1
|
Bender M, Abicht JM, Reichart B, Leuschen M, Wall F, Radan J, Neumann E, Mokelke M, Buttgereit I, Michel S, Ellgass R, Gieseke K, Steen S, Paskevicius A, Denner J, Godehardt AW, Tönjes RR, Hagl C, Ayares D, Wolf E, Schmoeckel M, Brenner P, Müller MB, Längin M. The Endothelial Glycocalyx in Pig-to-Baboon Cardiac Xenotransplantation-First Insights. Biomedicines 2024; 12:1336. [PMID: 38927543 PMCID: PMC11201800 DOI: 10.3390/biomedicines12061336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiac xenotransplantation has seen remarkable success in recent years and is emerging as the most promising alternative to human cardiac allotransplantation. Despite these achievements, acute vascular rejection still presents a challenge for long-term xenograft acceptance and new insights into innate and adaptive immune responses as well as detailed characterizations of signaling pathways are necessary. In allotransplantation, endothelial cells and their sugar-rich surface-the endothelial glycocalyx-are known to influence organ rejection. In xenotransplantation, however, only in vitro data exist on the role of the endothelial glycocalyx so far. Thus, in the current study, we analyzed the changes of the endothelial glycocalyx components hyaluronan, heparan sulfate and syndecan-1 after pig-to-baboon cardiac xenotransplantations in the perioperative (n = 4) and postoperative (n = 5) periods. These analyses provide first insights into changes of the endothelial glycocalyx after pig-to-baboon cardiac xenotransplantation and show that damage to the endothelial glycocalyx seems to be comparable or even less pronounced than in similar human settings when current strategies of cardiac xenotransplantation are applied. At the same time, data from the experiments where current strategies, like non-ischemic preservation, growth inhibition or porcine cytomegalovirus (a porcine roseolovirus (PCMV/PRV)) elimination could not be applied indicate that damage of the endothelial glycocalyx also plays an important role in cardiac xenotransplantation.
Collapse
Affiliation(s)
- Martin Bender
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Jan-Michael Abicht
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Bruno Reichart
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Maria Leuschen
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Felicia Wall
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Julia Radan
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Elisabeth Neumann
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Maren Mokelke
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Ines Buttgereit
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Sebastian Michel
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), 81377 Munich, Germany
| | - Reinhard Ellgass
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Katja Gieseke
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Stig Steen
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Audrius Paskevicius
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| | - Antonia W. Godehardt
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Ralf R. Tönjes
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), 81377 Munich, Germany
| | | | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 81377 Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, 81377 Munich, Germany
| | - Michael Schmoeckel
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Paolo Brenner
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Martin B. Müller
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
2
|
Saha S, Haynes WJ, Del Rio NM, Young EE, Zhang J, Seo J, Huang L, Holm AM, Blashka W, Murphy L, Scholz MJ, Henrichs A, Suresh Babu J, Steill J, Stewart R, Kamp TJ, Brown ME. Diminished Immune Cell Adhesion in Hypoimmune ICAM-1 Knockout Pluripotent Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597791. [PMID: 38895244 PMCID: PMC11185752 DOI: 10.1101/2024.06.07.597791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Hypoimmune gene edited human pluripotent stem cells (hPSCs) are a promising platform for developing reparative cellular therapies that evade immune rejection. Existing first-generation hypoimmune strategies have used CRISPR/Cas9 editing to modulate genes associated with adaptive (e.g., T cell) immune responses, but have largely not addressed the innate immune cells (e.g., monocytes, neutrophils) that mediate inflammation and rejection processes occurring early after graft transplantation. We identified the adhesion molecule ICAM-1 as a novel hypoimmune target that plays multiple critical roles in both adaptive and innate immune responses post-transplantation. In a series of studies, we found that ICAM-1 blocking or knock-out (KO) in hPSC-derived cardiovascular therapies imparted significantly diminished binding of multiple immune cell types. ICAM-1 KO resulted in diminished T cell proliferation responses in vitro and in longer in vivo retention/protection of KO grafts following immune cell encounter in NeoThy humanized mice. The ICAM-1 KO edit was also introduced into existing first-generation hypoimmune hPSCs and prevented immune cell binding, thereby enhancing the overall hypoimmune capacity of the cells. This novel hypoimmune editing strategy has the potential to improve the long-term efficacy and safety profiles of regenerative therapies for cardiovascular pathologies and a number of other diseases.
Collapse
Affiliation(s)
- Sayandeep Saha
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - W. John Haynes
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Natalia M. Del Rio
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Elizabeth E. Young
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Jue Zhang
- Morgridge Institute for Research, Madison, WI
| | - Jiwon Seo
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Liupei Huang
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Alexis M. Holm
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Wesley Blashka
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Lydia Murphy
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Merrick J. Scholz
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Abigale Henrichs
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | | | - John Steill
- Morgridge Institute for Research, Madison, WI
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI
| | - Timothy J. Kamp
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Medicine, Madison, WI
| | - Matthew E. Brown
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| |
Collapse
|
3
|
Muckenhuber M, Mengrelis K, Weijler AM, Steiner R, Kainz V, Buresch M, Regele H, Derdak S, Kubetz A, Wekerle T. IL-6 inhibition prevents costimulation blockade-resistant allograft rejection in T cell-depleted recipients by promoting intragraft immune regulation in mice. Nat Commun 2024; 15:4309. [PMID: 38830846 PMCID: PMC11148062 DOI: 10.1038/s41467-024-48574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
The efficacy of costimulation blockade with CTLA4-Ig (belatacept) in transplantation is limited due to T cell-mediated rejection, which also persists after induction with anti-thymocyte globulin (ATG). Here, we investigate why ATG fails to prevent costimulation blockade-resistant rejection and how this barrier can be overcome. ATG did not prevent graft rejection in a murine heart transplant model of CTLA4-Ig therapy and induced a pro-inflammatory cytokine environment. While ATG improved the balance between regulatory T cells (Treg) and effector T cells in the spleen, it had no such effect within cardiac allografts. Neutralizing IL-6 alleviated graft inflammation, increased intragraft Treg frequencies, and enhanced intragraft IL-10 and Th2-cytokine expression. IL-6 blockade together with ATG allowed CTLA4-Ig therapy to achieve long-term, rejection-free heart allograft survival. This beneficial effect was abolished upon Treg depletion. Combining ATG with IL-6 blockade prevents costimulation blockade-resistant rejection, thereby eliminating a major impediment to clinical use of costimulation blockers in transplantation.
