1
|
Ramírez-Mejía MM, Castillo-Castañeda SM, Pal SC, Qi X, Méndez-Sánchez N. The Multifaceted Role of Bilirubin in Liver Disease: A Literature Review. J Clin Transl Hepatol 2024; 12:939-948. [PMID: 39544246 PMCID: PMC11557368 DOI: 10.14218/jcth.2024.00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024] Open
Abstract
Bilirubin, the primary breakdown product of hemoproteins, particularly hemoglobin, plays a key role in the diagnosis, prognosis, and monitoring of liver diseases. In acute liver diseases, such as acute liver failure, drug-induced liver injury, and viral hepatitis, bilirubin serves as a biomarker reflecting the extent of hepatocyte loss and liver damage. Chronic liver diseases, including alcohol-related liver disease, chronic hepatitis C virus infection, metabolic dysfunction-associated fatty liver disease, and autoimmune liver diseases, are marked by persistent liver injury and inflammation. Bilirubin levels in chronic liver diseases provide insight into liver function, disease severity, and prognosis. As a versatile biomarker, bilirubin offers valuable information on the pathophysiology of liver diseases and aids in guiding clinical decision-making regarding the treatment of liver diseases and their complications. This review aimed to explore the multifunctional role of bilirubin in liver diseases by analyzing its biological functions beyond its role as a biomarker of liver damage.
Collapse
Affiliation(s)
- Mariana M. Ramírez-Mejía
- Plan of Combined Studies in Medicine (PECEM-MD/PhD), Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Stephany M. Castillo-Castañeda
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
- Medical, Dental and Health Sciences Master and Doctorate Program, National Autonomous University of Mexico, Mexico City, Mexico
| | - Shreya C. Pal
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Xingshun Qi
- Department of Gastroenterology, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), Shenyang, Liaoning, China
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
2
|
Zoroddu S, Di Lorenzo B, Paliogiannis P, Mangoni AA, Carru C, Zinellu A. The association between bilirubin concentrations and inflammatory bowel disease: Insights from a systematic review and meta-analysis. Eur J Clin Invest 2024; 54:e14281. [PMID: 38970234 DOI: 10.1111/eci.14281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), poses a significant challenge to health care systems because of its chronic nature and increasing global prevalence. Effective management of IBD requires accurate diagnostic tools and biomarkers. This systematic review and meta-analysis aimed to evaluate the relationship between bilirubin concentrations and IBD activity and outcomes. METHODS A comprehensive search of electronic databases identified 11 studies that included 2606 subjects with IBD and 3607 healthy controls. RESULTS Bilirubin concentrations were significantly lower in subjects with IBD when compared to controls (SMD = -0.96, 95% CI -1.21 to -0.70; p < .001). Although substantial heterogeneity was observed, sensitivity analysis confirmed the robustness of the results. Publication bias was detected, but subgroup analyses did not significantly alter the results. Meta-regression showed that age was a significant factor influencing the association between bilirubin concentrations and IBD. Subgroup analyses showed a more pronounced reduction in bilirubin concentrations in subjects with CD than those with UC. CONCLUSION This study supports the potential utility of bilirubin as a biomarker in IBD, emphasizing the need for further research to validate its clinical significance.
Collapse
Affiliation(s)
- Stefano Zoroddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Biagio Di Lorenzo
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Panagiotis Paliogiannis
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
- Anatomic Pathology and Histology Unit, University Hospital (AOU) of Sassari, Sassari, Italy
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, South Australia, Australia
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Medical Oncology Unit, University Hospital (AOU) of Sassari, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
3
|
Ju M, Wang Z, Yang W, Sui Z, Wang W, Sun K, Ren C. Improvement of Inflammation and Abnormal Vascularization by TSP1 Treatment Combined with ADSCs Transplantation in Mice with Induced Polycystic Ovary Syndrome. Adv Biol (Weinh) 2024; 8:e2300451. [PMID: 38015093 DOI: 10.1002/adbi.202300451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/16/2023] [Indexed: 11/29/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common gynecological endocrine disease with a certain degree of chronic inflammation and abnormal ovarian angiogenesis in reproductive women. Mesenchymal stem cells (MSCs) have potent immunomodulatory properties to regulate ovarian function, while thrombospondin 1 (TSP1) improves the abnormal formation of ovarian vessels. The present study investigated the efficacy of the combined use of adipose-derived mesenchymal stem cells (ADSCs) and TSP1 in PCOS mice. The PCOS model is established using dehydroepiandrosterone (DHEA) by subcutaneous injection. Ovarian apoptosis is assessed using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Real-time quantitative PCR (RT-PCR) and western blotting are used to detect the expression of inflammatory factors and the levels of angiogenesis-related factors in ovarian tissues. Inflammatory cells count and ovarian angiogenesis are evaluated by immunofluorescence staining. This research shows that TSP1 and ADSCs treatment can significantly reduce the inflammatory state of PCOS mice, relieve the degree of ovarian cell apoptosis, optimize the ovarian histological manifestations, and restore the levels of related hormones. The proportion of CD31-positive cells in PCOS mice returned to near-normal levels. The synergistic use of ADSCs and TSP1 therapy can exert a more impressive effect by inhibiting the ovarian inflammatory response and regulating the balance of angiogenesis than the single application in PCOS mice.
Collapse
Affiliation(s)
- Mingyan Ju
- Department of Clinical Laboratory, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, People's Republic of China
| | - Zihan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Weiwei Yang
- Department of Clinical Laboratory, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, People's Republic of China
| | - Zhenhua Sui
- Department of Clinical Laboratory, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, People's Republic of China
| | - Wenjing Wang
- Department of Clinical Laboratory, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, People's Republic of China
| | - Kuikui Sun
- Women's Health Center, Beichen District Maternal and Child Health Family Planning Service Center, Tianjin, 300400, People's Republic of China
| | - Chenchun Ren
- Department of Clinical Laboratory, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, People's Republic of China
| |
Collapse
|
4
|
Zaky HS, Abdel-Sattar SA, Allam A, Ahmed HI. Further insights into the impact of rebamipide on gentamicin-induced nephrotoxicity in rats: modulation of SIRT1 and β-catenin/cyclin D1 pathways. Drug Chem Toxicol 2023; 46:851-863. [PMID: 35899710 DOI: 10.1080/01480545.2022.2104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 11/03/2022]
Abstract
Gentamicin (GM) is an effective antibiotic administered to treat acute Gram-negative infections. Nevertheless, its clinical application is limited due to nephrotoxicity. Therefore, our research aimed to investigate the potential renoprotective impact of rebamipide (RBM), a gastroprotective drug, on GM-induced kidney damage in rats, as well as putative nephroprotective pathways. RBM was orally administered (100 mg/kg/d for 14 d) commencing 7 d before the administration of GM (100 mg/kg/d, intraperitoneally). Nephrotoxicity was elucidated, and the silent information regulator 1 (SIRT1) and β-catenin/cyclin D1 pathways were assessed. GM induced a significant elevation in the serum levels of creatinine, blood urea nitrogen (BUN), and kidney injury molecule-1 (KIM-1), as well as the relative kidney index. In addition, GM increased lipid peroxidation and lowered total antioxidant capacity (TAC) level and superoxide dismutase (SOD) activity. GM administration also demonstrated a significant amplification in tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), nuclear factor-κappa B p65 (NF-κB p65), p38 mitogen-activated protein kinase (p38 MAPK), and caspase-3 kidney levels, as well as B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 ratio. Notably, RBM treatment amended all these changes induced by GM. Furthermore, the potential role of SIRT1 and β-catenin-dependent signaling pathways in GM-induced renal injury was assessed. Our findings showed that GM-treated rats demonstrated a substantial decrease in SIRT1, nuclear factor E2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) along with an increase in β-catenin, forkhead box O-3a (FOXO-3a), and cyclin D1 protein expressions. RMB treatment markedly attenuated the deterioration caused by GM on these pathways. Additionally, RBM alleviated the GM-induced deleterious kidney tissue histopathology. In conclusion, our findings have verified that RBM can halt GM-induced renal injury by partly modulating SIRT1 and β-catenin pathways.
