancer of activated B cells/NLRP3 signaling pathway loop contributes to d-galactose-treated cardiomyocyte senescence and cardiac aging.
Collapse
Affiliation(s)
- Wen‐bin Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive SubstancesGuangdong Pharmaceutical University, Guangzhou Higher Education Mega CenterGuangzhouGuangdongChina
- School of Health ScienceGuangdong Pharmaceutical UniversityGuangzhouPeople’s Republic of China
| | - Sui‐sui Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive SubstancesGuangdong Pharmaceutical University, Guangzhou Higher Education Mega CenterGuangzhouGuangdongChina
- School of Health ScienceGuangdong Pharmaceutical UniversityGuangzhouPeople’s Republic of China
- Department of Nuclear MedicineThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityGuangdongChina
| | - Xu Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive SubstancesGuangdong Pharmaceutical University, Guangzhou Higher Education Mega CenterGuangzhouGuangdongChina
- School of Health ScienceGuangdong Pharmaceutical UniversityGuangzhouPeople’s Republic of China
| | - Ze‐zhi Ke
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive SubstancesGuangdong Pharmaceutical University, Guangzhou Higher Education Mega CenterGuangzhouGuangdongChina
- School of Health ScienceGuangdong Pharmaceutical UniversityGuangzhouPeople’s Republic of China
| | - Xiu‐yun Wen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive SubstancesGuangdong Pharmaceutical University, Guangzhou Higher Education Mega CenterGuangzhouGuangdongChina
- School of Health ScienceGuangdong Pharmaceutical UniversityGuangzhouPeople’s Republic of China
| | - Jie Zhao
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive SubstancesGuangdong Pharmaceutical University, Guangzhou Higher Education Mega CenterGuangzhouGuangdongChina
- School of Health ScienceGuangdong Pharmaceutical UniversityGuangzhouPeople’s Republic of China
| | - Xiao‐dong Zhuang
- Cardiology DepartmentThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangdongPeople’s Republic of China
| | - Li‐zhen Liao
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive SubstancesGuangdong Pharmaceutical University, Guangzhou Higher Education Mega CenterGuangzhouGuangdongChina
- School of Health ScienceGuangdong Pharmaceutical UniversityGuangzhouPeople’s Republic of China
| |
Collapse
|
3
|
Pang Y, Hu H, Xu K, Cao T, Wang Z, Nie J, Zheng H, Luo H, Wang F, Xiong C, Deng KY, Xin HB, Zhang X. CD38 Deficiency Protects Mouse Retinal Ganglion Cells Through Activating the NAD+/Sirt1 Pathway in Ischemia-Reperfusion and Optic Nerve Crush Models. Invest Ophthalmol Vis Sci 2024; 65:36. [PMID: 38776115 PMCID: PMC11127494 DOI: 10.1167/iovs.65.5.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/05/2024] [Indexed: 05/27/2024] Open
Abstract
Purpose The purpose of this study was to investigate the protective effect of CD38 deletion on retinal ganglion cells (RGCs) in a mouse retinal ischemia/reperfusion (I/R) model and an optic nerve crush (ONC) model, and to elucidate the underlying molecular mechanisms. Methods Retinal I/R and ONC models were constructed in mice. PCR was used to identify the deletion of CD38 gene in mice, hematoxylin and eosin (H&E) staining was used to evaluate the changes in retinal morphology, and electroretinogram (ERG) was used to evaluate the changes in retinal function. The survival of RGCs and activation of retinal macroglia were evaluated by immunofluorescence staining. The expression of Sirt1, CD38, Ac-p65, Ac-p53, TNF-α, IL-1β, and Caspase3 proteins in the retina was further evaluated by protein imprinting. Results In retinal I/R and ONC models, CD38 deficiency reduced the loss of RGCs and activation of macroglia and protected the retinal function. CD38 deficiency increased the concentration of NAD+, reduced the degree of acetylation of NF-κB p65 and p53, and reduced expression of the downstream inflammatory cytokines TNFα, IL-1β, and apoptotic protein Caspase3 in the retina in the ONC model. Intraperitoneal injection of the Sirt1 inhibitor EX-527 partially counteracted the effects of CD38 deficiency, suggesting that CD38 deficiency acts at least in part through the NAD+/Sirt1 pathway. Conclusions CD38 plays an important role in the pathogenesis of retinal I/R and ONC injury. CD38 deletion protects RGCs by attenuating inflammatory responses and apoptosis through the NAD+/Sirt1 pathway.
Collapse
Affiliation(s)
- Yulian Pang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Haijian Hu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Ke Xu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Ting Cao
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
- Department of Orthopaedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Zhiruo Wang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiahe Nie
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Haina Zheng
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Hongdou Luo
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Feifei Wang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Chan Xiong
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Ke-Yu Deng
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Hong-Bo Xin
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| |
Collapse
|
4
|
Yu ZP, Wang YK, Wang XY, Gong LN, Tan HL, Jiang MX, Wang LF, Yu GH, Deng KY, Xin HB. Smooth-Muscle-Cell-Specific Deletion of CD38 Protects Mice from AngII-Induced Abdominal Aortic Aneurysm through Inhibiting Vascular Remodeling. Int J Mol Sci 2024; 25:4356. [PMID: 38673941 PMCID: PMC11049988 DOI: 10.3390/ijms25084356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/24/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a serious vascular disease which is associated with vascular remodeling. CD38 is a main NAD+-consuming enzyme in mammals, and our previous results showed that CD38 plays the important roles in many cardiovascular diseases. However, the role of CD38 in AAA has not been explored. Here, we report that smooth-muscle-cell-specific deletion of CD38 (CD38SKO) significantly reduced the morbidity of AngII-induced AAA in CD38SKOApoe-/- mice, which was accompanied with a increases in the aortic diameter, medial thickness, collagen deposition, and elastin degradation of aortas. In addition, CD38SKO significantly suppressed the AngII-induced decreases in α-SMA, SM22α, and MYH11 expression; the increase in Vimentin expression in VSMCs; and the increase in VCAM-1 expression in smooth muscle cells and macrophage infiltration. Furthermore, we demonstrated that the role of CD38SKO in attenuating AAA was associated with the activation of sirtuin signaling pathways. Therefore, we concluded that CD38 plays a pivotal role in AngII-induced AAA through promoting vascular remodeling, suggesting that CD38 may serve as a potential therapeutic target for the prevention of AAA.
Collapse
MESH Headings
- Animals
- Male
- Mice
- ADP-ribosyl Cyclase 1/metabolism
- ADP-ribosyl Cyclase 1/genetics
- Angiotensin II
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/pathology
- Disease Models, Animal
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myosin Heavy Chains/metabolism
- Myosin Heavy Chains/genetics
- Signal Transduction
- Vascular Remodeling/genetics
Collapse
Affiliation(s)
- Zhen-Ping Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yi-Kai Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiao-Yu Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Li-Na Gong
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Hui-Lan Tan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Mei-Xiu Jiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Ling-Fang Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Guan-Hui Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- School of Pharmacy, Nanchang University, Nanchang 330031, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- College of Life Science, Nanchang University, Nanchang 330031, China
- School of Pharmacy, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- College of Life Science, Nanchang University, Nanchang 330031, China
- School of Pharmacy, Nanchang University, Nanchang 330031, China
| |
Collapse
|
5
|
Xu W, Xiang X, Lin L, Gong ZH, Xiao WJ. l-Theanine delays d-galactose-induced senescence by regulating the cell cycle and inhibiting apoptosis in rat intestinal cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2073-2084. [PMID: 37919877 DOI: 10.1002/jsfa.13096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Intestinal senescence is associated with several aging-related diseases. l-Theanine (LTA) has demonstrated strong potential as an antioxidant and antisenescence agent. This study investigated the regulatory effect of LTA on cellular senescence using an in vitro model of d-galactose (D-Gal)-induced senescence in the rat epithelial cell line, intestinal epithelioid cell-6 (IEC-6). RESULTS Treatment of IEC-6 cells with 40 mg/mL D-Gal for 48 h resulted in the successful development of the senescent cell model. Compared with D-Gal alone, both LTA preventive and delayed intervention increased cell viability and the ratio of JC-1 monomers to aggregates, increased the antioxidant capacity, and decreased the advanced glycation end product (AGE) levels and the overall number of senescent cells. Preventive and delayed intervention with 1000 μM LTA alleviated the D-Gal-induced cell cycle arrest by regulating p38, p53, CDK4, and CDK6 expression at the mRNA and protein levels, and further induced CycD1 proteins. Moreover, LTA preventive intervention reduced apoptosis to a greater degree than delayed intervention by upregulating the expression of the receptors of AGEs, Bax, Bcl-2, and NF-κB at the mRNA and protein levels. CONCLUSION Our findings indicate that LTA intervention could attenuate senescence in IEC-6 cells by regulating the cell cycle and inhibiting apoptosis. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Xu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Xi Xiang
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Ling Lin
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Zhi-Hua Gong
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Wen-Jun Xiao
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| |
Collapse
|
6
|
Xu J, Chen X, Liu S, Wei Z, Xu M, Jiang L, Han X, Peng L, Gu X, Xia T. Nicotinamide mononucleotide pretreatment improves long-term isoflurane anesthesia-induced cognitive impairment in mice. Behav Brain Res 2024; 458:114738. [PMID: 37931707 DOI: 10.1016/j.bbr.2023.114738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/17/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is characterized by impaired cognitive function following general anesthesia and surgery. Oxidative stress is a significant pathophysiological manifestation underlying POCD. Previous studies have reported that the decline of nicotinamide adenine dinucleotide (NAD+) -dependent sirtuin 1 (SIRT1) contributes to the activation of oxidative stress. In this study, we investigated whether pretreatment of nicotinamide mononucleotide (NMN), an NAD+ intermediate, improves oxidative stress and cognitive function in POCD. The animal model of POCD was established in C57BL/6 J mice through 6 h isoflurane anesthesia-induced cognitive impairment. Mice were intraperitoneally injected with NMN for 7 days prior to anesthesia, after which oxidative stress and cognitive function were assessed. The level of oxidative stress was determined using flow cytometry analysis and assey kits. The fear condition test and the Y-maze test were utilized to evaluate contextual and spatial memory. Our results showed that cognitive impairment and increased oxidative stress were observed in POCD mice, as well as downregulation of NAD+ levels and related protein expressions of SIRT1 and nicotinamide phosphoribosyltransferase (NAMPT) in the hippocampus. And NMN supplementation could effectively prevent the decline of NAD+ and related proteins, and reduce oxidative stress and cognitive disorders after POCD. Mechanistically, the findings suggested that protection on cognitive function mediated by NMN pretreatment in POCD mice may be regulated by NAD+-SIRT1 signaling pathway. This study indicated that NMN preconditioning reduced oxidative stress damage and alleviated cognitive impairment in POCD mice.
