1
|
Kang SA, Yu HS. Anti-obesity effects by parasitic nematode ( Trichinella spiralis) total lysates. Front Cell Infect Microbiol 2024; 13:1285584. [PMID: 38259965 PMCID: PMC10800963 DOI: 10.3389/fcimb.2023.1285584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Background Obesity is an inducible factor for the cause of chronic diseases and is described by an increase in the size and number of adipocytes that differentiate from precursor cells (preadipocytes). Parasitic helminths are the strongest natural trigger of type 2 immune system, and several studies have showed that helminth infections are inversely correlated with metabolic syndromes. Methodology/Principal findings To investigate whether helminth-derived molecules have therapeutic effects on high-fat diet (HFD)-induced obesity, we isolated total lysates from Trichinella spiralis muscle larvae. We then checked the anti-obesity effect after intraperitoneal administration and intraoral administration of total lysate from T. spiralis muscle larvae in a diet-induced obesity model. T. spiralis total lysates protect against obesity by inhibiting the proinflammatory response and/or enhancing M2 macrophages. In addition, we determined the effects of total lysates from T. spiralis muscle larvae on anti-obesity activities in 3T3-L1 preadipocytes by investigating the expression levels of key adipogenic regulators, including peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT-enhancer-binding protein alpha (C/EBPα) and adipocyte protein 2 (aP2). Oil Red O staining showed that the total lysates from T. spiralis muscle larvae decreased the differentiation of 3T3-L1 preadipocytes by decreasing the number of lipid droplets. In addition, the production levels of proinflammatory cytokines IL-1β, IL-6, IFN-γ and TNF-α were examined by enzyme-linked immunosorbent assay (ELISA). T. spiralis total lysates decreased intracellular lipid accumulation and suppressed the expression levels of PPARγ, C/EBPα and aP2. Conclusion/Significance These results show that T. spiralis total lysate significantly suppresses the symptoms of obesity in a diet- induced obesity model and 3T3-L1 cell differentiation and suggest that it has potential for novel anti-obesity therapeutics.
Collapse
Affiliation(s)
- Shin Ae Kang
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| |
Collapse
|
2
|
Luo G, Li H, Lu Q, Cao J, Lv H, Jiang Y. Effects of protoscoleces excretory-secretory products of Echinococcus granulosus on hepatocyte growth, function, and glucose metabolism. Acta Trop 2024; 249:107066. [PMID: 37944837 DOI: 10.1016/j.actatropica.2023.107066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/21/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Cystic echinococcosis (CE) is one of the most widespread and harmful zoonotic parasitic diseases, which most commonly affects the liver. In this study, we characterized multiple changes in mouse hepatocytes following treatment with excretory-secretory products (ESPs) of Echinococcus granulosus protoscoleces (Eg-PSCs) by a factorial experiment. The cell counting kit-8 assay (CCK-8), the 5-ethynyl-2'-deoxyuridine (EdU) assay, and flow cytometry were used to detect the growth of hepatocytes. Inverted microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to observe the morphology and ultrastructure of hepatocytes. An automatic biochemical analyzer and an ELISA detection kit were used to determine six conventional hepatocyte enzymatic indices, the levels of five hepatocyte-synthesized substances, and the contents of glucose and lactate. Western blot analysis was conducted to analyze the protein expression of three apoptosis-related proteins, Bax, Bcl-2, cleaved caspase-3, and six glucose metabolism pathways rate-limiting enzymes in hepatocytes. The results showed that ESPs inhibited hepatocyte proliferation and promoted hepatocyte apoptosis. The cell membrane and microvilli of hepatocytes changed, and the nucleus, mitochondria and rough endoplasmic reticulum were damaged to varying degrees. The contents of iron, albumin (ALB), uric acid (UA) and urea were increased, and the activities of six enzymes in hepatocytes were increased except for the decrease of transferrin (TRF). The expression levels of all six key enzymes in the glucose metabolism pathway in hepatocytes were reduced. Our characterization provides a basis for further research on the pathogenesis, prevention and treatment of CE.