Collapse
Affiliation(s)
- Heba S Zaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Somaia A Abdel-Sattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Albatoul Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Hebatalla I Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
5
|
Volpi C, Van den Eynde BJ, Orabona C. Editorial: Heme proteins: key players in the regulation of immune responses. Front Immunol 2023; 14:1263384. [PMID: 37638027 PMCID: PMC10450145 DOI: 10.3389/fimmu.2023.1263384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Affiliation(s)
- Claudia Volpi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Benoît J Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ciriana Orabona
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
6
|
Wang H, Cheng Q, Bao L, Li M, Chang K, Yi X. Cytoprotective Role of Heme Oxygenase-1 in Cancer Chemoresistance: Focus on Antioxidant, Antiapoptotic, and Pro-Autophagy Properties. Antioxidants (Basel) 2023; 12:1217. [PMID: 37371947 DOI: 10.3390/antiox12061217] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Chemoresistance remains the foremost challenge in cancer therapy. Targeting reactive oxygen species (ROS) manipulation is a promising strategy in cancer treatment since tumor cells present high levels of intracellular ROS, which makes them more vulnerable to further ROS elevation than normal cells. Nevertheless, dynamic redox evolution and adaptation of tumor cells are capable of counteracting therapy-induced oxidative stress, which leads to chemoresistance. Hence, exploring the cytoprotective mechanisms of tumor cells is urgently needed to overcome chemoresistance. Heme oxygenase-1 (HO-1), a rate-limiting enzyme of heme degradation, acts as a crucial antioxidant defense and cytoprotective molecule in response to cellular stress. Recently, emerging evidence indicated that ROS detoxification and oxidative stress tolerance owing to the antioxidant function of HO-1 contribute to chemoresistance in various cancers. Enhanced HO-1 expression or enzymatic activity was revealed to promote apoptosis resistance and activate protective autophagy, which also involved in the development of chemoresistance. Moreover, inhibition of HO-1 in multiple cancers was identified to reversing chemoresistance or improving chemosensitivity. Here, we summarize the most recent advances regarding the antioxidant, antiapoptotic, and pro-autophagy properties of HO-1 in mediating chemoresistance, highlighting HO-1 as a novel target for overcoming chemoresistance and improving the prognosis of cancer patients.
Collapse
Affiliation(s)
- Huan Wang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Qi Cheng
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Lingjie Bao
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Mingqing Li
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Kaikai Chang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Xiaofang Yi
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| |
Collapse
|
7
|
Ben-Eltriki M, Gayle EJ, Walker N, Deb S. Pharmacological Significance of Heme Oxygenase 1 in Prostate Cancer. Curr Issues Mol Biol 2023; 45:4301-4316. [PMID: 37232742 DOI: 10.3390/cimb45050273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Heme oxygenase 1 (HO-1) is a detoxifying antioxidant microsomal enzyme that regulates inflammation, apoptosis, cell proliferation, and angiogenesis in prostate cancer (PCa). This makes HO-1 a promising target for therapeutic prevention and treatment due to its anti-inflammatory properties and ability to control redox homeostasis. Clinical evidence highlights the possible correlation between HO-1 expression and PCa growth, aggressiveness, metastasized tumors, resistance to therapy, and poor clinical outcomes. Interestingly, studies have reported anticancer benefits mediated by both HO-1 induction and inhibition in PCa models. Contrasting evidence exists on the role of HO-1 in PCa progression and possible treatment targets. Herein, we provide an overview of available evidence on the clinical significance of HO-1 signaling in PCa. It appears that the beneficial effects of HO-1 induction or inhibition are dependent on whether it is a normal versus malignant cell as well as the intensity (major vs. minor) of the increase in HO-1 enzymatic activity. The current literature evidence indicates that HO-1 has dual effects in PCa. The amount of cellular iron and reactive oxygen species (ROS) can determine the role of HO-1 in PCa. A major increase in ROS enforces HO-1 to a protective role. HO-1 overexpression may provide cryoprotection to normal cells against oxidative stress via suppressing the expression of proinflammatory genes, and thus offer therapeutic prevention. In contrast, a moderate increase in ROS can lead to the perpetrator role of HO-1, which is associated with PCa progression and metastasis. HO-1 inhibition by xenobiotics in DNA-damaged cells tilts the balance to promote apoptosis and inhibit PCa proliferation and metastasis. Overall, the totality of the evidence revealed that HO-1 may play a dual role in the therapeutic prevention and treatment of PCa.
Collapse
Affiliation(s)
- Mohamed Ben-Eltriki
- Department of Pharmacology and Therapeutics, Clinical Pharmacology Lab, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
- Cochrane Hypertension Review Group, Therapeutic Initiative, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Erysa J Gayle
- College of Biomedical Sciences, Larkin University, 18301 N. Miami Avenue, Miami, FL 33169, USA
| | - Noah Walker
- College of Biomedical Sciences, Larkin University, 18301 N. Miami Avenue, Miami, FL 33169, USA
| | - Subrata Deb
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA
| |
Collapse
|
8
|
Hamann B, Klimova A, Klotz F, Frank F, Jänichen C, Kapalla M, Sabarstinski P, Wolk S, Morawietz H, Poitz DM, Hofmann A, Reeps C. Regulation of CD163 Receptor in Patients with Abdominal Aortic Aneurysm and Associations with Antioxidant Enzymes HO-1 and NQO1. Antioxidants (Basel) 2023; 12:antiox12040947. [PMID: 37107322 PMCID: PMC10135987 DOI: 10.3390/antiox12040947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Red blood cells are found within the abdominal aortic aneurysm (AAA), in the intraluminal thrombus (ILT), and in neovessels. Hemolysis promotes aortic degeneration, e.g., by heme-induced reactive oxygen species formation. To reduce its toxicity, hemoglobin is endocytosed by the CD163 receptor and heme is degraded by heme oxygenase-1 (HO-1). A soluble form (sCD163) is discussed as an inflammatory biomarker representing the activation of monocytes and macrophages. HO-1 and NAD(P)H quinone dehydrogenase 1 (NQO1) are antioxidant genes that are induced by the Nrf2 transcription factor, but their regulation in AAA is only poorly understood. The aim of the present study was to analyze linkages between CD163, Nrf2, HO-1, and NQO1 and to clarify if plasma sCD163 has diagnostic and risk stratification potential. Soluble CD163 was 1.3-fold (p = 0.015) higher in AAA compared to patients without arterial disease. The difference remained significant after adjusting for age and sex. sCD163 correlated with the thickness of the ILT (rs = 0.26; p = 0.02) but not with the AAA diameter or volume. A high aneurysmal CD163 mRNA was connected to increases in NQO1, HMOX1, and Nrf2 mRNA. Further studies are needed to analyze the modulation of the CD163/HO-1/NQO1 pathway with the overall goal of minimizing the detrimental effects of hemolysis.