Collapse
Affiliation(s)
- Jiyan Xu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xinlu Chen
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Shuai Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Ziqi Wei
- Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Minhui Xu
- Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Linhao Jiang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xue Han
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Liangyu Peng
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Tianjiao Xia
- Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| |
Collapse
|
7
|
Hu M, Zhang X, Gao YP, Hu YX, Teng T, Wang SS, Tang QZ. Isthmin-1 Improves Aging-Related Cardiac Dysfunction in Mice through Enhancing Glycolysis and SIRT1 Deacetylase Activity. Aging Dis 2024:AD.2024.0113. [PMID: 38300636 DOI: 10.14336/ad.2024.0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/13/2024] [Indexed: 02/02/2024] Open
Abstract
Aging-related cardiac dysfunction poses a major risk factor of mortality for elderly populations, however, efficient treatment for aging-related cardiac dysfunction is far from being known. Isthmin-1 (ISM1) is a novel adipokine that promotes glucose uptake and acts indispensable roles in restraining inflammatory and fibrosis. The present study aims to investigate the potential role and molecular mechanism of ISM1 in aging-related cardiac dysfunction. Aged and matched young mice were overexpressed or silenced with ISM1 to investigate the role of ISM1 in aging-related cardiac dysfunction. Moreover, H9C2 cells were stimulated with D-galactose (D-gal) to examine the role of ISM1 in vitro. Herein, we found that cardiac-specific overexpression of ISM1 significantly mitigated insulin resistance by promoting glucose uptake in aging mice. ISM1 overexpression alleviated while ISM1 silencing deteriorated cellular senescence, cardiac inflammation, and dysfunction in natural and accelerated cardiac aging. Mechanistically, ISM1 promoted glycolysis and activated Sirtuin-1 (SIRT1) through increasing glucose uptake. ISM1 increased glucose uptake via translocating GLUT4 to the surface, thereby enhancing glycolytic flux and hexosamine biosynthetic pathway (HBP) flux, ultimately leading to increased SIRT1 activity through O-GlcNAc modification. ISM1 may serve as a novel potential therapeutic target for preventing aging-related cardiac disease in elderly populations. ISM1 prevents aging-related cardiac dysfunction by promoting glycolysis and enhancing SIRT1 deacetylase activity, making it a promising therapeutic target for aging-related cardiac disease.
Collapse
Affiliation(s)
- Min Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Xin Zhang
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yi-Peng Gao
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Yu-Xin Hu
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Sha-Sha Wang
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| |
Collapse
|
8
|
Zeng L, Ying Q, Lou H, Wang F, Pang Y, Hu H, Zhang Z, Song Y, Liu P, Zhang X. Protective effect of the natural flavonoid naringenin in mouse models of retinal injury. Eur J Pharmacol 2024; 962:176231. [PMID: 38052414 DOI: 10.1016/j.ejphar.2023.176231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Glaucoma is an eye disease with a high rate of blindness and a complex pathogenesis. Ocular hypertension (OHT) is a critical risk factor, and retinal ischemia/reperfusion (I/R) is an important pathophysiological basis. This study was designed to investigate the retinal neuroprotective effect of oral naringenin in an acute retinal I/R model and a chronic OHT model and the possible mechanism involved. After the I/R and OHT models were established, mice were given vehicle or naringenin (100 mg/kg or 300 mg/kg). Hematoxylin-eosin (HE) staining and immunostaining of RBPMS and glial fibrillary acidic protein (GFAP) were used to evaluate retinal injury. GFAP, CD38, Sirtuin1 (SIRT1), and NOD-like receptor protein 3 (NLRP3) expression levels were measured by Western blotting. In the OHT model, intraocular pressure (IOP) was dynamically maintained at approximately 20-25 mmHg after injury. The retinal structure was damaged, and retinal ganglion cells (RGCs) were lost in both models. Naringenin ameliorated the abovementioned indications but also demonstrated that high concentrations of naringenin significantly inhibited retinal astrocyte activation and inhibited damage-induced increases in the expression of GFAP, NLRP3, and CD38 proteins, while SIRT1 protein expression was upregulated. This study showed for the first time that naringenin can reduce microbead-induced IOP elevation in the OHT model, providing new evidence for the application of naringenin in glaucoma. Naringenin may mediate the CD38/SIRT1 signaling pathway, inhibit astrocyte activation, and ultimately exert an anti-inflammatory effect to achieve retinal neuroprotection.
Collapse
Affiliation(s)
- Ling Zeng
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Qian Ying
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Hongdou Lou
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Feifei Wang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Yulian Pang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Haijian Hu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Ziqiao Zhang
- Queen Mary School, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yuning Song
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Peiyu Liu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China.
| |
Collapse
|
9
|
Li P, Ma Y, Wang X, Li X, Wang X, Yang J, Liu G. The protective effect of PL 1-3 on D-galactose-induced aging mice. Front Pharmacol 2024; 14:1304801. [PMID: 38235117 PMCID: PMC10791853 DOI: 10.3389/fphar.2023.1304801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
The aging population has become an issue that cannot be ignored, and research on aging is receiving increasing attention. PL 1-3 possesses diverse pharmacological properties including anti-oxidative stress, inhibits inflammatory responses and anti-apoptosis. This study showed that PL 1-3 could protect mice, especially the brain, against the aging caused by D-galactose (D-gal). D-gal could cause oxidative stress, inflammation, apoptosis and tissue pathological injury and so on in aging mice. The treatment of PL 1-3 could increase the anti-oxidative stress ability in the serum, liver, kidney and brain of aging mice, via increasing the total antioxidant capacity and the levels of anti-oxidative defense enzymes (superoxide dismutase, glutathione peroxidase, and catalase), and reducing the end product of lipid peroxidation (malondialdehyde). In the brain, in addition to the enhanced anti-oxidative stress via upregulating the level of the nuclear factor erythroid 2-related factor 2 and heme oxygenase 1, PL 1-3 could improve the dysfunction of the cholinergic system via reducing the active of acetylcholinesterase so as to increase the level of acetylcholine, increase the anti-inflammatory and anti-apoptosis activities via downregulating the expressions of pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor-α) and pro-apoptosis proteins (Bcl-2 associated X protein and Caspase-3) in the D-gal-induced aging mice, to enhance the anti-aging ability via upregulating the expression of sirtuin 1 and downregulating the expressions of p53, p21, and p16. Besides, PL 1-3 could reverse the liver, kidney and spleen damages induced by D-gal in aging mice. These results suggested that PL 1-3 may be developed as an anti-aging drug for the prevention and intervention of age-related diseases.
Collapse
Affiliation(s)
- Pengxiao Li
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Yazhong Ma
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Xiaotong Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Xin Li
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Xuekun Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Jie Yang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng University, Liaocheng, Shandong, China
| | - Guoyun Liu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng University, Liaocheng, Shandong, China
| |
Collapse
|
10
|
Lin F, Zhang S, Zhu X, Lv Z. Autophagy-related 7 proteindependent autophagy mediates resveratrol-caused upregulation of mitochondrial biogenesis and steroidogenesis in aged Leydig cell. Mol Biol Rep 2023; 51:28. [PMID: 38133746 DOI: 10.1007/s11033-023-08935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Mitochondrial dysfunction may contribute to decreased testosterone synthesis in aged Leydig cells. Resveratrol (RSV) as an antioxidant has been shown to exhibit multiple positive effects on mitochondrion, where steroidogenesis takes place. Whether RSV can improve steroidogenesis in aged testis is still unknown. This study investigates the effect of RSV on testosterone production during aging and corresponding changes in mitochondrial biogenesis and autophagy activity, which are closely associated with steroidogenesis. Whether ATG7, an important autophagy-related protein, functions in RSV-treated aged Leydig cells will also be explored. METHODS AND RESULTS Two-month-old male C57BL/6 mice were fed for 16 months by customized regular diet with or without RSV as diet supplement. Leydig cell line TM3 cells were treated with D-galactose to induce senescence, followed with or without RSV treatment. Results found that RSV supplement increased testosterone production in both aged mice and D-galactose-induced senescent Leydig cells. Western blot results revealed that RSV treatment elevated levels of steroidogenic rate-limiting enzymes StAR and 3β-HSD, as well as autophagy-related proteins LC3II, Beclin1, ATG5 and ATG7 and mitochondrial function-related proteins mtTFA and COXIV. However, after Atg7 was knocked down in senescent Leydig cells, even though RSV was added, levels of these proteins declined significantly, accompanied by decreased levels of mitochondrial transcript factors PGC-1α, mtTFA and NRF-1 and more fragmented mitochondria, demonstrating that Atg7 knockdown wrecked the protective effects of RSV on steroidogenesis in senescent Leydig cells. CONCLUSION ATG7-dependent autophagy plays a key role in RSV-brought testosterone production increase through regulating mitochondrial biogenesis in senescent Leydig cells.
Collapse
Affiliation(s)
- Fanhong Lin
- Department of Histology & Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Department of Histology & Embryology, Clinical College of Anhui Medical University, Hefei, 230601, China
| | - Shoubing Zhang
- Department of Histology & Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiaomei Zhu
- Department of Histology & Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zhengmei Lv
- Department of Histology & Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
11
|
Zhang H, Chen C, Liu Y, Chen W, Qi J, Xu Y, Ren L, Yang G, Min D, Liu Z, Cai X, Hao M, Xu G, Hou P. D-galactose causes sinoatrial node dysfunction: from phenotype to mechanism. Aging (Albany NY) 2023; 15:12551-12569. [PMID: 37950730 PMCID: PMC10683603 DOI: 10.18632/aging.205196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/12/2023] [Indexed: 11/13/2023]
Abstract
With the population aging, age-related sinoatrial node dysfunction (SND) has been on the rise. Sinoatrial node (SAN) degeneration is an important factor for the age-related SND development. However, there is no suitable animal modeling method in this field. Here, we investigated whether D-galactose could induce SAN degeneration and explored the associated mechanism. In vivo, twelve C57BL/6 mice were divided into Control and D-galactose group to receive corresponding treatments. Senescence was confirmed by analyzing the hair and weight; cardiac function was evaluated through echocardiography, cerebral blood flux and serum-BNP; the SAN function was evaluated by electrocardiogram; fibrotic change was evaluated by Masson's trichrome staining and oxidative stress was assessed through DHE staining and serum indicators. Mechanism was verified through immunofluorescence-staining and Western blotting. In vitro, mouse-atrial-myocytes were treated with D-galactose, and edaravone was utilized as the ROS scavenger. Senescence, oxidative stress, proliferation ability and mechanism were verified through various methods, and intuitive evidence was obtained through electrophysiological assay. Finally, we concluded that D-galactose can be used to induce age-related SND, in which oxidative stress plays a key role, causing PITX2 ectopic expression and downregulates SHOX2 expression, then through the downstream GATA4/NKX2-5 axis, results in pacing-related ion channels dysfunction, and hence SND development.
