1
|
Cheng G, Liu Y, Guo R, Wang H, Zhang W, Wang Y. Molecular mechanisms of gut microbiota in diabetic nephropathy. Diabetes Res Clin Pract 2024; 213:111726. [PMID: 38844054 DOI: 10.1016/j.diabres.2024.111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/10/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Diabetic nephropathy is a common complication of diabetes and a considerable contributor to end-stage renal disease. Evidence indicates that glucose dysregulation and lipid metabolism comprise a pivotal pathogenic mechanism in diabetic nephropathy. However, current treatment outcomes are limited, as they only provide symptomatic relief without preventing disease progression. The gut microbiota is a group of microorganisms that inhabit the human intestinal tract and play a crucial role in maintaining host energy balance, metabolism, and immune activity. Patients with diabetic nephropathy exhibit altered gut microbiota, suggesting its potential involvement in the onset and progression of the disease. However, how a perturbed microbiota induces and promotes diabetic nephropathy remains unelucidated. This article summarizes the evidence of the impact of gut microbiota on the progression of diabetic nephropathy, with a particular focus on the molecular mechanisms involved, aiming to provide new insights into the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Gang Cheng
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China.
| | - YuLin Liu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China.
| | - Rong Guo
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China.
| | - Huinan Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China.
| | - Wenjun Zhang
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| | - Yingying Wang
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
2
|
Lidgard B, Hoofnagle AN, Zelnick LR, de Boer IH, Fretts AM, Kestenbaum BR, Lemaitre RN, Robinson-Cohen C, Bansal N. High-Density Lipoprotein Lipidomics in Chronic Kidney Disease. Clin Chem 2023; 69:273-282. [PMID: 36644946 PMCID: PMC10069017 DOI: 10.1093/clinchem/hvac216] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/17/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Patients with chronic kidney disease (CKD) have dysfunctional high-density lipoprotein (HDL) particles as compared with the general population. Understanding the lipid composition of HDL may provide mechanistic insight. We tested associations of estimated glomerular filtration rate (eGFR) and albuminuria with relative HDL abundance of ceramides, sphingomyelins, and phosphatidylcholines in participants with CKD. METHODS We studied 490 participants with CKD from the Seattle Kidney Study. HDL was isolated from plasma; targeted lipidomics was used to quantify the relative abundance of ceramides, sphingomyelins, and phosphatidylcholines per 10 µg of total HDL protein. We evaluated the associations of eGFR and albuminuria with levels of individual lipids and lipid classes (including 7 ceramides, 6 sphingomyelins, and 24 phosphatidylcholines) using multivariable linear regression, controlling for multiple comparisons via the false discovery rate. RESULTS The mean (SD) eGFR was 45 (24) mL/min/1.73 m2; the median (IQR[interquartile range]) albuminuria was 108 (16, 686) mg/g (12.2 [1.8, 77.6] mg/mmol) urine creatinine. After adjusting for demographics, past medical history, laboratory values, and medication use, eGFR was not associated with higher relative abundance of any class of lipids or individual lipids. Greater albuminuria was significantly associated with a higher relative abundance of total ceramides and moderate-long R-chain sphingomyelins, ceramides 22:0 and 24:1, hexosylceramide 16:0, sphingomyelin 16:0, and phosphatidylcholines 29:0, 30:1, and 38:2; the strongest association was for hexosylceramide 16:0 (increase per doubling of urine albumin to creatinine ratio 0.022 (95% CI, 0.012-0.032). CONCLUSIONS Greater albuminuria was significantly associated with specific alterations in the lipid composition of HDL in participants with CKD.