Collapse
Affiliation(s)
- Bianca Hamann
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Anna Klimova
- Core Unit Data Management and Analytics, National Center for Tumor Diseases Dresden (NCT/UCC), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Felicia Klotz
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Frieda Frank
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Christian Jänichen
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Marvin Kapalla
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Pamela Sabarstinski
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Steffen Wolk
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - David M Poitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Anja Hofmann
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Christian Reeps
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| |
Collapse
|
9
|
Ng ML, Ang X, Yap KY, Ng JJ, Goh ECH, Khoo BBJ, Richards AM, Drum CL. Novel Oxidative Stress Biomarkers with Risk Prognosis Values in Heart Failure. Biomedicines 2023; 11:biomedicines11030917. [PMID: 36979896 PMCID: PMC10046491 DOI: 10.3390/biomedicines11030917] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023] Open
Abstract
Oxidative stress (OS) is mediated by reactive oxygen species (ROS), which in cardiovascular and other disease states, damage DNA, lipids, proteins, other cellular and extra-cellular components. OS is both initiated by, and triggers inflammation, cardiomyocyte apoptosis, matrix remodeling, myocardial fibrosis, and neurohumoral activation. These have been linked to the development of heart failure (HF). Circulating biomarkers generated by OS offer potential utility in patient management and therapeutic targeting. Novel OS-related biomarkers such as NADPH oxidases (sNox2-dp, Nrf2), advanced glycation end-products (AGE), and myeloperoxidase (MPO), are signaling molecules reflecting pathobiological changes in HF. This review aims to evaluate current OS-related biomarkers and their associations with clinical outcomes and to highlight those with greatest promise in diagnosis, risk stratification and therapeutic targeting in HF.
Collapse
Affiliation(s)
- Mei Li Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Xu Ang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Kwan Yi Yap
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Jun Jie Ng
- Vascular Surgery, Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, Singapore 119074, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Eugene Chen Howe Goh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Benjamin Bing Jie Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Arthur Mark Richards
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, NUHCS, Singapore 119228, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Chester Lee Drum
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, NUHCS, Singapore 119228, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Correspondence:
| |
Collapse
|
10
|
Sadeghi M, Fathi M, Gholizadeh Navashenaq J, Mohammadi H, Yousefi M, Hojjat-Farsangi M, Namdar A, Movasaghpour Akbari AA, Jadidi-Niaragh F. The prognostic and therapeutic potential of HO-1 in leukemia and MDS. Cell Commun Signal 2023; 21:57. [PMID: 36915102 PMCID: PMC10009952 DOI: 10.1186/s12964-023-01074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/11/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Heme oxygenase-1 (HO-1), a heme-degrading enzyme, is proven to have anti-apoptotic effects in several malignancies. In addition, HO-1 is reported to cause chemoresistance and increase cell survival. Growing evidence indicates that HO-1 contributes to the course of hematological malignancies as well. Here, the expression pattern, prognostic value, and the effect of HO-1 targeting in HMs are discussed. MAIN BODY According to the recent literature, it was discovered that HO-1 is overexpressed in myelodysplastic syndromes (MDS), chronic myeloid leukemia (CML), acute myeloblastic leukemia (AML), and acute lymphoblastic leukemia (ALL) cells and is associated with high-risk disease. Furthermore, in addition to HO-1 expression by leukemic and MDS cells, CML, AML, and ALL leukemic stem cells express this protein as well, making it a potential target for eliminating minimal residual disease (MRD). Moreover, it was concluded that HO-1 induces tumor progression and prevents apoptosis through various pathways. CONCLUSION HO-1 has great potential in determining the prognosis of leukemia and MDS patients. HO-1 induces resistance to several chemotherapeutic agents as well as tyrosine kinase inhibitors and following its inhibition, chemo-sensitivity increases. Moreover, the exact role of HO-1 in Chronic Lymphocytic Leukemia (CLL) is yet unknown. While findings illustrate that MDS and other leukemic patients could benefit from HO-1 targeting. Future studies can help broaden our knowledge regarding the role of HO-1 in MDS and leukemia. Video abstract.
Collapse
Affiliation(s)
- Mohammad Sadeghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Fathi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Afshin Namdar
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Athanerey A, Verma NR, Bhargava P, Amle D, Patra PK, Kumar A. Biochemical aspects of effects of mesenchymal stem cell treatment in chronic wounds progressive healing. Cell Tissue Bank 2023; 24:211-220. [PMID: 35849224 DOI: 10.1007/s10561-022-10026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022]
Abstract
Chronic wounds are a persistent burden for medical professionals. Despite developments and advancements in treatment, these wounds do not heal completely. Mesenchymal stem cells (MSCs) are the epicenter of regenerative medicine that have shown promising results in chronic wound regeneration. Autologous peripheral blood-derived MSCs (PB-MSCs) are comparatively new in wound healing treatment, bone-marrow-derived MSCs (BM-MSCs), and adipose-derived stem cells (ADSCs) are commonly being practiced. In the present study, PB-MSCs treatment was given to chronic wound patients. Various biochemical parameters like random blood glucose, serum urea, serum creatinine, bilirubin (total and direct), Aspartate Aminotransferase (AST), Alanine Aminotransferase (ALT), total protein, albumin levels, and association of other factors/conditions such as age, sex, addiction of drug/alcohol were also evaluated/compared with complete and without complete healing. The wound area of the ulcer was found to be significantly reduced and the wound was healthier after the treatment. These biochemical parameters could be certainly utilized as biomarkers to anticipate the risk of chronic wounds. These findings may contribute to the development of better wound care treatment strategies and drug discovery in the field of regenerative medicine.
Collapse
Affiliation(s)
- Anjali Athanerey
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh, India
| | - Neha Rani Verma
- Department of Biochemistry, Pt JNM Medical College Raipur, Raipur, Chhattisgarh, India
| | - Piyush Bhargava
- Department of Biochemistry, Pt JNM Medical College Raipur, Raipur, Chhattisgarh, India
| | - Dnyanesh Amle
- Department of Biochemistry, AIIMS Nagpur, Sumthana, Maharastra, India
| | - P K Patra
- Department of Biochemistry, Pt JNM Medical College Raipur, Raipur, Chhattisgarh, India.