Collapse
Affiliation(s)
- Guangyi Luo
- Section for Hepatopancreatobiliary Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China; Department of Hepatopancreatobiliary Surgery, Anyue County People's Hospital, Ziyang, 642350, Sichuan, China
| | - Haiwen Li
- School of Basic Medicine, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Qiong Lu
- Department of Infectious Diseases, Anyue County People's Hospital, Ziyang, 642350, Sichuan, China
| | - Jiangtao Cao
- School of Basic Medicine, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Hailong Lv
- Section for Hepatopancreatobiliary Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Yufeng Jiang
- School of Basic Medicine, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
| |
Collapse
|
3
|
Esperante D, Gutiérrez MIM, Issa ME, Schcolnik-Cabrera A, Mendlovic F. Similarities and divergences in the metabolism of immune cells in cancer and helminthic infections. Front Oncol 2023; 13:1251355. [PMID: 38044996 PMCID: PMC10690632 DOI: 10.3389/fonc.2023.1251355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023] Open
Abstract
Energetic and nutritional requirements play a crucial role in shaping the immune cells that infiltrate tumor and parasite infection sites. The dynamic interaction between immune cells and the microenvironment, whether in the context of tumor or helminth infection, is essential for understanding the mechanisms of immunological polarization and developing strategies to manipulate them in order to promote a functional and efficient immune response that could aid in the treatment of these conditions. In this review, we present an overview of the immune response triggered during tumorigenesis and establishment of helminth infections, highlighting the transition to chronicity in both cases. We discuss the energetic demands of immune cells under normal conditions and in the presence of tumors and helminths. Additionally, we compare the metabolic changes that occur in the tumor microenvironment and the infection site, emphasizing the alterations that are induced to redirect the immune response, thereby promoting the survival of cancer cells or helminths. This emerging discipline provides valuable insights into disease pathogenesis. We also provide examples of novel strategies to enhance immune activity by targeting metabolic pathways that shape immune phenotypes, with the aim of achieving positive outcomes in cancer and helminth infections.
Collapse
Affiliation(s)
- Diego Esperante
- Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicina, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
| | - Mónica Itzel Martínez Gutiérrez
- Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicina, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
| | - Mark E. Issa
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Alejandro Schcolnik-Cabrera
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, QC, Canada
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada
| | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan, Mexico
| |
Collapse
|
4
|
Yamamoto KK, Savage-Dunn C. TGF-β pathways in aging and immunity: lessons from Caenorhabditis elegans. Front Genet 2023; 14:1220068. [PMID: 37732316 PMCID: PMC10507863 DOI: 10.3389/fgene.2023.1220068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
The Transforming Growth Factor-β (TGF-β) superfamily of signaling molecules plays critical roles in development, differentiation, homeostasis, and disease. Due to the conservation of these ligands and their signaling pathways, genetic studies in invertebrate systems including the nematode Caenorhabditis elegans have been instrumental in identifying signaling mechanisms. C. elegans is also a premier organism for research in longevity and healthy aging. Here we summarize current knowledge on the roles of TGF-β signaling in aging and immunity.
Collapse
Affiliation(s)
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, and PhD Program in Biology, The Graduate Center, City University of New York, New York City, NY, United States
| |
Collapse
|
5
|
Wu S, Nie Q, Tan S, Liao G, Lv Y, Lv C, Chen G, Liu S. The immunity modulation of transforming growth factor-β in malaria and other pathological process. Int Immunopharmacol 2023; 122:110658. [PMID: 37467691 DOI: 10.1016/j.intimp.2023.110658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