Collapse
|
3
|
Exploring the mechanism of active components from ginseng to manage diabetes mellitus based on network pharmacology and molecular docking. Sci Rep 2023; 13:793. [PMID: 36646777 PMCID: PMC9842641 DOI: 10.1038/s41598-023-27540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
A large body of literature has shown that ginseng had a role in diabetes mellitus management. Ginsenosides are the main active components of ginseng. But what ginsenosides can manage in diabetic are not systematic. The targets of these ginsenosides are still incomplete. Our aim was to identify which ginsenosides can manage diabetes mellitus through network pharmacology and molecular docking. To identify the targets of these ginsenosides. In this work, we retrieved and screened ginsenosides and corresponding diabetes mellitus targets across multiple databases. PPI networks of the genes were constructed using STRING, and the core targets were screened out through topological analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed by using the R language. Finally, molecular docking was performed after bioinformatics analysis for verification. Our research results showed that 28 ginsenosides in ginseng might be against diabetes mellitus by modulating related proteins such as VEGFA, Caspase 3, and TNF-α. Among the 28 ginsenosides, 20(R)-Protopanaxatriol, 20(R)-Protopanaxadiol, and Ginsenoside Rg1 might play a significant role. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analysis showed that the management of diabetes mellitus by ginsenosides may be related to the positive regulation of reactive oxygen metabolic processes, associated with the insulin signaling pathway, TNF signaling pathway, and AMPK signaling pathway. Molecular docking results and molecular dynamics simulation showed that most ginsenosides could stably bind to the core target, mainly hydrogen bonding and hydrophobic bond. This study suggests the management of ginseng on diabetes mellitus. We believe that our results can contribute to the systematic study of the mechanism of ginsenosides for the management of diabetes mellitus. At the same time, it can provide a theoretical basis for subsequent studies on the management of ginsenosides in diabetes mellitus.
Collapse
|
4
|
Machrina Y, Anggraini DR, Pane YS, Harahap NS, Pant G. Physical Activity Maintain Immune Response Through TLR-2/TLR-4 Gene Expression in Type-2 Diabetes Mellitus Patient at Medan City. Med Arch 2023; 77:276-280. [PMID: 37876569 PMCID: PMC10591241 DOI: 10.5455/medarh.2023.77.276-280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 10/26/2023] Open
Abstract
Background The Increasing in type-2 diabetes mellitus (T2DM) needs to solve comprehensively and holistically. Patients with T2DM should have self-coping due to lifestyle modification. Abdominal fat accumulation can release pro-inflammatory cytokine that leads TLR-2 and TLR-4 to the response. These two kinds of toll-like receptors exist on the monocyte surface membrane which is an innate immunity cell. Objective The aims of this study were to get the profile of physical activity, metabolic state, and mononuclear cell response to the expression of the TLR2 and TLR4 genes in T2DM patients. Methods It was a descriptive-analytic study with a cross-sectional study design. Thirty-two eligible patients with inclusion criteria participated as subjects. All subjects answered questions by IPAQ, and checked metabolic state with body composition analysis. The TLR2 and TLR4 gene expression was determined with quantitative Real- Time PCR. Results This study result found that most T2DM patients were in a highly active category in which most of their activity was walking (light intensity). The average abdominal circumferences were 91.81 ± 15.4 cm, body fat percentage was 29.5 ± 8.8%, and fasting blood sugar was 187.07 ± 67.03 mg/dl. Mononuclear cells number were normal. The expression of the TLR2 gene was lower by 0.71 fold and TLR4 gene expression was lower by 0.9 fold compared with non-DM (p<0.05). By chi-square test, there was a positive correlation between TLR2 gene expression with fasting blood glucose (p=0.011, and a positive correlation between the abdominal circumference and TLR4 gene expression (p=0.011). Conclusion Type-2 Diabetes mellitus patients in primary health care keep walking as their physical activity to maintain blood glucose. Patients need to do moderate to vigorous exercise regularly to reduce body fat percentage especially abdominal fat to reduce Toll-like receptor gene expression, so insulin resistance and blood glucose level might decline to normal.