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh, India.
| |
Collapse
|
12
|
Liu N, Wang J, Wang X, Qiu S, Zhang M. Bilirubin level is decreased in patients with allergic rhinitis. J Proteomics 2023; 272:104787. [PMID: 36470582 DOI: 10.1016/j.jprot.2022.104787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/07/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND There are limitations in detecting methods for early diagnosis and screening of allergic rhinitis. Considering the anti-inflammatory and anti-oxidative effects of bilirubin, this study aims to explore the relationship between bilirubin and allergic rhinitis and to identify bilirubin-related candidate urinary protein biomarkers associated with allergic rhinitis. METHODS 63 allergic rhinitis patients (AR group) and 86 healthy controls (NC group) were enrolled. Venous blood was obtained to measure serum total IgE levels and bilirubin parameters. Patients in the AR group were then classified into the AR1 group (IgE > 125 IU/mL) and the AR2 group (IgE ≤ 125 IU/mL). After randomly selecting ten urine samples from the AR1 group, ten samples were chosen from the AR2 and the NC groups, respectively, according to age and gender matching. We employed a Tandem Mass Tag-Based liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) proteomics approach and targeted parallel-reaction monitoring(PRM) to identify and validate urinary biomarkers for allergic rhinitis. RESULTS Compared with the NC group, the bilirubin levels of the AR group, AR1 group, and AR2 group were significantly lower. Although the bilirubin level of the AR1 group was lower than that of the AR2 group, the difference was not significant. Further urinary proteomics analysis found that the expression levels of proteins related to bilirubin metabolism and transportation in the AR1 and AR2 groups, including ABCC1, GSTA1, GSTO1, GSTM3, GSTM5, and BLVRB, were significantly higher than those in the NC group. By PRM-based quantification, GSTA1 and GSTO1 showed significant differences in different degrees of Allergic Rhinitis groups and healthy controls. The AUC of the combined diagnosis of GSTA1 and GSTO1 was 0.79 (95% CI 0.583-0.997, P = 0.007), and the sensitivity and specificity were 100% and 60.0%, respectively. CONCLUSIONS Bilirubin levels are associated with allergic rhinitis. Our study revealed that urine proteomics has a specific value for exploring the pathophysiological mechanism of bilirubin changes in AR patients and screening possible biomarkers.
Collapse
Affiliation(s)
- Na Liu
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Peking University Ninth School of Clinical Medicine, Beijing, China; Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Jitu Wang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Peking University Ninth School of Clinical Medicine, Beijing, China; Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Xueyan Wang
- Department of Allergy, Beijing Shijitan Hospital,Capital Medical University, Beijing, China
| | - Sainan Qiu
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Peking University Ninth School of Clinical Medicine, Beijing, China; Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Peking University Ninth School of Clinical Medicine, Beijing, China; Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China.
| |
Collapse
|
13
|
Endothelial senescence in vascular diseases: current understanding and future opportunities in senotherapeutics. Exp Mol Med 2023; 55:1-12. [PMID: 36599934 PMCID: PMC9898542 DOI: 10.1038/s12276-022-00906-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 01/05/2023] Open
Abstract
Senescence compromises the essential role that the endothelium plays in maintaining vascular homeostasis, so promoting endothelial dysfunction and the development of age-related vascular diseases. Their biological and clinical significance calls for strategies for identifying and therapeutically targeting senescent endothelial cells. While senescence and endothelial dysfunction have been studied extensively, distinguishing what is distinctly endothelial senescence remains a barrier to overcome for an effective approach to addressing it. Here, we review the mechanisms underlying endothelial senescence and the evidence for its clinical importance. Furthermore, we discuss the current state and the limitations in the approaches for the detection and therapeutic intervention of target cells, suggesting potential directions for future research.
Collapse
|
14
|
Naidu SAG, Clemens RA, Naidu AS. SARS-CoV-2 Infection Dysregulates Host Iron (Fe)-Redox Homeostasis (Fe-R-H): Role of Fe-Redox Regulators, Ferroptosis Inhibitors, Anticoagulants, and Iron-Chelators in COVID-19 Control. J Diet Suppl 2023; 20:312-371. [PMID: 35603834 DOI: 10.1080/19390211.2022.2075072] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Severe imbalance in iron metabolism among SARS-CoV-2 infected patients is prominent in every symptomatic (mild, moderate to severe) clinical phase of COVID-19. Phase-I - Hypoxia correlates with reduced O2 transport by erythrocytes, overexpression of HIF-1α, altered mitochondrial bioenergetics with host metabolic reprogramming (HMR). Phase-II - Hyperferritinemia results from an increased iron overload, which triggers a fulminant proinflammatory response - the acute cytokine release syndrome (CRS). Elevated cytokine levels (i.e. IL6, TNFα and CRP) strongly correlates with altered ferritin/TF ratios in COVID-19 patients. Phase-III - Thromboembolism is consequential to erythrocyte dysfunction with heme release, increased prothrombin time and elevated D-dimers, cumulatively linked to severe coagulopathies with life-threatening outcomes such as ARDS, and multi-organ failure. Taken together, Fe-R-H dysregulation is implicated in every symptomatic phase of COVID-19. Fe-R-H regulators such as lactoferrin (LF), hemoxygenase-1 (HO-1), erythropoietin (EPO) and hepcidin modulators are innate bio-replenishments that sequester iron, neutralize iron-mediated free radicals, reduce oxidative stress, and improve host defense by optimizing iron metabolism. Due to its pivotal role in 'cytokine storm', ferroptosis is a potential intervention target. Ferroptosis inhibitors such as ferrostatin-1, liproxstatin-1, quercetin, and melatonin could prevent mitochondrial lipid peroxidation, up-regulate antioxidant/GSH levels and abrogate iron overload-induced apoptosis through activation of Nrf2 and HO-1 signaling pathways. Iron chelators such as heparin, deferoxamine, caffeic acid, curcumin, α-lipoic acid, and phytic acid could protect against ferroptosis and restore mitochondrial function, iron-redox potential, and rebalance Fe-R-H status. Therefore, Fe-R-H restoration is a host biomarker-driven potential combat strategy for an effective clinical and post-recovery management of COVID-19.
Collapse
Affiliation(s)
| | - Roger A Clemens
- Department of International Regulatory Science, University of Southern California School of Pharmacy, Los Angeles, CA, USA
| | | |
Collapse
|
15
|
Sun T, Cruz GI, Mousavi N, Marić I, Brewer A, Wong RJ, Aghaeepour N, Sayed N, Wu JC, Stevenson DK, Leonard SA, Gymrek M, Winn VD. HMOX1 Genetic Polymorphisms Display Ancestral Diversity and May Be Linked to Hypertensive Disorders in Pregnancy. Reprod Sci 2022; 29:3465-3476. [PMID: 35697922 PMCID: PMC9734242 DOI: 10.1007/s43032-022-01001-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/02/2022] [Indexed: 12/14/2022]
Abstract
Racial disparity exists for hypertensive disorders in pregnancy (HDP), which leads to disparate morbidity and mortality worldwide. The enzyme heme oxygenase-1 (HO-1) is encoded by HMOX1, which has genetic polymorphisms in its regulatory region that impact its expression and activity and have been associated with various diseases. However, studies of these genetic variants in HDP have been limited. The objective of this study was to examine HMOX1 as a potential genetic contributor of ancestral disparity seen in HDP. First, the 1000 Genomes Project (1 KG) phase 3 was utilized to compare the frequencies of alleles, genotypes, and estimated haplotypes of guanidine thymidine repeats (GTn; containing rs3074372) and A/T SNP (rs2071746) among females from five ancestral populations (Africa, the Americas, Europe, East Asia, and South Asia, N = 1271). Then, using genomic DNA from women with a history of HDP, we explored the possibility of HMOX1 variants predisposing women to HDP (N = 178) compared with an equivalent ancestral group from 1 KG (N = 263). Both HMOX1 variants were distributed differently across ancestries, with African women having a distinct distribution and an overall higher prevalence of the variants previously associated with lower HO-1 expression. The two HMOX1 variants display linkage disequilibrium in all but the African group, and within EUR cohort, LL and AA individuals have a higher prevalence in HDP. HMOX1 variants demonstrate ancestral differences that may contribute to racial disparity in HDP. Understanding maternal genetic contribution to HDP will help improve prediction and facilitate personalized approaches to care for HDP.