Collapse
Affiliation(s)
- Heng Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Chen Chen
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yue Liu
- Shenyang Medical College, Shenyang 110034, China
| | - Wei Chen
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 116600, China
| | - Jing Qi
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 116600, China
| | - Yue Xu
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 116600, China
| | - Lu Ren
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 116600, China
| | - Guanlin Yang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 116600, China
| | - Dongyu Min
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 116600, China
| | - Zhuang Liu
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 116600, China
| | - Xintong Cai
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 116600, China
| | - Miao Hao
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 116600, China
| | - Guanzhen Xu
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 116600, China
| | - Ping Hou
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 116600, China
| |
Collapse
|
12
|
Wang LF, Li Q, Wen K, Zhao QH, Zhang YT, Zhao JL, Ding Q, Guan XH, Xiao YF, Deng KY, Xin HB. CD38 Deficiency Alleviates Diabetic Cardiomyopathy by Coordinately Inhibiting Pyroptosis and Apoptosis. Int J Mol Sci 2023; 24:16008. [PMID: 37958991 PMCID: PMC10650707 DOI: 10.3390/ijms242116008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Diabetic cardiomyopathy is one of the diabetes mellitus-induced cardiovascular complications that can result in heart failure in severe cases, which is characterized by cardiomyocyte apoptosis, local inflammation, oxidative stress, and myocardial fibrosis. CD38, a main hydrolase of NAD+ in mammals, plays an important role in various cardiovascular diseases, according to our previous studies. However, the role of CD38 in diabetes-induced cardiomyopathy is still unknown. Here, we report that global deletion of the CD38 gene significantly prevented diabetic cardiomyopathy induced by high-fat diet plus streptozotocin (STZ) injection in CD38 knockout (CD38-KO) mice. We observed that CD38 expression was up-regulated, whereas the expression of Sirt3 was down-regulated in the hearts of diabetic mice. CD38 deficiency significantly promoted glucose metabolism and improved cardiac functions, exemplified by increased left ventricular ejection fraction and fractional shortening. In addition, we observed that CD38 deficiency markedly decreased diabetes or high glucose and palmitic acid (HG + PA)-induced pyroptosis and apoptosis in CD38 knockout hearts or cardiomyocytes, respectively. Furthermore, we found that the expression levels of Sirt3, mainly located in mitochondria, and its target gene FOXO3a were increased in CD38-deficient hearts and cardiomyocytes with CD38 knockdown under diabetic induction conditions. In conclusion, we demonstrated that CD38 deficiency protected mice from diabetes-induced diabetic cardiomyopathy by reducing pyroptosis and apoptosis via activating NAD+/Sirt3/FOXO3a signaling pathways.
Collapse
Affiliation(s)
- Ling-Fang Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.L.); (K.W.); (Q.-H.Z.); (Y.-T.Z.); (J.-L.Z.); (Q.D.); (X.-H.G.); (Y.-F.X.); (K.-Y.D.)
| | | | | | | | | | | | | | | | | | | | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.L.); (K.W.); (Q.-H.Z.); (Y.-T.Z.); (J.-L.Z.); (Q.D.); (X.-H.G.); (Y.-F.X.); (K.-Y.D.)
| |
Collapse
|
13
|
Gouchoe DA, Vijayakumar A, Aly AH, Cui EY, Essandoh M, Gumina RJ, Black SM, Whitson BA. The role of CD38 in ischemia reperfusion injury in cardiopulmonary bypass and thoracic transplantation: a narrative review. J Thorac Dis 2023; 15:5736-5749. [PMID: 37969313 PMCID: PMC10636473 DOI: 10.21037/jtd-23-725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/25/2023] [Indexed: 11/17/2023]
Abstract
Background and Objective Ischemia reperfusion injury (IRI) is often the underlying cause of endothelium breakdown and damage in cardiac or transplantation operations, which can lead to disastrous post-operative consequences. Recent studies of cluster of differentiation 38 (CD38) have identified its critical role in IRI. Our objective is to provide a comprehensive overview of CD38-mediated axis, pathways, and potential CD38 translational therapies for reducing inflammation associated with cardiopulmonary bypass (CPB) or thoracic transplantation and IRI. Methods We conducted a review of the literature by performing a search of the PubMed database on 2 April 2023. To find relevant publications on CD38, we utilized the MeSH terms: "CD38" AND "Ischemia" OR "CD38" AND "Transplant" OR "CD38" AND "Heart" from 1990-2023. Additional papers were included if they were felt to be relevant but were not captured in the MeSH terms. We found 160 papers that met this criterion, and following screening, exclusion and consensus a total of 36 papers were included. Key Content and Findings CD38 is most notably a nicotine adenine dinucleotide (NAD)+ glycohydrolase (NADase), and a generator of Ca2+ signaling secondary messengers. Ultimately, the release of these secondary messengers leads to the activation of important mediators of cellular death. In the heart and during thoracic transplantation, this pathway is intimately involved in a wide variety of injuries; namely the endothelium. In the heart, activation generally results in vasoconstriction, poor myocardial perfusion, and ultimately poor cardiac function. CD38 activation also prevents the accumulation of atherosclerotic disease. During transplantation, intracellular activation leads to infiltration of recipient innate immune cells, tissue edema, and ultimately primary graft dysfunction (PGD). Specifically, in heart transplantation, extracellular activation could be protective and improve allograft survival. Conclusions The knowledge gap in understanding the molecular basis of IRI has prevented further development of novel therapies and treatments. The possible interaction of CD38 with CD39 in the endothelium, and the modulation of the CD38 axis may be a pathway to improve cardiovascular outcomes, heart and lung donor organ quality, and overall longevity.
Collapse
Affiliation(s)
- Doug A. Gouchoe
- COPPER Laboratory, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- 88 Surgical Operations Squadron, Wright-Patterson Medical Center, Wright Patterson AFB, OH, USA
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ammu Vijayakumar
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ahmed H. Aly
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ervin Y. Cui
- COPPER Laboratory, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Michael Essandoh
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Richard J. Gumina
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Davis Heart and Lung Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sylvester M. Black
- COPPER Laboratory, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Division of Transplantation, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Bryan A. Whitson
- COPPER Laboratory, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Davis Heart and Lung Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
14
|
Zhang Y, Zeng M, Zhang X, Yu Q, Zeng W, Yu B, Gan J, Zhang S, Jiang X. Does an apple a day keep away diseases? Evidence and mechanism of action. Food Sci Nutr 2023; 11:4926-4947. [PMID: 37701204 PMCID: PMC10494637 DOI: 10.1002/fsn3.3487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 09/14/2023] Open
Abstract
Apples and their products exemplify the recently reemphasized link between dietary fruit intake and the alleviation of human disease. Their consumption does indeed improve human health due to their high phytochemical content. To identify potentially relevant articles from clinical trials, some epidemiological studies and meta-analyses, and in vitro and in vivo studies (cell cultures and animal models), PubMed was searched from January 1, 2012, to May 15, 2022. This review summarized the potential effects of apple and apple products (juices, puree, pomace, dried apples, extracts rich in apple bioactives and single apple bioactives) on health. Apples and apple products have protective effects against cardiovascular diseases, cancer, as well as mild cognitive impairment and promote hair growth, healing of burn wounds, improve the oral environment, prevent niacin-induced skin flushing, promote the relief of UV-induced skin pigmentation, and improve the symptoms of atopic dermatitis as well as cedar hay fever among others. These effects are associated with various mechanisms, such as vascular endothelial protection, blood lipids lowering, anti-inflammatory, antioxidant, antiapoptotic, anti-invasion, and antimetastatic effects. Meanwhile, it has provided an important reference for the application and development of medicine, nutrition, and other fields.
