1
|
Guo L, Wang J, Zhou Y, Liang C, Liu L, Yang Y, Huang J, Yang L. Foisc1 regulates growth, conidiation, sensitivity to salicylic acid, and pathogenicity of Fusarium oxysporum f. sp. cubense tropical race 4. Microbiol Res 2025; 291:127975. [PMID: 39608178 DOI: 10.1016/j.micres.2024.127975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024]
Abstract
The secreted isochorismatases derived from certain filamentous pathogens play vital roles in the infection of host plants by lowering salicylic acid (SA) levels and suppressing SA-mediated defense pathway. However, it remains unclear whether the fungus Fusarium oxysporum f. sp. cubense tropical race 4 (FocTR4), which causes vascular wilt in bananas, utilizes isochorismatases to modulate SA levels in the host and subvert the banana defense system for successful infection. In the current study, we selected and functionally characterized the foisc1 gene, one of 10 putative isochorismatase-encoding genes in FocTR4 that showed significant upregulation during early stages of infection. Deletion of foisc1 resulted in enhanced vegetative growth and conidiation, increased sensitivity to SA, reduced colonization within host plants, as well as impaired pathogenicity. Conversely, complementation restored phenotypes similar to those observed in the wild-type strain. Furthermore, deletion of foisc1 led to a notable rise in activities of defense-related enzymes such as catalase, peroxidase, and phenylalnine ammonialyase; along with an upregulated expression of several defense-related genes including PR genes and NPR1 genes within hosts' tissues. The non-secretory nature of Foisc1 protein was confirmed and its absence did not affect SA levels within host plants. Transcriptome analysis revealed that deletion of foisc1 resulted in decreased expression levels for numerous genes associated with pathogenicity including those involved in fusaric acid biosynthesis and effector genes as well as a catechol 1,2-dioxygenase gene essential for SA degradation; while increasing expression levels for numerous genes associated with hyphal growth and conidiation were observed instead. Therefore, our findings suggest that Foisc1 may influence hyphal growth, conidiation, sensitivity to SA, and pathogenicity of FocTR4 through modulation of various genes implicated in these processes. These findings provide valuable insights into the pathogenesis of FocTR4, and create a groundwork for the future development of innovative control strategies targeting vascular wilt disease of banana.
Collapse
Affiliation(s)
- Lijia Guo
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, PR China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, PR China; National Collection of Microbial Resource for Fertilizer (Hainan), PR China; Collection of Tropical Agricultural Microbial Resource in Hainan province, PR China.
| | - Jun Wang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, PR China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, PR China; National Collection of Microbial Resource for Fertilizer (Hainan), PR China; Collection of Tropical Agricultural Microbial Resource in Hainan province, PR China
| | - You Zhou
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, PR China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, PR China; National Collection of Microbial Resource for Fertilizer (Hainan), PR China; Collection of Tropical Agricultural Microbial Resource in Hainan province, PR China
| | - Changcong Liang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, PR China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, PR China; National Collection of Microbial Resource for Fertilizer (Hainan), PR China; Collection of Tropical Agricultural Microbial Resource in Hainan province, PR China
| | - Lei Liu
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, PR China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, PR China; National Collection of Microbial Resource for Fertilizer (Hainan), PR China; Collection of Tropical Agricultural Microbial Resource in Hainan province, PR China
| | - Yang Yang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, PR China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, PR China; National Collection of Microbial Resource for Fertilizer (Hainan), PR China; Collection of Tropical Agricultural Microbial Resource in Hainan province, PR China
| | - Junsheng Huang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, PR China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, PR China; National Collection of Microbial Resource for Fertilizer (Hainan), PR China; Collection of Tropical Agricultural Microbial Resource in Hainan province, PR China
| | - Laying Yang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, PR China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, PR China; National Collection of Microbial Resource for Fertilizer (Hainan), PR China; Collection of Tropical Agricultural Microbial Resource in Hainan province, PR China.
| |
Collapse
|
2
|
Luo M, Feng B, Zhu W, Liang Z, Xu W, Fu J, Miao L, Dong Z. Proteomics and metabolomics analysis of American shad (Alosa sapidissima) liver responses to heat stress. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111686. [PMID: 38936462 DOI: 10.1016/j.cbpa.2024.111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The dramatic changes in the global climate pose a major threat to the survival of many organisms, including fish. To date, the regulatory mechanisms behind the physiological responses of fish to temperature changes have been studied, and a comprehensive analysis of the regulatory mechanisms of temperature tolerance will help to propose effective strategies for fish to cope with global warming. In this study, we investigated the expression profiles of proteins and metabolites in liver tissues of American shad (Alosa sapidissima) corresponding to different water temperatures (24 °C, 27 °C and 30 °C) at various times (1-month intervals) under natural culture conditions. Proteomic analysis showed that the expression levels of the heat shock protein family (e.g. HSPE1, HSP70, HSPA5 and HSPA.1) increase significantly with temperature and that many differentially expressed proteins were highly enriched especially in pathways related to the endoplasmic reticulum, oxidative phosphorylation and glycolysis/gluconeogenesis processes. In addition, the results of conjoint metabolomics and proteomics analysis suggested that the contents of several important amino acids and chemical compounds, including L-serine, L-isoleucine, L-cystine, choline and betaine, changed significantly under high-temperature environmental stress, affecting the metabolic levels of starch, amino acid and glucose, which is thought to represent a possible energy conservation method for A. sapidissima to cope with rapid changes in external temperature. In summary, our findings demonstrate that living under high temperatures for a long period of time leads to different physiological defense responses in A. sapidissima, which provides some new ideas for analyzing the molecular regulatory patterns of adaptation to high temperature and also provides a theoretical basis for the subsequent improvement of fish culture in response to global warming.
Collapse
Affiliation(s)
- Mingkun Luo
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Bingbing Feng
- Fisheries Technology Extension Center of Jiangsu Province, Nanjing, 210036, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Zhengyuan Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Wei Xu
- Fisheries Technology Extension Center of Jiangsu Province, Nanjing, 210036, China
| | - Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Linghong Miao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
| |
Collapse
|
3
|
He X, Liao Y, Shen Y, Shao J, Wang S, Bao Y. Transcriptomic analysis of mRNA and miRNA reveals new insights into the regulatory mechanisms of Anadara granosa responses to heat stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101311. [PMID: 39154435 DOI: 10.1016/j.cbd.2024.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Temperature fluctuations resulting from climate change and global warming pose significant threats to various species. The blood clam, Anadara granosa, a commercially important marine bivalve, predominantly inhabits intertidal mudflats that are especially susceptible to elevated temperatures. This vulnerability has led to noticeable declines in the survival rates of A. granosa larvae, accompanied by an increase in malformations. Despite these observable trends, there is a lack of comprehensive research on the regulatory mechanisms underlying A. granosa's responses to heat stress. In this study, we examined the survival rates of A. granosa under varying high temperature conditions, selecting 34 °C as heat stress temperature. Enzyme activity assays have shed light on A. granosa's adaptive response to heat stress, revealing its ability to maintain redox balance and transition from aerobic to anaerobic metabolic pathways. Subsequently, mRNA and miRNA transcriptome analyses were conducted, elucidating several key responses of A. granosa to heat stress. These responses include the upregulation of transcription and protein synthesis, downregulation of proteasome activity, and metabolic pattern adjustments. Furthermore, we identified miRNA-mRNA networks implicated in heat stress responses, potentially serving as valuable candidate markers for A. granosa's heat stress response. Notably, we validated the involvement of agr-miR-3199 in A. granosa's heat stress response through its regulation of the target gene Foxj1. These findings not only deepen our understanding of the molecular mechanisms underlying the blood clam's response to heat stress but also offer valuable insights for enhancing heat stress resilience in the blood clam aquaculture industry. Moreover, they contribute to improved cultivation strategies for molluscs in the face of global warming and have significant implications for the conservation of marine resources and the preservation of ecological balance.
Collapse
Affiliation(s)
- Xin He
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, China; Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China
| | - Yushan Liao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Yiping Shen
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Junfa Shao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Shi Wang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China
| | - Yongbo Bao
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, China; Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China.
| |
Collapse
|
4
|
Hou QL, Zhu JN, Fang M, Chen EH. Comparative transcriptome analysis provides comprehensive insight into the molecular mechanisms of heat adaption in Plutella xylostella. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101300. [PMID: 39084150 DOI: 10.1016/j.cbd.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Plutella xylostella is one of the most destructive pests for cruciferous vegetables, and is adaptability to different environmental stressors. However, we still know little about the molecular mechanisms of how P. xylostella adapt to thermal stress. Here, the comparative transcriptome analysis was conducted from the samples of control (27 °C, CK) and heat treatment (40 °C, 40 T) P. xylostella. The results showed 1253 genes were differentially expressed, with 624 and 629 genes up- and down-regulated respectively. The annotation analysis demonstrated that "Energy production and conversion", "Protein processing in endoplasmic reticulum", "Peroxisome" and "Tyrosine metabolism" pathways were significantly enriched. Additionally, we found the expression levels of heat shock protein genes (Hsps), cuticle related genes and mitochondrial genes were significantly up-regulated in 40 T insects, suggesting their vital roles in improving adaption to heat stress. Importantly, the SOD activity and MDA content of P. xylostella were both identified to be increased under high temperature stress, indicating the elevated antioxidant reactions might be involved in response to heat stress. In conclusion, the present study offered us an overview of gene expression changes after 40 °C treatments, and found some critical pathways and genes of P. xylostella might play the critical roles in resisting heat stress.