The main causative agent of malaria in humans is Plasmodium falciparum, which is spread through biting Anopheles mosquitoes. Immunoregulation in the host involving the pleiotropic cytokine transforming growth factor-β (TGF-β) has a vital role in controlling the immune response to P. falciparum infection. Based on a search of the published literature, this study investigated the correlation between malaria and immune cells, specifically the role of TGF-β in the immune response. The studies analyzed showed that, when present in low amounts, TGF-β promotes inflammation, but inhibits inflammation when present in high concentrations; thus, it is an essential regulator of inflammation. It has also been shown that the quantity of TGF-β produced by the host can influence how badly the parasite affects the host. Low levels of TGF-β in the host prevent the host from being able to manage the inflammation that Plasmodium causes, which results in a pathological situation that leaves the host vulnerable to fatal infection. Additionally, the amount of TGF-β fluctuates throughout the host's Plasmodium infection. At the beginning of a Plasmodium infection, TGF-β levels are noticeably increased, and as Plasmodium multiplies quickly, they start to decline, hindering further growth. In addition, it is also involved in the growth, proliferation, and operation of various types of immune cell and correlated with levels of cytokines associated with the immune response to malaria. TGF-β levels were positively connected with the anti-inflammatory cytokine interleukin-10 (IL-10), but negatively correlated with the proinflammatory cytokines interferon-γ (IFN-γ) and IL-6 in individuals with severe malaria. Thus, TGF-β might balance immune-mediated pathological damage and the regulation and clearance of infectious pathogens. Numerous domestic and international studies have demonstrated that TGF-β maintains a dynamic balance between anti-inflammation and pro-inflammation in malaria immunity by acting as an anti-inflammatory factor when inflammation levels are too high and as a pro-inflammatory factor when inflammation levels are deficient. Such information could be of relevance to the design of urgently needed vaccines and medications to meet the emerging risks associated with the increasing spread of malaria and the development of drug resistance.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Basic Medical Sciences, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou, China
| | - Qing Nie
- Weifang Centers for Disease Control and Prevention, No 4801 Huixian Road, Gaoxin District, Shandong Province, Weifang 261061, China
| | - Shuang Tan
- Department of Basic Medical Sciences, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou, China
| | - Guoyan Liao
- Department of Basic Medical Sciences, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou, China
| | - Yinyi Lv
- Department of Basic Medical Sciences, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou, China
| | - Caohua Lv
- Department of Dermatology, Taizhou Second People's Hospital, No 2 Shuinan East Road, Tiantai Country, Taizhou 317200, China
| | - Guang Chen
- Department of Basic Medical Sciences, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou, China.
| | - Shuangchun Liu
- Municipal Hospital Affiliated to Medical School of Taizhou University, No 381, Zhongshan East Road, Jiaojiang District, Taizhou 318000, China.
| |
Collapse
|
6
|
Zhou Y, Luo T, Gong Y, Guo Y, Wang D, Gao Z, Sun F, Fu L, Liu H, Pan W, Yang X. The non-oral infection of larval Echinococcus granulosus induces immune and metabolic reprogramming in the colon of mice. Front Immunol 2023; 13:1084203. [PMID: 36713407 PMCID: PMC9880436 DOI: 10.3389/fimmu.2022.1084203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/12/2022] [Indexed: 01/15/2023] Open
Abstract
Background The intestinal tract serves as a critical regulator for nutrient absorption and overall health. However, its involvement in anti-parasitic infection and immunity has been largely neglected, especially when a parasite is not transmitted orally. The present study investigated the colonic histopathology and functional reprogramming in mice with intraperitoneal infection of the larval Echinococcus granulosus (E. granulosus). Results Compared with the control group, the E. granulosus-infected mice exhibited deteriorated secreted mucus, shortened length, decreased expression of tight junction proteins zonula occludens-1 (ZO-1), and occludin in the colon. Moreover, RNA sequencing was employed to characterize colonic gene expression after infection. In total, 3,019 differentially expressed genes (1,346 upregulated and 1,673 downregulated genes) were identified in the colon of infected mice. KEGG pathway and GO enrichment analysis revealed that differentially expressed genes involved in intestinal immune responses, infectious disease-associated pathways, metabolism, or focal adhesion were significantly enriched. Among these, 18 tight junction-relative genes, 44 immune response-associated genes, and 23 metabolic genes were annotated. Furthermore, mebendazole treatment could reverse the colonic histopathology induced by E. granulosus infection. Conclusions Intraperitoneal infection with E. granulosus induced the pathological changes and functional reprogramming in the colon of mice, and mebendazole administration alleviated above alternations, highlighting the significance of the colon as a protective barrier against parasitic infection. The findings provide a novel perspective on host-parasite interplay and propose intestine as a possible target for treating parasitic diseases that are not transmitted orally.
