1
|
Zhou Y, Huang Q, Li HG, Liang S, He B, Bao M. Arecoline inhibits the growth of Spodoptera litura by inducing intestinal metabolic dysfunction. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106044. [PMID: 39277371 DOI: 10.1016/j.pestbp.2024.106044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 09/17/2024]
Abstract
Arecoline (ACL), an active constituent derived from Areca catechu L., exerts various pharmacological effects and serves as a potential plant-based insecticide. However, the effects of ACL on Spodoptera litura, an important and widely distributed agricultural pest, remain unknown. This study aimed to elucidate the mechanism underlying ACL-induced toxicity and its inhibitory effects on larval growth and development through intestinal pathology observations, intestinal transcriptome sequencing, intestinal digestive enzyme activity analysis. The results indicated that ACL exposure leads to pathological alterations in the S. litura midgut. Furthermore, the detection of digestive enzyme activity revealed that ACL inhibits the activities of acetyl CoA carboxylase, lipase, α-amylase, and trypsin. Simultaneously, upregulation of superoxide dismutase activity and downregulation of malondialdehyde levels were observed after ACL exposure. Transcriptome analysis identified 1118 genes that were significantly differentially expressed in the midgut after ACL exposure, potentially related to ACL toxic effects. Notably, ACL treatment downregulated key enzymes involved in lipid metabolism, such as fatty acid binding protein 2-like, pancreatic triacylglycerol lipase-like, pancreatic lipid-related protein 2-like, and fatty acid binding protein 1-like. Taken together, these results suggest that ACL induces midgut damage and impedes larval growth by suppressing digestive enzyme activity in the intestine. These findings can aid in the development of environmentally friendly plant-derived insecticides, utilizing ACL to effectively combat S. litura proliferation.
Collapse
Affiliation(s)
- Yi Zhou
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Hunan 410219, China; School of Pharmaceutical Science, Changsha Medical University, Hunan 410219, China
| | - Qiao Huang
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Hunan 410219, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Hunan 410219, China
| | - Hai Gang Li
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Hunan 410219, China; School of Pharmaceutical Science, Changsha Medical University, Hunan 410219, China
| | - ShangJin Liang
- School of Pharmaceutical Science, Changsha Medical University, Hunan 410219, China
| | - BingSheng He
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Hunan 410219, China.
| | - MeiHua Bao
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Hunan 410219, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Hunan 410219, China.
| |
Collapse
|
2
|
Ali S, Zhang X, Gao T, Hamid Bashir M, Wang X. Comparative transcriptome analysis reveals disruption of Plutella xylostella immune system by fungal peptide cyclosporin C. J Invertebr Pathol 2024; 206:108156. [PMID: 38901686 DOI: 10.1016/j.jip.2024.108156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
The diamondback moth (Plutella xylostella), a major threat to crucifers across the globe, has developed resistance against the majority of insecticides enhancing the need for alternate control measures against this pest. Recently cyclosporin C, a secondary metabolite produced by the insect pathogenic fungus Purpeocillium lilacinum, has been reported to induce lethal and sub-lethal effects against P. xylostella. To date, little is known about the molecular mechanisms of interaction between cyclosporin C and P. xylostella immune systems. This study reports the transcriptome-based immune response of P. xylostella to cyclosprin C treatment. Our results showed differential expression of 322, 97, and 504 differentially expressed genes (DEGS) in P. xylostella treated with cyclosporin C compared to control 24, 48, and 72 h post-treatment, respectively. Thirteen DEGs were commonly expressed at different time intervals in P. xylostella larvae treated with cyclosporin C compared to control. Cyclosporin C treatment induced the down-regulated expression of majority of immune-related genes related to pattern recognition responses, signal modulation, Toll and IMD pathways, antimicrobial peptides and antioxidant responses confirming the ability to suppress immune response of P. xylostella. These results will further improve our knowledge of the infection mechanism and complex biochemical processes involved in interaction between cyclosporin C and insect immune systems.