Collapse
Affiliation(s)
- Yue Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Miao Zeng
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xiaolu Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Qun Yu
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Wenyun Zeng
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Bin Yu
- School of International EducationTianjin University of Chinese MedicineTianjinChina
| | - Jiali Gan
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Shiwu Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Xijuan Jiang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
15
|
Tao Y, Chen W, Xu H, Xu J, Yang H, Luo X, Chen M, He J, Bai Y, Qi H. Adipocyte-Derived Exosomal NOX4-Mediated Oxidative Damage Induces Premature Placental Senescence in Obese Pregnancy. Int J Nanomedicine 2023; 18:4705-4726. [PMID: 37608820 PMCID: PMC10441661 DOI: 10.2147/ijn.s419081] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Background A recent study has reported that maternal obesity is linked to placental oxidative damage and premature senescence. NADPH oxidase 4 (NOX4) is massively expressed in adipose tissue, and its induced reactive oxygen species have been found to contribute to cellular senescence. While, whether, in obese pregnancy, adipose tissue-derived NOX4 is the considerable cause of placental senescence remained elusive. Methods This study collected term placentas from obese and normal pregnancies and obese pregnant mouse model was constructed by a high fat diet to explore placental senescence. Furthermore, adipocyte-derived exosomes were isolated from primary adipocyte medium of obese and normal pregnancies to examine their effect on placenta functions in vivo and vitro. Results The placenta from the obese group showed a significant increase in placental oxidative damage and senescence. Exosomes from obese adipocytes contained copies of NOX4, and when cocultured with HTR8/SVneo cells, they induced severe oxidative damage, cellular senescence, and suppressed proliferation and invasion functions when compared with the control group. In vivo, adipocyte-derived NOX4-containing exosomes could induce placental oxidative damage and senescence, ultimately leading to adverse pregnancy outcomes. Conclusion In obesity, adipose tissue can secrete exosomes containing NOX4 which can be delivered to trophoblast resulting in severe DNA oxidative damage and premature placental senescence, ultimately leading to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Yuelan Tao
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Wei Chen
- Department of Emergency & Intensive Care Units, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hongbing Xu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jiacheng Xu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Huan Yang
- Department of Obstetrics, Chongqing University Three Gorges Hospital, Chongqing, 404100, People’s Republic of China
| | - Xin Luo
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Miaomiao Chen
- Maternal and Child Health Hospital of Hubei Province, Wuhan City, Hubei Province, 430070, People’s Republic of China
| | - Jie He
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yuxiang Bai
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Women and Children’s Hospital of Chongqing Medical University, Chongqing, 401147, People’s Republic of China
| |
Collapse
|
16
|
Xiong X, Wang G, Wang Y, Zhang T, Bao Y, Wang K, Ainiwaer D, Sun Z. Klotho protects against aged myocardial cells by attenuating ferroptosis. Exp Gerontol 2023; 175:112157. [PMID: 36990131 DOI: 10.1016/j.exger.2023.112157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Klotho (KL) is a renal protein with aging-suppression properties that mediates its regulatory effect during cardiac fibroblast aging. However, to determine whether KL can protect aged myocardial cells by attenuating ferroptosis, this study aimed to investigate the protective effect of KL on aged cells and to explore its potential mechanism. Cell injury of H9C2 cells was induced with D-galactose (D-gal) and treated with KL in vitro. This study demonstrated that D-gal induces aging in H9C2 cells. D-gal treatment increased β-GAL(β-galactosidase) activity, decreased cell viability, enhanced oxidative stress, reduced mitochondrial cristae, and decreased the expression of solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase-4 (GPx4), and P53, which are primary regulators of ferroptosis. The results showed that KL can eliminate D-gal-induced aging in H9C2 cells, likely due to its ability to increase the expression of the ferroptosis-associated proteins SLC7A11 and GPx4. Moreover, pifithrin-α, a P53-specific inhibitor, attenuated the expression of SLC7A11 and GPx4. These results suggest that KL may be involved in D-gal-induced H9C2 cellular aging during ferroptosis, mainly through the P53/SLC7A11/GPx4 signaling pathway.
Collapse
Affiliation(s)
- Xicheng Xiong
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi 830000, China
| | - Gang Wang
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi 830000, China
| | - Yiping Wang
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi 830000, China
| | - Tian Zhang
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi 830000, China
| | - Yali Bao
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi 830000, China
| | - Kun Wang
- Laboratory Animal Centre of Xinjiang Medical University, Urumqi 830000, China
| | - Dina Ainiwaer
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi 830000, China
| | - Zhan Sun
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi 830000, China; Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi 830000, China.
| |
Collapse
|
17
|
Curcumin Ameliorates Age-Induced Tight Junction Impaired in Porcine Sertoli Cells by Inactivating the NLRP3 Inflammasome through the AMPK/SIRT3/SOD2/mtROS Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1708251. [PMID: 36846717 PMCID: PMC9957632 DOI: 10.1155/2023/1708251] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023]
Abstract
Blood-testis barrier (BTB) made of concomitant junction apparatus between Sertoli cells (SCs) is crucial for spermatogenesis. The tight junction (TJ) function is impaired in SCs with age, exhibiting an intimate relationship to testicular dysfunction induced by age. In this study, compared with those in young boars, TJ proteins (i.e., Occludin, ZO-1, and plus Claudin-11) were discovered to have reduced expressions in testes, and spermatogenesis ability declined in old boars. An in vitro age model for D-gal-treated porcine SCs was established, the performance of Curcumin as a natural antioxidant and anti-inflammatory compound in affecting the TJ function of SCs was appraised, and related molecular mechanisms were exploited. The results manifested that 40 g/L D-gal downregulated ZO-1, Claudin-11, and Occludin in terms of the expression in SCs, whereas Curcumin restored such expressions in D-gal-treated SCs. Using the AMPK and SIRT3 inhibiters demonstrated that activation of the AMPK/SIRT3 pathway was associated with Curcumin, which not only rescued the expression of ZO-1, Occludin, Claudin-11, and SOD2 but also inhibited the production of mtROS and ROS and the activation of NLRP3 inflammasome and release of IL-1β in D-gal-treated SCs. Furthermore, with mtROS scavenger (mito-TEMPO), NLRP3 inhibitor (MCC950) plus IL-1Ra treatment ameliorated D-gal-caused TJ protein decline in SCs. In vivo data also showed that Curcumin alleviated TJ impairment in murine testes, improved D-gal-triggered spermatogenesis ability, and inactivated the NLRP3 inflammasome by virtue of the AMPK/SIRT3/mtROS/SOD2 signal transduction pathway. Given the above findings, a novel mechanism where Curcumin modulates BTB function to improve spermatogenesis ability in age-related male reproductive disorder is characterized.
Collapse
|
18
|
The Role of CD38 in the Pathogenesis of Cardiorenal Metabolic Disease and Aging, an Approach from Basic Research. Cells 2023; 12:cells12040595. [PMID: 36831262 PMCID: PMC9954496 DOI: 10.3390/cells12040595] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Aging is a major risk factor for the leading causes of mortality, and the incidence of age-related diseases including cardiovascular disease, kidney disease and metabolic disease increases with age. NAD+ is a classic coenzyme that exists in all species, and that plays a crucial role in oxidation-reduction reactions. It is also involved in the regulation of many cellular functions including inflammation, oxidative stress and differentiation. NAD+ declines with aging in various organs, and the reduction in NAD+ is possibly involved in the development of age-related cellular dysfunction in cardiorenal metabolic organs through the accumulation of inflammation and oxidative stress. Levels of NAD+ are regulated by the balance between its synthesis and degradation. CD38 is the main NAD+-degrading enzyme, and CD38 is activated in response to inflammation with aging, which is associated with the reduction in NAD+ levels. In this review, focusing on CD38, we discuss the role of CD38 in aging and the pathogenesis of age-related diseases, including cardiorenal metabolic disease.
Collapse
|
19
|
Morevati M, Fang EF, Mace ML, Kanbay M, Gravesen E, Nordholm A, Egstrand S, Hornum M. Roles of NAD + in Acute and Chronic Kidney Diseases. Int J Mol Sci 2022; 24:ijms24010137. [PMID: 36613582 PMCID: PMC9820289 DOI: 10.3390/ijms24010137] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Nicotinamide adenine dinucleotide (oxidized form, NAD+) is a critical coenzyme, with functions ranging from redox reactions and energy metabolism in mitochondrial respiration and oxidative phosphorylation to being a central player in multiple cellular signaling pathways, organ resilience, health, and longevity. Many of its cellular functions are executed via serving as a co-substrate for sirtuins (SIRTs), poly (ADP-ribose) polymerases (PARPs), and CD38. Kidney damage and diseases are common in the general population, especially in elderly persons and diabetic patients. While NAD+ is reduced in acute kidney injury (AKI) and chronic kidney disease (CKD), mounting evidence indicates that NAD+ augmentation is beneficial to AKI, although conflicting results exist for cases of CKD. Here, we review recent progress in the field of NAD+, mainly focusing on compromised NAD+ levels in AKI and its effect on essential cellular pathways, such as mitochondrial dysfunction, compromised autophagy, and low expression of the aging biomarker αKlotho (Klotho) in the kidney. We also review the compromised NAD+ levels in renal fibrosis and senescence cells in the case of CKD. As there is an urgent need for more effective treatments for patients with injured kidneys, further studies on NAD+ in relation to AKI/CKD may shed light on novel therapeutics.
Collapse
Affiliation(s)
- Marya Morevati
- Department of Nephrology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
- Correspondence:
| | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Maria L. Mace
- Department of Nephrology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koç University School of Medicine, Istanbul 34010, Turkey
| | - Eva Gravesen
- Department of Pathology, Herlev Hospital, University of Copenhagen, 2730 Copenhagen, Denmark
| | - Anders Nordholm
- Department of Nephrology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Søren Egstrand
- Department of Nephrology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mads Hornum
- Department of Nephrology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
20
|
Zhou H, Liu S, Zhang N, Fang K, Zong J, An Y, Chang X. Downregulation of Sirt6 by CD38 promotes cell senescence and aging. Aging (Albany NY) 2022; 14:9730-9757. [PMID: 36490326 PMCID: PMC9792202 DOI: 10.18632/aging.204425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Decreased nicotinamide adenine dinucleotide (NAD+) levels accompany aging. CD38 is the main cellular NADase. Cyanidin-3-O-glucoside (C3G), a natural inhibitor of CD38, is a well-known drug that extends the human lifespan. We investigated mechanisms of CD38 in cell senescence and C3G in antiaging. Myocardial H9c2 cells were induced to senescence with D-gal. CD38 siRNA, C3G and UBCS039 (a chemical activator of Sirt6) inhibited D-gal-induced senescence by reducing reactive oxygen species, hexokinase 2 and SA-β-galactosidase levels. These activators also stimulated cell proliferation and telomerase reverse transcriptase levels, while OSS-128167 (a chemical inhibitor of Sirt6) and Sirt6 siRNA exacerbated the senescent process. H9c2 cells that underwent D-gal-induced cell senescence increased CD38 expression and decreased Sirt6 expression; CD38 siRNA and C3G decreased CD38 expression and increased Sirt6 expression, respectively; and Sirt6 siRNA stimulated cell senescence in the presence of C3G and CD38 siRNA. In D-gal-induced acute aging mice, CD38 and Sirt6 exhibited increased and decreased expression, respectively, in myocardial tissues, and C3G treatment decreased CD38 expression and increased Sirt6 expression in the tissues. C3G also reduced IL-1β, IL-6, IL-17A, TNF-α levels and restored NAD+ and NK cell levels in the animals. We suggest that CD38 downregulates Sirt6 expression to promote cell senescence and C3G exerts an antiaging effect through CD38-Sirt6 signaling.