Collapse
Affiliation(s)
- Yetty Machrina
- Department of Physiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Inodnesia
| | - Dwi Rita Anggraini
- Department of Anatomy, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Yunita Sari Pane
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Novita Sari Harahap
- Faculty of Sport Science, Universitas Negeri Medan, Sumatera Utara, Medan, Indonesia
| | - Gaurav Pant
- Sportal Coorporate pvt ltd, Lucknow, Uttar Pardesh, India
| |
Collapse
|
5
|
Toll-like receptors 2 and 4 stress signaling and sodium-glucose cotransporter-2 in kidney disease. Mol Cell Biochem 2022:10.1007/s11010-022-04652-5. [PMID: 36586092 DOI: 10.1007/s11010-022-04652-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
Kidney disease is the 6th fastest-growing cause of death and a serious global health concern that urges effective therapeutic options. The inflammatory response is an initial reaction from immune and parenchymal cells in kidney diseases. Toll-like receptors (TLR) 2 and 4 are highly expressed by various kidney cells and respond to 'signaling danger' proteins, such as high mobility group box binding protein 1 (HMGB1) and prompt the progression of kidney disease by releasing inflammatory mediators. Burgeoning reports suggest that both SGLT2 and ER stress elevates TLR2/4 signaling via different axis. Moreover, SGLT2 signaling aggravates inflammation under the disease condition by promoting the NLR family pyrin domain-containing three inflammasomes and ER stress. Intriguingly, TLR2/4 downstream adaptors activate ER stress regulators. The above-discussed interactions imply that TLR2/4 does more than immune response during kidney disease. Here, we discuss in detail evidence of the roles and regulation of TLR2/4 in the context of a relationship between ER stress and SGLT2. Also, we highlighted different preclinical studies of SGLT2 inhibitors against TLR2/4 signaling in various kidney diseases. Moreover, we discuss the observational and interventional evidence about the relation between TLR2/4, ER stress, and SGLT2, which may represent the TLR2/4 as a potential therapeutic target for kidney disease.
Collapse
|
6
|
Zheng X, Higdon L, Gaudet A, Shah M, Balistieri A, Li C, Nadai P, Palaniappan L, Yang X, Santo B, Ginley B, Wang XX, Myakala K, Nallagatla P, Levi M, Sarder P, Rosenberg A, Maltzman JS, de Freitas Caires N, Bhalla V. Endothelial Cell-Specific Molecule-1 Inhibits Albuminuria in Diabetic Mice. KIDNEY360 2022; 3:2059-2076. [PMID: 36591362 PMCID: PMC9802554 DOI: 10.34067/kid.0001712022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/19/2022] [Indexed: 01/13/2023]
Abstract
Background Diabetic kidney disease (DKD) is the most common cause of kidney failure in the world, and novel predictive biomarkers and molecular mechanisms of disease are needed. Endothelial cell-specific molecule-1 (Esm-1) is a secreted proteoglycan that attenuates inflammation. We previously identified that a glomerular deficiency of Esm-1 associates with more pronounced albuminuria and glomerular inflammation in DKD-susceptible relative to DKD-resistant mice, but its contribution to DKD remains unexplored. Methods Using hydrodynamic tail-vein injection, we overexpress Esm-1 in DKD-susceptible DBA/2 mice and delete Esm-1 in DKD-resistant C57BL/6 mice to study the contribution of Esm-1 to DKD. We analyze clinical indices of DKD, leukocyte infiltration, podocytopenia, and extracellular matrix production. We also study transcriptomic changes to assess potential mechanisms of Esm-1 in glomeruli. Results In DKD-susceptible mice, Esm-1 inversely correlates with albuminuria and glomerular leukocyte infiltration. We show that overexpression of Esm-1 reduces albuminuria and diabetes-induced podocyte injury, independent of changes in leukocyte infiltration. Using a complementary approach, we find that constitutive deletion of Esm-1 in DKD-resistant mice modestly increases the degree of diabetes-induced albuminuria versus wild-type controls. By glomerular RNAseq, we identify that Esm-1 attenuates expression of kidney disease-promoting and interferon (IFN)-related genes, including Ackr2 and Cxcl11. Conclusions We demonstrate that, in DKD-susceptible mice, Esm-1 protects against diabetes-induced albuminuria and podocytopathy, possibly through select IFN signaling. Companion studies in patients with diabetes suggest a role of Esm-1 in human DKD.