Collapse
Affiliation(s)
- Yuying Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tiancheng Luo
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuying Gong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuxin Guo
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dingmin Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zixuan Gao
- Department of Histology and Embryology, Basic Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fenfen Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Linlin Fu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hua Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Health Commission (NHC) Key Laboratory of Parasite and Vector Biology, World Health Organization (WHO) Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
7
|
Yahsi B, Gunaydin G. Immunometabolism - The Role of Branched-Chain Amino Acids. Front Immunol 2022; 13:886822. [PMID: 35812393 PMCID: PMC9259854 DOI: 10.3389/fimmu.2022.886822] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Immunometabolism has been the focus of extensive research over the last years, especially in terms of augmenting anti-tumor immune responses. Regulatory T cells (Tregs) are a subset of CD4+ T cells, which have been known for their immunosuppressive roles in various conditions including anti-tumor immune responses. Even though several studies aimed to target Tregs in the tumor microenvironment (TME), such approaches generally result in the inhibition of the Tregs non-specifically, which may cause immunopathologies such as autoimmunity. Therefore, specifically targeting the Tregs in the TME would be vital in terms of achieving a successful and specific treatment. Recently, an association between Tregs and isoleucine, which represents one type of branched-chain amino acids (BCAAs), has been demonstrated. The presence of isoleucine seems to affect majorly Tregs, rather than conventional T cells. Considering the fact that Tregs bear several distinct metabolic features in the TME, targeting their immunometabolic pathways may be a rational approach. In this Review, we provide a general overview on the potential distinct metabolic features of T cells, especially focusing on BCAAs in Tregs as well as in their subtypes.
Collapse
Affiliation(s)
- Berkay Yahsi
- School of Medicine, Hacettepe University, Ankara, Turkey
| | - Gurcan Gunaydin
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
| |
Collapse
|
8
|
Chen G, Liu SC, Fan XY, Jin YL, Li X, Du YT. Plasmodium manipulates the expression of host long non-coding RNA during red blood cell intracellular infection. Parasit Vectors 2022; 15:182. [PMID: 35643541 PMCID: PMC9148527 DOI: 10.1186/s13071-022-05298-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Parasites interact with their host through "direct" and/or "indirect" mechanisms. Plasmodium, for example, either mediates direct physical interactions with host factors or triggers the immune system of the host indirectly, leading to changes in infectious outcomes. Long non-coding RNAs (lncRNAs) participate in regulating biological processes, especially host-pathogen interactions. However, research on the role of host lncRNAs during Plasmodium infection is limited. METHODS A RNA sequencing method (RNA-seq) was used to confirm the differential expression profiles of lncRNAs in Plasmodium yeolii 17XL (P.y17XL)-infected BALB/c mice. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to elucidate the potential functions of Plasmodium-induced genes. Subsequently, the effect of specific lncRNAs on the modulation of immune-related signaling pathways in malaria was determined by fluorescence-activated cell sorting, western blot and enzyme-linked immunosorbent assay. RESULTS The data showed that in P.y17XL-infected BALB/c mice, Plasmodium upregulated the expression of 132 lncRNAs and downregulated the expression of 159 lncRNAs. Differentially expressed lncRNAs clearly associated with malaria infection were annotated, including four novel dominant lncRNAs: ENMSUSG00000111521.1, XLOC_038009, XLOC_058629 and XLOC_065676. GO and KEGG pathway analyses demonstrated that these four differentially expressed lncRNAs were associated with co-localized/co-expressed protein-coding genes that were totally enriched in malaria and with the transforming growth factor beta (TGF-β) signaling pathway. Using the models of P.y17XL-infected BALB/c mice, data certified that the level of TGF-β production and activation of TGF-β/Smad2/3 signaling pathway were obviously changed in malaria infection. CONCLUSIONS These differentially expressed immune-related genes were deemed to have a role in the process of Plasmodium infection in the host via dendritic/T regulatory cells and the TGF-β/Smad2/3 signaling pathway. The results of the present study confirmed that Plasmodium infection-induced lncRNA expression is a novel mechanism used by Plasmodium parasites to modify host immune signaling. These results further enhance current understanding of the interaction between Plasmodium and host cells.