Collapse
Affiliation(s)
- Shaukat Ali
- College of Plant Protection, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaochen Zhang
- College of Plant Protection, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China.
| | - Tianxiang Gao
- College of Plant Protection, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China.
| | | | - Xingmin Wang
- College of Plant Protection, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Dhivya M, Karthi S, Amala K, Vasantha-Srinivasan P, Han YS, Obaid SA, Senthil-Nathan S, Park KB. Phytometabolites from coral jasmine flower extracts: Toxic effects on Spodoptera litura and enzyme inhibition in nontarget earthworm Eisenia fetida as an alternative approach. ENVIRONMENTAL RESEARCH 2024; 252:118896. [PMID: 38642644 DOI: 10.1016/j.envres.2024.118896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
Green pesticides, derived from natural sources, have gained wider attention as an alternative to synthetic pesticides for managing polyphagous pests, such as Spodoptera litura. In this study, the methanolic flower extract of Nyctanthes arbor-tristis (Mx-Na-t) was subjected to chemical screening, and 3-hydroxy-1,2-dimethyl-4(1H)-pyridone (3H-dp) and tyrosol (Ty-ol) were identified as the major derivatives. The toxic effects of Mx-Na-t (500 ppm) were highest in third-instar S. litura larvae (96.4%), while those of 3H-dp and Ty-ol (5 ppm) were highest in second-instar larvae (76.5% and 81.4%, respectively). The growth and development of S. litura larvae and pupae were significantly reduced by all three treatments. Fecundity rates were also reduced by all treatments [from 1020 eggs (control) to 540 eggs by Mx-Na-t treatment, 741 eggs by 3H-dp treatment, and 721 eggs by Ty-ol treatment]. The extract and its active constituents decreased adult emergence and slowed total larval development in a dose-dependent manner. A decrease was noted in the major gut enzymes of young S. litura larvae exposed to Mx-Na-t, 3H-dp, and Ty-ol. Moreover, midgut tissues of fourth-instar larvae were severely damaged by Mx-Na-t (250 ppm), 3H-dp (2.5 ppm), and Ty-ol (2.5 ppm); the treatments induced structural damage to the epithelial cells and gut lumen. The earthworm Eisenia fetida was used to assess nontarget toxicity. Compared with cypermethrin, the phytochemicals exhibited minimal effects on the earthworm's detoxifying enzymes superoxide dismutase and catalase after 14 days of treatment. Moreover, in silico predictions using BeeTox and ProTox-II indicated little or no toxicity of 3H-dp and Ty-ol toward honey bees and other nontarget species.
Collapse
Affiliation(s)
- Muruhesan Dhivya
- Department of Biotechnology, School of Life Sciences, St. Peter's Institute of Higher Education and Research, Avadi-600 054, Chennai, Tamil Nadu, India
| | - Sengodan Karthi
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, USA 40503
| | - Kesavan Amala
- Department of Biotechnology, School of Life Sciences, St. Peter's Institute of Higher Education and Research, Avadi-600 054, Chennai, Tamil Nadu, India
| | - Prabhakaran Vasantha-Srinivasan
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh - 11451, Saudi Arabia
| | - Sengottayan Senthil-Nathan
- Division of Bio-pesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627412, Tirunelveli, Tamil Nadu, India.
| | - Ki Beom Park
- Research & Development Centre, Invirustech Co., Inc, Gwangju 61222, Republic of Korea
| |
Collapse
|
4
|
Khamis WM, El-Sabrout AM, Shahin R, Abdel-Rahim EF. Field Efficacy, Sub-lethal, and Biochemical Effects of Certain Biorational Insecticides Against the New Intruder, Spodoptera frugiperda in Bani-Suef, Upper Egypt. NEOTROPICAL ENTOMOLOGY 2023; 52:963-973. [PMID: 37490219 PMCID: PMC10545592 DOI: 10.1007/s13744-023-01064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Frequent inspections on sorghum and maize crops during seasons of 2021 and 2022 in some regions in Bani-Suef governorate, Egypt, discovered unprecedented invasions of Spodoptera frugiperda (J. E. Smith). Accordingly, our study on Beauveria bassiana and spinetoram was supporter to the Food and Agriculture Organization's tendency in adopting biorational insecticides against S. frugiperda in Egypt. Exposure toxicity of LC25 values at 48 h of B. bassiana were 2.7 × 106 and 5.2 × 106 conidia mL-1 and spinetoram were 0.019 and 0.048 mg L-1 against the 2nd and 4th instar larvae laboratory strain of S. frugiperda, respectively. Sub-lethal effects (LC25) were accomplished on biological parameters against both instar larvae. LC25 of B. bassiana reduced adult emergency (89.91 and 91.05%) more than spinetoram (75.99 and 79.49%) against the 2nd and 4th instar larvae, respectively. The 2nd instar larvae exposed to LC25 of B. bassiana suppressed female fecundity (0.00 eggs) more than spinetoram (19.74 eggs). Enzymatic activity of lipase in hemolymph, fat bodies, and mid-gut of the 4th instars at 48 h showed significant drop in B. bassiana more than spinetoram. Glutathione-S-transferase (GST) levels in hemolymph for both insecticides were equal and exceeded the control. Fat bodies and mid-gut possessed the highest GST activity in B. bassiana followed by spinetoram and the control. Residual efficacy of spinetoram exceled B. bassiana at their field rates under semi-field condition in Bani-Suef along the two seasons of maize crop against both instars. Eventually, B. bassiana alongside spinetoram could afford good control especially on early instar larvae of S. frugiperda.