Collapse
Affiliation(s)
- Moritz Muckenhuber
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Konstantinos Mengrelis
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna Marianne Weijler
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Romy Steiner
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Verena Kainz
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Marlena Buresch
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Heinz Regele
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Anna Kubetz
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Mickiewicz L, Zahreddine R, Cormier K, Peries S, Del Bello A, Laffargue M, Smirnova NF. A minor tweak in transplant surgery protocols alters the cellular landscape of the arterial wall during transplant vasculopathy. FRONTIERS IN TRANSPLANTATION 2024; 3:1260125. [PMID: 38993774 PMCID: PMC11235260 DOI: 10.3389/frtra.2024.1260125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/02/2024] [Indexed: 07/13/2024]
Abstract
Introduction Transplant vasculopathy (TV) is a major complication after solid organ transplantation, distinguished by an arterial intimal thickening that obstructs the vascular lumen and leads to organ rejection. To date, TV remains largely untreatable, mainly because the processes involved in its development remain unclear. Aortic transplantation in mice, used to mimic TV, relies on highly variable experimental protocols, particularly regarding the type of anastomosis used to connect the donor aorta to the recipient. While the amount of trauma undergone by a vessel can dramatically affect the resulting pathology, the impact of the type of anastomosis on TV in mice has not been investigated in detail. Methods In this study, we compare the cellular composition of aortic grafts from BALB/C donor mice transplanted into C57BL/6J recipient mice using two different anastomosis strategies: sleeve and cuff. Results While both models recapitulated some aspects of human TV, there were striking differences in the cellular composition of the grafts. Indeed, aortic grafts from the cuff group displayed a larger coverage of the neointimal area by vascular smooth muscle cells compared to the sleeve group. Aortic grafts from the sleeve group contained higher amounts of T cells, while the cuff group displayed larger B-cell infiltrates. Discussion Together, these data indicate that a seemingly minor technical difference in transplant surgery protocols can largely impact the cellular composition of the graft, and thus the mechanisms underlying TV after aortic transplantation in mice.
Collapse
Affiliation(s)
- Laura Mickiewicz
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Rana Zahreddine
- CREFRE-Anexplo, Services Phénotypage et Microchirurgie, UMS006, INSERM, Université de Toulouse, UT3, ENVT, Toulouse, France
| | - Kévin Cormier
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Sophie Peries
- Center for Biological Ressources (Centres de Ressources Biologiques, CRB), IUCT Oncopole, Toulouse University Hospital (CHU de Toulouse), Toulouse, France
| | - Arnaud Del Bello
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
- Department of Nephrology and Organ Transplantation, Toulouse University Hospital (CHU de Toulouse), Toulouse, France
| | - Muriel Laffargue
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Natalia F Smirnova
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| |
Collapse
|
5
|
Li C, Schneider JM, Schneider EM. Disulfiram Inhibits Opsonin-Independent Phagocytosis and Migration of Human Long-Lived In Vitro Cultured Phagocytes from Multiple Inflammatory Diseases. Cells 2024; 13:535. [PMID: 38534379 DOI: 10.3390/cells13060535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Disulfiram (DSF), an anti-alcoholism medicine, exerts treatment effects in patients suffering from persistent Borreliosis and also exhibits anti-cancer effects through its copper chelating derivatives and induction of oxidative stress in mitochondria. Since chronic/persistent borreliosis is characterized by increased amounts of pro-inflammatory macrophages, this study investigated opsonin-independent phagocytosis, migration, and surface marker expression of in vivo activated and in vitro cultured human monocyte-derived phagocytes (macrophages and dendritic cells) with and without DSF treatment. Phagocytosis of non-opsonized Dynabeads® M-450 and migration of macrophages and dendritic cells were monitored using live cell analyzer Juli™ Br for 24 h, imaging every 3.5 min. To simultaneously monitor phagocyte function, results were analyzed by a newly developed software based on the differential phase contrast images of cells before and after ingestion of Dynabeads. DSF decreased the phagocytic capacities exhibited by in vitro enriched and long-lived phagocytes. Although no chemotactic gradient was applied to the test system, vigorous spontaneous migration was observed. We therefore set up an algorithm to monitor and quantify both phagocytosis and migration simultaneously. DSF not only reduced phagocytosis in a majority of these long-lived phagocytes but also impaired their migration. Despite these selective effects by DSF, we found that DSF reduced the expression densities of surface antigens CD45 and CD14 in all of our long-lived phagocytes. In cells with a high metabolic activity and high mitochondrial contents, DSF led to cell death corresponding to mitochondrial oxidative stress, whereas metabolically inactive phagocytes survived our DSF treatment protocol. In conclusion, DSF affects the viability of metabolically active phagocytes by inducing mitochondrial stress and secondly attenuates phagocytosis and migration in some long-lived phagocytes.