Collapse
Affiliation(s)
- Tianyanxin Sun
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Giovanna I Cruz
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nima Mousavi
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Ivana Marić
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alina Brewer
- Preeclampsia Foundation, Juneau Biosciences, LLC, Salt Lake City, UT, USA
| | - Ronald J Wong
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Nima Aghaeepour
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nazish Sayed
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - David K Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephanie A Leonard
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Melissa Gymrek
- Department of Medicine, Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
16
|
Hormesis and Oxidative Distress: Pathophysiology of Reactive Oxygen Species and the Open Question of Antioxidant Modulation and Supplementation. Antioxidants (Basel) 2022; 11:antiox11081613. [PMID: 36009331 PMCID: PMC9405171 DOI: 10.3390/antiox11081613] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Alterations of redox homeostasis leads to a condition of resilience known as hormesis that is due to the activation of redox-sensitive pathways stimulating cell proliferation, growth, differentiation, and angiogenesis. Instead, supraphysiological production of reactive oxygen species (ROS) exceeds antioxidant defence and leads to oxidative distress. This condition induces damage to biomolecules and is responsible or co-responsible for the onset of several chronic pathologies. Thus, a dietary antioxidant supplementation has been proposed in order to prevent aging, cardiovascular and degenerative diseases as well as carcinogenesis. However, this approach has failed to demonstrate efficacy, often leading to harmful side effects, in particular in patients affected by cancer. In this latter case, an approach based on endogenous antioxidant depletion, leading to ROS overproduction, has shown an interesting potential for enhancing susceptibility of patients to anticancer therapies. Therefore, a deep investigation of molecular pathways involved in redox balance is crucial in order to identify new molecular targets useful for the development of more effective therapeutic approaches. The review herein provides an overview of the pathophysiological role of ROS and focuses the attention on positive and negative aspects of antioxidant modulation with the intent to find new insights for a successful clinical application.
Collapse
|
17
|
Canagliflozin Inhibits Human Endothelial Cell Inflammation through the Induction of Heme Oxygenase-1. Int J Mol Sci 2022; 23:ijms23158777. [PMID: 35955910 PMCID: PMC9369341 DOI: 10.3390/ijms23158777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors improve cardiovascular outcomes in patients with type 2 diabetes mellitus (T2DM). Studies have also shown that canagliflozin directly acts on endothelial cells (ECs). Since heme oxygenase-1 (HO-1) is an established modulator of EC function, we investigated if canagliflozin regulates the endothelial expression of HO-1, and if this enzyme influences the biological actions of canagliflozin in these cells. Treatment of human ECs with canagliflozin stimulated a concentration- and time-dependent increase in HO-1 that was associated with a significant increase in HO activity. Canagliflozin also evoked a concentration-dependent blockade of EC proliferation, DNA synthesis, and migration that was unaffected by inhibition of HO-1 activity and/or expression. Exposure of ECs to a diabetic environment increased the adhesion of monocytes to ECs, and this was attenuated by canagliflozin. Knockdown of HO-1 reduced the anti-inflammatory effect of canagliflozin which was restored by bilirubin but not carbon monoxide. In conclusion, this study identified canagliflozin as a novel inducer of HO-1 in human ECs. It also found that HO-1-derived bilirubin contributed to the anti-inflammatory action of canagliflozin, but not the anti-proliferative and antimigratory effects of the drug. The ability of canagliflozin to regulate HO-1 expression and EC function may contribute to the clinical profile of the drug.
Collapse
|
18
|
Heurtaux T, Bouvier DS, Benani A, Helgueta Romero S, Frauenknecht KBM, Mittelbronn M, Sinkkonen L. Normal and Pathological NRF2 Signalling in the Central Nervous System. Antioxidants (Basel) 2022; 11:1426. [PMID: 35892629 PMCID: PMC9394413 DOI: 10.3390/antiox11081426] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) was originally described as a master regulator of antioxidant cellular response, but in the time since, numerous important biological functions linked to cell survival, cellular detoxification, metabolism, autophagy, proteostasis, inflammation, immunity, and differentiation have been attributed to this pleiotropic transcription factor that regulates hundreds of genes. After 40 years of in-depth research and key discoveries, NRF2 is now at the center of a vast regulatory network, revealing NRF2 signalling as increasingly complex. It is widely recognized that reactive oxygen species (ROS) play a key role in human physiological and pathological processes such as ageing, obesity, diabetes, cancer, and neurodegenerative diseases. The high oxygen consumption associated with high levels of free iron and oxidizable unsaturated lipids make the brain particularly vulnerable to oxidative stress. A good stability of NRF2 activity is thus crucial to maintain the redox balance and therefore brain homeostasis. In this review, we have gathered recent data about the contribution of the NRF2 pathway in the healthy brain as well as during metabolic diseases, cancer, ageing, and ageing-related neurodegenerative diseases. We also discuss promising therapeutic strategies and the need for better understanding of cell-type-specific functions of NRF2 in these different fields.
Collapse
Affiliation(s)
- Tony Heurtaux
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
| | - David S. Bouvier
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
- Luxembourg Centre of Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg
| | - Alexandre Benani
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Sergio Helgueta Romero
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
| | - Katrin B. M. Frauenknecht
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
| | - Michel Mittelbronn
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
- Luxembourg Centre of Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg
- Luxembourg Institute of Health (LIH), 1526 Luxembourg, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
| |
Collapse
|
19
|
Choi YK, Kim YM. Beneficial and Detrimental Roles of Heme Oxygenase-1 in the Neurovascular System. Int J Mol Sci 2022; 23:ijms23137041. [PMID: 35806040 PMCID: PMC9266949 DOI: 10.3390/ijms23137041] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Heme oxygenase (HO) has both beneficial and detrimental effects via its metabolites, including carbon monoxide (CO), biliverdin or bilirubin, and ferrous iron. HO-1 is an inducible form of HO that is upregulated by oxidative stress, nitric oxide, CO, and hypoxia, whereas HO-2 is a constitutive form that regulates vascular tone and homeostasis. In brains injured by trauma, ischemia-reperfusion, or Alzheimer’s disease (AD), the long-term expression of HO-1 can be detected, which can lead to cytotoxic ferroptosis via iron accumulation. In contrast, the transient induction of HO-1 in the peri-injured region may have regenerative potential (e.g., angiogenesis, neurogenesis, and mitochondrial biogenesis) and neurovascular protective effects through the CO-mediated signaling pathway, the antioxidant properties of bilirubin, and the iron-mediated ferritin synthesis. In this review, we discuss the dual roles of HO-1 and its metabolites in various neurovascular diseases, including age-related macular degeneration, ischemia-reperfusion injury, traumatic brain injury, Gilbert’s syndrome, and AD.