Collapse
Affiliation(s)
- Wael M Khamis
- Plant Protection Research Institute, Agricultural Research Center, Al-Sabhia, Alexandria, Egypt.
| | - Ahmed M El-Sabrout
- Department of Applied Entomology and Zoology, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Rima Shahin
- Department of Applied Entomology and Zoology, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Elham F Abdel-Rahim
- Plant Protection Research Institute, Agricultural Research Center, Sides Agriculture Research Station, Al-Giza, Egypt
| |
Collapse
|
5
|
Singh S, Kaur S, Kaur R, Kaur A. Impact of Plant Symbiotic Endophytic Fungus, Aspergillus terreus on Insect Herbivore Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). NEOTROPICAL ENTOMOLOGY 2023; 52:932-944. [PMID: 37530941 DOI: 10.1007/s13744-023-01070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
Herbivorous insects are known to be resistant to fungal endophytes that asymptomatically inhabit plant tissues. The insecticidal ability of the endophytic fungus Aspergillus terreus isolated from Catharanthus roseus against Spodoptera litura (Fabricius) was assessed in the current study. The survival and growth of S. litura were adversely impacted by the ethyl acetate extract of endophytic A. terreus. Fungal extract supplemented diet caused 14 to 94% larval mortality in comparison to 2% in control. Additionally, retarded insect growth was observed after ingestion of supplemented diet. The fungal metabolites were also observed to have an inhibitory influence on the adult emergence and reproductive potential of adults. Phytochemical analysis revealed the presence of phenolic compounds in the crude extract of endophytic fungus which may be responsible for toxicity. It was also determined how endophyte-infected cauliflower plants affected S. litura's survival and growth. Endophyte-infected plants exhibited resistance to S. litura by causing 54% larval mortality and delaying development by 5.2 days. In comparison to uninfected plants, adult emergence, lifespan, fecundity and egg hatchability of insects was significantly decreased on infected plants. There was a significant decrease in relative growth and consumption rates as well as in the efficiency of food conversion, which indicates toxic and antifeedant effect of the fungus on S. litura. This suggests that endophyte-inoculated plants exhibit antibiosis against S. litura. In conclusion, the endophytic fungi having insecticidal activity could be used to develop alternative ecologically safe control strategies.