Collapse
Affiliation(s)
- Chen Li
- Clinic for Anaesthesiology and Intensive Care Medicine, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Julian M Schneider
- Clinic for Anaesthesiology and Intensive Care Medicine, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - E Marion Schneider
- Clinic for Anaesthesiology and Intensive Care Medicine, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| |
Collapse
|
6
|
Sun J(A, Adil A, Biniazan F, Haykal S. Immunogenicity and tolerance induction in vascularized composite allotransplantation. FRONTIERS IN TRANSPLANTATION 2024; 3:1350546. [PMID: 38993748 PMCID: PMC11235364 DOI: 10.3389/frtra.2024.1350546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/29/2024] [Indexed: 07/13/2024]
Abstract
Vascularized composite allotransplantation (VCA) is the transplantation of multiple tissues such as skin, muscle, bone, nerve, and vessels, as a functional unit (i.e., hand or face) to patients suffering from major tissue trauma and functional deficits. Though the surgical feasibility has been optimized, issues regarding graft rejection remains. VCA rejection involves a diverse population of cells but is primarily driven by both donor and recipient lymphocytes, antigen-presenting cells, macrophages, and other immune as well as donor-derived cells. In addition, it is commonly understood that different tissues within VCA, such as the skin, elicits a stronger rejection response. Currently, VCA recipients are required to follow potent and lifelong immunosuppressing regimens to maximize graft survival. This puts patients at risk for malignancies, opportunistic infections, and cancers, thereby posing a need for less perilous methods of inducing graft tolerance. This review will provide an overview of cell populations and mechanisms, specific tissue involved in VCA rejection, as well as an updated scope of current methods of tolerance induction.
Collapse
Affiliation(s)
- Jiahui (Angela) Sun
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aisha Adil
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Felor Biniazan
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Siba Haykal
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Cho WJ, Elbasiony E, Singh A, Mittal SK, Chauhan SK. IL-36γ Augments Ocular Angiogenesis by Promoting the Vascular Endothelial Growth Factor-Vascular Endothelial Growth Factor Receptor Axis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1740-1749. [PMID: 36740182 PMCID: PMC10616713 DOI: 10.1016/j.ajpath.2023.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/05/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023]
Abstract
Prevention of inflammatory angiogenesis is critical for suppressing chronic inflammation and inhibiting inflammatory tissue damage. Angiogenesis is particularly detrimental to the cornea because pathologic growth of new blood vessels can lead to marked vision impairment and even loss of vision. The expression of proinflammatory cytokines by injured tissues exacerbates the inflammatory cascade, including angiogenesis. IL-36 cytokine, a subfamily of the IL-1 superfamily, consists of three proinflammatory agonists, IL-36α, IL-36β, and IL-36γ, and an IL-36 receptor antagonist (IL-36Ra). Data from the current study indicate that human vascular endothelial cells constitutively expressed the cognate IL-36 receptor. The current investigation, for the first time, characterized the direct contribution of IL-36γ to various angiogenic processes. IL-36γ up-regulated the expression of vascular endothelial growth factors (VEGFs) and their receptors VEGFR2 and VEGFR3 by human vascular endothelial cells, suggesting that IL-36γ mediates the VEGF-VEGFR signaling by endothelial cells. Moreover, by using a naturally occurring antagonist IL-36Ra in a murine model of inflammatory angiogenesis, this study demonstrated that blockade of endogenous IL-36γ signaling results in significant retardation of inflammatory angiogenesis. The current investigation on the proangiogenic function of IL-36γ provides novel evidence of the development of IL-36γ-targeting strategies to hamper inflammatory angiogenesis.
Collapse
Affiliation(s)
- WonKyung J Cho
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Elsayed Elbasiony
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Aastha Singh
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Sharad K Mittal
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Sunil K Chauhan
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
8
|
Kim SE, Sun WS, Oh M, Lee S, No JG, Lee H, Lee P, Oh KB. Identification of the Porcine Vascular Endothelial Cell-Specific Promoter ESAM1.0 Using Transcriptome Analysis. Genes (Basel) 2023; 14:1928. [PMID: 37895277 PMCID: PMC10606829 DOI: 10.3390/genes14101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The vascular endothelium of xenografted pig organs represents the initial site of rejection after exposure to recipient immune cells. In this study, we aimed to develop a promoter specific to porcine vascular endothelial cells as a step toward overcoming xenograft rejection. Transcriptome analysis was performed on porcine aortic endothelial cells (PAECs), ear skin fibroblasts isolated from GGTA knockout (GTKO) pigs, and the porcine renal epithelial cell line pk-15. RNA sequencing confirmed 243 differentially expressed genes with expression changes of more than 10-fold among the three cell types. Employing the Human Protein Atlas database as a reference, we identified 34 genes exclusive to GTKO PAECs. The endothelial cell-specific adhesion molecule (ESAM) was selected via qPCR validation and showed high endothelial cell specificity and stable expression across tissues. We selected 1.0 kb upstream sequences of the translation start site of the gene as the promoter ESAM1.0. A luciferase assay revealed that ESAM1.0 promoter transcriptional activity was significant in PAECs, leading to a 2.8-fold higher level of expression than that of the porcine intercellular adhesion molecule 2 (ICAM2) promoter, which is frequently used to target endothelial cells in transgenic pigs. Consequently, ESAM1.0 will enable the generation of genetically modified pigs with endothelium-specific target genes to reduce xenograft rejection.
Collapse
Affiliation(s)
- Sang Eun Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeonju-si 55365, Jeollabuk-do, Republic of Korea; (S.E.K.); (W.-S.S.); (M.O.); (S.L.); (J.-G.N.); (H.L.); (P.L.)
| | - Wu-Sheng Sun
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeonju-si 55365, Jeollabuk-do, Republic of Korea; (S.E.K.); (W.-S.S.); (M.O.); (S.L.); (J.-G.N.); (H.L.); (P.L.)