Collapse
Affiliation(s)
- Xiaoyi Zheng
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Lauren Higdon
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Veterans Affairs Palo Alto Heath Care System, Palo Alto, California
| | - Alexandre Gaudet
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1019-UMR9017-Center for Infection & Immunity of Lille, Pasteur Institute of Lille, University of Lille, Lille, France
| | - Manav Shah
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Angela Balistieri
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Catherine Li
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Patricia Nadai
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1019-UMR9017-Center for Infection & Immunity of Lille, Pasteur Institute of Lille, University of Lille, Lille, France
| | - Latha Palaniappan
- Division of Primary Care and Population Health, Stanford University School of Medicine, Stanford, California
| | - Xiaoping Yang
- Division of Kidney-Urologic Pathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Briana Santo
- Department of Pathology and Anatomical Sciences, University at Buffalo–The State University of New York, Buffalo, New York
| | - Brandon Ginley
- Department of Pathology and Anatomical Sciences, University at Buffalo–The State University of New York, Buffalo, New York
| | - Xiaoxin X. Wang
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Komuraiah Myakala
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC
| | | | - Moshe Levi
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Pinaki Sarder
- Department of Pathology and Anatomical Sciences, University at Buffalo–The State University of New York, Buffalo, New York
| | - Avi Rosenberg
- Division of Kidney-Urologic Pathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jonathan S. Maltzman
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Veterans Affairs Palo Alto Heath Care System, Palo Alto, California
| | - Nathalie de Freitas Caires
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1019-UMR9017-Center for Infection & Immunity of Lille, Pasteur Institute of Lille, University of Lille, Lille, France
- Biothelis, Lille, France
| | - Vivek Bhalla
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
7
|
Kopp W. Pathogenesis of (smoking-related) non-communicable diseases-Evidence for a common underlying pathophysiological pattern. Front Physiol 2022; 13:1037750. [PMID: 36589440 PMCID: PMC9798240 DOI: 10.3389/fphys.2022.1037750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Non-communicable diseases, like diabetes, cardiovascular diseases, cancer, stroke, chronic obstructive pulmonary disease, osteoporosis, arthritis, Alzheimer's disease and other more are a leading cause of death in almost all countries. Lifestyle factors, especially poor diet and tobacco consumption, are considered to be the most important influencing factors in the development of these diseases. The Western diet has been shown to cause a significant distortion of normal physiology, characterized by dysregulation of the sympathetic nervous system, renin-angiotensin aldosterone system, and immune system, as well as disruption of physiological insulin and oxidant/antioxidant homeostasis, all of which play critical roles in the development of these diseases. This paper addresses the question of whether the development of smoking-related non-communicable diseases follows the same pathophysiological pattern. The evidence presented shows that exposure to cigarette smoke and/or nicotine causes the same complex dysregulation of physiology as described above, it further shows that the factors involved are strongly interrelated, and that all of these factors play a key role in the development of a broad spectrum of smoking-related diseases. Since not all smokers develop one or more of these diseases, it is proposed that this disruption of normal physiological balance represents a kind of pathogenetic "basic toolkit" for the potential development of a range of non-communicable diseases, and that the decision of whether and what disease will develop in an individual is determined by other, individual factors ("determinants"), such as the genome, epigenome, exposome, microbiome, and others. The common pathophysiological pattern underlying these diseases may provide an explanation for the often poorly understood links between non-communicable diseases and disease comorbidities. The proposed pathophysiological process offers new insights into the development of non-communicable diseases and may influence the direction of future research in both prevention and therapy.
Collapse
|
8
|
Xie X, Bai G, Zhang L, Liu H, Qiang D, Li L. Changes in plasma IRAK-M in patients with prediabetes and its relationship with related metabolic indexes: a cross-sectional study. J Int Med Res 2022; 50:3000605221111275. [PMID: 36039603 PMCID: PMC9437484 DOI: 10.1177/03000605221111275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate whether IL-1R-associated kinase (IRAK)-M is associated with prediabetes and type 2 diabetes (T2D). METHODS In this cross-sectional study, enrolled subjects were assigned to different groups according to their fasting plasma glucose (FPG) values. IRAK-M and metabolic parameters, including fasting insulin (FINS), glycosylated hemoglobin (HbA1c), homeostasis model assessment of insulin resistance (HOMA-IR) and beta-cell function (HOMA-β), and thioredoxin-interacting protein (TXNIP), were evaluated. The area under the receiver operating characteristic curve of IRAK-M and TXNIP for prediabetes and T2D was determined. RESULTS IRAK-M decreased significantly with increasing FPG levels. IRAK-M was negatively correlated with TXNIP, FPG, FINS, HbA1c, and HOMA-IR and positively correlated with HOMA-β. The diagnostic cutoff value of IRAK-M was 3.76 ng/mL for prediabetes and 3.45 ng/mL for T2D. After stratifying by IRAK-M (<3.76 and ≥3.76 ng/mL), patients with a higher TXNIP level showed a greater risk of prediabetes or T2D in the subgroup with low IRAK-M (<3.76 ng/mL). CONCLUSIONS IRAK-M is independently and positively associated with prediabetes and T2D, while TXNIP is independently and negatively associated with prediabetes and T2D. IRAK-M and TXNIP serve as diagnostic factors for prediabetes.