Collapse
Affiliation(s)
- Qiu-Li Hou
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Jia-Ni Zhu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Mei Fang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Er-Hu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
5
|
Duan Y, Chen Q, Bilal M, Wu Y, Gong Z, Wu R, Miao J. Comparative Transcriptome Analysis Reveals Different Responses in Three Developmental Stages of Mythimna loreyi to Cold Stress. INSECTS 2024; 15:554. [PMID: 39057286 PMCID: PMC11276649 DOI: 10.3390/insects15070554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
The loreyi leafworm Mythimna loreyi (Lepidoptera: Noctuidae) is a serious pest of agriculture that causes particular damage to Gramineae crops in Asia, Europe, Australia, Africa, and the Middle East. Low temperature is one of the important environmental factors that limits the survival, distribution, colonization, and abundance of M. loreyi. However, the metabolic synthesis pathways of cold-tolerant substances in M. loreyi and the key genes involved in the regulation under cold stress remain largely unknown. In this study, we sequenced the transcriptomes of three developmental stages (larvae, pupae, and adults) of M. loreyi to discover the molecular mechanisms of their responses to cold stress. In total, sequencing generated 120.64 GB of clean data from 18 samples, of which 19,459 genes and 1740 differentially expressed genes (DEGs) were identified. The enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that many DEGs were mainly enriched in pathways associated with energy metabolism and hormone metabolism. Among these, genes encoding multiple metabolic enzymes, cuticle proteins (CPs), and heat shock proteins (HSPs) were differentially expressed. These results indicate that there are significant differences among the three developmental stages of M. loreyi exposed to cold stress and provide a basis for further studying the molecular mechanisms of cold tolerance in insects.
Collapse
Affiliation(s)
- Yun Duan
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.D.); (M.B.); (Y.W.); (Z.G.)
| | - Qi Chen
- Luohe Academy of Agricultural Sciences, Luohe 462000, China;
| | - Muhammad Bilal
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.D.); (M.B.); (Y.W.); (Z.G.)
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuqing Wu
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.D.); (M.B.); (Y.W.); (Z.G.)
| | - Zhongjun Gong
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.D.); (M.B.); (Y.W.); (Z.G.)
| | - Renhai Wu
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.D.); (M.B.); (Y.W.); (Z.G.)
| | - Jin Miao
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.D.); (M.B.); (Y.W.); (Z.G.)
| |
Collapse
|
6
|
Pei T, Zhang M, Nwanade CF, Meng H, Bai R, Wang Z, Wang R, Zhang T, Liu J, Yu Z. Sequential expression of small heat shock proteins contributing to the cold response of Haemaphysalis longicornis (Acari: Ixodidae). PEST MANAGEMENT SCIENCE 2024; 80:2061-2071. [PMID: 38117216 DOI: 10.1002/ps.7941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Haemaphysalis longicornis is an important livestock pest and a serious threat to public health. Cold is a common form of stress affecting its survival and distribution. However, H. longicornis exhibits different physiological responses to cold stress. In this study, we systematically explored the regulation and functions of small heat shock proteins (sHsps) in H. longicornis during cold stress. RESULTS Seven sHsp genes (HlsHsp14.9, HlsHsp19.9, HlsHsp20.3, HlsHsp21.4, HlsHsp23.7, HlsHsp24.0, and HlsHsp26.1) with open reading frame lengths ranging from 408 bp (HlsHsp14.9) to 673 bp (HlsHsp26.1) were cloned from H. longicornis, and featured the typical α-crystallin domain. Phylogenetic analysis revealed high similarity with the sHsps of arachnid species. Quantitative polymerase chain reaction analysis revealed that the regulation of sHsp genes depended on the severity and duration of cold treatment. Moreover, the relative expression of each gene was largely dependent on the treatment period (P < 0.01; 3, 6, and 9 days of treatment at 8, 4, 0, and -4 °C). Among all genes, HlsHsp14.9, HlsHsp19.9, HlsHsp20.3, and HlsHsp24.0 were most sensitive to rapid cold treatment. After RNA interference, the mortality of H. longicornis was significantly increased at -14 °C (P < 0.05), suggesting that the expression of sHsp genes is closely related to cold tolerance in H. longicornis. CONCLUSION Our results indicate that sHsps play an important role in the cold stress response of H. longicornis, which may enhance our understanding of the cold adaptation mechanisms in ticks. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tingwei Pei
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Meng Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Chuks F Nwanade
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hao Meng
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, China
| | - Ruwei Bai
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zihao Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ruotong Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Tianai Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
7
|
You S, Lei G, Zhou H, Li J, Chen S, Huang J, Vasseur L, Gurr GM, You M, Chen Y. Thermal acclimation uncovers a simple genetic basis of adaptation to high temperature in a cosmopolitan pest. iScience 2024; 27:109242. [PMID: 38425842 PMCID: PMC10904271 DOI: 10.1016/j.isci.2024.109242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/16/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Understanding a population's fitness heterogeneity and genetic basis of thermal adaptation is essential for predicting the responses to global warming. We examined the thermotolerance and genetic adaptation of Plutella xylostella to exposure to hot temperatures. The population fitness parameters of the hot-acclimated DBM strains varied in the thermal environments. Using genome scanning and transcription profiling, we find a number of genes potentially involved in thermal adaptation of DBM. Editing two ABCG transporter genes, PxWhite and PxABCG, confirmed their role in altering cuticle permeability and influencing thermal responses. Our results demonstrate that SNP mutations in genes and changes in gene expression can allow DBM to rapidly adapt to thermal environment. ABCG transporter genes play an important role in thermal adaptation of DBM. This work improves our understanding of genetic adaptation mechanisms of insects to thermal stress and our capacity to predict the effects of rising global temperatures on ectotherms.
Collapse
Affiliation(s)
- Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Gaoke Lei
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huiling Zhou
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianyu Li
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaoping Chen
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jieling Huang
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Department of Biological Sciences, UNESCO Chair on Community Sustainability, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Geoff M. Gurr
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Gulbali Institute, Charles Sturt University, Orange, NSW 2800, Australia
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanting Chen
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Zhi-Xiang D, Wan-Li L, Xi-Jie LI, Jia-Li L, Jun Z, Chong-Hui Z, Qi H, Zhe C, Yuan C, Hong-Mu Z, Jun G, Wen-Li T. Glyphosate exposure affected longevity-related pathways and reduced survival in asian honey bees (Apis cerana). CHEMOSPHERE 2024; 351:141199. [PMID: 38237785 DOI: 10.1016/j.chemosphere.2024.141199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
Glyphosate (N-(phosphonomethyl)glycine, GLY) ranks among the most extensively used and effective herbicides globally. However, excessive GLY utilization poses a substantial threat to the survival of honey bees (Apis cerana). Here we monitored the survival status of A. cerana treated with GLY, and conducted transcriptome sequencing of the bee gut and head to further explore potential GLY influences at the molecular level. We observed that the mortality rate of bees increased as GLY concentration escalated. Pivotal pathways emerged in response to the GLY treatment, with a substantial number of differentially expressed genes enriched in the longevity regulating pathway - multiple species. This strongly suggested that GLY may influence the physiological behavior of bees by impacting this particular pathway. Moreover, our analysis revealed a notable reduction in the enzymatic activities of CYP450 and AChE in both the bee head and intestines of when exposed to GLY. Conversely, the enzymatic activity of superoxide dismutase (SOD) in the head remained unaffected, whereas in the intestines, it exhibited a significant increase. Additionally, prophenol oxidase (PPO) and glutathione-S-transferases (GSTs) displayed contrasting trends in enzymatic activity in both organs. This study offers valuable insights into how GLY impacted the survival of A. cerana.