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Miae Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeonju-si 55365, Jeollabuk-do, Republic of Korea; (S.E.K.); (W.-S.S.); (M.O.); (S.L.); (J.-G.N.); (H.L.); (P.L.)
| | - Seunghoon Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeonju-si 55365, Jeollabuk-do, Republic of Korea; (S.E.K.); (W.-S.S.); (M.O.); (S.L.); (J.-G.N.); (H.L.); (P.L.)
| | - Jin-Gu No
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeonju-si 55365, Jeollabuk-do, Republic of Korea; (S.E.K.); (W.-S.S.); (M.O.); (S.L.); (J.-G.N.); (H.L.); (P.L.)
| | - Haesun Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeonju-si 55365, Jeollabuk-do, Republic of Korea; (S.E.K.); (W.-S.S.); (M.O.); (S.L.); (J.-G.N.); (H.L.); (P.L.)
| | - Poongyeon Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeonju-si 55365, Jeollabuk-do, Republic of Korea; (S.E.K.); (W.-S.S.); (M.O.); (S.L.); (J.-G.N.); (H.L.); (P.L.)
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeonju-si 55365, Jeollabuk-do, Republic of Korea; (S.E.K.); (W.-S.S.); (M.O.); (S.L.); (J.-G.N.); (H.L.); (P.L.)
| |
Collapse
|
9
|
Mierzejewska P, Di Marzo N, Zabielska-Kaczorowska MA, Walczak I, Slominska EM, Lavitrano M, Giovannoni R, Kutryb-Zajac B, Smolenski RT. Endothelial Effects of Simultaneous Expression of Human HO-1, E5NT, and ENTPD1 in a Mouse. Pharmaceuticals (Basel) 2023; 16:1409. [PMID: 37895880 PMCID: PMC10610121 DOI: 10.3390/ph16101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The vascular endothelium is key target for immune and thrombotic responses that has to be controlled in successful xenotransplantation. Several genes were identified that, if induced or overexpressed, help to regulate the inflammatory response and preserve the transplanted organ function and metabolism. However, few studies addressed combined expression of such genes. The aim of this work was to evaluate in vivo the effects of the simultaneous expression of three human genes in a mouse generated using the multi-cistronic F2A technology. Male 3-month-old mice that express human heme oxygenase 1 (hHO-1), ecto-5'-nucleotidase (hE5NT), and ecto-nucleoside triphosphate diphosphohydrolase 1 (hENTPD1) (Transgenic) were compared to wild-type FVB mice (Control). Background analysis include extracellular nucleotide catabolism enzymes profile on the aortic surface, blood nucleotide concentration, and serum L-arginine metabolites. Furthermore, inflammatory stress induced by LPS in transgenic and control mice was used to characterize interleukin 6 (IL-6) and adhesion molecules endothelium permeability responses. Transgenic mice had significantly higher rates of extracellular adenosine triphosphate and adenosine monophosphate hydrolysis on the aortic surface in comparison to control. Increased levels of blood AMP and adenosine were also noticed in transgenics. Moreover, transgenic animals demonstrated the decrease in serum monomethyl-L-arginine level and a higher L-arginine/monomethyl-L-arginine ratio. Importantly, significantly decreased serum IL-6, and adhesion molecule levels were observed in transgenic mice in comparison to control after LPS treatment. Furthermore, reduced endothelial permeability in the LPS-treated transgenic mice was noted as compared to LPS-treated control. The human enzymes (hHO-1, hE5NT, hENTPD1) simultaneously encoded in transgenic mice demonstrated benefits in several biochemical and functional aspects of endothelium. This is consistent in use of this approach in the context of xenotransplantation.
Collapse
Affiliation(s)
- Paulina Mierzejewska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland; (P.M.); (M.A.Z.-K.); (I.W.); (E.M.S.)
| | - Noemi Di Marzo
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.D.M.); (M.L.); (R.G.)
| | - Magdalena A. Zabielska-Kaczorowska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland; (P.M.); (M.A.Z.-K.); (I.W.); (E.M.S.)
- Department of Physiology, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Iga Walczak
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland; (P.M.); (M.A.Z.-K.); (I.W.); (E.M.S.)
| | - Ewa M. Slominska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland; (P.M.); (M.A.Z.-K.); (I.W.); (E.M.S.)
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.D.M.); (M.L.); (R.G.)
| | - Roberto Giovannoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.D.M.); (M.L.); (R.G.)
- Department of Biology, University of Pisa, 56026 Pisa, Italy
| | - Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland; (P.M.); (M.A.Z.-K.); (I.W.); (E.M.S.)
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland; (P.M.); (M.A.Z.-K.); (I.W.); (E.M.S.)
| |
Collapse
|
10
|
Kesseli SJ, Krischak MK, Gao Q, Gonzalez T, Zhang M, Halpern SE, Kahan R, Song M, Huffman N, Xu H, Abraham N, Asokan A, Barbas AS, Hartwig MG. Adeno-associated virus mediates gene transduction after static cold storage treatment in rodent lung transplantation. J Thorac Cardiovasc Surg 2023; 166:e38-e49. [PMID: 38501313 DOI: 10.1016/j.jtcvs.2022.08.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
OBJECTIVE Adeno-associated virus is a clinically used gene therapy vector but has not been studied in lung transplantation. We sought to determine the efficacy of adeno-associated virus delivery during static cold storage via the airway versus the pulmonary artery before lung transplantation in a rodent model. METHODS Lewis rat lung grafts were treated with a dose of 8e8 or 4e9 viral genome/μL recombinant adeno-associated virus subtype-9 vectors containing firefly luciferase genomes administered via the pulmonary artery or airway during cold storage. A control group did not receive adeno-associated virus. Recipient syngeneic rats then underwent single left lung transplantation. Animals underwent bioluminescence imaging on postoperative days 7, 14, 28, and 56. Explanted tissues were prepared as lysates to quantify luciferase activity. Immunohistochemistry was performed to evaluate cellular transgene expression patterns. RESULTS Control animals with no luminescent signal produced a background radiance of 6.1e4 p/s/cm2/sr. In the airway delivery group, mean radiance was greater than the control at 4e9 viral genome/μL postoperative day 7 radiance 6.9e4 p/s/cm2/sr (P = .04). In the pulmonary artery delivery group, we observed greater in vivo luminescence in animals receiving 4e9 viral genome/μL compared with all other groups. However, analysis of tissue lysate revealed greater luminescence in the airway delivery group and suggested off-target expression in heart and liver tissue in the pulmonary artery delivery group. Immunohistochemistry demonstrated transgene staining in distal airway epithelium and alveoli but sparing of the vasculature in the airway delivery group. CONCLUSIONS Adeno-associated virus mediates gene transduction during static cold storage in rat lung isografts when administered via the airway and pulmonary artery. Airway administration leads to robust transgene expression in respiratory epithelial cells, whereas pulmonary artery administration targets alternative cell types and increases extrapulmonary transgene expression.