Collapse
Affiliation(s)
- Surbjit Singh
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sanehdeep Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Rajvir Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Amarjeet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
6
|
Qian C, Ma T, Qiu H, Lyu H, Liang S, Shao Y, Yuan P, Shen L, Wen X, Wang C. Lethal, transmission, behavioral, and physiological effects of Metarhizium anisopliae against gregarious larvae of Heortia vitessoides and synergistic effects between Metarhizium anisopliae and insecticides. PEST MANAGEMENT SCIENCE 2023; 79:2191-2205. [PMID: 36746852 DOI: 10.1002/ps.7398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/29/2022] [Accepted: 02/07/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Heortia vitessoides Moore is a severe pest of Aquilaria sinensis (Lour.) Gilg, an important source of agarwood. In recent years, large amounts of chemical insecticides have been applied in A. sinensis plantations to deal with the outbreak of H. vitessoides, causing residue problems that reduce the quality and price of agarwood. Herein, we hypothesize that the widely applied biocontrol agent, Metarhizium anisopliae (Metschn.) Sorokin, can effectively kill the gregarious larvae of H. vitessoides through direct contact and horizontal transmission. RESULTS At the concentration of 1 × 109 conidia/mL, the three M. anisopliae strains caused 100% mortality of H. vitessoides larvae. In addition, mixing donor larvae (previously treated with M. anisopliae conidia) with receptor larvae (which did not directly contact M. anisopliae conidia) caused significantly higher mortality of receptor larvae than the control receptors. This is due to the horizontal transmission of M. anisopliae conidia among live larvae, which was proven by pictures taken by scanning electron microscopy and induced activities of immunity-related enzymes of donor and receptor larvae. Behavioral bioassays showed that M. anisopliae conidia had little effect on the aggregation tendency of H. vitessoides larvae but may trigger feeding-avoidance behavior depending on M. anisopliae strains and concentrations. Interestingly, joint use of sublethal concentrations of M. anisopliae and chemical insecticides significantly increased larval mortality than each agent alone, indicating synergistic effects between M. anisopliae and insecticide against H. vitessoides. CONCLUSION This study may provide a new strategy to suppress H. vitessoides population and reduce the use of chemical insecticides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chenyu Qian
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Tao Ma
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Hualong Qiu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, China
| | - Hailong Lyu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Shiping Liang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yuhe Shao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Pengyu Yuan
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Liming Shen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiujun Wen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Cai Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Zhang C, Teng B, Liu H, Wu C, Wang L, Jin S. Impact of Beauveria bassiana on antioxidant enzyme activities and metabolomic profiles of Spodoptera frugiperda. J Invertebr Pathol 2023; 198:107929. [PMID: 37127135 DOI: 10.1016/j.jip.2023.107929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
Spodoptera frugiperda is a pest that poses serious threat to the production of food and crops. Entopathogenic fungi, represented by Beauveria bassiana, has shown potential for S. frugiperda control. However, the mechanism of this biological control of pathogens is not fully understood, such as how antioxidant enzyme activities and metabolic profiles in S. frugiperda larvae are affected when infected by entomopathogenic fungi. This study assessed the antioxidant enzyme activities and shift in metabolomic profile in the S. frugiperda larvae infected with B.bassiana. The results indicate a pattern of initial increase and subsequent decrease in the activities of superoxide dismutase, catalase, and peroxidase in the B.bassiana-infected larvae. And the enzyme activities at 60 h of infection ended significantly lower than those of the uninfected larvae. A total of 93 differential metabolites were identified in the B.bassiana-infected larvae, of which 41 metabolites were up-regulated and 52 were down-regulated. These metabolites mainly included amino acids, nucleotides, lipids, carbohydrates, and their derivatives. Among the changed metabolites, cystathionine, L-tyrosine, L-dopa, arginine, alpha-ketoglutaric acid, D-sedoheptulose-7-phosphate and citric acid were significantly decreased in B. bassiana-infected larvae. This indicated that the fungal infection might impair the ability of S. frugiperda larvae to cope with oxidative stress, leading to a negative impact of organism fitness. Further analyses of key metabolic pathways reveal that B. bassiana infection might affect purine metabolism, arginine biosynthesis, butanoate metabolism, and phenylalanine metabolism of S. frugiperda larvae. The findings from this study will contribute to our understanding of oxidative stress on immune defense in insects, and offer fundamental support for the biological control of S. frugiperda.