Collapse
Affiliation(s)
- Hongji Zhou
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China,Department of Cardiovascular Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Shihai Liu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - NanYang Zhang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Kehua Fang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Jinbao Zong
- Clinical Laboratory and Central Laboratory, The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266033, P.R. China
| | - Yi An
- Department of Cardiovascular Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiaotian Chang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
21
|
Hao J, Xi Y, Jiao L, Wen X, Wu R, Chang G, Sun F, Wei C, Li H. Exogenous hydrogen sulfide inhibits the senescence of cardiomyocytes through modulating mitophagy in rats. Cell Signal 2022; 100:110465. [PMID: 36087824 DOI: 10.1016/j.cellsig.2022.110465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 09/02/2022] [Indexed: 01/10/2023]
Abstract
Hydrogen sulfide (H2S), a gaseous molecule, has been shown to be involved in the regulation of body pathophysiological processes. Aging is related to structural and functional alterations within the heart. There is evidence that diminished mitophagy accelerates the aging process. Studies in recent years have revealed that plasma levels of H2S in humans and old rats decrease with age, and H2S acts as a cytoprotective mediator in the aging process. However, it is unclear whether H2S can delay the senescence of cardiomyocytes by regulating mitophagy. Our present results showed that exogenous H2S inhibited mitochondrial damage, oxidative stress and cell apoptosis, and enhanced mitophagy through upregulating the SIRT1-PINK1-parkin pathway in myocardial tissues of aged rats and cultured aged cardiomyocytes. Furthermore, the effect of exogenous H2S on the above indicators was the same as that of SRT1720 (a SIRT1 agonist) and kinetin (a PINK1 activator). Our findings suggest that exogenous H2S inhibits the senescence of cardiomyocytes by increasing mitophagy via upregulation of the SIRT1-PINK1-parkin pathway in rats.
Collapse
Affiliation(s)
- Jinghui Hao
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Yuxin Xi
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Lijie Jiao
- School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Xin Wen
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, Heilongjiang, China; Department of Pathology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, Shandong, China
| | - Ren Wu
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, Heilongjiang, China; School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Guiquan Chang
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Fengqi Sun
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Can Wei
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Hongzhu Li
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, Heilongjiang, China; School of Medicine, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
22
|
Alejandro SP. ER stress in cardiac aging, a current view on the D-galactose model. Exp Gerontol 2022; 169:111953. [PMID: 36116694 DOI: 10.1016/j.exger.2022.111953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022]
Abstract
Longitudinal studies are mandatory to study aging, however, they have certain drawbacks, for example, they require strict maintenance that is expensive given the breeding time (approximately 2 years) and with a low survival rate, having some animals to study very limitedly. In vitro studies provide useful and invaluable information on the cellular and molecular mechanisms that help understand the aging process to overcome these aspects. In particular, the model of premature aging induced by chronic exposure to D-galactose (D-Gal) offers a very similar picture to that which occurs in natural aging. This model mimics most of the old animals' cellular processes, such as oxidative stress, mitochondrial dysfunction, increased advanced glycation end products (AGEs), inflammation, and senescence-associated secretory phenotype (SASP). However, the information related to the endoplasmic reticulum (ER) stress and, subsequently, the unfolded protein response (UPR) is not fully elucidated. Therefore, this review brings together the most current information on this response in the D-Gal-induced aging model and its effect on cardiac structure and function.
Collapse
Affiliation(s)
- Silva-Palacios Alejandro
- Department of Cardiovascular Biomedicine, National Institute of Cardiology "Ignacio Chávez", Mexico City, Mexico.
| |
Collapse
|
23
|
Wang SS, Zhang X, Ke ZZ, Wen XY, Li WD, Liu WB, Zhuang XD, Liao LZ. D-galactose-induced cardiac ageing: A review of model establishment and potential interventions. J Cell Mol Med 2022; 26:5335-5359. [PMID: 36251271 PMCID: PMC9639053 DOI: 10.1111/jcmm.17580] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/30/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular disease (CVD) is highly prevalent in an ageing society. The increased incidence and mortality rates of CVD are global issues endangering human health. There is an urgent requirement for understanding the aetiology and pathogenesis of CVD and developing possible interventions for preventing CVD in ageing hearts. It is necessary to select appropriate models and treatment methods. The D‐galactose‐induced cardiac ageing model possesses the advantages of low mortality, short time and low cost and has been increasingly used in the study of cardiovascular diseases in recent years. Therefore, understanding the latest progress in D‐galactose‐induced cardiac ageing is valuable. This review highlights the recent progress and potential therapeutic interventions used in D‐galactose‐induced cardiac ageing in recent years by providing a comprehensive summary of D‐galactose‐induced cardiac ageing in vivo and in vitro. This review may serve as reference literature for future research on age‐related heart diseases.
Collapse
Affiliation(s)
- Sui-Sui Wang
- Guangdong Engineering Research Center for Light and Health, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xu Zhang
- Guangdong Engineering Research Center for Light and Health, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ze-Zhi Ke
- Guangdong Engineering Research Center for Light and Health, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiu-Yun Wen
- Guangdong Engineering Research Center for Light and Health, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei-Dong Li
- Guangdong Engineering Research Center for Light and Health, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wen-Bin Liu
- Guangdong Engineering Research Center for Light and Health, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiao-Dong Zhuang
- Cardiology Department, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Li-Zhen Liao
- Guangdong Engineering Research Center for Light and Health, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
24
|
NRF-2/HO-1 Pathway-Mediated SHOX2 Activation Is a Key Switch for Heart Rate Acceleration by Yixin-Fumai Granules. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8488269. [PMID: 36199421 PMCID: PMC9529460 DOI: 10.1155/2022/8488269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Population aging has led to increased sick sinus syndrome (SSS) incidence; however, no effective and safe medical therapy has been reported thus far. Yixin-Fumai granules (YXFMs), a Chinese medicine granule designed for bradyarrhythmia treatment, can effectively increase SSS patients' heart rate. Senescence-induced sinoatrial node (SAN) degeneration is an important part of SSS pathogenesis, and older people often show high levels of oxidative stress; reactive oxygen species (ROS) accumulation in the SAN causes abnormal SAN pacing or conduction functions. The current study observed the protective effects of YXFMs on senescent SAN and explored the relationship between the NRF-2/HO-1 pathway, SHOX2, and T-type calcium channels. We selected naturally senescent C57BL/6 mice with bradycardia to simulate SSS; electrocardiography, Masson's trichrome staining, and DHE staining were used to assess SAN function and tissue damage. Immunofluorescence staining and Western blotting were used to assay related proteins. In vitro, we treated human-induced pluripotent stem cell-derived atrial myocytes (hiPSC-AMs) and mouse atrial myocyte-derived cell line HL-1 with D-galactose to simulate senescent SAN-pacemaker cells. CardioExcyte96 was used to evaluate the pulsatile function of the hiPSC-AMs, and the mechanism was verified by DCFH-DA, immunofluorescence staining, RT-qPCR, and Western blotting. The results demonstrated that YXFMs effectively inhibited senescence-induced SAN hypofunction, and this effect possibly originated from scavenging of ROS and promotion of NRF-2, SHOX2, and T-type calcium channel expression. In vitro experiment results indicated that ML385, si-SHOX2, LDN193189, and Mibefradil reversed YXFMs' effects. Moreover, we, for the first time, found that ROS accumulation may hinder SHOX2 expression; YXFMs can activate SHOX2 through the NRF-2/HO-1 pathway-mediated ROS scavenging and then regulate CACNA1G through the SHOX2/BMP4/GATA4/NKX2-5 axis, improve T-type calcium channel function, and ameliorate the SAN dysfunction. Finally, through network pharmacology and molecular docking, we screened for the most stable YXFMs compound that docks to NRF-2, laying the foundation for future studies.
Collapse
|
25
|
Kimura S, Ichikawa M, Sugawara S, Katagiri T, Hirasawa Y, Ishikawa T, Matsunaga W, Gotoh A. Nicotinamide Mononucleotide Is Safely Metabolized and Significantly Reduces Blood Triglyceride Levels in Healthy Individuals. Cureus 2022; 14:e28812. [PMID: 36225528 PMCID: PMC9534732 DOI: 10.7759/cureus.28812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2022] [Indexed: 11/05/2022] Open
|
26
|
Cui H, Xie N, Banerjee S, Dey T, Liu RM, Antony VB, Sanders YY, Adams TS, Gomez JL, Thannickal VJ, Kaminski N, Liu G. CD38 Mediates Lung Fibrosis by Promoting Alveolar Epithelial Cell Aging. Am J Respir Crit Care Med 2022; 206:459-475. [PMID: 35687485 DOI: 10.1164/rccm.202109-2151oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 06/06/2022] [Indexed: 01/10/2023] Open
Abstract
Rationale: A prevailing paradigm recognizes idiopathic pulmonary fibrosis (IPF) originating from various alveolar epithelial cell (AEC) injuries, and there is a growing appreciation of AEC aging as a key driver of the pathogenesis. Despite this progress, it is incompletely understood what main factor(s) contribute to the worsened alveolar epithelial aging in lung fibrosis. It remains a challenge how to dampen AEC aging and thereby mitigate the disease progression. Objectives: To determine the role of AEC CD38 (cluster of differentiation 38) in promoting cellular aging and lung fibrosis. Methods: We used single-cell RNA sequencing, real-time PCR, flow cytometry, and Western blotting. Measurements and Main Results: We discovered a pivotal role of CD38, a cardinal nicotinamide adenine dinucleotide (NAD) hydrolase, in AEC aging and its promotion of lung fibrosis. We found increased CD38 expression in IPF lungs that inversely correlated with the lung functions of patients. CD38 was primarily located in the AECs of human lung parenchyma and was markedly induced in IPF AECs. Similarly, CD38 expression was elevated in the AECs of fibrotic lungs of young mice and further augmented in those of old mice, which was in accordance with a worsened AEC aging phenotype and an aggravated lung fibrosis in the old animals. Mechanistically, we found that CD38 elevation downregulated intracellular NAD, which likely led to the aging promoting impairment of the NAD-dependent cellular and molecular activities. Furthermore, we demonstrated that genetic and pharmacological inactivation of CD38 improved these NAD dependent events and ameliorated bleomycin-induced lung fibrosis. Conclusions: Our study suggests targeting alveolar CD38 as a novel and effective therapeutic strategy to treat this pathology.