Collapse
Affiliation(s)
- Samuel J Kesseli
- Department of Surgery, Duke University Medical Center, Durham, NC.
| | | | - Qimeng Gao
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Trevor Gonzalez
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Min Zhang
- Department of Surgery, Duke University Medical Center, Durham, NC
| | | | - Riley Kahan
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Mingqing Song
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Niki Huffman
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Hongzhi Xu
- Department of Pathology, Duke University Medical Center, Durham, NC
| | - Nader Abraham
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Aravind Asokan
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Andrew S Barbas
- Department of Surgery, Duke University Medical Center, Durham, NC
| | | |
Collapse
|
11
|
Rother T, Horgby C, Schmalkuche K, Burgmann JM, Nocke F, Jägers J, Schmitz J, Bräsen JH, Cantore M, Zal F, Ferenz KB, Blasczyk R, Figueiredo C. Oxygen carriers affect kidney immunogenicity during ex-vivo machine perfusion. FRONTIERS IN TRANSPLANTATION 2023; 2:1183908. [PMID: 38993849 PMCID: PMC11235266 DOI: 10.3389/frtra.2023.1183908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/29/2023] [Indexed: 07/13/2024]
Abstract
Normothermic ex-vivo machine perfusion provides a powerful tool to improve donor kidney preservation and a route for the delivery of pharmacological or gene therapeutic interventions prior to transplantation. However, perfusion at normothermic temperatures requires adequate tissue oxygenation to meet the physiological metabolic demand. For this purpose, the addition of appropriate oxygen carriers (OCs) to the perfusion solution is essential to ensure a sufficient oxygen supply and reduce the risk for tissue injury due to hypoxia. It is crucial that the selected OCs preserve the integrity and low immunogenicity of the graft. In this study, the effect of two OCs on the organ's integrity and immunogenicity was evaluated. Porcine kidneys were perfused ex-vivo for four hours using perfusion solutions supplemented with red blood cells (RBCs) as conventional OC, perfluorocarbon (PFC)-based OC, or Hemarina-M101 (M101), a lugworm hemoglobin-based OC named HEMO2life®, recently approved in Europe (i.e., CE obtained in October 2022). Perfusions with all OCs led to decreased lactate levels. Additionally, none of the OCs negatively affected renal morphology as determined by histological analyses. Remarkably, all OCs improved the perfusion solution by reducing the expression of pro-inflammatory mediators (IL-6, IL-8, TNFα) and adhesion molecules (ICAM-1) on both transcript and protein level, suggesting a beneficial effect of the OCs in maintaining the low immunogenicity of the graft. Thus, PFC-based OCs and M101 may constitute a promising alternative to RBCs during normothermic ex-vivo kidney perfusion.
Collapse
Affiliation(s)
- Tamina Rother
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Carina Horgby
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Katharina Schmalkuche
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Jonathan M. Burgmann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Fabian Nocke
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Johannes Jägers
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jessica Schmitz
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Jan Hinrich Bräsen
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Miriam Cantore
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Franck Zal
- Hemarina SA, Aéropôle Centre, Morlaix, France
| | - Katja B. Ferenz
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- CeNIDE (Center for Nanointegration Duisburg-Essen), University of Duisburg-Essen, Duisburg, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| |
Collapse
|
12
|
Knoedler L, Knoedler S, Panayi AC, Lee CAA, Sadigh S, Huelsboemer L, Stoegner VA, Schroeter A, Kern B, Mookerjee V, Lian CG, Tullius SG, Murphy GF, Pomahac B, Kauke-Navarro M. Cellular activation pathways and interaction networks in vascularized composite allotransplantation. Front Immunol 2023; 14:1179355. [PMID: 37266446 PMCID: PMC10230044 DOI: 10.3389/fimmu.2023.1179355] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Vascularized composite allotransplantation (VCA) is an evolving field of reconstructive surgery that has revolutionized the treatment of patients with devastating injuries, including those with limb losses or facial disfigurement. The transplanted units are typically comprised of different tissue types, including skin, mucosa, blood and lymphatic vasculature, muscle, and bone. It is widely accepted that the antigenicity of some VCA components, such as skin, is particularly potent in eliciting a strong recipient rejection response following transplantation. The fine line between tolerance and rejection of the graft is orchestrated by different cell types, including both donor and recipient-derived lymphocytes, macrophages, and other immune and donor-derived tissue cells (e.g., endothelium). Here, we delineate the role of different cell and tissue types during VCA rejection. Rejection of VCA grafts and the necessity of life-long multidrug immunosuppression remains one of the major challenges in this field. This review sheds light on recent developments in decoding the cellular signature of graft rejection in VCA and how these may, ultimately, influence the clinical management of VCA patients by way of novel therapies that target specific cellular processes.