Collapse
Affiliation(s)
- Chen Zhang
- College of Life Science, Anhui Agricultural University, Hefei 230036, P. R. China; These authors contributed equally to this work
| | - Bin Teng
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei 230031, P. R. China; These authors contributed equally to this work
| | - Huimin Liu
- College of Life Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Chenyuan Wu
- College of Life Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Lei Wang
- College of Life Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Song Jin
- Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
8
|
Perumal V, Kannan S, Alford L, Pittarate S, Geedi R, Elangovan D, Marimuthu R, Krutmuang P. First report on the enzymatic and immune response of Metarhizium majus bag formulated conidia against Spodoptera frugiperda: An ecofriendly microbial insecticide. Front Microbiol 2023; 14:1104079. [PMID: 36937255 PMCID: PMC10019823 DOI: 10.3389/fmicb.2023.1104079] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
Entomopathogenic fungi from microbial sources are a powerful tool for combating insecticide resistance in insect pests. The purpose of the current study was to isolate, identify, and evaluate bag-formulated entomopathogenic fungal conidial virulence against insect pests. We further investigated the enzymatic responses induced by the entomopathogenic fungi as well as the effect on a non-target species. Entomopathogenic fungi were isolated from the Palamalai Hills, India, using the insect bait method, and the Metarhizium majus (MK418990.1) entomopathogen was identified using biotechnological techniques (genomic DNA isolation and 18S rDNA amplification). Bag-formulated fungal conidial efficacy (2.5 × 103, 2.5 × 104, 2.5 × 105, 2.5 × 106, and 2.5 × 107 conidia/ml) was evaluated against third instar larvae of Spodoptera frugiperda at 3, 6, 9, and 12 days of treatment, and acid and alkaline phosphatases, catalase, and superoxide dismutase enzymatic responses were evaluated at 3 days post-treatment. After 12 days of treatment, non-target assays on the earthworm Eudrilus eugeniae were performed using an artificial soil assay. Results of the bag formulated fungal conidial treatment showed that S. frugiperda had high susceptibility rates at higher concentrations (2.5 × 107 conidia/ml) of M. majus. Lower concentration of 2.5 × 103 conidia/ml caused 68.6% mortality, while 2.5 × 107 conidia/ml caused 100% mortality at 9 days post treatment. Investigation into enzymatic responses revealed that at 3 days post M. majus conidia exposure (2.5 × 103 conidia/ml), insect enzyme levels had significantly changed, with acid and alkaline phosphatases, and catalase enzymes significantly reduced and superoxide dismutase enzymes significantly raised relative to the control. After 12 days of treatment, no sublethal effects of M. majus conidia were observed on E. eugeniae, with no observed damage to gut tissues including lumen and epithelial cells, the nucleus, setae, coelom, mitochondria, and muscles. This study offers support for the use of fungal conidia in the target-specific control of insect pests.
Collapse
Affiliation(s)
- Vivekanandhan Perumal
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
- *Correspondence: Vivekanandhan Perumal,
| | - Swathy Kannan
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Lucy Alford
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Sarayut Pittarate
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Ruchika Geedi
- Geedi-Horticultural Insects Research Laboratory, USDA- Agricultural Research Services, Wooster, OH, United States
| | - Dilipan Elangovan
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Ramachandran Marimuthu
- Department of Botany, School of Life Sciences, Periyar University, Salem, Tamil Nadu, India
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Patcharin Krutmuang,
| |
Collapse
|
9
|
Zhang Y, Zhang X, Tian Q, Ali S, Tang L, Wu J. Toxicological and Biochemical Description of Synergism of Beauveria bassiana and Emamectin Benzoate against Megalurothrips usitatus (Bagrall). J Fungi (Basel) 2022; 8:jof8090916. [PMID: 36135641 PMCID: PMC9503021 DOI: 10.3390/jof8090916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
The prophylactic application of synthetic insecticides to manage Megalurothrips usitatus (Bagrall) has resulted in insecticide resistance and negative impacts upon natural ecosystems. This has driven the need for developing alternative pest control strategies. In the present study, we investigated the synergistic interaction between the entomopathogenic fungus Beauveria bassiana and the insecticide emamectin benzoate on M. usitatus. The results of our research exhibited that higher doses of emamectin benzoate inhibited the germination rate and colony growth of B. bassiana. The percentage of M. usitatus mortality following B. bassiana and emamectin benzoate treatment indicated a dose–mortality effect. All concentrations of emamectin benzoate combined with different concentrations of B. bassiana demonstrated a synergistic effect five days post-treatment. When B. bassiana and emamectin benzoate were applied alone or in combination, antioxidant enzyme activities, including acetylcholinesterase, catalase, superoxide dismutase, and peroxidase, were significantly lower in M. usiatus than in the controls at the end of the experimental period. The findings of our study confirm the synergistic effect of B. bassiana and emamectin benzoate on M. usitatus, as well as the biochemical process that might be involved in the regulation of the synergistic effect.