Collapse
Affiliation(s)
- Dong Zhi-Xiang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Li Wan-Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - L I Xi-Jie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Li Jia-Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Zhang Jun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Zhao Chong-Hui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Huang Qi
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Cao Zhe
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Chen Yuan
- Pujia Life Technology (Fuzhou) Co., LTD, Fuzhou, 350018, China
| | - Zhao Hong-Mu
- Sericulture and Apiculture Research Institute, Yunnan Academy of Agriculutral Sciences, Mengzi, 661101, China.
| | - Guo Jun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Tian Wen-Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| |
Collapse
|
9
|
Li S, Xu F, Zhang Y, Gao Z, Han Z, Feng C. Identification and characteristic analysis of an extracellular signal-regulated kinase from Ostrinia furnacalis Guenée. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22077. [PMID: 38288489 DOI: 10.1002/arch.22077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/18/2023] [Accepted: 12/13/2023] [Indexed: 02/01/2024]
Abstract
The extracellular signal-regulated kinase (ERK) pathway, a critical genetic determinant, controls diverse physiological functions, including innate immunity, development, and stress response. In the current study, a full-length cDNA (1592bp) encoding the ERK gene (OfERK) was cloned from Ostrinia furnacalis Guenée (GenBank accession number: MF797866). The open reading frame of the OfERK gene encoded 364 amino acids and shared 96.43%-98.08% amino acid identities with other insect mitogen-activated protein kinases. For spatiotemporal analysis of the expression pattern, OfERK exhibited a significant peak expression on the 3rd day of the pupa stage and showed the highest expression in hemocytes specifically. Indirect immunofluorescence assays and immuno-electron microscopy revealed a wide distribution of the OfERK protein in hemocytes and epidermis. Moreover, the results demonstrated that the Bt Cry1Ab-activated toxin significantly induces the expression of OfERK. Other genes related to immune response, development, and stress response exhibited dynamic changes in expression after Cry1Ab oral treatment. The expression of OfERK was downregulated through RNA interference, and the correlation of its expression with other related genes was verified using quantitative real-time polymerase chain reaction. Our study provides valuable insights into the regulatory mechanism of ERK in insects for future studies.
Collapse
Affiliation(s)
- Shuzhong Li
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fuqiang Xu
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yiqiang Zhang
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zupeng Gao
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhaoyang Han
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Congjing Feng
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
10
|
Tao YD, Liu Y, Wan XS, Xu J, Fu DY, Zhang JZ. High and Low Temperatures Differentially Affect Survival, Reproduction, and Gene Transcription in Male and Female Moths of Spodoptera frugiperda. INSECTS 2023; 14:958. [PMID: 38132631 PMCID: PMC10743771 DOI: 10.3390/insects14120958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
In this study, we found that both heat and cold stresses significantly affected the survival and reproduction of both sexes in Spodoptera frugiperda adults, with larvae showing relatively higher extreme temperature tolerance. Further transcriptomic analysis in adults found remarkable differences and similarities between sexes in terms of temperature stress responses. Metabolism-related processes were suppressed in heat stressed females, which did not occur to the same extend in males. Moreover, both heat and cold stress reduced immune activities in both sexes. Heat stress induced the upregulation of many heat shock proteins in both sexes, whereas the response to cold stress was insignificant. More cold tolerance-related genes, such as cuticle proteins, UDP-glucuronosyltransferase, and facilitated trehalose transporter Tret1, were found upregulated in males, whereas most of these genes were downregulated in females. Moreover, a large number of fatty acid-related genes, such as fatty acid synthases and desaturases, were differentially expressed under heat and cold stresses in both sexes. Heat stress in females induced the upregulation of a large number of zinc finger proteins and reproduction-related genes; whereas cold stress induced downregulation in genes linked to reproduction. In addition, TRPA1-like encoding genes (which have functions involved in detecting temperature changes) and sex peptide receptor-like genes were found to be differentially expressed in stressed moths. These results indicate sex-specific heat and cold stress responses and adaptive mechanisms and suggest sex-specific trade-offs between stress-resistant progresses and fundamental metabolic processes as well as between survival and reproduction.
Collapse
Affiliation(s)
- Yi-Dong Tao
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| | - Yu Liu
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| | - Xiao-Shuang Wan
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| | - Jin Xu
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China
| | - Da-Ying Fu
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| | - Jun-Zhong Zhang
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| |
Collapse
|
11
|
Xue M, Xia X, Deng Y, Teng F, Zhao S, Li H, Hao D, Chen WY. Identification and Functional Analysis of an Epsilon Class Glutathione S-Transferase Gene Associated with α-Pinene Adaptation in Monochamus alternatus. Int J Mol Sci 2023; 24:17376. [PMID: 38139205 PMCID: PMC10743883 DOI: 10.3390/ijms242417376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Alpha-pinene is one of the main defensive components in conifers. Monochamus alternatus (Coleoptera: Cerambycidae), a wood borer feeding on Pinaceae plants, relies on its detoxifying enzymes to resist the defensive terpenoids. Here, we assayed the peroxide level and GST activity of M. alternatus larvae treated with different concentrations of α-pinene. Meanwhile, a gst gene (MaGSTe3) was isolated and analyzed. We determined its expression level and verified its function. The results showed that α-pinene treatment led to membrane lipid peroxidation and thus increased the GST activity. Expression of MaGSTe3 was significantly upregulated in guts following exposure to α-pinene, which has a similar pattern with the malonaldehyde level. In vitro expression and disk diffusion assay showed that the MaGSTe3 protein had high antioxidant capacity. However, RNAi treatment of MaGSTe3 did not reduce the hydrogen peroxide and malonaldehyde levels, while GST activity was significantly reduced. These results suggested MaGSTe3 takes part in α-pinene adaptation, but it does not play a great role in the resistance of M. alternatus larvae to α-pinene.
Collapse
Affiliation(s)
- Mingyu Xue
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China (Y.D.); (H.L.)
| | - Xiaohong Xia
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China (Y.D.); (H.L.)
| | - Yadi Deng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China (Y.D.); (H.L.)
| | - Fei Teng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China (Y.D.); (H.L.)
| | - Shiyue Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China (Y.D.); (H.L.)
| | - Hui Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China (Y.D.); (H.L.)
| | - Dejun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China (Y.D.); (H.L.)
| | - Wei-Yi Chen
- Soochow College, Soochow University, Suzhou 215006, China
| |
Collapse
|
12
|
Rai S, Singh A, Omkar O, Mishra G. Effect of larval thermal conditions on limb regeneration in a ladybird beetle, Cheilomenes sexmaculata. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:825-837. [PMID: 37465962 DOI: 10.1002/jez.2733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/20/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023]
Abstract
In view of global environmental change, ecological factors especially temperature, affect development of the poikilotherms like insects. Since ladybirds are at risk of injury under mass-rearing conditions, their ability to regenerate injured limbs is highly crucial for their survival. Therefore, the effect of limb regeneration in relation to temperature forms the basis of the present study. The immature stages of insects, being more vulnerable to the surrounding temperature, were considered to study the effect of the prior thermal experience of larvae on regeneration. We exposed the early larval stages of the ladybird beetle, Cheilomenes sexmaculata, to different temperature conditions pre- and postamputation. Exposure of immature stages to extreme temperatures did not affect the ability to regenerate and regeneration occurred at given temperature conditions. However, the regenerated legs were smaller in size across given temperatures as compared to unamputated legs. Body weights in amputated treatments showed no difference and remained unchanged across temperatures when compared to unamputated treatments. Postamputation developmental duration, equivalent to recovery time postlimb amputation, was found to be affected by larval thermal conditions. Recovery was faster in larval treatments exposed to higher temperatures. Thus, larval thermal conditions though did not affect the ability to regenerate lost limbs directly, it does modulate the time taken to regenerate.
Collapse
Affiliation(s)
- Shriza Rai
- Department of Zoology, Ladybird Research Laboratory, University of Lucknow, Lucknow, India
| | - Anupama Singh
- Department of Statistics, University of Lucknow, Lucknow, India
| | - Omkar Omkar
- Department of Zoology, University of Lucknow, Lucknow, India
| | - Geetanjali Mishra
- Department of Zoology, Ladybird Research Laboratory, University of Lucknow, Lucknow, India
| |
Collapse
|
13
|
Zhang Y, Liu S, De Meyer M, Liao Z, Zhao Y, Virgilio M, Feng S, Qin Y, Singh S, Wee SL, Jiang F, Guo S, Li H, Deschepper P, Vanbergen S, Delatte H, van Sauers-Muller A, Syamsudin TS, Kawi AP, Kasina M, Badji K, Said F, Liu L, Zhao Z, Li Z. Genomes of the cosmopolitan fruit pest Bactrocera dorsalis (Diptera: Tephritidae) reveal its global invasion history and thermal adaptation. J Adv Res 2023; 53:61-74. [PMID: 36574947 PMCID: PMC10658297 DOI: 10.1016/j.jare.2022.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION The oriental fruit fly Bactrocera dorsalis is one of the most destructive agricultural pests worldwide, with highly debated species delimitation, origin, and global spread routes. OBJECTIVES Our study intended to (i) resolve the taxonomic uncertainties between B. dorsalis and B. carambolae, (ii) reveal the population structure and global invasion routes of B. dorsalis across Asia, Africa, and Oceania, and (iii) identify genomic regions that are responsible for the thermal adaptation of B. dorsalis. METHODS Based on a high-quality chromosome-level reference genome assembly, we explored the population relationship using a genome-scale single nucleotide polymorphism dataset generated from the resequencing data of 487 B. dorsalis genomes and 25 B. carambolae genomes. Genome-wide association studies and silencing using RNA interference were used to identify and verify the candidate genes associated with extreme thermal stress. RESULTS We showed that B. dorsalis originates from the Southern India region with three independent invasion and spread routes worldwide: (i) from Northern India to Northern Southeast Asia, then to Southern Southeast Asia; (ii) from Northern India to Northern Southeast Asian, then to China and Hawaii; and (iii) from Southern India toward the African mainland, then to Madagascar, which is mainly facilitated by human activities including trade and immigration. Twenty-seven genes were identified by a genome-wide association study to be associated with 11 temperature bioclimatic variables. The Cyp6a9 gene may enhance the thermal adaptation of B. dorsalis and thus boost its invasion, which tended to be upregulated at a hardening temperature of 38 °C. Functional verification using RNA interference silencing against Cyp6a9, led to the specific decrease in Cyp6a9 expression, reducing the survival rate of dsRNA-feeding larvae exposed to extreme thermal stress of 45 °C after heat hardening treatments in B. dorsalis. CONCLUSION This study provides insights into the evolutionary history and genetic basis of temperature adaptation in B. dorsalis.