Collapse
Affiliation(s)
- Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Adriana C. Panayi
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Catherine A. A. Lee
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Sam Sadigh
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Lioba Huelsboemer
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Viola A. Stoegner
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | - Andreas Schroeter
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Barbara Kern
- Department of Plastic Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Vikram Mookerjee
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Christine G. Lian
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - George F. Murphy
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
13
|
Pace A, Steiner ME, Vercellotti GM, Somani A. Endothelial cell provenance: an unclear role in transplant medicine. FRONTIERS IN TRANSPLANTATION 2023; 2:1130941. [PMID: 38993867 PMCID: PMC11235371 DOI: 10.3389/frtra.2023.1130941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/11/2023] [Indexed: 07/13/2024]
Abstract
An understanding of the interplay between both donor endothelial progenitors and the recipient endothelium (in the case of hematopoietic cell transplant) and recipient endothelial provenance upon the established donor endothelium (in the case of solid organ transplant) is unknown. It is postulated that this interplay and consequences of purported dual endothelial populations may be a component of the post-transplant disease process and contribute to complications of engraftment or rejection. To address this potential confounding and often overlooked arena of vascular biology, a directed brief overview primarily focused on literature presented over the last decade is presented herein.
Collapse
Affiliation(s)
- Autumn Pace
- University of Minnesota Medical School, Minneapolis, MN, United States
| | - Marie E. Steiner
- Department of Pediatrics, Division of Hematology/Oncology, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Pediatrics, Division of Critical Care Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Gregory M. Vercellotti
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Arif Somani
- Department of Pediatrics, Division of Critical Care Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
14
|
Levesque MV, Hla T. Signal Transduction and Gene Regulation in the Endothelium. Cold Spring Harb Perspect Med 2023; 13:a041153. [PMID: 35667710 PMCID: PMC9722983 DOI: 10.1101/cshperspect.a041153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Extracellular signals act on G-protein-coupled receptors (GPCRs) to regulate homeostasis and adapt to stress. This involves rapid intracellular post-translational responses and long-lasting gene-expression changes that ultimately determine cellular phenotype and fate changes. The lipid mediator sphingosine 1-phosphate (S1P) and its receptors (S1PRs) are examples of well-studied GPCR signaling axis essential for vascular development, homeostasis, and diseases. The biochemical cascades involved in rapid S1P signaling are well understood. However, gene-expression regulation by S1PRs are less understood. In this review, we focus our attention to how S1PRs regulate nuclear chromatin changes and gene transcription to modulate vascular and lymphatic endothelial phenotypic changes during embryonic development and adult homeostasis. Because S1PR-targeted drugs approved for use in the treatment of autoimmune diseases cause substantial vascular-related adverse events, these findings are critical not only for general understanding of stimulus-evoked gene regulation in the vascular endothelium, but also for therapeutic development of drugs for autoimmune and perhaps vascular diseases.
Collapse
Affiliation(s)
- Michel V Levesque
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
15
|
Schipper HS, de Ferranti S. Atherosclerotic Cardiovascular Risk as an Emerging Priority in Pediatrics. Pediatrics 2022; 150:189711. [PMID: 36217888 DOI: 10.1542/peds.2022-057956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2022] [Indexed: 12/05/2022] Open
Abstract
Over the last decades, childhood and adolescence have emerged as an important window of opportunity to prevent atherosclerotic cardiovascular disease (ASCVD) later in life. Here, we discuss the underlying advances in the field. First, atherosclerosis development starts as early as childhood. Atherogenesis initiates in the iliac arteries and abdominal aorta and subsequently develops in higher regions of the arterial tree, as has been demonstrated in nonhuman primate studies and human autopsy studies. Obesity, hypertension, hyperlipidemia, and hyperglycemia at a young age can accelerate atherogenesis. Children and adolescents with obesity have a relative risk of ∼ 2.5 for ASCVD mortality later in life, compared to peers with a normal weight. Conversely, early prevention improves long-term cardiovascular outcomes. Second, we review disease-associated factors that add to the traditional risk factors. Various pediatric disorders carry similar or even higher risks of ASCVD than obesity, including chronic inflammatory disorders, organ transplant recipients, familial hypercholesterolemia, endocrine disorders, childhood cancer survivors, chronic kidney diseases, congenital heart diseases, and premature birth, especially after fetal growth restriction. The involved disease-associated factors that fuel atherogenesis are diverse and include inflammation, vascular, and endothelial factors. The diverse and growing list of pediatric groups at risk underscores that cardiovascular risk management has solidly entered the realm of general pediatrics. In a second review in this series, we will, therefore, focus on recent advances in cardiovascular risk assessment and management and their implications for pediatric practice.
Collapse
Affiliation(s)
- Henk S Schipper
- Department of Pediatric Cardiology.,Center for Translational Immunology, Wilhelmina Children's Hospital and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sarah de Ferranti
- Department of Cardiology, Boston Children's Hospital and Harvard University Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Jaishankar D, Quinn KM, Sanders J, Plumblee L, Morinelli TA, Nadig SN. Connexins in endothelial cells as a therapeutic target for solid organ transplantation. Am J Transplant 2022; 22:2502-2508. [PMID: 35612993 PMCID: PMC9643625 DOI: 10.1111/ajt.17104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 01/25/2023]
Abstract
Connexins are a class of membrane proteins widely distributed throughout the body and have various functions based on their location and levels of expression. More specifically, connexin proteins expressed in endothelial cells (ECs) have unique roles in maintaining EC barrier integrity and function-a highly regulated process that is critical for pro-inflammatory and pro-coagulant reactions. In this minireview, we discuss the regulatory influence connexin proteins have in maintaining EC barrier integrity and their role in ischemia-reperfusion injury as it relates to organ transplantation. It is evident that certain isoforms of the connexin protein family are uniquely positioned to have far-reaching effects on preserving organ function; however, there is still much to be learned of their roles in transplant immunology and the application of this knowledge to the development of targeted therapeutics.