Collapse
Affiliation(s)
- Youdan Zhang
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Centre of Biological Control, South China Agricultural University, Guangzhou 510642, China
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Xiaochen Zhang
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Centre of Biological Control, South China Agricultural University, Guangzhou 510642, China
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Qingheng Tian
- Taiqian County Agriculture and Rural Affairs Bureau, Puyang 457600, China
| | - Shaukat Ali
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Centre of Biological Control, South China Agricultural University, Guangzhou 510642, China
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Liangde Tang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
- Correspondence: (L.T.); (J.W.)
| | - Jianhui Wu
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Centre of Biological Control, South China Agricultural University, Guangzhou 510642, China
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (L.T.); (J.W.)
| |
Collapse
|
10
|
Zhou Y, Wu J, Lin S, He J, Deng Y, He J, Cheng D. The synergistic effects of rosehip oil and matrine against Icerya aegyptiaca (Douglas) (Hemiptera: Coccoidea) and the underlying mechanisms. PEST MANAGEMENT SCIENCE 2022; 78:3424-3432. [PMID: 35545955 DOI: 10.1002/ps.6983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/22/2022] [Accepted: 05/12/2022] [Indexed: 05/21/2023]
Abstract
BACKGROUND Icerya aegyptiaca (Douglas) is an important agricultural pest that has a protective wax shell. Insecticides generally fail to achieve the desired control of I. aegyptiaca because of difficulties penetrating this wax shell. Plant essential oils are rich in terpenoids and have strong penetrability and expansibility, which can enable the rapid penetration and absorption of insecticides, thereby improving the control effect. Matrine is a botanical insecticide with contact and stomach toxicity, low toxicity toward non-target organisms and is environmentally friendly. In this study, we tested the insecticidal activity of rosehip oil (Ro)/matrine combinations and revealed the synergistic mechanism of Ro and its components with matrine in terms of physiology and biochemistry. RESULTS Ro/matrine combinations have strong penetrating power, enabling matrine to quickly penetrate the wax shell of I. aegyptiaca and enter the insect body. This improves the insecticidal activity and enhances inhibition of acetylcholinesterase activity. Ro and its main chemical constituents, cineole and (+)-camphor, showed synergistic effects on matrine with synergic ratios of 4.79, 3.49 and 4.21, respectively. CONCLUSION Combinations of Ro, cineole and (+)-camphor with matrine have good insecticidal effects on I. aegyptiaca while remaining safe to the environment. These combinations of biological insecticides have excellent development prospects and provide a new reference for the pest management of scale insects. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi Zhou
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jiyingzi Wu
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Sukun Lin
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Junlang He
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yangyang Deng
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jingchao He
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Dongmei Cheng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
11
|
Wu J, Zhang X, Bashir MH, Ali S. Lethal and Sublethal Toxicity Assessment of Cyclosporin C (a Fungal Toxin) against Plutella xylostella (L.). Toxins (Basel) 2022; 14:toxins14080514. [PMID: 36006176 PMCID: PMC9414777 DOI: 10.3390/toxins14080514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Secondary metabolites/toxins produced by Purpeocillium lilacinum (Hypocreales; Phiocordycipitaceae), a well-known insect pathogen, can be used for the management of different insect pests. We report the lethal and sublethal effects of cyclosporin C (a toxin produced by P. lilacinum) against a major vegetable pest, Plutella xylostella, at specific organismal (feeding rate, larval growth, adult emergence, fecundity, and adult longevity) and sub-organismal levels (changes in antioxidant and neurophysiological enzyme activities). The toxicity of cyclosporin C against different larval instars of P. xylostella increased with increasing concentrations of the toxin and the maximum percent mortality rates for different P. xylostella larval instars at different times were observed for the 300 µg/mL cyclosporin C treatment, with an average mortality rate of 100% for all larval instars. The median lethal concentrations (LC50) of cyclosporin C against the first, second, third, and fourth larval instars of P. xylostella 72 h post-treatment were 78.05, 60.42, 50.83, and 83.05 μg/mL, respectively. Different concentrations of cyclosporin C caused a reduction in the average leaf consumption and average larval weight. Different life history parameters, such as the pupation rate (%), adult emergence (%), female fecundity, and female longevity were also inhibited when different concentrations of cyclosporin C were applied topically. The cyclosporin C concentrations inhibited the activities of different detoxifying (glutathione S-transferase, carboxylesterase, and acetylcholinesterase) and antioxidant enzyme (superoxide dismutase, catalase, and peroxidase) activities of P. xylostella when compared to the control. These findings can serve as baseline information for the development of cyclosporin C as an insect control agent, although further work on mass production, formulation, and field application is still required.