Collapse
Affiliation(s)
- Yue Zhang
- College of Plant Protection, China Agricultural University, Beijing 100193, China; Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shanlin Liu
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Marc De Meyer
- Royal Museum for Central Africa, Invertebrates Section and JEMU, Tervuren B3080, Belgium
| | - Zuxing Liao
- College of Plant Protection, China Agricultural University, Beijing 100193, China; Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yan Zhao
- College of Plant Protection, China Agricultural University, Beijing 100193, China; Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Massimiliano Virgilio
- Royal Museum for Central Africa, Invertebrates Section and JEMU, Tervuren B3080, Belgium
| | - Shiqian Feng
- College of Plant Protection, China Agricultural University, Beijing 100193, China; Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yujia Qin
- College of Plant Protection, China Agricultural University, Beijing 100193, China; Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Sandeep Singh
- Department of Fruit Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Suk Ling Wee
- Centre for Insect Systematics, Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
| | - Fan Jiang
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Shaokun Guo
- College of Plant Protection, China Agricultural University, Beijing 100193, China; Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Hu Li
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Pablo Deschepper
- Royal Museum for Central Africa, Invertebrates Section and JEMU, Tervuren B3080, Belgium
| | - Sam Vanbergen
- Royal Museum for Central Africa, Invertebrates Section and JEMU, Tervuren B3080, Belgium
| | | | | | - Tati Suryati Syamsudin
- School of Life Science and Technology, Bandung Institute of Technology, Bandung 40132, Indonesia
| | | | - Muo Kasina
- Apiculture Research Institute, P.O. Box 32-40302, Marigat, Kenya
| | - Kemo Badji
- Crop Protection Directorate, Dakar, Senegal
| | - Fazal Said
- Department of Agriculture, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan, Pakistan
| | - Lijun Liu
- College of Plant Protection, China Agricultural University, Beijing 100193, China; Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zihua Zhao
- College of Plant Protection, China Agricultural University, Beijing 100193, China; Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhihong Li
- College of Plant Protection, China Agricultural University, Beijing 100193, China; Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
14
|
Wei X, Xu D, Liu Z, Liu Q, Zhuo Z. SMRT Sequencing Technology Was Used to Construct the Batocera horsfieldi (Hope) Transcriptome and Reveal Its Features. INSECTS 2023; 14:625. [PMID: 37504630 PMCID: PMC10380457 DOI: 10.3390/insects14070625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023]
Abstract
Batocera horsfieldi (Hope) (Coleoptera: Cerambycidae) is an important forest pest in China that mainly infests timber and economic forests. This pest primarily causes plant tissue to necrotize, rot, and eventually die by feeding on the woody parts of tree trunks. To gain a deeper understanding of the genetic mechanism of B. horsfieldi, this study employed single-molecule real-time sequencing (SMRT) and Illumina RNA-seq technologies to conduct full-length transcriptome sequencing of the insect. Total RNA extracted from male and female adults was mixed and subjected to SMRT sequencing, generating a complete transcriptome. Transcriptome analysis, prediction of long non-coding RNA (lncRNA), coding sequences (CDs), analysis of simple sequence repeats (SSR), prediction of transcription factors, and functional annotation of transcripts were performed in this study. The collective 20,356,793 subreads (38.26 G, clean reads) were generated, including 432,091 circular consensus sequences and 395,851 full-length non-chimera reads. The full-length non-chimera reads (FLNC) were clustered and redundancies were removed, resulting in 39,912 consensus reads. SSR and ANGEL software v3.0 were used for predicting SSR and CDs. In addition, four tools were used for annotating 6058 lncRNAs, identifying 636 transcription factors. Furthermore, a total of 84,650 transcripts were functionally annotated in seven different databases. This is the first time that the full-length transcriptome of B. horsfieldi has been obtained using SMRT sequencing. This provides an important foundation for investigating the gene regulation underlying the interaction between B. horsfieldi and its host plants through gene editing in the future and provides a scientific basis for the prevention and control of B. horsfieldi.
Collapse
Affiliation(s)
- Xinju Wei
- College of Life Science, China West Normal University, Nanchong 637002, China
| | - Danping Xu
- College of Life Science, China West Normal University, Nanchong 637002, China
| | - Zhiqian Liu
- College of Life Science, China West Normal University, Nanchong 637002, China
| | - Quanwei Liu
- College of Life Science, China West Normal University, Nanchong 637002, China
| | - Zhihang Zhuo
- College of Life Science, China West Normal University, Nanchong 637002, China
| |
Collapse
|
15
|
Dong CL, Zhu F, Du YZ, Lu MX. Depending on different apoptosis pathways, the effector Cscaspase-3 in Chilo suppressalis exposed to temperature and parasitic stress was induced. Int J Biol Macromol 2023; 238:124270. [PMID: 37003373 DOI: 10.1016/j.ijbiomac.2023.124270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Apoptosis is a form of programmed cell death (PCD) that is largely triggered by caspases through both the mitochondria-dependent and mitochondria-independent pathways. The rice stem borer, Chilo suppressalis, serves as an economically important pest of rice, which is often suffered by temperature and parasitic stress under natural conditions. In the present study, effector Cscaspase-3 encoding caspase was obtained from the rice pest Chilo suppressalis. CsCaspase-3 possesses p20 and p10 subunits, two active sites, four substrate-binding sites, and two cleavage motifs. Real-time quantitative PCR showed that Cscaspase-3 was expressed at maximal levels in hemocytes; furthermore, transcription was most highly in female adults. Expression of Cscaspase-3 was induced by hot and cold temperatures, with the highest expression at 39 °C. Cscaspase-3 expression was also significantly induced at 10 h, 2 d, 5 d, and 7 d of parasitism. Flow cytometry results showed that both temperature and parasitism trigger apoptosis, but only parasitism induces apoptosis via the mitochondrial apoptosis pathway in C. suppressalis. RNAi-mediated silencing of Cscaspase-3 expression reduced C. suppressalis survival at -3 °C. This study provides a foundation for further studies of caspases in insects during biotic and abiotic stress.
Collapse
Affiliation(s)
- Chuan-Lei Dong
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Feng Zhu
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing 210000, PR China
| | - Yu-Zhou Du
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China.
| | - Ming-Xing Lu
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
16
|
Zhang B, Li X, Jiang Y, Liu J, Zhang J, Ma W. Comparative transcriptome analysis of adult worker bees under short-term heat stress. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1099015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
High temperature affects behavior, physiology, survival, and the expression of related genes in adult honeybees. Apis mellifera is the common pollinator in greenhouse and is susceptible to high temperature stress. To further explore the molecular basis related to heat stress, we compared the transcriptome profiles of adult worker bees at 25 and 45°C, and detected the expression patterns of some differentially expressed genes (DEGs) in different tissues by q RT-PCR. Differential expression analysis showed that 277 DEGs were identified, including 167 genes upregulated and 110 genes downregulated after heat stress exposure in adult worker bees. In GO enrichment analysis, DEGs were mostly enriched for protein folding, unfold protein binding, and heme binding terms. Protein processing in endoplasmic reticulum and longevity regulating pathway-multiple species were significantly enriched in KEGG. The expression levels of 16 DEGs were consistent with the transcriptome results. The expression patterns of 9 DEGs in different tissues revealed high levels in the thorax, which was supposed that the thorax may be the most important part in the response to heat stress. This study provided valuable data for exploring the function of heat resistance-related genes.