Collapse
Affiliation(s)
- Guang Chen
- Department of Basic Medical Sciences, Taizhou University, No. 1139 Shifu Road, Jiaojiang District, Taizhou, 318000, China
| | - Shuang-Chun Liu
- Municipal Hospital Affiliated to Medical School of Taizhou University, No. 381, Zhongshan East Road, Jiaojiang District, Taizhou, 318000, China
| | - Xiao-Yan Fan
- Department of Basic Medical Sciences, Taizhou University, No. 1139 Shifu Road, Jiaojiang District, Taizhou, 318000, China
| | - Yue-Lei Jin
- Department of Basic Medical Sciences, Taizhou University, No. 1139 Shifu Road, Jiaojiang District, Taizhou, 318000, China
| | - Xin Li
- Department of Basic Medical Sciences, Taizhou University, No. 1139 Shifu Road, Jiaojiang District, Taizhou, 318000, China
| | - Yun-Ting Du
- Department of Laboratory Medicine, Cancer Hospital of China Medical University-Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| |
Collapse
|
9
|
Expression profiling of exosomal miRNAs derived from different stages of infection in mice infected with Echinococcus granulosus protoscoleces using high-throughput sequencing. Parasitol Res 2022; 121:1993-2008. [PMID: 35511364 DOI: 10.1007/s00436-022-07536-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
Echinococcosis is a worldwide zoonosis. The mechanism of the establishment, growth, and persistence of parasites in the host has not been fully understood. Exosomes are found to be a way of information exchange between parasites and hosts. They exist in various body fluids widely. There are few studies on host-derived exosomes and their miRNA expression profiles at different infection time points. In this study, BALB/c mice were intraperitoneally infected with protricercariae. Exosomes were extracted from plasma (0, 3, 9, and 20 weeks post infection), and the expression profiles of exosome miRNA in the peripheral blood of mice were determined using RNA-sequencing. Compared to the 0 week groups, 24, 35, and 22 differentially expressed miRNAs were detected in infected mouse at the three infection stages, respectively. The results showed that there were significant differences in the miRNAs of exosomes at different infection time points. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to annotate the different miRNAs. The results showed that the biological pathways of parasites changed significantly at different stages of infection, with many significant and abundant pathways involved in cell differentiation, inflammation, and immune response, such as MAPK signaling pathway, Th17 cell differentiation, Wnt signaling pathway, FoxO signaling pathway, Notch signaling pathway, etc. These results suggest that miRNA may be an important regulator of interactions between Echinococcus granulosus and host. The data provided here provide valuable information to increase understanding of the regulatory function of microRNAs in the host microenvironment and the mechanism of host-parasite interaction. This may help us to find targets for Echinococcus granulosus to escape host immune attack and control Echinococcus granulosus infection in the future.
Collapse
|
10
|
Yang S, Du X, Wang C, Zhang T, Xu S, Zhu Y, Lv Y, Zhao Y, Zhu M, Guo L, Zhao W. Coding and Noncoding RNA Expression Profiles of Spleen CD4 + T Lymphocytes in Mice with Echinococcosis. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:9742461. [PMID: 35480082 PMCID: PMC9012641 DOI: 10.1155/2022/9742461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022]
Abstract
Cystic echinococcosis (CE) is a severe and neglected zoonotic disease that poses health and socioeconomic hazards. So far, the prevention and treatment of CE are far from meeting people's ideal expectations. Therefore, to gain insight into the prevention and diagnosis of CE, we explored the changes in RNA molecules and the biological processes and pathways involved in these RNA molecules as E. granulosus infects the host. Interferon (IFN)-γ, interleukin (IL)-2, IL-4, IL-6, IL-10, IL-17A, and tumor necrosis factor (TNF)-α levels in peripheral blood serum of E. granulosus infected and uninfected female BALB/c mice were measured using the cytometric bead array mouse Th1/Th2/Th17 cytokine kit. mRNA, microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA) profiles of spleen CD4+ T cells from the two groups of mice were analyzed using high-throughput sequencing and bioinformatics. The levels of IFN-γ, IL-2, IL-4, IL-6, IL-10, IL-17A, and TNF-α were significantly higher in the serum of the CE mice than in control mice (P < 0.01). In total, 1,758 known mRNAs, 37 miRNAs, 175 lncRNAs, and 22 circRNAs were differentially expressed between infected and uninfected mice (|fold change| ≥ 0.585, P < 0.05). These differentially expressed molecules are involved in chromosome composition, DNA/RNA metabolism, and gene expression in cell composition, biological function, and cell function. Moreover, closely related to the JAK/STAT signaling pathways, mitogen-activated protein kinase signaling pathways, P53 signaling pathways, PI3K/AKT signaling pathways, cell cycle, and metabolic pathways. E. granulosus infection significantly increased the levels of IFN-γ, IL-2, IL-4, IL-6, IL-10, IL-17A, and TNF-α in mouse peripheral blood of mice and significantly changed expression levels of various coding and noncoding RNAs. Further study of these trends and pathways may help clarify the pathogenesis of CE and provide new insights into the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Songhao Yang