Collapse
Affiliation(s)
- Jianhui Wu
- Key Laboratory of Bio-Pesticide Innovation and Application, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.W.); (X.Z.)
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Xiaochen Zhang
- Key Laboratory of Bio-Pesticide Innovation and Application, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.W.); (X.Z.)
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Hamid Bashir
- Department of Entomology, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Shaukat Ali
- Key Laboratory of Bio-Pesticide Innovation and Application, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.W.); (X.Z.)
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
12
|
Qasim M, Xiao H, He K, Omar MAA, Hussain D, Noman A, Rizwan M, Khan KA, Al-Zoubi OM, Alharbi SA, Wang L, Li F. Host-pathogen interaction between Asian citrus psyllid and entomopathogenic fungus (Cordyceps fumosorosea) is regulated by modulations in gene expression, enzymatic activity and HLB-bacterial population of the host. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109112. [PMID: 34153507 DOI: 10.1016/j.cbpc.2021.109112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022]
Abstract
The host-pathogen interaction has been explored by several investigations, but the impact of fungal pathogens against insect resistance is still ambiguous. Therefore, we assessed the enzymatic activity and defense-related gene expression of Asian citrus psyllid (ACP) nymphal and adult populations on Huanglongbing-diseased citrus plants under the attack of Cordyceps fumosorosea. Overall, five enzymes viz. superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione S-transferase (GST), carboxylesterase (CarE), and four genes, namely SOD, 16S, CYP4C68, CYP4BD1, were selected for respective observations from ACP populations. Enzymatic activity of four enzymes (SOD, POD, GST, CarE) was significantly decreased after 5-days post-treatment (dpt) and 3-dpt fungal exposure in fungal treated ACP adult and nymphal populations, respectively, whereas the activity of CAT was boosted substantially post-treatment time schedule. Besides, we recorded drastic fluctuations in the expression of CYP4 genes among fungal treated ACP populations. After 24 hours post-treatment (hpt), expression of both CYP4 genes was boosted in fungal treated populations than controlled populations (adult and nymph). After 3-dpt, however, the expression of CYP4 genes was declined in the given populations. Likewise, fungal attack deteriorated the resistance of adult and nymphal of ACP population, as SOD expression was down-regulated in fungal-treated adult and nymphs after 5-dpt and 3-dpt exposure, respectively. Moreover, bacterial expression via the 16S gene was significantly increased in fungal-treated adult and nymphal ACP populations with increasing post-treatment time. Overall, our data illustrate that the fungal application disrupted the insect defense system. The expression of these genes and enzymes suppress the immune function of adult and nymphal ACP populations. As it is reported first time that the applications of C. fumosorosea against ACP reduce insect resistance by interfering with the CYP4 and SOD system. Therefore, we propose new strategies to discover the role of certain toxic compounds from fungus, which can reduce insect resistance, focusing on resistance-related genes and enzymes.
Collapse
Affiliation(s)
- Muhammad Qasim
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Huamei Xiao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, College of Life Sciences and Resource Environment, Yichun University, Yichun 336000, PR China
| | - Kang He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China
| | - Mohamed A A Omar
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China
| | - Dilbar Hussain
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad 38850, Pakistan
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38040, Pakistan
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), Unit of Bee Research and Honey Production, Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
13
|
Synergistic Interaction between the Entomopathogenic Fungus Akanthomyces attenuatus (Zare & Gams) and the Botanical Insecticide Matrine against Megalurothrips usitatus (Bagrall). J Fungi (Basel) 2021; 7:jof7070536. [PMID: 34356915 PMCID: PMC8303672 DOI: 10.3390/jof7070536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 11/23/2022] Open
Abstract
The excessive use of synthetic chemicals for Megalurothrips usitatus (Bagrall) management has resulted in the development of insecticide resistance as well as adverse effects to the natural ecosystem. This has driven the need to develop alternative pest control strategies. This study reports a synergistic interaction between the entomopathogenic fungus Akanthomyces attenuatus (Zare & Gams) and the botanical insecticide matrine against M. usitatus. The results revealed that the germination rate and colony growth of A. attenuatus were inhibited by higher matrine concentrations. Percentage mortalities of M. usitatus following application of A. attenuatus and matrine showed a dose mortality effect. After five days of treatment, all concentrations of matrine combined with different concentrations of A. attenuatus, except one combination (matrine 0.25 mg/mL + 1 × 107 conidia/mL), showed synergistic effect. The activities of acetylcholinesterase and antioxidant enzymes (superoxide dismutase, catalase and peroxidase) in M. usitatus, in response to individual or combined application of A. attenuatus and matrine at the end of the experimental period, were significantly lower than controls. The findings confirm the synergistic action of A. attenuatus and matrine against M. usitatus along with the biochemical phenomenon possibly regulating the synergistic effect.