Collapse
|
17
|
Luo D, Liu Q, Wang J, Jashenko R, Ji R. Transcriptome Analysis of the Differentially Expressed Heat-resistant Genes between Calliptamus italicus and Gomphocerus sibiricus. ENVIRONMENTAL ENTOMOLOGY 2023; 52:129-137. [PMID: 36511506 PMCID: PMC9936262 DOI: 10.1093/ee/nvac099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 06/17/2023]
Abstract
Calliptamus italicus and Gomphocerus sibiricus are indicator species in Xinjiang's low-altitude (700-1,900 m) and high-altitude (2,000-3,400 m) grasslands, respectively. C. italicus is tolerant to high-temperature stress, with its semilethal temperature (LT50) being 10.5°C higher than that of G. sibiricus. The two locust species were subjected to high-temperature stress to explore the molecular mechanisms and differences in high temperature tolerance between the two locust species. Next, the next generation sequencing (NGS) data were mapped to reference transcripts obtained using single molecule real Time (SMRT) sequencing to construct a nonparameter transcriptome. The transcriptomic response of these two locust species displayed different patterns. C. italicus had 126 differentially expressed genes (DEGs), with 59 and 67 being significantly up-regulated and down-regulated, respectively. The heat shock protein (Hsp) genes were highly expressed upon two locust species exposure to high-temperature stress, with Hsp70 being expressed the most. G. sibiricus had 86 DEGs, of which 45 were significantly up-regulated and 41 significantly down-regulated. In addition, the expression of the key enzyme encoding gene Myo-inositol oxygenase (MIOX) in inositol degradation was the highest in G. sibiricus. In the KEGG pathway, the biological processes and metabolic pathways were the most enriched pathways in C. italicus and G. sibiricus, respectively. Moreover, the quantitative fluorescence results were consistent with the transcriptome results, implying that the transcriptome results were accurate. The findings in this study provide valuable information for future research exploring the evolution mechanisms of heat resistance in C. italicus and G. sibiricus.
Collapse
Affiliation(s)
- Di Luo
- International Research Center for the Collaborative Management of Cross-Border Pests in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
| | - Qian Liu
- International Research Center for the Collaborative Management of Cross-Border Pests in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
| | - Jinfeng Wang
- International Research Center for the Collaborative Management of Cross-Border Pests in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
| | - Roman Jashenko
- Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Rong Ji
- Corresponding author, e-mail:
| |
Collapse
|
18
|
Gao R, Liu L, Zhao L, Cui S. Potentially Suitable Geographical Area for Monochamus alternatus under Current and Future Climatic Scenarios Based on Optimized MaxEnt Model. INSECTS 2023; 14:insects14020182. [PMID: 36835751 PMCID: PMC9962367 DOI: 10.3390/insects14020182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 05/05/2023]
Abstract
M. alternatus is considered to be an important and effective insect vector for the spread of the important international forest quarantine pest, Bursaphelenchus xylophilus. The precise determination of potential suitable areas of M. alternatus is essential to monitor, prevent, and control M. alternatus worldwide. According to the distribution points and climatic variables, the optimized MaxEnt model and ArcGIS were used to predict the current and future potentially suitable areas of M. alternatus worldwide. The optimized MaxEnt model parameters were set as feature combination (FC) = LQHP and β = 1.5, which were determined by the values of AUCdiff, OR10, and ΔAICc. Bio2, Bio6, Bio10, Bio12, and Bio14 were the dominant bioclimatic variables affecting the distribution of M. alternatus. Under the current climate conditions, the potentially suitable habitats of M. alternatus were distributed across all continents except Antarctica, accounting for 4.17% of the Earth's total land area. Under future climate scenarios, the potentially suitable habitats of M. alternatus increased significantly, spreading to a global scale. The results of this study could provide a theoretical basis for the risk analysis of the global distribution and dispersal of M. alternatus as well as the precise monitoring and prevention of this beetle.
Collapse
Affiliation(s)
- Ruihe Gao
- Department of Forest Conservation, College of Forestry, Shanxi Agricultural University, Jinzhong 030801, China
- Shanxi Dangerous Forest Pest Inspection and Identification Center, Jinzhong 030801, China
| | - Lei Liu
- Department of Forest Conservation, College of Forestry, Shanxi Agricultural University, Jinzhong 030801, China
- Shanxi Dangerous Forest Pest Inspection and Identification Center, Jinzhong 030801, China
| | - Lijuan Zhao
- Department of Forest Conservation, College of Forestry, Shanxi Agricultural University, Jinzhong 030801, China
- Shanxi Dangerous Forest Pest Inspection and Identification Center, Jinzhong 030801, China
| | - Shaopeng Cui
- Department of Forest Conservation, College of Forestry, Shanxi Agricultural University, Jinzhong 030801, China
- Shanxi Dangerous Forest Pest Inspection and Identification Center, Jinzhong 030801, China
- Correspondence:
| |
Collapse
|
19
|
Chen Y, Wu X, Liu X, Lai J, Liu Y, Song M, Li F, Gong Q. Biochemical, transcriptomic and metabolomic responses to total dissolved gas supersaturation and their underlying molecular mechanisms in Yangtze sturgeon (Acipenser dabryanus). ENVIRONMENTAL RESEARCH 2023; 216:114457. [PMID: 36183788 DOI: 10.1016/j.envres.2022.114457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
With the rapid development of hydropower facility construction, the total dissolved gas (TDG) generated by dam discharge is seriously threatening the survival of fish and has become an ecological environmental issue of global concern. However, how TDG affects fish physiology and the underlying molecular mechanism remain poorly known. In this study, Acipenser dabryanus, an ancient living fossil that is a flagship species of the Yangtze River, was exposed to water supersaturated with TDG at a level of 116% for 48 h. A comprehensive analysis was performed to study the effect of TDG supersaturation stress on A. dabryanus, including histopathological, biochemical, transcriptomic and metabolomic analyses. The histopathological results showed that mucosal-associated lymphoid tissues were seriously damaged after TDG supersaturation stress. Plasma catalase levels increased significantly under TDG supersaturation stress, while superoxide dismutase levels decreased significantly. Transcriptomic analysis revealed 289 upregulated genes and 162 downregulated genes in gill tissue and 535 upregulated and 104 downregulated genes in liver tissue. Metabolomic analysis revealed 63 and 164 differentially abundant metabolites between the control group and TDG group in gill and liver, respectively. The majority of heat shock proteins and genes related to ubiquitin and various immune-related pathways were significantly upregulated by TDG supersaturation stress. Integrated transcriptomic and metabolomic analyses revealed the upregulation of amino acid metabolism and glycometabolism pathways under TDG supersaturation stress. Glycerophospholipid metabolism was increased which might be associated with maintaining cell membrane integrity. This is the first study revealing the underlying molecular mechanisms of effects of TDG supersaturation on fish. Our results suggested that acute TDG supersaturation stress could enhance immune and antioxidative functions and activate energy metabolic pathways as an adaptive mechanism in A. dabryanus.
Collapse
Affiliation(s)
- Yeyu Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Xiaoyun Wu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Xiaoqing Liu
- Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu, 610039, China
| | - Jiansheng Lai
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Ya Liu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Mingjiang Song
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Feiyang Li
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Quan Gong
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China.
| |
Collapse
|
20
|
Chen Y, Wu X, Lai J, Liu Y, Song M, Li F, Gong Q. Integrated biochemical, transcriptomic and metabolomic analyses provide insight into heat stress response in Yangtze sturgeon (Acipenser dabryanus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114366. [PMID: 36508793 DOI: 10.1016/j.ecoenv.2022.114366] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Temperature fluctuations caused by climate change and global warming pose a great threat to various species. Most fish are particularly vulnerable to elevated temperatures. Understanding the mechanism of high-temperature tolerance in fish can be beneficial for proposing effective strategies to help fish cope with global warming. In this study, we systematically studied the effects of high temperature on Acipenser dabryanus, an ancient living fossil and flagship species of the Yangtze River, at the histological, biochemical, transcriptomic and metabolomic levels. Intestinal and liver tissues from the control groups (18 °C) and acute heat stress groups (30 °C) of A. dabryanus were sampled for histological observation and liver tissues were assessed for transcriptomic and metabolomic profiling. Histopathological analysis showed that the intestine and liver tissues were damaged after heat stress. The plasma cortisol content and the levels of oxidative stress markers (catalase/glutathione reductase) and two aminotransferases (aspartate aminotransferase/alanine aminotransferase) increased significantly in response to acute heat stress. Transcriptomic and metabolomic methods showed 6707 upregulated and 4189 downregulated genes and 64 upregulated and 78 downregulated metabolites in the heat stress group. Heat shock protein (HSP) genes showed striking changes in expression under heat stress, with 21 genes belonging to the HSP30, HSP40, HSP60, HSP70 and HSP90 families significantly upregulated by short-term heat stress. The majority of genes associated with ubiquitin and various immune-related pathways were also markedly upregulated in the heat stress group. In addition, the combined analysis of metabolites and gene profiles suggested an enhancement of amino acid metabolism and glycometabolism and the suppression of fatty acid metabolism during heat stress, which could be a potential energy conservation strategy for A. dabryanus. To the best of our knowledge, the present study represents the first attempt to reveal the mechanisms of heat stress responses in A. dabryanus, which can provide insights into improved cultivation of fish in response to global warming.