Collapse
Affiliation(s)
- Yoon Kyung Choi
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
- Correspondence: (Y.K.C.); (Y.-M.K.); Tel.: +82-2-450-0558 (Y.K.C.); +82-33-250-8831 (Y.-M.K.)
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (Y.K.C.); (Y.-M.K.); Tel.: +82-2-450-0558 (Y.K.C.); +82-33-250-8831 (Y.-M.K.)
| |
Collapse
|
20
|
Topical bilirubin-deferoxamine hastens excisional wound healing by modulating inflammation, oxidative stress, angiogenesis, and collagen deposition in diabetic rats. J Tissue Viability 2022; 31:474-484. [DOI: 10.1016/j.jtv.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022]
|
21
|
Biliverdin/Bilirubin Redox Pair Protects Lens Epithelial Cells against Oxidative Stress in Age-Related Cataract by Regulating NF- κB/iNOS and Nrf2/HO-1 Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7299182. [PMID: 35480872 PMCID: PMC9036166 DOI: 10.1155/2022/7299182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022]
Abstract
Age-related cataract (ARC) is the leading cause of vision impairment globally. It has been widely accepted that excessive reactive oxygen species (ROS) accumulation in lens epithelial cells (LECs) is a critical risk factor for ARC formation. Biliverdin (BV)/bilirubin (BR) redox pair is the active by-product of heme degradation with robust antioxidative stress and antiapoptotic effects. Thus, we purpose that BV and BR may have a therapeutic effect on ARC. In the present study, we determine the expression levels of enzymes regulating BV and BR generation in human lens anterior capsule samples. The therapeutic effect of BV/BR redox pair on ARC was assessed in hydrogen peroxide (H2O2)-damaged mouse LECs in vitro. The NF-κB/inducible nitric oxide synthase (iNOS) and nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathways were evaluated to illustrate the molecular mechanism. The results revealed that the mRNA expressions of Nrf2, HO-1, and biliverdin reductase A (BVRA) were all decreased in human samples of age-related nuclear cataract. BV/BR redox pair pretreatment protected LECs against H2O2 damage by prohibiting NF-κB p65 nuclear trafficking, ameliorating iNOS expression, reducing intracellular and mitochondrial ROS levels, and restoring glutathione (GSH) and superoxide dismutase (SOD) levels. BV and BR pretreatment also regulated the expression of apoptotic molecules (Bax, Bcl-2, and cleaved caspase-3), thus decreasing the apoptosis of LECs. In addition, BV/BR pair promoted Nrf2 nuclear accumulation and HO-1 induction, whereas the knockdown of BVRA counteracted the effect of BV on activating Nrf2/HO-1 pathway and antiapoptosis. These findings implicated that BV/BR redox pair protects LECs against H2O2-induced apoptosis by regulating NF-κB/iNOS and Nrf2/HO-1 pathways. Moreover, BVRA is responsible for BV-mediated cytoprotection by reductive conversion of BV to BR. This trial is registered with ChiCTR2000036059.
Collapse
|
22
|
Huang T, Wang K, Li Y, Ye Y, Chen Y, Wang J, Yao C. Construction of a Novel Ferroptosis-Related Gene Signature of Atherosclerosis. Front Cell Dev Biol 2022; 9:800833. [PMID: 35071238 PMCID: PMC8766414 DOI: 10.3389/fcell.2021.800833] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Atheroclerosis refers to a chronic inflammatory disease featured by the accumulation of fibrofatty lesions in the intima of arteries. Cardiovasular events associated with atherosclerosis remain the major causes of mortality worldwide. Recent studies have indicated that ferroptosis, a novel programmed cell death, might participate in the process of atherosclerosis. However, the ferroptosis landscape is still not clear. In this study, 59 genes associated with ferroptosis were ultimately identified in atherosclerosis in the intima. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for functional annotation. Through the construction of protein–protein interaction (PPI) network, five hub genes (TP53, MAPK1, STAT3, HMOX1, and PTGS2) were then validated histologically. The competing endogenous RNA (ceRNA) network of hub genes was ultimately constructed to explore the regulatory mechanism between lncRNAs, miRNAs, and hub genes. The findings provide more insights into the ferroptosis landscape and, potentially, the therapeutic targets of atherosclerosis.
Collapse
Affiliation(s)
- Tucheng Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Kangjie Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuewei Li
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanchen Ye
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yangxin Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Jingfeng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Chen Yao
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Thapa K, Verma N, Singh TG, Kaur Grewal A, Kanojia N, Rani L. COVID-19-Associated acute respiratory distress syndrome (CARDS): Mechanistic insights on therapeutic intervention and emerging trends. Int Immunopharmacol 2021; 101:108328. [PMID: 34768236 PMCID: PMC8563344 DOI: 10.1016/j.intimp.2021.108328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023]
Abstract
AIMS The novel Coronavirus disease 2019 (COVID-19) has caused great distress worldwide. Acute respiratory distress syndrome (ARDS) is well familiar but when it happens as part of COVID-19 it has discrete features which are unmanageable. Numerous pharmacological treatments have been evaluated in clinical trials to control the clinical effects of CARDS, but there is no assurance of their effectiveness. MATERIALS AND METHODS A systematic review of the literature of the Medline, Scopus, Bentham, PubMed, and EMBASE (Elsevier) databases was examined to understand the novel therapeutic approaches used in COVID-19-Associated Acute Respiratory Distress Syndrome and their outcomes. KEY FINDINGS Current therapeutic options may not be enough to manage COVID-19-associated ARDS complications in group of patients and therefore, the current review has discussed the pathophysiological mechanism of COVID-19-associated ARDS, potential pharmacological treatment and the emerging molecular drug targets. SIGNIFICANCE The rationale of this review is to talk about the pathophysiology of CARDS, potential pharmacological treatment and the emerging molecular drug targets. Currently accessible treatment focuses on modulating immune responses, rendering antiviral effects, anti-thrombosis or anti-coagulant effects. It is expected that considerable number of studies conducting globally may help to discover effective therapies to decrease mortality and morbidity occurring due to CARDS. Attention should be also given on molecular drug targets that possibly will help to develop efficient cure for COVID-19-associated ARDS.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India; Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Nitin Verma
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | | | | | - Neha Kanojia
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Lata Rani
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| |
Collapse
|
24
|
Chu ECP, Wong AYL, Sim P, Krüger F. Exploring scraping therapy: Contemporary views on an ancient healing - A review. J Family Med Prim Care 2021; 10:2757-2762. [PMID: 34660401 PMCID: PMC8483130 DOI: 10.4103/jfmpc.jfmpc_360_21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/27/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022] Open
Abstract
Gua sha is a traditional healing technique that aims to create petechiae on the skin for a believed therapeutic benefit. Natural healings are mostly based on repeated observations and anecdotal information. Hypothetical model for healing does not always fit the modern understanding. Yet, the mechanisms underlying Gua Sha have not been empirically established. Contemporary scientific research can now explain some events of traditional therapies that were once a mystery. It is assumed that Gua Sha therapy can serve as a mechanical signal to enhance the immune surveillance function of the skin during the natural resolving of the petechiae, through which scraping may result in therapeutic benefits. The current review, without judging the past hypothetical model, attempts to interpret the experience of the ancient healings in terms of contemporary views and concepts.