Collapse
|
14
|
Xu J, Zhang K, Cuthbertson AGS, Du C, Ali S. Toxicity and Biological Effects of Beauveria brongniartii Fe 0 Nanoparticles against Spodoptera litura (Fabricius). INSECTS 2020; 11:insects11120895. [PMID: 33371339 PMCID: PMC7767332 DOI: 10.3390/insects11120895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/04/2023]
Abstract
Simple Summary Metal-based nanoparticles of different microbial pest control agents have been effective against several pests. This study reports the synthesis of Beauveria brongniartii based Fe0 nanoparticles (Fe0NPs) and their bio-efficacy against Spodoptera litura that was observed during this study. The median lethal concentration (LC50) of Fe0NPs against S. litura after 7 days was 59 ppm, whereas the median survival time (LT50) for 500 ppm concentrations of Fe0NPs was 2.93 days. B. brongniartii Fe0NPs caused a significant reduction in feeding and growth parameters as well as detoxifying enzyme production by S. litura at the end of the experimental period. These findings suggest that B. brongniartii Fe0NPs can potentially be used in environmentally friendly S. litura management programs. Abstract Nanotechnology has clear potential in the development of innovative insecticidal products for the biorational management of major insect pests. Metal-based nanoparticles of different microbial pest control agents have been effective against several pests. Synthesis of Beauveria brongniartii based Fe0 nanoparticles (Fe0NPs) and their bio-efficacy against Spodoptera litura was observed during this study. Beauveria brongniartii conidia were coated with Fe0NPs and characterized by applying a selection of different analytical techniques. Ultraviolet (UV) spectroscopy showed the characteristic band of surface plasmon at 430 nm; Scanning electron microscopy (SEM) images showed spherical shaped nanoparticles with a size ranging between 0.41 to 0.80 µm; Energy-dispersive X-ray (EDX) spectral analysis revealed characteristic Fe peaks at 6.5 and 7.1 Kev; the X-ray diffractogram showed three strong peaks at 2θ values of 45.72°, 64.47°, and 84.05°. The bioassay studies demonstrated that mortality of 2nd instar S. litura larvae following Fe0NPs treatment increased with increasing concentrations of Fe0NPs at different time intervals. The median lethal concentration (LC50) values of Fe0NPs against S. litura after seven days of fungal treatment was 59 ppm, whereas median survival time (LT50) values for 200 and 500 ppm concentrations of Fe0NPs against S. litura seven days post-treatment were 5.1 and 2.29 days, respectively. Beauveria brongniartii-Fe0NPs caused significant reductions in feeding and growth parameters (relative growth rate, relative consumption rate, and efficiency of conversion of ingested food) of S. litura. Beauveria brongniartii Fe0NPs induced reduction in glutathione-S-transferase activities throughout the infection period whereas activities of antioxidant enzymes decreased during later periods of infection. These findings suggest that B. brongniartii Fe0NPs can potentially be used in biorational S. litura management programs.
Collapse
Affiliation(s)
- Jing Xu
- Key Laboratory of Bio-Pesticide Innovation and Application, Guangzhou 510642, China; (J.X.); (K.Z.); (C.D.)
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Kaihui Zhang
- Key Laboratory of Bio-Pesticide Innovation and Application, Guangzhou 510642, China; (J.X.); (K.Z.); (C.D.)
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | | | - Cailian Du
- Key Laboratory of Bio-Pesticide Innovation and Application, Guangzhou 510642, China; (J.X.); (K.Z.); (C.D.)
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Shaukat Ali
- Key Laboratory of Bio-Pesticide Innovation and Application, Guangzhou 510642, China; (J.X.); (K.Z.); (C.D.)
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|