Collapse
Affiliation(s)
- Yeyu Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Xiaoyun Wu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Jiansheng Lai
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Ya Liu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Mingjiang Song
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Feiyang Li
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Quan Gong
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China.
| |
Collapse
|
21
|
Brasil SNR, Kelemen EP, Rehan SM. Historic DNA uncovers genetic effects of climate change and landscape alteration in two wild bee species. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Li H, Li S, Chen J, Dai L, Chen R, Ye J, Hao D. A heat shock 70kDa protein MaltHSP70-2 contributes to thermal resistance in Monochamus alternatus (Coleoptera: Cerambycidae): quantification, localization, and functional analysis. BMC Genomics 2022; 23:646. [PMID: 36088287 PMCID: PMC9464376 DOI: 10.1186/s12864-022-08858-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background Heat Shock Proteins 70 (HSP70s) in insects act on a diverse range of substrates to assist with overcoming extreme high temperatures. MaltHSP70-2, a member of HSP70s, has been characterized to involve in the thermotolerance of Monochamus alternatus in vitro, while quantification and localization of MaltHSP70-2 in various tissues and its functional analysis in vivo remain unclear. Results In this study, temporal expression of MaltHSP70-2 indicated a long-last inductive effect on MaltHSP70-2 expression maintained 48 hours after heat shock. MaltHSP70-2 showed a global response to heat exposure which occurring in various tissues of both males and females. Particularly in the reproductive tissues, we further performed the quantification and localization of MaltHSP70-2 protein using Western Blot and Immunohistochemistry, suggesting that enriched MaltHSP70-2 in the testis (specifically in the primary spermatocyte) must be indispensable to protect the reproductive activities (e.g., spermatogenesis) against high temperatures. Furthermore, silencing MaltHSP70-2 markedly influenced the expression of other HSP genes and thermotolerance of adults in bioassays, which implied a possible interaction of MaltHSP70-2 with other HSP genes and its role in thermal resistance of M. alternatus adults. Conclusions These findings shed new insights into thermo-resistant mechanism of M. alternatus to cope with global warming from the perspective of HSP70s functions. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08858-1.
Collapse
|
23
|
Zhou A, Huang C, Li Y, Li X, Zhang Z, He H, Ding W, Xue J, Li Y, Qiu L. A chromosome-level genome assembly provides insights into the environmental adaptability and outbreaks of Chlorops oryzae. Commun Biol 2022; 5:881. [PMID: 36028584 PMCID: PMC9418232 DOI: 10.1038/s42003-022-03850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
Chlorops oryzae is a pest of rice that has caused severe damage to crops in major rice-growing areas in recent years. We generated a 447.60 Mb high-quality chromosome-level genome with contig and scaffold N50 values of 1.17 Mb and 117.57 Mb, respectively. Hi-C analysis anchored 93.22% scaffolds to 4 chromosomes. The relatively high expression level of Heat Shock Proteins (HSPs) and antioxidant genes in response to thermal stress suggests these genes may play a role in the environmental adaptability of C. oryzae. The identification of multiple pathways that regulate reproductive development (juvenile hormone, 20-hydroxyecdsone, and insulin signaling pathways) provides evidence that these pathways also play an important role in vitellogenesis and thus insect population maintenance. These findings identify possible reasons for the increased frequency of outbreaks of C. oryzae in recent years. Our chromosome-level genome assembly may provide a basis for further genetic studies of C. oryzae, and promote the development of novel, sustainable strategies to control this pest. A chromosome-level genome assembly for the rice pest, Chlorops oryzae, pinpoints molecular pathways that might contribute toward increased outbreaks for this important crop pest.
Collapse
Affiliation(s)
- Ailin Zhou
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.,Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, 410128, China
| | - Cong Huang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yi Li
- Plant Protection and Inspection Station, Agriculture and Rural Development of Hunan Province, Changsha, 410005, China
| | - Xinwen Li
- Plant Protection and Inspection Station, Agriculture and Rural Development of Hunan Province, Changsha, 410005, China
| | - Zhengbing Zhang
- Plant Protection and Inspection Station, Agriculture and Rural Development of Hunan Province, Changsha, 410005, China
| | - Hualiang He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Wenbing Ding
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.,Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, 410128, China
| | - Jin Xue
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Youzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China. .,Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, 410128, China.
| | - Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
24
|
Li H, Xia X, He X, Li S, Dai L, Ye J, Hao D. Comparative Transcriptome Analysis Reveals Molecular Insights in Overwintering Monochamus alternatus (Coleoptera: Cerambycidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:8. [PMID: 35560005 PMCID: PMC9105011 DOI: 10.1093/jisesa/ieac025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 06/15/2023]
Abstract
Monochamus alternatus, the dominant vector of Bursaphelenchus xylophilus (Aphelenchida: Aphelenchoididae), has caused immense damage to forest resources. In China, this vector was native to the southern regions but has spread northward recently. To adapt to more challenging environments in the northern winter, M. alternatus has evolved an intricate strategy for overwintering, which remains largely unknown. Herein, we compared the transcriptome data of the overwintering and non-overwintering larvae of M. alternatus larvae to investigate the molecular mechanisms in overwintering. A total of 53.10 GB clean bases and 28, 245 unigenes were obtained by RNA-seq. Analysis of 2597 upregulated and 2429 downregulated unigenes, as well as the enrichment of DEGs showed that many genes and pathways were jointly involved in the overwintering period. Besides, the accuracy of the RNA-seq data was tested by using qPCR experiment involving 13 selected genes. The results revealed that the overwintering process relied largely on the energy allocation trade-off. Specifically, overwintering M. alternatus inhibited energy-intensive activities, such as growth and molting, detoxification, and trehalose transport, and the reserved energy was skewed towards the synthesis of antifreeze compounds and immune response to cope with the deleterious effects of winter.
Collapse
Affiliation(s)
- Hui Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Xiaohong Xia
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Xuanyu He
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Shouyin Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Lulu Dai
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jianren Ye
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Dejun Hao
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
25
|
Ashraf HJ, Ramos Aguila LC, Ahmed S, Haq IU, Ali H, Ilyas M, Gu S, Wang L. Comparative transcriptome analysis of Tamarixia radiata (Hymenoptera: Eulophidae) reveals differentially expressed genes upon heat shock. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 41:100940. [PMID: 34794105 DOI: 10.1016/j.cbd.2021.100940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Temperature is a key parameter that affects insect population, abundance, and distribution in tropical and subtropical regions. Tamarixia radiata Waterson (Hymenoptera: Eulophidae) is a species-specific ectoparasitoid widely used as a biological control agent for the major citrus pest Diphornia citri Kuwayama (Hemiptera: Liviidea). To date, T. radiata response to high temperature at the molecular level still is unclear. In this study, we conducted a comparative analysis of the transcriptomes of T. radiata exposed at 25 °C and 38 °C for 15 min. A total of 51,072 unigenes were obtained, 22,413 annotated with a mean length of 1054 bp. Differential expression analysis showed that 502 genes were identified, including 476 genes significantly up-regulated and 26 genes down-regulated after heat stress exposure. The Gene Ontology analysis showed that most enriched DEGs are categorized into "cellular process", "metabolic process" and "DNA binding." In addition, "Lysosome," "Longevity regulating pathway-multiple species," and "starch and sucrose metabolism" were highly enriched in Kyoto Encyclopedia of Genes and Genomes pathways. Transcriptome analyses showed that heat stress significantly induced the transcription of the molecular chaperone, immune response, stress signaling transduction, and oxidation resistance, including highly expressed heat shock proteins, ATPases, and detoxifying enzymes. Furthermore, the expression patterns of thirteen genes including heat shock proteins (HSP), glutathione S-transferase (GST) and cytochrome P450 were consistent with the transcriptome results obtained through qRT-PCR. Together, our results provided a comprehensive study of the molecular response of T. radiata to heat stress and provides new insight for the future functional validation of heat resistance-related genes.
Collapse
Affiliation(s)
- Hafiza Javaria Ashraf
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Biochemistry, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Luis Carlos Ramos Aguila
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Biochemistry, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sohail Ahmed
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Inzamam Ul Haq
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China
| | - Hina Ali
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Muhammad Ilyas
- Department of Management Science and Engineering, School of Business, Qingdao University, Qingdao 266071, China
| | - Shuangyue Gu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Biochemistry, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Biochemistry, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
26
|
Fosp9, a novel secreted protein, is essential for full virulence of Fusarium oxysporum f. sp. cubense on banana ( Musa spp.). Appl Environ Microbiol 2022; 88:e0060421. [PMID: 35108093 DOI: 10.1128/aem.00604-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The banana vascular wilt pathogen, Fusarium oxysporum f. sp. cubense, delivers a number of different secreted proteins into host plant tissues during infection. Until now, only a few of the secreted proteins from this fungus have been shown to be virulence effectors. Here, the product of fosp9, which is a gene from this pathogen, was found to be a novel virulence effector. The fosp9 gene encodes a hypothetical 185 amino acid protein which has a functional signal peptide, but contains no known motifs or domains. The fosp9 disruptants displayed a significant reduction in producing wilt symptoms on bananas, indicating that fosp9 is essential for the full virulence of this pathogen towards banana. These disruptants did not exhibit a change in either saprophytic growth or conidiation on potato dextrose agar medium, but their invasive growth in the rhizomes of banana was markedly compromised, suggesting a pivotal role for fosp9 in the colonization of banana rhizome tissues by this fungus. Live-cell imaging revealed that the Fosp9:GFP fusion protein accumulated in the apoplast of the plant cells. Moreover, transcriptome profiling revealed that a number of virulence-associated genes were differentially expressed in the fosp9 disruptant relative to the wild-type. Taken together, these findings suggest that Fosp9 is a genuine effector of F. oxysporum f. sp. cubense. IMPORTANCE Fusarium wilt of bananas (also known as Panama disease) caused by the fungus F. oxysporum f. sp. cubense is one of the most devastating banana diseases worldwide. The understanding of molecular mechanism of its pathogenicity is very limited until now. We demonstrated that the secreted protein Fosp9 from this fungus contributed to its virulence against banana hosts, and was essential for colonization of banana rhizome tissues by this fungus. Especially, Fosp9 contains no any known domains or motifs, and has no functionally characterized homologs, implying that it is a novel secreted effector involved in F. oxysporum f. sp. cubense- banana interactions. This work provides insight into molecular mechanisms of F. oxysporum f. sp. cubense pathogenicity, and the fosp9 gene characterized would facilitates us develop transgenic banana and plantain resistant to this disease by silencing of this effector gene through host-induced gene silencing or other strategies in future.