Collapse
Affiliation(s)
- Xiaomin Xie
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, Ningxia, China
| | - Guirong Bai
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, Ningxia, China
| | - Li Zhang
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, Ningxia, China
| | - Huili Liu
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, Ningxia, China
| | - Dan Qiang
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, Ningxia, China
| | - Ling Li
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, Ningxia, China
| |
Collapse
|
9
|
Rostom B, Karaky R, Kassab I, Sylla-Iyarreta Veitia M. Coumarins derivatives and inflammation: Review of their effects on the inflammatory signaling pathways. Eur J Pharmacol 2022; 922:174867. [DOI: 10.1016/j.ejphar.2022.174867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 12/27/2022]
|
10
|
Gu L, Wang Z, Zhang Y, Zhu N, Li J, Yang M, Wang L, Rong S. TLR13 contributes to skeletal muscle atrophy by increasing insulin resistance in chronic kidney disease. Cell Prolif 2022; 55:e13181. [PMID: 35088922 PMCID: PMC8891551 DOI: 10.1111/cpr.13181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/01/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Objectives Insulin resistance in chronic kidney disease (CKD) stimulates muscle wasting, but the molecular processes behind the resistance are undetermined. However, inflammation in skeletal muscle is implicated in the pathogenesis of insulin resistance and cachexia. Toll‐like receptors (TLRs) are known to regulate local innate immune responses, and microarray data have shown that Tlr13 is upregulated in the muscles of mice with CKD, but the relevance is unknown. Materials and Methods We performed in vitro experiments in C2C12 myotubes and constructed a CKD murine model using subtotal nephrectomy to conduct experiments in vivo. Results Tlr13 expression was stimulated in C2C12 myotubes treated with uremic serum. The expression of Tlr13 was also upregulated in the tibialis anterior muscles of mice with CKD. Tlr13 knockdown with siRNAs in skeletal muscle cells decreased insulin resistance despite the inclusion of uremic serum. This led to increased levels of p‐AKT and suppression of protein degradation. Using immunofluorescence staining and coimmunoprecipitation assay, we found that TLR13 recruits IRF3, which activates Irf3 expression, resulting in decreased AKT activity. Moreover, insulin resistance and proteolysis are re‐induced by Irf3 overexpression under Tlr13 deletion. Conclusions Our results indicate that TLR13 is involved in CKD‐mediated insulin resistance in muscle. In catabolic conditions where insulin signaling is impaired, targeting TLR13 may improve insulin sensitivity and prevent muscle atrophy.
Collapse
Affiliation(s)
- Lijie Gu
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhifang Wang
- Department of Respiration, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yueyue Zhang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Zhu
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayong Li
- Clinical Laboratory Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Man Yang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Wang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Rong
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
An W, Huang Y, Chen S, Teng T, Shi Y, Sun Z, Xu Y. Mechanisms of Rhizoma Coptidis against type 2 diabetes mellitus explored by network pharmacology combined with molecular docking and experimental validation. Sci Rep 2021; 11:20849. [PMID: 34675276 PMCID: PMC8531350 DOI: 10.1038/s41598-021-00293-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/05/2021] [Indexed: 02/08/2023] Open
Abstract
This study systematically explored the underlying mechanism of Rhizoma Coptidis against type 2 diabetes mellitus (T2DM) by using network pharmacology and molecular docking and experimental validation. We retrieved and screened active compounds of Rhizoma Coptidis and corresponding T2DM-related targets across multiple databases. PPI networks of the genes were constructed using STRING, and the core targets were screened via topological analysis. GO and KEGG enrichment analyses were performed by using DAVID. Finally, molecular docking and experimental studies were performed after bioinformatic analysis for verification. There were 14 active compounds and 19 core targets of Rhizoma Coptidis-T2DM, of which quercetin was identified as the main compound and IL6, VEGFA and TNF were the most significant core targets. GO and KEGG enrichment analyses showed that Rhizoma Coptidis ameliorated T2DM by regulating multiple biological processes and pathways. Docking studies indicated that IL6, VEGFA and TNF could stably bind with all active compounds of Rhizoma Coptidis. The results of our experiments revealed that Rhizoma Coptidis could inhibit the expression of IL6 and TNFα and enhance islet cell viability. This study suggests anti-inflammatory therapeutic effects of Rhizoma Coptidis on T2DM, thereby providing a scientific basis and new insight for further research on the antidiabetic effect of Rhizoma Coptidis.