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Xiancai Du
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Chan Wang
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Tingrui Zhang
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Shimei Xu
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Center of Scientific Technology of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Yazhou Zhu
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Yongxue Lv
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Yinqi Zhao
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Center of Scientific Technology of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Mingxing Zhu
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Center of Scientific Technology of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Lingna Guo
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Center of Scientific Technology of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Wei Zhao
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| |
Collapse
|
11
|
Dai M, Yang X, Yu Y, Pan W. Helminth and Host Crosstalk: New Insight Into Treatment of Obesity and Its Associated Metabolic Syndromes. Front Immunol 2022; 13:827486. [PMID: 35281054 PMCID: PMC8913526 DOI: 10.3389/fimmu.2022.827486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022] Open
Abstract
Obesity and its associated Metabolic Syndromes (Mets) represent a global epidemic health problem. Metabolic inflammation, lipid accumulation and insulin resistance contribute to the progression of these diseases, thereby becoming targets for drug development. Epidemiological data have showed that the rate of helminth infection negatively correlates with the incidence of obesity and Mets. Correspondingly, numerous animal experiments and a few of clinic trials in human demonstrate that helminth infection or its derived molecules can mitigate obesity and Mets via induction of macrophage M2 polarization, inhibition of adipogenesis, promotion of fat browning, and improvement of glucose tolerance, insulin resistance and metabolic inflammation. Interestingly, sporadic studies also uncover that several helminth infections can reshape gut microbiota of hosts, which is intimately implicated in the pathogenesis of obesity and Mets. Overall, these findings indicate that the crosstalk between helminth and hosts may be a novel direction for obesity and Mets therapy. The present article reviews the molecular mechanism of how helminth masters immunity and metabolism in obesity.
Collapse
Affiliation(s)
- Mengyu Dai
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The Second Clinical Medicine, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Wei Pan, ; Yinghua Yu,
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Wei Pan, ; Yinghua Yu,
| |
Collapse
|
12
|
Han S, Zhang XL, Jiang X, Li X, Ding J, Zuo LJ, Duan SS, Chen R, Sun BB, Hu XY, Gao YN, Zhang XL. Long Non-Coding RNA and mRNA Expression Analysis in Liver of Mice With Clonorchis sinensis Infection. Front Cell Infect Microbiol 2022; 11:754224. [PMID: 35127549 PMCID: PMC8807509 DOI: 10.3389/fcimb.2021.754224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Clonorchiasis is recognized as an important zoonotic parasitic disease worldwide. However, the roles of host long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) in the response to Clonorchis sinensis (C. sinensis) infection remain unknown. Here we compared the expression of lncRNAs and mRNAs in the liver tissue of mice infected with C. sinensis, in order to further understand the molecular mechanisms of clonorchiasis. A total of 388 lncRNAs and 1,172 mRNAs were found to be differentially expressed with absolute value of fold change (FC) ≥ 2.0 and p < 0.05 by microarray. Compared with controls, Gm6135 and 4930581F22Rik were the most over- and under-expressed lncRNAs; flavin-containing monooxygenase 3 (Fmo3) and deleted in malignant brain tumors 1 (Dmbt1) were the most over- and under-expressed mRNAs. Moreover, functional annotation showed that the significantly different mRNAs were related with “FOXO signaling pathway”, “Wnt signaling pathway”, and “AMPK signaling pathway”. Remarkably, lncRNA Gm8801 were significantly correlated with mRNA glycerol-3-phosphate acyltransferase mitochondrial (Gpam), insulin receptor substrate 2 (Irs2), and tumor necrosis factor receptor superfamily member 19 (Tnfrsf19) in ceRNA networks. These results showed that the expression profiles of lncRNAs and mRNAs in the liver changed after C. sinensis infection. Our results provided valuable insights into the lncRNAs and mRNAs involved in clonorchiasis pathogenesis, which may be useful for future control strategies.