Collapse
|
27
|
Vatanparast M, Park Y. Differential Transcriptome Analysis Reveals Genes Related to Low- and High-Temperature Stress in the Fall Armyworm, Spodoptera frugiperda. Front Physiol 2022; 12:827077. [PMID: 35173626 PMCID: PMC8841556 DOI: 10.3389/fphys.2021.827077] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/22/2021] [Indexed: 01/10/2023] Open
Abstract
The fall armyworm (FAW), Spodoptera frugiperda, is regarded as one of the world’s most harmful plant pests. This research examines the molecular response processes of FAW to low temperature (4°C) and high temperature (40°C) when gene expression is compared to controls (25°C). A total of 211,967 unigenes were collected, at least 14,338 of which were annotated with gene descriptions, gene ontology terms, and metabolic pathways. There were 50 Gene Ontology (GO) functional sub-groups and 21 EggNOG words as a result. Differentially expresses genes (DEGs) with log2FC ≥ 2 were identified and compared at various temperatures. In comparison to the 25°C treated group, we discovered 199 and 1,248 individual DEGs co-regulated at 4 and 40°C, respectively. Comparing transcriptome profiles for differential gene expression revealed a number of DEGs, including cytochrome P450, odorant binding proteins (OBPs), and immune system genes previously implicated in cold and high temperature stresses. The enrichment pathways were identified using Kyoto Encyclopedia of Genes and Genomics (KEGG) analysis, and heatmaps of similar unigenes from both treatment groups (T4 and T40) were plotted. We used quantitative reverse transcription PCR (RT-qPCR) to confirm the RNA-seq data on 10 up- and down-regulated DEGs. These findings provide a foundation for future understanding of FAW adaptation mechanisms and the underlying basis underlying the response to low and high temperatures.
Collapse
|
28
|
Vatanparast M, Park Y. Comparative RNA-Seq Analyses of Solenopsis japonica (Hymenoptera: Formicidae) Reveal Gene in Response to Cold Stress. Genes (Basel) 2021; 12:genes12101610. [PMID: 34681004 PMCID: PMC8535336 DOI: 10.3390/genes12101610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Solenopsis japonica, as a fire ant species, shows some predatory behavior towards earthworms and woodlice, and preys on the larvae of other ant species by tunneling into a neighboring colony's brood chamber. This study focused on the molecular response process and gene expression profiles of S. japonica to low (9 °C)-temperature stress in comparison with normal temperature (25 °C) conditions. A total of 89,657 unigenes (the clustered non-redundant transcripts that are filtered from the longest assembled contigs) were obtained, of which 32,782 were annotated in the NR (nonredundant protein) database with gene ontology (GO) terms, gene descriptions, and metabolic pathways. The results were 81 GO subgroups and 18 EggNOG (evolutionary genealogy of genes: Non-supervised Orthologous Groups) keywords. Differentially expressed genes (DEGs) with log2fold change (FC) > 1 and log2FC < -1 with p-value ≤ 0.05 were screened for cold stress temperature. We found 215 unigenes up-regulated and 115 unigenes down-regulated. Comparing transcriptome profiles for differential gene expression resulted in various DE proteins and genes, including fatty acid synthases and lipid metabolism, which have previously been reported to be involved in cold resistance. We verified the RNA-seq data by qPCR on 20 up- and down-regulated DEGs. These findings facilitate the basis for the future understanding of the adaptation mechanisms of S. japonica and the molecular mechanisms underlying the response to low temperatures.
Collapse
|
29
|
Vatanparast M, Puckett RT, Choi DS, Park Y. Comparison of gene expression in the red imported fire ant (Solenopsis invicta) under different temperature conditions. Sci Rep 2021; 11:16476. [PMID: 34389756 PMCID: PMC8363622 DOI: 10.1038/s41598-021-95779-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
The red imported fire ant (RIFA), Solenopsis invicta Buren is native to South America and is known as a global problematic invasive species. This study focused on the molecular response of RIFA by comparing gene expression profiles after exposing ants to low (10 °C) and high (40 °C) temperature stress and comparing them to untreated controls (30 °C). A total of 99,085 unigenes (the clustered non-redundant transcripts that are filtered from the longest assembled contigs) were obtained, of which 19,154 were annotated with gene descriptions, gene ontology terms, and metabolic pathways. 86 gene ontology (GO) functional sub-groups and 23 EggNOG terms resulted. Differentially expressed genes (DEGs) with log2FC ≥ 10 were screened and were compared at different temperatures. We found 203, 48, and 66 specific DEGs co-regulated at 10, 20, and 40 °C. Comparing transcriptome profiles for differential gene expression resulted in various DE genes, including cytochrome P450, NADH dehydrogenase subunit 1, cuticle protein and heat shock protein (HSP), which have previously been reported to be involved in cold and high temperature resistance. GO analysis revealed that antioxidant activity is up-regulated under high temperature stress. We verified the RNA-seq data by qPCR on 20 up- and down-regulated DEGs. These findings provide a basis for future understanding of the adaptation mechanisms of RIFA and the molecular mechanisms underlying the response to low and high temperatures.
Collapse
Affiliation(s)
- Mohammad Vatanparast
- grid.466502.30000 0004 1798 4034Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Gimcheon, 39660 Republic of Korea
| | - Robert T. Puckett
- grid.264756.40000 0004 4687 2082Department of Entomology, Texas A&M University, College Station, TX 77843 USA
| | - Deuk-Soo Choi
- grid.466502.30000 0004 1798 4034Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Gimcheon, 39660 Republic of Korea
| | - Youngjin Park
- grid.466502.30000 0004 1798 4034Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Gimcheon, 39660 Republic of Korea
| |
Collapse
|
30
|
Wang Z, Zhao L, Liu J, Yang Y, Shi J, Wen J, Gao R. Functional relationship between woody plants and insect communities in response to Bursaphelenchus xylophilus infestation in the Three Gorges Reservoir region. Ecol Evol 2021; 11:8843-8855. [PMID: 34257932 PMCID: PMC8258193 DOI: 10.1002/ece3.7716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/11/2022] Open
Abstract
To study the effect of the invasion of Bursaphelenchus xylophilus on the functional relationship between woody plants and insect communities, the populations of tree species and insect communities were investigative in the Masson pine forests with different infestation durations of B. xylophilus. In this study, the number of Pinus massoniana began to decrease sharply, whereas the total number of other tree species in the arboreal layer increased gradually with the infestation duration of B. xylophilus. The principal component analysis ordination biplot shows that there was a significant change in the spatial distribution of woody plant species in different Masson pine forest stands. Additionally, a total of 7,188 insect specimens were obtained. The insect population showed an upward trend in stand types with the increase of pine wilt disease infection periods, which demonstrated that the insect community had been significantly affected by the invasion of B. xylophilus. However, the insect diversity indexes were not significantly different among Masson pine forest stands. The structure of insect functional groups changed from herbivorous (He) > omnivorous (Om) > predatory (Pr) > parasitic (Pa) > detritivorous (De) in the control stand to He > Pa > Om, De > Pr after B. xylophilus infestation in the forests. The results showed that the populations of He, Pa, and De increased after the invasion of B. xylophilus, but the populations of Pr decreased. Moreover, the redundancy analysis ordination biplots reflected the complicated functional relationship between woody plant communities and insects after the invasion of B. xylophilus. The present study provides insights into the changes in the community structure of woody plants and insects, as well as the functional relationship between woody plant communities and insect communities after invasion of B. xylophilus.