Collapse
Affiliation(s)
- Eric Chun Pu Chu
- New York Chiropractic and Physiotherapy Centre, New York Medical Group, Hong Kong SAR, China
| | - Arnold Yu Lok Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Patrick Sim
- Australian Chiropractic College, Adelaide, South Australia, Australia
| | - Friso Krüger
- Chiropraktische Familienpraxis, Lüneburg, Germany
| |
Collapse
|
25
|
Guo X, Xu Y, Luo W, Fang R, Cai L, Wang P, Zhang Y, Wen Z, Xu Y. Programmed cell death protein-1 (PD-1) protects liver damage by suppressing IFN-γ expression in T cells in infants and neonatal mice. BMC Pediatr 2021; 21:317. [PMID: 34271894 PMCID: PMC8284022 DOI: 10.1186/s12887-021-02794-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022] Open
Abstract
Background Biliary atresia (BA) is a severe cholangiopathy possibly resulting from virus-induced and immune-mediated injury of the biliary system. IFN-γ, secreted from CD4+ Th1 cells and CD8+ cytotoxic T cells, is a major mediator of liver pathology. Programmed death protein-1 (PD-1) signaling suppresses T cell function. However, how PD-1 modify T cell function in BA remains incompletely understood. Methods Frequencies of PD-1 expressing CD4+ and CD8+ T cells were analyzed in the liver and blood from BA and control subjects. Associations of PD-1+CD4+/CD8+T cell abundances with liver function indices were measured. Function of PD-1 was measured by administration of an anti-PD-1 antibody in a Rhesus Rotavirus (RRV)-induced BA model. Survival, histology, direct bilirubin, liver immune cell subsets and cytokine production were analyzed. Results PD-1 was significantly upregulated in CD4+ and CD8+ T cells in patients with BA compared with control subjects. PD-1 expression in T cells was negatively associated with IFN-γ concentration in liver (PD-1+CD4+T cells in liver vs. IFN-γ concentration, r = − 0.25, p = 0.05; PD-1+CD8+T cells in liver vs. IFN-γ concentration, r = − 0.39, p = 0.004). Blockade of PD-1 increased IFN-γ expression in CD4+ T and CD8+ T cells (RRV vs. anti-PD-1 treated RRV mice: 11.59 ± 3.43% vs. 21.26 ± 5.32% IFN-γ+ in hepatic CD4+T cells, p = 0.0003; 9.33 ± 4.03% vs. 22.55 ± 7.47% IFN-γ+ in hepatic CD8+T cells, p = 0.0001), suppressed bilirubin production (RRV vs. anti-PD-1 treated RRV mice: 285.4 ± 47.93 vs. 229.8 ± 45.86 μmol/L total bilirubin, p = 0.01) and exacerbated liver immunopathology. Conclusions PD-1 plays a protective role in infants with BA by suppressing IFN-γ production in T cells. Increasing PD-1 signaling may serve as a therapeutic strategy for BA. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-021-02794-x.
Collapse
Affiliation(s)
- Xuangjie Guo
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Yiping Xu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Wei Luo
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Rongli Fang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Li Cai
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ping Wang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Yuxia Zhang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| | - Zhe Wen
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| | - Yanhui Xu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Children's Medical Research Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
26
|
Zhu X, Feng S, Jiang Z, Zhang H, Wang Y, Yang H, Wang Z. An ultra-red fluorescent biosensor for highly sensitive and rapid detection of biliverdin. Anal Chim Acta 2021; 1174:338709. [PMID: 34247733 DOI: 10.1016/j.aca.2021.338709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
The important role of BV in clinical diagnostics of liver-related diseases has been established in veterinary medicine. However, the sensitivity and selectivity of the current BV assays remain relatively low compromising its wider application in clinical diagnosis. Herein, we developed a rapid and sensitive BV-detecting biosensor based on a novel far-red fluorescent protein smURFP, which produced fluorescence only through specific interaction with its cofactor BV. In our study, the binding of BV to smURFP was then systematically optimized based on the structures of the smURFP + BV complex to increase the sensitivity of our biosensor. A wide linear range from 0 μM to 25 μM was obtained in both chicken and human serum. The limit of detection (LOD) and limit of quantification (LOQ) for BV was as low as 0.4 nM and 1.5 nM in human serum, and 0.4 nM and 1.2 nM in chicken serum. To our knowledge, this is the lowest LOD that has ever been reported for a BV biosensor. Our study sheds light on the biological and clinical analysis of BV.
Collapse
Affiliation(s)
- Xiaqing Zhu
- School of Life Sciences, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Shuren Feng
- Tianjin Women's and Children's Health Centre (TWCHC), Tianjin, 300051, China
| | - Zhongyi Jiang
- Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Huayue Zhang
- School of Life Sciences, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Yanyan Wang
- School of Life Sciences, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | - Haitao Yang
- School of Life Sciences, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China
| | - Zefang Wang
- School of Life Sciences, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China.
| |
Collapse
|
27
|
Nitti M, Ivaldo C, Traverso N, Furfaro AL. Clinical Significance of Heme Oxygenase 1 in Tumor Progression. Antioxidants (Basel) 2021; 10:antiox10050789. [PMID: 34067625 PMCID: PMC8155918 DOI: 10.3390/antiox10050789] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Heme oxygenase 1 (HO-1) plays a key role in cell adaptation to stressors through the antioxidant, antiapoptotic, and anti-inflammatory properties of its metabolic products. For these reasons, in cancer cells, HO-1 can favor aggressiveness and resistance to therapies, leading to poor prognosis/outcome. Genetic polymorphisms of HO-1 promoter have been associated with an increased risk of cancer progression and a high degree of therapy failure. Moreover, evidence from cancer biopsies highlights the possible correlation between HO-1 expression, pathological features, and clinical outcome. Indeed, high levels of HO-1 in tumor specimens often correlate with reduced survival rates. Furthermore, HO-1 modulation has been proposed in order to improve the efficacy of antitumor therapies. However, contrasting evidence on the role of HO-1 in tumor biology has been reported. This review focuses on the role of HO-1 as a promising biomarker of cancer progression; understanding the correlation between HO-1 and clinical data might guide the therapeutic choice and improve the outcome of patients in terms of prognosis and life quality.
Collapse
|
28
|
Bayo Jimenez MT, Frenis K, Kröller-Schön S, Kuntic M, Stamm P, Kvandová M, Oelze M, Li H, Steven S, Münzel T, Daiber A. Noise-Induced Vascular Dysfunction, Oxidative Stress, and Inflammation Are Improved by Pharmacological Modulation of the NRF2/HO-1 Axis. Antioxidants (Basel) 2021; 10:antiox10040625. [PMID: 33921821 PMCID: PMC8073373 DOI: 10.3390/antiox10040625] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Vascular oxidative stress, inflammation, and subsequent endothelial dysfunction are consequences of traditional cardiovascular risk factors, all of which contribute to cardiovascular disease. Environmental stressors, such as traffic noise and air pollution, may also facilitate the development and progression of cardiovascular and metabolic diseases. In our previous studies, we investigated the influence of aircraft noise exposure on molecular mechanisms, identifying oxidative stress and inflammation as central players in mediating vascular function. The present study investigates the role of heme oxygenase-1 (HO-1) as an antioxidant response preventing vascular consequences following exposure to aircraft noise. C57BL/6J mice were treated with the HO-1 inducer hemin (25 mg/kg i.p.) or the NRF2 activator dimethyl fumarate (DMF, 20 mg/kg p.o.). During therapy, the animals were exposed to noise at a maximum sound pressure level of 85 dB(A) and a mean sound pressure level of 72 dB(A). Our data showed a marked protective effect of both treatments on animals exposed to noise for 4 days by normalization of arterial hypertension and vascular dysfunction in the noise-exposed groups. We observed a partial normalization of noise-triggered oxidative stress and inflammation by hemin and DMF therapy, which was associated with HO-1 induction. The present study identifies possible new targets for the mitigation of the adverse health effects caused by environmental noise exposure. Since natural dietary constituents can achieve HO-1 and NRF2 induction, these pathways represent promising targets for preventive measures.