Collapse
Affiliation(s)
- Su Han
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xue-Li Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xu Jiang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xiang Li
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Jian Ding
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Li-Jiao Zuo
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Shan-Shan Duan
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Rui Chen
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei-Bei Sun
- Clinical Laboratory, Zhuhai Maternal and Child Health Hospital, Zhuhai, China
| | - Xin-Yi Hu
- Department of Stomatology, Laixi People’s Hospital, Qingdao, China
| | - Yan-Nan Gao
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xiao-Li Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
- *Correspondence: Xiao-Li Zhang,
| |
Collapse
|
13
|
Wu J, Zhu Y, Zhou L, Lu Y, Feng T, Dai M, Liu J, Xu W, Cheng W, Sun F, Liu H, Pan W, Yang X. Parasite-Derived Excretory-Secretory Products Alleviate Gut Microbiota Dysbiosis and Improve Cognitive Impairment Induced by a High-Fat Diet. Front Immunol 2021; 12:710513. [PMID: 34745091 PMCID: PMC8564115 DOI: 10.3389/fimmu.2021.710513] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022] Open
Abstract
High-fat (HF) diet-induced neuroinflammation and cognitive decline in humans and animals have been associated with microbiota dysbiosis via the gut-brain axis. Our previous studies revealed that excretory-secretory products (ESPs) derived from the larval Echinococcus granulosus (E. granulosus) function as immunomodulators to reduce the inflammatory response, while the parasitic infection alleviates metabolic disorders in the host. However, whether ESPs can improve cognitive impairment under obese conditions remain unknown. This study aimed to investigate the effects of E. granulosus-derived ESPs on cognitive function and the microbiota-gut-brain axis in obese mice. We demonstrated that ESPs supplementation prevented HF diet-induced cognitive impairment, which was assessed behaviorally by nest building, object location, novel object recognition, temporal order memory, and Y-maze memory tests. In the hippocampus (HIP) and prefrontal cortex (PFC), ESPs suppressed neuroinflammation and HF diet-induced activation of the microglia and astrocytes. Moreover, ESPs supplementation improved the synaptic ultrastructural impairments and increased both pre- and postsynaptic protein levels in the HIP and PFC compared to the HF diet-treated group. In the colon, ESPs reversed the HF diet-induced gut barrier dysfunction, increased the thickness of colonic mucus, upregulated the expression of zonula occludens-1 (ZO-1), attenuated the translocation of bacterial endotoxins, and decreased the colon inflammation. Notably, ESPs supplementation alleviated the HF diet-induced microbiota dysbiosis. After clarifying the role of antibiotics in obese mice, we found that broad-spectrum antibiotic intervention abrogated the effects of ESPs on improving the gut microbiota dysbiosis and cognitive decline. Overall, the present study revealed for the first time that the parasite-derived ESPs alleviate gut microbiota dysbiosis and improve cognitive impairment induced by a high-fat diet. This finding suggests that parasite-derived molecules may be used to explore novel drug candidates against obesity-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiacheng Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The Second School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Yuqi Zhu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China.,The First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Limian Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yang Lu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China.,The First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Tingting Feng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Mengyu Dai
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The Second School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Jiaxue Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The Second School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Wen Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China.,The School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Wanpeng Cheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Fenfen Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Hua Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Health Commission (NHC) Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
14
|
Chen JY, Zhou JK, Pan W. Immunometabolism: Towards a Better Understanding the Mechanism of Parasitic Infection and Immunity. Front Immunol 2021; 12:661241. [PMID: 34122419 PMCID: PMC8191844 DOI: 10.3389/fimmu.2021.661241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/13/2021] [Indexed: 12/26/2022] Open
Abstract
As a relatively successful pathogen, several parasites can establish long-term infection in host. This “harmonious symbiosis” status relies on the “precise” manipulation of host immunity and metabolism, however, the underlying mechanism is still largely elusive. Immunometabolism is an emerging crossed subject in recent years. It mainly discusses the regulatory mechanism of metabolic changes on reprogramming the key transcriptional and post-transcriptional events related to immune cell activation and effect, which provides a novel insight for understanding how parasites regulate the infection and immunity in hosts. The present study reviewed the current research progress on metabolic reprogramming mechanism exploited by parasites to modulate the function in various immune cells, highlighting the future exploitation of key metabolites or metabolic events to clarify the underlying mechanism of anti-parasite immunity and design novel intervention strategies against parasitic infection.
Collapse
Affiliation(s)
- Jing-Yue Chen
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Ji-Kai Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|