Collapse
Affiliation(s)
- Zhuang Wang
- Beijing Key Laboratory for Forest Pest ControlCollege of ForestryBeijing Forestry UniversityBeijingChina
| | - Lijuan Zhao
- College of MarxismShanxi Agricultural UniversityTaiguChina
| | - Jiaqi Liu
- College of ForestryShanxi Agricultural UniversityTaiguChina
| | - Yajie Yang
- College of ForestryShanxi Agricultural UniversityTaiguChina
| | - Juan Shi
- Beijing Key Laboratory for Forest Pest ControlCollege of ForestryBeijing Forestry UniversityBeijingChina
| | - Junbao Wen
- Beijing Key Laboratory for Forest Pest ControlCollege of ForestryBeijing Forestry UniversityBeijingChina
| | - Ruihe Gao
- College of ForestryShanxi Agricultural UniversityTaiguChina
- Shanxi Dangerous Forest Pest Inspection and Identification CenterTaiguShanxiChina
| |
Collapse
|
31
|
Yi J, Liu J, Li D, Sun D, Li J, An Y, Wu H. Transcriptome responses to heat and cold stress in prepupae of Trichogramma chilonis. Ecol Evol 2021; 11:4816-4825. [PMID: 33976850 PMCID: PMC8093697 DOI: 10.1002/ece3.7383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
Trichogramma is a useful species that is widely applied in biocontrol. Temperature profoundly affects the commercial application of T. chilonis. Different developmental transcriptomes of prepupae and pupae of T. chilonis under 10, 25, and 40°C were obtained from our previous study. In this study, transcriptomic analysis was further conducted to gain a clear understanding of the molecular changes in the prepupae of T. chilonis under different thermal conditions. A total of 37,295 unigenes were identified from 3 libraries of prepupae of T. chilonis, 17,293 of which were annotated. Differential expression analysis showed that 408 and 108 differentially expressed genes (DEGs) were identified after heat and cold treatment, respectively. Under heat stress, the pathway of protein processing in endoplasmic reticulum was found to be active. Most of the genes involved in this pathway were annotated as lethal (2) essential for life [l(2)efl] and heat shock protein genes (hsps), which were both highly upregulated. Nevertheless, most of the genes involved in another significantly enriched pathway of starch and sucrose metabolism were downregulated, including 1 alpha-glucosidase gene and 2 beta-glucuronidase genes. Under cold stress, no significantly enriched pathway was found, and the significantly enriched GO terms were related to the interaction with host and immune defenses. Together, these results provide us with a comprehensive view of the molecular mechanisms of T. chilonis in response to temperature stresses and will provide new insight into the mass rearing and utilization of T. chilonis.
Collapse
Affiliation(s)
- Jiequn Yi
- Guangdong Engineering Research Center for Pesticide and FertilizerInstitute of BioengineeringGuangdong Academy of SciencesGuangzhouChina
| | - Jianbai Liu
- Guangdong Engineering Research Center for Pesticide and FertilizerInstitute of BioengineeringGuangdong Academy of SciencesGuangzhouChina
| | - Dunsong Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection/Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Donglei Sun
- Guangdong Engineering Research Center for Pesticide and FertilizerInstitute of BioengineeringGuangdong Academy of SciencesGuangzhouChina
| | - Jihu Li
- Guangdong Engineering Research Center for Pesticide and FertilizerInstitute of BioengineeringGuangdong Academy of SciencesGuangzhouChina
| | - Yuxing An
- Guangdong Engineering Research Center for Pesticide and FertilizerInstitute of BioengineeringGuangdong Academy of SciencesGuangzhouChina
| | - Han Wu
- Guangdong Engineering Research Center for Pesticide and FertilizerInstitute of BioengineeringGuangdong Academy of SciencesGuangzhouChina
| |
Collapse
|
32
|
Li H, Qiao H, Liu Y, Li S, Tan J, Hao D. Characterization, expression profiling, and thermal tolerance analysis of heat shock protein 70 in pine sawyer beetle, Monochamus alternatus hope (Coleoptera: Cerambycidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:217-228. [PMID: 32935660 DOI: 10.1017/s0007485320000541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monochamus alternatus Hope (Coleoptera: Cerambycidae) warrants attention as a dominant transmission vector of the pinewood nematode, and it exhibits tolerance to high temperature. Heat shock protein 70 (HSP70) family members, including inducible HSP70 and heat shock cognate protein 70 (HSC70), are major contributors to the molecular chaperone networks of insects under heat stress. In this regard, we specifically cloned and characterized three MaltHSP70s and three MaltHSC70s. Bioinformatics analysis on the deduced amino acid sequences showed these genes, having close genetic relationships with HSP70s of Coleopteran species, collectively shared conserved signature structures and ATPase domains. Subcellular localization prediction revealed the HSP70s of M. alternatus were located not only in the cytoplasm and endoplasmic reticulum but also in the nucleus and mitochondria. The transcript levels of MaltHSP70s and MaltHSC70s in each state were significantly upregulated by exposure to 35-50°C for early 3 h, while MaltHSP70s reached a peak after exposure to 45°C for 2-3 h in contrast to less-upregulated MaltHSC70s. In terms of MaltHSP70s, the expression threshold in females was lower than that in males. Also, both fat bodies and Malpighian tubules were the tissues most sensitive to heat stress in M. alternatus larvae. Lastly, the ATPase activity of recombinant MaltHSP70-2 in vitro remained stable at 25-40°C, and this recombinant availably enhanced the thermotolerance of Escherichia coli. Overall, our findings unraveled HSP70s might be the intrinsic mediators of the strong heat tolerance of M. alternatus due to their stabilized structure and bioactivity.
Collapse
Affiliation(s)
- Hui Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Heng Qiao
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yujie Liu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Shouyin Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jiajin Tan
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Dejun Hao
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
33
|
Chen C, Zhu H, Li SY, Han YY, Chen L, Fan BQ, Zhang YF, Wang Y, Hao DJ. Insights into chemosensory genes of Pagiophloeus tsushimanus adults using transcriptome and qRT-PCR analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 37:100785. [PMID: 33548831 DOI: 10.1016/j.cbd.2020.100785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022]
Abstract
Pagiophloeus tsushimanus is a new, destructive, and monophagous weevil pest that thrives on Cinnamomum camphora, found in Shanghai. The functions of chemosensory genes involved in the host location and intraspecific communication of P. tsushimanus remain unknown. The male-female transcriptomes of P. tsushimanus adults were assembled using Illumina sequencing, and we focused on all chemosensory genes in transcriptomes. In general, 58,088 unigenes with a mean length of 1018.19 bp were obtained. In total, 39 odorant binding proteins (OBPs), 10 chemosensory proteins (CSPs), 22 olfactory receptors (ORs), 16 gustatory receptors (GRs), eight ionotropic receptors (IRs), and five sensory neuron membrane proteins (SNMPs) were identified. PtsuOBPs comprised four subfamilies (20 Minus-C, one Plus-C, two Dimer, and 15 Classic). Both PtsuOBPs and PtsuCSPs contained a highly conserved sequence motif of cysteine residues. PtsuORs including one olfactory receptor co-receptors (Ptsu/Orco) comprised seven predicted transmembrane domains. Phylogenetic analysis revealed that PtsuOBPs, PtsuCSPs, and PtsuORs in P. tsushimanus exhibited low homology compared to other insect species. The results of tissue- and sex-specific expression patterns indicated that PtsuOBPs and PtsuORs were highly abundant in the antennae; whereas, PtsuCSPs were not only highly abundant in antennae, but also abdominal apexes, wings, and legs. In conclusion, these results enrich the gene database of P. tsushimanus, which may serve as a basis for identifying novel targets to disrupt olfactory key genes and may provide a reverse validation method to identify attractants for formulating potential eco-friendly control strategies for this pest.
Collapse
Affiliation(s)
- Cong Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Han Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Shou-Yin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | | | - Liang Chen
- Shanghai Kaisheng Landscape Engineering Co., Ltd, Shanghai, China
| | - Bin-Qi Fan
- Forest Station of Shanghai, Shanghai, China
| | | | - Yan Wang
- Forest Station of Shanghai, Shanghai, China
| | - De-Jun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China.
| |
Collapse
|
34
|
Eleftherianos I, Heryanto C. Transcriptomic Insights into the Insect Immune Response to Nematode Infection. Genes (Basel) 2021; 12:genes12020202. [PMID: 33573306 PMCID: PMC7911283 DOI: 10.3390/genes12020202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Insects in nature interact with a wide variety of microbial enemies including nematodes. These include entomopathogenic nematodes that contain mutualistic bacteria and together are able to infect a broad range of insects in order to complete their life cycle and multiply, filarial nematodes which are vectored by mosquitoes, and other parasitic nematodes. Entomopathogenic nematodes are commonly used in biological control practices and they form excellent research tools for understanding the genetic and functional bases of nematode pathogenicity and insect anti-nematode immunity. In addition, clarifying the mechanism of transmission of filarial nematodes by mosquitoes is critical for devising strategies to reduce disease transmission in humans. In all cases and in order to achieve these goals, it is vital to determine the number and type of insect host genes which are differentially regulated during infection and encode factors with anti-nematode properties. In this respect, the use of transcriptomic approaches has proven a key step for the identification of insect molecules with anti-nematode activity. Here, we review the progress in the field of transcriptomics that deals with the insect response to nematode infection. This information is important because it will expose conserved pathways of anti-nematode immunity in humans.
Collapse
|