Collapse
Affiliation(s)
- Dinesh Jaishankar
- Department of Surgery, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Kristen M. Quinn
- Department of Surgery, Division of TransplantMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Jes Sanders
- Department of Surgery, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Leah Plumblee
- Department of Surgery, Division of TransplantMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Thomas A. Morinelli
- Department of Surgery, Division of TransplantMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Satish N. Nadig
- Department of Surgery, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA,Department of Surgery, Division of TransplantMedical University of South CarolinaCharlestonSouth CarolinaUSA,Department of Microbiology‐Immunology and Pediatrics, Comprehensive Transplant Center, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA,Simpson Querrey InstituteNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
17
|
Personalized risk predictor for acute cellular rejection in lung transplant using soluble CD31. Sci Rep 2022; 12:17628. [PMID: 36271122 PMCID: PMC9587244 DOI: 10.1038/s41598-022-21070-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 09/22/2022] [Indexed: 01/13/2023] Open
Abstract
We evaluated the contribution of artificial intelligence in predicting the risk of acute cellular rejection (ACR) using early plasma levels of soluble CD31 (sCD31) in combination with recipient haematosis, which was measured by the ratio of arterial oxygen partial pressure to fractional oxygen inspired (PaO2/FiO2) and respiratory SOFA (Sequential Organ Failure Assessment) within 3 days of lung transplantation (LTx). CD31 is expressed on endothelial cells, leukocytes and platelets and acts as a "peace-maker" at the blood/vessel interface. Upon nonspecific activation, CD31 can be cleaved, released, and detected in the plasma (sCD31). The study included 40 lung transplant recipients, seven (17.5%) of whom experienced ACR. We modelled the plasma levels of sCD31 as a nonlinear dependent variable of the PaO2/FiO2 and respiratory SOFA over time using multivariate and multimodal models. A deep convolutional network classified the time series models of each individual associated with the risk of ACR to each individual in the cohort.
Collapse
|
18
|
Gentherapie der Transplantatvaskulopathie. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2022. [DOI: 10.1007/s00398-022-00535-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
19
|
Perrin S, Magill M. The Inhibition of CD40/CD154 Costimulatory Signaling in the Prevention of Renal Transplant Rejection in Nonhuman Primates: A Systematic Review and Meta Analysis. Front Immunol 2022; 13:861471. [PMID: 35464470 PMCID: PMC9022482 DOI: 10.3389/fimmu.2022.861471] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
The prevention of allograft transplant rejection by inhibition of the CD40/CD40L costimulatory pathway has been described in several species. We searched pubmed for studies reporting the prevention of kidney transplant rejection in nonhuman primates utilizing either anti CD40 or anti CD40L (CD154) treatment. Inclusion of data required treatment with anti CD40 or anti CD154 as monotherapy treatment arms, full text available, studies conducted in nonhuman primate species, the transplant was renal transplantation, sufficient duration of treatment to assess long term rejection, and the reporting of individual graft survival or survival duration. Eleven publications were included in the study. Rejection free survival was calculated using the Kaplan-Meier (KM) life test methods to estimate the survival functions. The 95% CI for the medians was also calculated. A log-rank test was used to test the equality of the survival curves between control and treatment arms (CD40 and CD154). The hazard ratio for CD154 compared to CD40 and 95% CI was calculated using a Cox proportional-hazards model including treatment as the covariate to assess the magnitude of the treatment effect. Both anti CD40 and anti CD154 treatments prevented acute and long term graft rejection. The median (95% CI) rejection free survival was 131 days (84,169 days) in the anti CD40 treated animals and 352 days (173,710 days) in the anti CD154 treated animals. Median survival in the untreated animals was 6 days. The inhibition of transplant rejection was more durable in the anti CD154 group compared to the anti CD40 group after cessation of treatment. The median (95% CI) rejection free survival after cessation of treatment was 60 days (21,80 days) in the anti CD40 treated animals and 230 days (84,552 days) in the anti CD154 treated animals.
Collapse
|
20
|
Dec GW, Narula J. Probing the Microvasculature for Long-Term Gains in Heart Transplant Recipients. J Am Coll Cardiol 2021; 78:2436-2438. [PMID: 34886964 DOI: 10.1016/j.jacc.2021.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022]
Affiliation(s)
- G William Dec
- Cardiac Unit, Massachusetts General Hospital, Boston, Massachusetts, USA; Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Jagat Narula
- Cardiac Unit, Massachusetts General Hospital, Boston, Massachusetts, USA; Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
21
|
Have we hit a wall with whole kidney decellularization and recellularization: A review. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Nowańska K, Wiśnicki K, Kuriata-Kordek M, Krajewska M, Banasik M. The role of endothelin II type A receptor (ETAR) in transplant injury. Transpl Immunol 2021; 70:101505. [PMID: 34793957 DOI: 10.1016/j.trim.2021.101505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Antibody-mediated rejection is the leading cause of deterioration of graft function and graft loss after kidney transplantation. Recent studies have reported an increasing role of non-HLA antibodies in the humoral injury after kidney transplantation. We decided to present the influence of non-HLA antibodies - anti-endothelin II type A receptor (ETAR) on a transplanted kidney and characterize the significance of their receptor. RECENT FINDINGS The role of non-HLA antibodies is still uncertain. Many studies suggest that the presence of non-HLA antibodies, including anti-ETAR antibodies, is among the risk factors for antibody-mediated rejection, graft injury, and graft loss. The discovery of new antigen targets and antibodies, which participate in the humoral response, has provided a significantly better understanding of the mechanism of antibody-mediated rejection after organ transplantation. SUMMARY Endothelin and its receptors play an important role in physiology and pathophysiology after solid organ transplantation. ETAR and antibodies against ETAR may participate in humoral rejection and graft damage. The measurement of anti-ETAR antibodies may identify patients with an increased risk of rejection and even loss of a transplanted organ. Expression of ETAR detected in biopsy of transplant could become an additional tool used to better understand humoral activity. More research is needed to address many questions about non-HLA directed rejection and graft damage.