Collapse
Affiliation(s)
- Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany; (M.T.B.J.); (K.F.); (S.K.-S.); (M.K.); (P.S.); (M.K.); (M.O.); (T.M.)
| | - Katie Frenis
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany; (M.T.B.J.); (K.F.); (S.K.-S.); (M.K.); (P.S.); (M.K.); (M.O.); (T.M.)
| | - Swenja Kröller-Schön
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany; (M.T.B.J.); (K.F.); (S.K.-S.); (M.K.); (P.S.); (M.K.); (M.O.); (T.M.)
| | - Marin Kuntic
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany; (M.T.B.J.); (K.F.); (S.K.-S.); (M.K.); (P.S.); (M.K.); (M.O.); (T.M.)
| | - Paul Stamm
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany; (M.T.B.J.); (K.F.); (S.K.-S.); (M.K.); (P.S.); (M.K.); (M.O.); (T.M.)
| | - Miroslava Kvandová
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany; (M.T.B.J.); (K.F.); (S.K.-S.); (M.K.); (P.S.); (M.K.); (M.O.); (T.M.)
| | - Matthias Oelze
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany; (M.T.B.J.); (K.F.); (S.K.-S.); (M.K.); (P.S.); (M.K.); (M.O.); (T.M.)
| | - Huige Li
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany;
| | - Sebastian Steven
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany; (M.T.B.J.); (K.F.); (S.K.-S.); (M.K.); (P.S.); (M.K.); (M.O.); (T.M.)
- Correspondence: (S.S.); (A.D.)
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany; (M.T.B.J.); (K.F.); (S.K.-S.); (M.K.); (P.S.); (M.K.); (M.O.); (T.M.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany; (M.T.B.J.); (K.F.); (S.K.-S.); (M.K.); (P.S.); (M.K.); (M.O.); (T.M.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
- Correspondence: (S.S.); (A.D.)
| |
Collapse
|
29
|
Singh D, Wasan H, Reeta KH. Heme oxygenase-1 modulation: A potential therapeutic target for COVID-19 and associated complications. Free Radic Biol Med 2020; 161:263-271. [PMID: 33091573 PMCID: PMC7571447 DOI: 10.1016/j.freeradbiomed.2020.10.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to infect hundred thousands of people every day worldwide. Since it is a novel virus, research continues to update the possible therapeutic targets when new evidence regarding COVID-19 are gathered. This article presents an evidence-based hypothesis that activating the heme oxygenase-1 (HO-1) pathway is a potential target for COVID-19. Interferons (IFNs) have broad-spectrum antiviral activity including against SARS-CoV-2. Induction of HO-1 and increase in the heme catabolism end-product confer antiviral activity. IFN activation results in inhibition of viral replication in various viral infections. COVID-19 induced inflammation as well as acute respiratory distress syndrome (ARDS), and coagulopathies are now known major causes of mortality. A protective role of HO-1 induction in inflammation, inflammation-induced coagulation, and ARDS has been reported. Based on an association of HO-1 promoter polymorphisms and disease severity, we propose an evaluation of the status of these polymorphisms in COVID-19 patients who become severely ill. If an association is established, it might be helpful in identifying patients at high risk. Hence, we hypothesize that HO-1 pathway activation could be a therapeutic strategy against COVID-19 and associated complications.
Collapse
Affiliation(s)
- Devendra Singh
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Himika Wasan
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - K H Reeta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
30
|
Fasting Drives Nrf2-Related Antioxidant Response in Skeletal Muscle. Int J Mol Sci 2020; 21:ijms21207780. [PMID: 33096672 PMCID: PMC7589317 DOI: 10.3390/ijms21207780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022] Open
Abstract
A common metabolic condition for living organisms is starvation/fasting, a state that could play systemic-beneficial roles. Complex adaptive responses are activated during fasting to help the organism to maintain energy homeostasis and avoid nutrient stress. Metabolic rearrangements during fasting cause mild oxidative stress in skeletal muscle. The nuclear factor erythroid 2-related factor 2 (Nrf2) controls adaptive responses and remains the major regulator of quenching mechanisms underlying different types of stress. Here, we demonstrate a positive role of fasting as a protective mechanism against oxidative stress in skeletal muscle. In particular, by using in vivo and in vitro models of fasting, we found that typical Nrf2-dependent genes, including those controlling iron (e.g., Ho-1) and glutathione (GSH) metabolism (e.g., Gcl, Gsr) are induced along with increased levels of the glutathione peroxidase 4 (Gpx4), a GSH-dependent antioxidant enzyme. These events are associated with a significant reduction in malondialdehyde, a well-known by-product of lipid peroxidation. Our results suggest that fasting could be a valuable approach to boost the adaptive anti-oxidant responses in skeletal muscle.
Collapse
|
31
|
Targeting Heme Oxygenase-1 in the Arterial Response to Injury and Disease. Antioxidants (Basel) 2020; 9:antiox9090829. [PMID: 32899732 PMCID: PMC7554957 DOI: 10.3390/antiox9090829] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase-1 (HO-1) catalyzes the degradation of heme into carbon monoxide (CO), iron, and biliverdin, which is rapidly metabolized to bilirubin. The activation of vascular smooth muscle cells (SMCs) plays a critical role in mediating the aberrant arterial response to injury and a number of vascular diseases. Pharmacological induction or gene transfer of HO-1 improves arterial remodeling in animal models of post-angioplasty restenosis, vascular access failure, atherosclerosis, transplant arteriosclerosis, vein grafting, and pulmonary arterial hypertension, whereas genetic loss of HO-1 exacerbates the remodeling response. The vasoprotection evoked by HO-1 is largely ascribed to the generation of CO and/or the bile pigments, biliverdin and bilirubin, which exert potent antioxidant and anti-inflammatory effects. In addition, these molecules inhibit vascular SMC proliferation, migration, apoptosis, and phenotypic switching. Several therapeutic strategies are currently being pursued that may allow for the targeting of HO-1 in arterial remodeling in various pathologies, including the use of gene delivery approaches, the development of novel inducers of the enzyme, and the administration of unique formulations of CO and bilirubin.
Collapse
|
32
|
YILMAZ N, ÖZ C, EREN E, TEKELİ SÖ. Bilirubin metabolism and its role in atherosclerosis. ARCHIVES OF CLINICAL AND EXPERIMENTAL MEDICINE 2020. [DOI: 10.25000/acem.699424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|