Collapse
Affiliation(s)
- Huachun Cui
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Na Xie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sami Banerjee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tapan Dey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Veena B Antony
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yan Y Sanders
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Taylor S Adams
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut; and
| | - Jose L Gomez
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut; and
| | - Victor J Thannickal
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut; and
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
27
|
Wang Y, Wang K, Bao Y, Zhang T, Ainiwaer D, Xiong X, Wang G, Sun Z. The serum soluble Klotho alleviates cardiac aging and regulates M2a/M2c macrophage polarization via inhibiting TLR4/Myd88/NF-κB pathway. Tissue Cell 2022; 76:101812. [DOI: 10.1016/j.tice.2022.101812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 11/27/2022]
|
28
|
Yuan Y, Liang B, Liu XL, Liu WJ, Huang BH, Yang SB, Gao YZ, Meng JS, Li MJ, Ye T, Wang CZ, Hu XK, Xing DM. Targeting NAD+: is it a common strategy to delay heart aging? Cell Death Dis 2022; 8:230. [PMID: 35474295 PMCID: PMC9042931 DOI: 10.1038/s41420-022-01031-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/17/2022]
Abstract
Heart aging is the main susceptible factor to coronary heart disease and significantly increases the risk of heart failure, especially when the aging heart is suffering from ischemia-reperfusion injury. Numerous studies with NAD+ supplementations have suggested its use in anti-aging treatment. However, systematic reviews regarding the overall role of NAD+ in cardiac aging are scarce. The relationship between NAD+ signaling and heart aging has yet to be clarified. This review comprehensively summarizes the current studies on the role of NAD+ signaling in delaying heart aging from the following aspects: the influence of NAD+ supplementations on the aging heart; the relationship and cross-talks between NAD+ signaling and other cardiac aging-related signaling pathways; Importantly, the therapeutic potential of targeting NAD+ in delaying heart aging will be discussed. In brief, NAD+ plays a vital role in delaying heart aging. However, the abnormalities such as altered glucose and lipid metabolism, oxidative stress, and calcium overload could also interfere with NAD+ function in the heart. Therefore, the specific physiopathology of the aging heart should be considered before applying NAD+ supplementations. We believe that this article will help augment our understanding of heart aging mechanisms. In the meantime, it provides invaluable insights into possible therapeutic strategies for preventing age-related heart diseases in clinical settings.
Collapse
Affiliation(s)
- Yang Yuan
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Bing Liang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Xin-Lin Liu
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Wen-Jing Liu
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Bing-Huan Huang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Shan-Bo Yang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Yuan-Zhen Gao
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Jing-Sen Meng
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Meng-Jiao Li
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Ting Ye
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Chuan-Zhi Wang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Xiao-Kun Hu
- Interventional Medicine Center, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dong-Ming Xing
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China. .,School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
29
|
Induction of Accelerated Aging in a Mouse Model. Cells 2022; 11:cells11091418. [PMID: 35563724 PMCID: PMC9102583 DOI: 10.3390/cells11091418] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
With the global increase of the elderly population, the improvement of the treatment for various aging-related diseases and the extension of a healthy lifespan have become some of the most important current medical issues. In order to understand the developmental mechanisms of aging and aging-related disorders, animal models are essential to conduct relevant studies. Among them, mice have become one of the most prevalently used model animals for aging-related studies due to their high similarity to humans in terms of genetic background and physiological structure, as well as their short lifespan and ease of reproduction. This review will discuss some of the common and emerging mouse models of accelerated aging and related chronic diseases in recent years, with the aim of serving as a reference for future application in fundamental and translational research.
Collapse
|
30
|
Pcsk6 Deficiency Promotes Cardiomyocyte Senescence by Modulating Ddit3-Mediated ER Stress. Genes (Basel) 2022; 13:genes13040711. [PMID: 35456517 PMCID: PMC9028967 DOI: 10.3390/genes13040711] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiac aging is a critical determinant of cardiac dysfunction, which contributes to cardiovascular disease in the elderly. Proprotein convertase subtilisin/kexin 6 (PCSK6) is a proteolytic enzyme important for the maintenance of cardiac function and vascular homeostasis. To date, the involvement of PCSK6 in cardiac aging remains unknown. Here we report that PCSK6 expression decreased in the hearts of aged mice, where high levels cyclin dependent kinase inhibitor 2A (P16) and cyclin dependent kinase inhibitor 1A (P21) (senescence markers) were observed. Moreover, PCSK6 protein expression was significantly reduced in senescent rat embryonic cardiomyocytes (H9c2) induced by D-galactose. Pcsk6 knockdown in H9c2 cells increased P16 and P21 expression levels and senescence-associated beta-galactosidase activity. Pcsk6 knockdown also impaired cardiomyocyte function, as indicated by increased advanced glycation end products, reactive oxygen species level, and apoptosis. Overexpression of PCSK6 blunted the senescence phenotype and cellular dysfunction. Furthermore, RNA sequencing analysis in Pcsk6-knockdown H9c2 cells identified the up-regulated DNA-damage inducible transcript 3 (Ddit3) gene involved in endoplasmic reticulum (ER) protein processing. Additionally, DDIT3 protein levels were remarkably increased in aged mouse hearts. In the presence of tunicamycin, an ER stress inducer, DDIT3 expression increased in Pcsk6-deficient H9c2 cells but reduced in PCSK6-overexpressing cells. In conclusion, our findings indicate that PCSK6 modulates cardiomyocyte senescence possibly via DDIT3-mediated ER stress.
Collapse
|
31
|
Zeidler JD, Hogan KA, Agorrody G, Peclat TR, Kashyap S, Kanamori KS, Gomez LS, Mazdeh DZ, Warner GM, Thompson KL, Chini CCS, Chini EN. The CD38 glycohydrolase and the NAD sink: implications for pathological conditions. Am J Physiol Cell Physiol 2022; 322:C521-C545. [PMID: 35138178 PMCID: PMC8917930 DOI: 10.1152/ajpcell.00451.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) acts as a cofactor in several oxidation-reduction (redox) reactions and is a substrate for a number of nonredox enzymes. NAD is fundamental to a variety of cellular processes including energy metabolism, cell signaling, and epigenetics. NAD homeostasis appears to be of paramount importance to health span and longevity, and its dysregulation is associated with multiple diseases. NAD metabolism is dynamic and maintained by synthesis and degradation. The enzyme CD38, one of the main NAD-consuming enzymes, is a key component of NAD homeostasis. The majority of CD38 is localized in the plasma membrane with its catalytic domain facing the extracellular environment, likely for the purpose of controlling systemic levels of NAD. Several cell types express CD38, but its expression predominates on endothelial cells and immune cells capable of infiltrating organs and tissues. Here we review potential roles of CD38 in health and disease and postulate ways in which CD38 dysregulation causes changes in NAD homeostasis and contributes to the pathophysiology of multiple conditions. Indeed, in animal models the development of infectious diseases, autoimmune disorders, fibrosis, metabolic diseases, and age-associated diseases including cancer, heart disease, and neurodegeneration are associated with altered CD38 enzymatic activity. Many of these conditions are modified in CD38-deficient mice or by blocking CD38 NADase activity. In diseases in which CD38 appears to play a role, CD38-dependent NAD decline is often a common denominator of pathophysiology. Thus, understanding dysregulation of NAD homeostasis by CD38 may open new avenues for the treatment of human diseases.
Collapse
Affiliation(s)
- Julianna D Zeidler
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Kelly A Hogan
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Guillermo Agorrody
- Departamento de Fisiopatología, Hospital de Clínicas, Montevideo, Uruguay
- Laboratorio de Patologías del Metabolismo y el Envejecimiento, Instituto Pasteur de Montevideo, Montevideo, Uruguay
| | - Thais R Peclat
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Sonu Kashyap
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida
| | - Karina S Kanamori
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Lilian Sales Gomez
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Delaram Z Mazdeh
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Gina M Warner
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Katie L Thompson
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Claudia C S Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida
| | - Eduardo Nunes Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
32
|
Xie L, Wen K, Li Q, Huang CC, Zhao JL, Zhao QH, Xiao YF, Guan XH, Qian YS, Gan L, Wang LF, Deng KY, Xin HB. CD38 Deficiency Protects Mice from High Fat Diet-Induced Nonalcoholic Fatty Liver Disease through Activating NAD +/Sirtuins Signaling Pathways-Mediated Inhibition of Lipid Accumulation and Oxidative Stress in Hepatocytes. Int J Biol Sci 2021; 17:4305-4315. [PMID: 34803499 PMCID: PMC8579443 DOI: 10.7150/ijbs.65588] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation in hepatocytes. CD38 was initially identified as a lymphocyte surface antigen and then has been found to exist in a variety of cell types. Our previous studies showed that CD38-/- mice were resistant to high-fat diet (HFD)-induced obesity. However, the role and mechanism of CD38 in HFD-induced NAFLD is still unclear. Here, we reported that CD38-/- mice significantly alleviated HFD-induced hepatic steatosis. HFD or oleic acid (OA) remarkably increased the mRNA and protein expressions of CD38 in mouse hepatic tissues and primary hepatocytes or hepatic cell lines in vitro and in vivo, suggesting that CD38 might play a role in HFD-induced hepatic steatosis. We observed that CD38 deficiency markedly decreased HFD- or OA-induced the lipid accumulation and oxidative stress in CD38-/- livers or primary hepatocytes, respectively. In contrast, overexpression of CD38 in Hep1-6 cells aggravated OA-induced lipid accumulation and oxidative stress. Furthermore, CD38 deficiency markedly inhibited HFD- or OA-induced the expressions of NOX4, and increased the expression of PPARα, CPT1, ACOX1 and SOD2 in liver tissue and hepatocytes from CD38-/- mice, indicating that CD38 deficiency-mediated the enhancement of fatty acid oxidation and the inhibition of oxidative stress contributed to protecting NAFLD. More importantly, Ex527 (Sirt1 inhibitor) and 3-TYP (Sirt3 inhibitor) significantly enhanced OA-induced lipid accumulation and oxidative stress in CD38-/- primary hepatocytes, suggesting that the anti-lipid accumulation of CD38 deficiency might be dependent on NAD/Sirtuins-mediated enhancement of FAA β-oxidation and suppression of oxidative stress in hepatocytes. In conclusion, we demonstrated that CD38 deficiency protected mice from HFD-induced NAFLD by reducing lipid accumulation and suppressing oxidative stress via activating NAD/Sirtuins signaling pathways.