Collapse
Affiliation(s)
- Katarzyna Nowańska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Krzysztof Wiśnicki
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Magdalena Kuriata-Kordek
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wrocław, Poland.
| |
Collapse
|
23
|
Valdivia E, Rother T, Yuzefovych Y, Hack F, Wenzel N, Blasczyk R, Krezdorn N, Figueiredo C. Genetic modification of limbs using ex vivo machine perfusion. Hum Gene Ther 2021; 33:460-471. [PMID: 34779223 DOI: 10.1089/hum.2021.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genetic engineering is a promising tool to repair genetic disorders, improve graft function or to reduce immune responses towards the allografts. Ex vivo organ perfusion systems have the potential to mitigate ischemic-reperfusion injury, prolong preservation time or even rescue organ function. We aim to combine both technologies to develop a modular platform allowing the genetic modification of vascularized composite (VC) allografts. Rat hind limbs were perfused ex vivo under subnormothermic conditions with lentiviral vectors. Specific perfusion conditions such as controlled pressure, temperature and flow rates were optimized to support the genetic modification of the limbs. Genetic modification was detected in vascular, muscular and dermal limb tissues. Remarkably, skin follicular and interfollicular keratinocytes as well as endothelial cells (ECs) showed stable transgene expression. Furthermore, levels of injury markers such as lactate, myoglobin and lactate dehydrogenase (LDH) as well as histological analyses showed that ex vivo limb perfusion with lentiviral vectors did not cause tissue damage and limb cytokine secretion signatures were not significantly affected. The use of ex vivo VC perfusion in combination with lentiviral vectors allows an efficient and stable genetic modification of limbs representing a robust platform to genetically engineer limbs towards increasing graft survival after transplantation.
Collapse
Affiliation(s)
- Emilio Valdivia
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Tamina Rother
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Yuliia Yuzefovych
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Franziska Hack
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Nadine Wenzel
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Rainer Blasczyk
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Nicco Krezdorn
- Hannover Medical School, 9177, Clinic for Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover, Niedersachsen, Germany;
| | - Constanca Figueiredo
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| |
Collapse
|
24
|
Rossi AP, Alloway RR, Hildeman D, Woodle ES. Plasma cell biology: Foundations for targeted therapeutic development in transplantation. Immunol Rev 2021; 303:168-186. [PMID: 34254320 DOI: 10.1111/imr.13011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 12/20/2022]
Abstract
Solid organ transplantation is a life-saving procedure for patients with end-stage organ disease. Over the past 70 years, tremendous progress has been made in solid organ transplantation, particularly in T-cell-targeted immunosuppression and organ allocation systems. However, humoral alloimmune responses remain a major challenge to progress. Patients with preexisting antibodies to human leukocyte antigen (HLA) are at significant disadvantages in regard to receiving a well-matched organ, moreover, those who develop anti-HLA antibodies after transplantation face a significant foreshortening of renal allograft survival. Historical therapies to desensitize patients prior to transplantation or to treat posttransplant AMR have had limited effectiveness, likely because they do not significantly reduce antibody levels, as plasma cells, the source of antibody production, remain largely unaffected. Herein, we will discuss the significance of plasma cells in transplantation, aspects of their biology as potential therapeutic targets, clinical challenges in developing strategies to target plasma cells in transplantation, and lastly, novel approaches that have potential to advance the field.
Collapse
Affiliation(s)
- Amy P Rossi
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rita R Alloway
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - David Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - E Steve Woodle
- Division of Transplantation, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
25
|
(Cardiac allograft vasculopathy nowadays). COR ET VASA 2021. [DOI: 10.33678/cor.2020.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Anwar T, Sinnett-Smith J, Jin YP, Reed EF, Rozengurt E. Ligation of HLA Class I Molecules Induces YAP Activation through Src in Human Endothelial Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:1953-1961. [PMID: 32848033 DOI: 10.4049/jimmunol.2000535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022]
Abstract
Ab cross-linking of HLA class I (HLA I) molecules on the surface of endothelial cells (EC) triggers proliferative and prosurvival intracellular signaling, which is implicated in the process of chronic allograft rejection, also known as transplant vasculopathy. Despite the importance of Ab-mediated rejection in transplantation, the mechanisms involved remain incompletely understood. In this study, we examined the regulation of yes-associated protein (YAP) localization, phosphorylation, and transcriptional activity in human ECs challenged with Abs that bind HLA I. In unstimulated ECs, YAP localized mainly in the cytoplasm. Stimulation of these cells with Ab W6/32 induced marked translocation of YAP to the nucleus. The nuclear import of YAP was associated with a rapid decrease in YAP phosphorylation at Ser127 and Ser397, sites targeted by LATS1/2 and with the expression of YAP-regulated genes, including connective tissue growth factor (CTGF), and cysteine-rich angiogenic inducer 61 (CYR61). Transfection of small interfering RNAs targeting YAP/TAZ blocked the migration of ECs stimulated by ligation of HLA I, indicating that YAP mediates the increase in EC migration induced by HLA I ligation. Treatment of intact ECs with Src family inhibitors induced cytoplasmic localization of YAP in unstimulated ECs and, strikingly, blocked the nuclear import of YAP induced by Ab-induced HLA I activation in these cells and the increase in the expression of the YAP-regulated genes CTGF and CYR61 induced by HLA I stimulation. Our results identify the Src/YAP axis as a key player in promoting the proliferation and migration of ECs that are critical in the pathogenesis of transplant vasculopathy.
Collapse
Affiliation(s)
- Tarique Anwar
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095; and.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - James Sinnett-Smith
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Yi-Ping Jin
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095; and
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095; and
| | - Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| |
Collapse
|