Collapse
Affiliation(s)
- Wenrong An
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yanqin Huang
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Shouqiang Chen
- Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 1 Jingba Road, Jinan, 250001, China
| | - Tao Teng
- Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 1 Jingba Road, Jinan, 250001, China
| | - Yingning Shi
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhenhai Sun
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yunsheng Xu
- Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 1 Jingba Road, Jinan, 250001, China.
| |
Collapse
|
12
|
Wang Y, Li Y, Xu Y. Pyroptosis in Kidney Disease. J Mol Biol 2021; 434:167290. [PMID: 34626644 DOI: 10.1016/j.jmb.2021.167290] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 01/06/2023]
Abstract
In the last several decades, apoptosis interference has been considered clinically irrelevant in the context of renal injury. Recent discovery of programmed necrotic cell death, including necroptosis, ferroptosis, and pyroptosis refreshed our understanding of the role of cell death in kidney disease. Pyroptosis is characterized by a lytic pro- inflammatory type of cell death resulting from gasdermin-induced membrane permeabilization via activation of inflammatory caspases and inflammasomes. The danger-associated molecular patterns (DAMPs), alarmins and pro-inflammatory cytokines are released from pyroptotic cells in an uncontrolled manner, which provoke inflammation, resulting in secondary organ or tissue injuries. The caspases and inflammasome activation-related proteins and pore-forming effector proteins known as GSDMD and GSDME have been implicated in a variety of acute and chronic microbial and non-microbial kidney diseases. Here, we review the recent advances in pathological mechanisms of pyroptosis in kidney disease and highlight the potential therapeutic strategies in future.
Collapse
Affiliation(s)
- Yujia Wang
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yinshuang Li
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| |
Collapse
|
13
|
Weng R, Liu S, Gu X, Zhong Z. Clonal diversity of the B cell receptor repertoire in patients with coronary in-stent restenosis and type 2 diabetes. Open Life Sci 2021; 16:884-898. [PMID: 34522782 PMCID: PMC8402935 DOI: 10.1515/biol-2021-0091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 05/23/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is known as a risk factor for coronary in-stent restenosis (ISR) in patients with coronary artery disease (CAD). Evidence suggests that B cells play a functional role in the progression of atherosclerotic lesions. However, the B cell receptor (BCR) repertoire in patients with ISR remains unclear. This study aims to profile the BCR repertoire in patients with coronary ISR/T2DM. A total of 21 CAD patients with or without ISR/T2DM were enrolled. PBMCs were isolated and examined for BCR repertoire profiles using DNA-seq. Our results showed that the diversity of amino acid sequences in ISR DM patients was higher than that in ISR -DM patients. The frequencies of 21 V/J paired genes differed between ISR DM and -ISR DM patients, while frequencies of 5 V/J paired genes differed between ISR DM and ISR -DM. The -ISR -DM group presented the highest clonotype overlap rate, while ISR DM patients presented the lowest overlap rate. Our study presented the BCR repertoires in patients with ISR/T2DM. The data suggested different BCR signatures between patients with ISR and T2DM. Further analysis of BCR profiles would enhance understanding of ISR.
Collapse
Affiliation(s)
- Ruiqiang Weng
- Research Experimental Center, Meizhou People’s Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-Sen University, Meizhou 514031, People’s Republic of China
- Guangdong Provincial Engineering and Technological Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou 514031, People’s Republic of China
- Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, People’s Republic of China
| | - Sudong Liu
- Research Experimental Center, Meizhou People’s Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-Sen University, Meizhou 514031, People’s Republic of China
- Guangdong Provincial Engineering and Technological Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou 514031, People’s Republic of China
- Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, People’s Republic of China
| | - Xiaodong Gu
- Research Experimental Center, Meizhou People’s Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-Sen University, Meizhou 514031, People’s Republic of China
- Guangdong Provincial Engineering and Technological Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou 514031, People’s Republic of China
- Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, People’s Republic of China
| | - Zhixiong Zhong
- Guangdong Provincial Engineering and Technological Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou 514031, People’s Republic of China
- Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, People’s Republic of China
- Center for Cardiovascular Diseases, Meizhou People’s Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, People’s Republic of China
| |
Collapse
|