Collapse
Affiliation(s)
- Lin Xie
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
- School of Life Science, Nanchang University, Nanchang 330031, P.R. China
| | - Ke Wen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
- School of Pharmacy, Nanchang University, Nanchang 330031, P.R. China
| | - Qian Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
| | - Cong-Cong Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
| | - Jia-Le Zhao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
| | - Qi-Hang Zhao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
| | - Yun-Fei Xiao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
| | - Xiao-Hui Guan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
| | - Yi-Song Qian
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
| | - Lu Gan
- Research Laboratory of Emergency Medicine, Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Ling-Fang Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
| | - Ke-Yu Deng
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
- School of Pharmacy, Nanchang University, Nanchang 330031, P.R. China
- School of Life Science, Nanchang University, Nanchang 330031, P.R. China
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
- School of Pharmacy, Nanchang University, Nanchang 330031, P.R. China
- School of Life Science, Nanchang University, Nanchang 330031, P.R. China
| |
Collapse
|
33
|
Fang Y, Wang X, Yang D, Lu Y, Wei G, Yu W, Liu X, Zheng Q, Ying J, Hua F. Relieving Cellular Energy Stress in Aging, Neurodegenerative, and Metabolic Diseases, SIRT1 as a Therapeutic and Promising Node. Front Aging Neurosci 2021; 13:738686. [PMID: 34616289 PMCID: PMC8489683 DOI: 10.3389/fnagi.2021.738686] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
The intracellular energy state will alter under the influence of physiological or pathological stimuli. In response to this change, cells usually mobilize various molecules and their mechanisms to promote the stability of the intracellular energy status. Mitochondria are the main source of ATP. Previous studies have found that the function of mitochondria is impaired in aging, neurodegenerative diseases, and metabolic diseases, and the damaged mitochondria bring lower ATP production, which further worsens the progression of the disease. Silent information regulator-1 (SIRT1) is a multipotent molecule that participates in the regulation of important biological processes in cells, including cellular metabolism, cell senescence, and inflammation. In this review, we mainly discuss that promoting the expression and activity of SIRT1 contributes to alleviating the energy stress produced by physiological and pathological conditions. The review also discusses the mechanism of precise regulation of SIRT1 expression and activity in various dimensions. Finally, according to the characteristics of this mechanism in promoting the recovery of mitochondrial function, the relationship between current pharmacological preparations and aging, neurodegenerative diseases, metabolic diseases, and other diseases was analyzed.
Collapse
Affiliation(s)
- Yang Fang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Danying Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Yimei Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Gen Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Wen Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xing Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Qingcui Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
34
|
Liu R, Meng J, Lou D. Adiponectin inhibits D‑gal‑induced cardiomyocyte senescence via AdipoR1/APPL1. Mol Med Rep 2021; 24:719. [PMID: 34396435 PMCID: PMC8383031 DOI: 10.3892/mmr.2021.12358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/29/2021] [Indexed: 12/30/2022] Open
Abstract
The aim of the present study was to examine whether adiponectin could inhibit cardiomyocyte senescence induced by D‑galactose (D‑gal), and whether it functioned via the adiponectin receptor 1 (AdipoR1)/adaptor protein phosphotyrosine interacting with PH domain and leucine zipper 1 (APPL1) signaling pathway. For this purpose, the expression levels of adiponectin, AdipoR1 and APPL1 in mouse plasma and myocardial tissues were detected via reverse transcription‑quantitative PCR (RT‑qPCR) and western blotting. An adiponectin‑overexpression plasmid was transfected into D‑gal‑treated H9c2 cells prior to the detection of AdipoR1 and APPL1 expression by RT‑qPCR. Senescence‑associated β‑galactose staining was then performed to observe cellular senescence following the transfection of small interfering RNAs (si) targeting AdipoR1 and APPL1 into D‑gal‑treated H9c2 cells overexpressing adiponectin. Commercial kits were used to detect reactive oxygen species (ROS) production and malondialdehyde (MDA) content in the different groups. The expression levels of heme oxygenase (HO)‑1 and high mobility group box 1 (HMGB1) were examined by western blot analysis. The results revealed that the expression levels of adiponectin, AdipoR1 and APPL1 were downregulated in aged mouse plasma, myocardial tissues and D‑gal‑treated cardiomyocytes. It was also observed that AdipoR1 and APPL1 expression levels were significantly upregulated following the overexpression of adiponectin into D‑gal‑treated cardiomyocytes. Moreover, adiponectin overexpression reduced cellular senescence induced by D‑gal and the expression of p16 and p21; these effects were reversed following transfection with si‑AdipoR1 and si‑APPL1. Adiponectin also downregulated the levels of ROS and MDA in D‑gal‑treated H9c2 cells via AdipoR1/APPL1. Additionally, the release of HO‑11/HMGB1 was affected by adiponectin via AdipoR1/APPL1, and adiponectin/AdipoR1/APPL1 suppressed ROS production via HO‑1/HMGB1. On the whole, the present study demonstrated that adiponectin played an inhibitory role in cardiomyocyte senescence via the AdioR1/APPL1 signaling pathway and inhibited the levels of oxidative stress in senescent cardiomyocytes via the HO‑1/HMGB1 signaling pathway.
Collapse
Affiliation(s)
- Ruiying Liu
- Department of Geriatric Cardiovascular, General Hospital of Southern Theater Command, Chinese People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China
| | - Jing Meng
- Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Danfei Lou
- Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
35
|
NAD + supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer's disease via cGAS-STING. Proc Natl Acad Sci U S A 2021; 118:2011226118. [PMID: 34497121 DOI: 10.1073/pnas.2011226118] [Citation(s) in RCA: 209] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2021] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disorder. Impaired neuronal bioenergetics and neuroinflammation are thought to play key roles in the progression of AD, but their interplay is not clear. Nicotinamide adenine dinucleotide (NAD+) is an important metabolite in all human cells in which it is pivotal for multiple processes including DNA repair and mitophagy, both of which are impaired in AD neurons. Here, we report that levels of NAD+ are reduced and markers of inflammation increased in the brains of APP/PS1 mutant transgenic mice with beta-amyloid pathology. Treatment of APP/PS1 mutant mice with the NAD+ precursor nicotinamide riboside (NR) for 5 mo increased brain NAD+ levels, reduced expression of proinflammatory cytokines, and decreased activation of microglia and astrocytes. NR treatment also reduced NLRP3 inflammasome expression, DNA damage, apoptosis, and cellular senescence in the AD mouse brains. Activation of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) are associated with DNA damage and senescence. cGAS-STING elevation was observed in the AD mice and normalized by NR treatment. Cell culture experiments using microglia suggested that the beneficial effects of NR are, in part, through a cGAS-STING-dependent pathway. Levels of ectopic (cytoplasmic) DNA were increased in APP/PS1 mutant mice and human AD fibroblasts and down-regulated by NR. NR treatment induced mitophagy and improved cognitive and synaptic functions in APP/PS1 mutant mice. Our findings suggest a role for NAD+ depletion-mediated activation of cGAS-STING in neuroinflammation and cellular senescence in AD.
Collapse
|
36
|
Wei Z, Chai H, Chen Y, Cheng Y, Liu X. Nicotinamide mononucleotide: An emerging nutraceutical against cardiac aging? Curr Opin Pharmacol 2021; 60:291-297. [PMID: 34507029 DOI: 10.1016/j.coph.2021.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 02/05/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) is essential for cellular physiological processes, directly or indirectly affecting metabolism and gene expression. The decline of NAD+ levels in the heart is accompanied by aging, causing cardiac pathological remodeling and dysfunction. Niacinamide mononucleotide (NMN) has emerged as a precursor to alleviate age-related cardiac pathophysiological changes by improving cardiac NAD+ homeostasis. Preclinical trials on the efficacy and safety of intaking NMN have shown encouraging results, revealing a cardioprotective effect without significant side effects. Strategies for improving the effectiveness of NMN are also evolving. The present review aimed to summarize the potentials of NMN as a nutraceutical against cardiac aging and highlight the relationship between NMN supplementation and cardiac protection.
Collapse
Affiliation(s)
- Zisong Wei
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hua Chai
- Department of Academic Affairs, West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Yan Chen
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Cheng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
37
|
Zhao Y, Liao AM, Liu N, Huang JH, Lv X, Yang CR, Chen WJ, Hou YC, Ma LJ, Hui M. Potential anti-aging effects of fermented wheat germ in aging mice. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Li BS, Zhu RZ, Lim SH, Seo JH, Choi BM. Apigenin Alleviates Oxidative Stress-Induced Cellular Senescence via Modulation of the SIRT1-NAD[Formula: see text]-CD38 Axis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1235-1250. [PMID: 34049472 DOI: 10.1142/s0192415x21500592] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress-induced cellular senescence is now regarded as an important driving mechanism in chronic lung diseases-particularly chronic obstructive pulmonary disease (COPD). 4[Formula: see text],5,7-trihydroxyflavone (Apigenin) is a natural flavonoid product abundantly present in fruits, vegetables, and Chinese medicinal herbs. It has been known that apigenin has anti-oxidant, anti-inflammatory and liver-protecting effects. The efficacy of apigenin for lung aging, however, has not been reported. In this study, we selected the hydrogen peroxide (H2O[Formula: see text]- or doxorubicin (DOXO)-induced senescence model in WI-38 human embryonic lung fibroblast cells to determine the potential anti-aging effects of apigenin in vitro and associated molecular mechanisms. We found that apigenin reduced senescence-associated [Formula: see text]-galactosidase (SA-[Formula: see text]-gal) activity and promoted cell growth, concomitant with a decrease in levels of Acetyl (ac)-p53, p21[Formula: see text], and p16[Formula: see text] and an increase in phospho (p)-Rb. Apigenin also increased the activation ratio of silent information regulator 1 (SIRT1), nicotinamide adenine dinucleotide (NAD[Formula: see text], and NAD[Formula: see text]/NADH and inhibited cluster of differentiation 38 (CD38) activity in a concentration-dependent manner. SIRT1 inhibition by SIRT1 siRNA abolished the anti-aging effect of apigenin. In addition, CD38 inhibition by CD38 siRNA or apigenin increased the SIRT1 level and reduced H2O2-induced senescence. Our findings suggest that apigenin is a promising phytochemical for reducing the impact of senescent cells in age-related lung diseases such as COPD.
Collapse
Affiliation(s)
- Bing Si Li
- Department of Biochemistry, Wonkwang University School of Medicine, 460 Iksandaero, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ri Zhe Zhu
- Department of Biochemistry, Wonkwang University School of Medicine, 460 Iksandaero, Iksan, Jeonbuk 54538, Republic of Korea
| | - Seok-Hee Lim
- Department of Biochemistry, Wonkwang University School of Medicine, 460 Iksandaero, Iksan, Jeonbuk 54538, Republic of Korea
| | - Jae Ho Seo
- Department of Biochemistry, Wonkwang University School of Medicine, 460 Iksandaero, Iksan, Jeonbuk 54538, Republic of Korea
| | - Byung-Min Choi
- Department of Biochemistry, Wonkwang University School of Medicine, 460 Iksandaero, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
39
|
Francois A, Canella A, Marcho LM, Stratton MS. Protein acetylation in cardiac aging. J Mol Cell Cardiol 2021; 157:90-97. [PMID: 33915138 DOI: 10.1016/j.yjmcc.2021.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/14/2021] [Accepted: 04/21/2021] [Indexed: 11/15/2022]
Abstract
Biological aging is attributed to progressive dysfunction in systems governing genetic and metabolic integrity. At the cellular level, aging is evident by accumulated DNA damage and mutation, reactive oxygen species, alternate lipid and protein modifications, alternate gene expression programs, and mitochondrial dysfunction. These effects sum to drive altered tissue morphology and organ dysfunction. Protein-acylation has emerged as a critical mediator of age-dependent changes in these processes. Despite decades of research focus from academia and industry, heart failure remains a leading cause of death in the United States while the 5 year mortality rate for heart failure remains over 40%. Over 90% of heart failure deaths occur in patients over the age of 65 and heart failure is the leading cause of hospitalization in Medicare beneficiaries. In 1931, Cole and Koch discovered age-dependent accumulation of phosphates in skeletal muscle. These and similar findings provided supporting evidence for, now well accepted, theories linking metabolism and aging. Nearly two decades later, age-associated alterations in biochemical molecules were described in the heart. From these small beginnings, the field has grown substantially in recent years. This growing research focus on cardiac aging has, in part, been driven by advances on multiple public health fronts that allow population level clinical presentation of aging related disorders. It is estimated that by 2030, 25% of the worldwide population will be over the age of 65. This review provides an overview of acetylation-dependent regulation of biological processes related to cardiac aging and introduces emerging non-acetyl, acyl-lysine modifications in cardiac function and aging.
Collapse
Affiliation(s)
- Ashley Francois
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Alessandro Canella
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lynn M Marcho
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Matthew S Stratton
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
40
|
Antioxidant Effect of Polygonatum sibiricum Polysaccharides in D-Galactose-Induced Heart Aging Mice. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6688855. [PMID: 33860051 PMCID: PMC8024086 DOI: 10.1155/2021/6688855] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/04/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Polygonatum sibiricum polysaccharides (PSP), the extract of Polygonatum sibiricum, are demonstrated to exhibit a wide range of pharmacological activities. A recent study reported that PSP alleviated the aging of the kidney and meninges. However, the effect of PSP on heart aging remains unclear. The present study is aimed at investigating the protection of PSP on D-galactose- (D-gal-) induced heart aging. Results showed that irregularly arranged cardiac muscle fibers were observed in heart tissues of D-gal-treated mice, and the levels of cardiac troponin T (cTnT), creatine kinase (CK), p21, and p53 were increased after D-gal treatment. D-gal-induced heart aging and injury can be attenuated by oral administration of PSP. Moreover, PSP also decreased reactive oxygen species (ROS) and malondialdehyde (MDA) and increased the level of superoxide dismutase (SOD) in the hearts of D-gal-treated mice. DNA damages and lipid peroxidation induced by oxidative stress were also inhibited by PSP as indicated by reduced levels of 8-hydroxydeoxyguanosine (8-OHdG) and 4-hydroxy-2-nonenal (4-HNE). Collectively, PSP attenuated D-gal-induced heart aging via inhibiting oxidative stress, suggesting that PSP might serve as a potential effective Chinese herbal active constituent for antiaging therapy.
Collapse
|
41
|
Lou T, Huang Q, Su H, Zhao D, Li X. Targeting Sirtuin 1 signaling pathway by ginsenosides. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113657. [PMID: 33276056 DOI: 10.1016/j.jep.2020.113657] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/16/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng is a kind of traditional Chinese herbal medicine, known as "king of herbs" and widely used in China, South Korea, and other Asian countries. Ginsenosides are one of active components of Panax ginseng Meyer, which have many pharmacological effects, such as enhancing memory, improving immunity and cardiovascular system, delaying aging, and preventing cancer. AIMS OF THE REVIEW This review aims to summarize the recent findings for ginsenosides targeting Sirtuin 1 (SIRT1) signaling pathway for the prevention and treatment of a series of diseases. MATERIALS AND METHODS An up-to-August 2020 search was carried out in databases such as PubMed, ScienceDirect, Google Scholar, China National Knowledge Infrastructure, and classic books of traditional Chinese medicine using the keywords: "SIRT1", and/or paired with "ginseng", and "ginsenosides". RESULTS SIRT1 is a class-III histone deacetylase (HDAC), a nicotinamide adenine dinucleotide (NAD+)-dependent enzyme, which is deeply involved in a series of pathological processes. Based on specific intracellular localization, SIRT1 has various cytoplasmic and nuclear targets and plays a potential role in energy metabolism, oxidative stress, inflammation, tumorigenesis, and aging. Ginsenosides are generally classified into three groups and microbially transformed to final metabolites. Among of them, most ginsenosides have been reported as SIRT1 activators, especially those ginsenosides with two glucopyranosyl groups on the C-3 position. Importantly, many ginsenosides can be used to prevent and treat oxidative stress, inflammation, aging, tumorigenesis, depression, and others by targeting SIRT1 signaling pathway. CONCLUSIONS This paper reviews recent evidences of ginsenosides targeting SIRT1 for the first time, which could provide new insights on the preclinical and clinical researches for ginsenosides against multiple disorders.
Collapse
Affiliation(s)
- Tingting Lou
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Qingxia Huang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Hang Su
- Practice Innovations Center, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China.
| | - Xiangyan Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China.
| |
Collapse
|
42
|
Xu C, Huang X, Tong Y, Feng X, Wang Y, Wang C, Jiang Y. Icariin modulates the sirtuin/NF‑κB pathway and exerts anti‑aging effects in human lung fibroblasts. Mol Med Rep 2020; 22:3833-3839. [PMID: 33000191 PMCID: PMC7533484 DOI: 10.3892/mmr.2020.11458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 06/01/2020] [Indexed: 12/25/2022] Open
Abstract
Icariin (ICA) has been used as a promising anti‑aging drug; however, its underlying molecular mechanism is yet to be elucidated. The present study aimed to determine the anti‑aging molecular mechanisms of ICA. D‑galactose (D‑gal) was used to generate a cell aging model. IMR‑90 human lung fibroblasts were pretreated with different concentrations of ICA (1, 2, 4, 8 and 16 µmol/l) for 6 h and subsequently incubated with D‑gal (200 mmol/l) at 37˚C for 72 h. Senescence of IMR‑90 cells was assessed by senescence‑associated‑β‑galactosidase (SA‑β‑Gal) staining assay. Cell viability, and the expression levels of p53/p21, sirtuin (SIRT) 1/6 and p50/p65 were determined via the MTT assay and western blotting respectively. The results demonstrated that D‑gal notably increased the proportion of SA‑β‑Gal‑positive cells and decreased the viability of IMR‑90 cells; however, pretreatment with ICA reversed the effects of D‑gal on IMR‑90 cells in a concentration‑dependent manner. Furthermore, it was also demonstrated that the activation of p53/p21 and nuclear factor‑κB (NF‑κB) signaling, and downregulation of SIRT1/6 may be involved in IMR‑90 cells, in D‑gal‑induced aging and ICA may effectively prevent IMR‑90 cells from these changes induced by D‑gal. Taken together, the results of the present study suggest that the anti‑aging molecular mechanisms of ICA may be associated with the regulation of the SIRT1/NF‑κB pathway.
Collapse
Affiliation(s)
- Changqing Xu
- Department of Respiration, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Xuqing Huang
- Department of Respiration, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Yueyang Tong
- Department of Respiration, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Xiaocheng Feng
- Department of Endocrinology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yan Wang
- Department of Respiration, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Cancan Wang
- Department of Respiration, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Yuyue Jiang
- Department of Respiration, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| |
Collapse
|
43
|
Feng D, Xu D, Murakoshi N, Tajiri K, Qin R, Yonebayashi S, Okabe Y, Li S, Yuan Z, Aonuma K, Ieda M. Nicotinamide Phosphoribosyltransferase (Nampt)/Nicotinamide Adenine Dinucleotide (NAD) Axis Suppresses Atrial Fibrillation by Modulating the Calcium Handling Pathway. Int J Mol Sci 2020; 21:ijms21134655. [PMID: 32629939 PMCID: PMC7370160 DOI: 10.3390/ijms21134655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/18/2020] [Accepted: 06/28/2020] [Indexed: 12/13/2022] Open
Abstract
Aging and obesity are the most prominent risk factors for onset of atrial fibrillation (AF). Nicotinamide phosphoribosyltransferase (Nampt) is the rate-limiting enzyme that catalyzes nicotinamide adenine dinucleotide (NAD) activity. Nampt and NAD are essential for maintenance of cellular redox homeostasis and modulation of cellular metabolism, and their expression levels decrease with aging and obesity. However, a role for Nampt in AF is unknown. The present study aims to test whether there is a role of Nampt/NAD axis in the pathogenesis of obesity-induced AF. Male C57BL/6J (WT) mice and heterozygous Nampt knockout (NKO) mice were fed with a normal chow diet (ND) or a high-fat diet (HFD). Electrophysiological study showed that AF inducibility was significantly increased in WT+HFD, NKO+ND, and NKO+HFD mice compared with WT+ND mice. AF duration was significantly longer in WT+HFD and NKO+ND mice and further prolonged in NKO+HFD mice compared with WT+ND mice and the calcium handling pathway was altered on molecular level. Also, treatment with nicotinamide riboside, a NAD precursor, partially restored the HFD-induced AF perpetuation. Overall, this work demonstrates that partially deletion of Nampt facilitated HFD-induced AF through increased diastolic calcium leaks. The Nampt/NAD axis may be a potent therapeutic target for AF.
Collapse
Affiliation(s)
| | - DongZhu Xu
- Correspondence: ; Tel.: +81-29-853-3142; Fax: +81-29-853-3143
| | | | | | | | | | | | | | | | | | | |
Collapse
|