1
|
Kawabe J, Kajihara K, Matsuyama Y, Mori Y, Hamano T, Mimaki M, Kitamura Y, Matsumura R, Matsuyama M, Sato M, Ohtsuka M, Node K, Akashi M. In vivo functional significance of direct physical interaction between Period and Cryptochrome in mammalian circadian rhythm generation. PNAS NEXUS 2024; 3:pgae516. [PMID: 39677364 PMCID: PMC11645128 DOI: 10.1093/pnasnexus/pgae516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/29/2024] [Indexed: 12/17/2024]
Abstract
In the current model, the auto-negative feedback action of Period (Per) and Cryptochrome (Cry) on their own transcription is the hallmark mechanism driving cell-autonomous circadian rhythms. Although this model likely makes sense even if Per and Cry undertake this action in a mutually independent manner, many studies have suggested the functional significance of direct physical interaction between Per and Cry. However, even though the interaction is a biochemical process that pertains to the fundamentals of the circadian oscillator, its in vivo contribution to circadian rhythm generation remains undefined. To answer this question, we focused on zinc coordination between Per and Cry, whose contribution to circadian rhythm generation remains undefined. Specifically, we aimed to impair endogenous Per-Cry association by introducing an amino acid substitution to zinc-coordinating residues located at the Per1 and Per2 C-terminal facing Cry in mice. These mice did not show severe impairment in the Per-Cry physical interaction, but rather a shortened period and decreased robustness in circadian rhythms at the tissue-autonomous and whole-body levels. Furthermore, these mice also showed a decrease in Per half-life, suggesting that impaired fine-tuning of Per half-life caused abnormal circadian period and robustness in vivo. We also found a minor but significant impact of a reindeer-specific Per2 mutation located in the Per-Cry interface on circadian rhythms in vivo. These lines of evidence indicate that only partial impairment of the Per-Cry physical interaction produces a substantial effect on circadian period and robustness, supporting the in vivo functional significance of the interaction.
Collapse
Affiliation(s)
- Junko Kawabe
- The Research Institute for Time Studies, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Kohhei Kajihara
- The Research Institute for Time Studies, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Yohei Matsuyama
- The Research Institute for Time Studies, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Yukiya Mori
- The Research Institute for Time Studies, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Teruki Hamano
- The Research Institute for Time Studies, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Mai Mimaki
- The Research Institute for Time Studies, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Yukari Kitamura
- The Research Institute for Time Studies, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Ritsuko Matsumura
- The Research Institute for Time Studies, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama 701-0202, Japan
| | - Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Masato Ohtsuka
- The Institute of Medical Sciences, Tokai University, Kanagawa 259-1193, Japan
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, Saga 849-8501, Japan
| | - Makoto Akashi
- The Research Institute for Time Studies, Yamaguchi University, Yamaguchi 753-8511, Japan
| |
Collapse
|
2
|
Deyurka NA, Navigatore-Fonzo LS, Coria-Lucero CD, Ferramola ML, Delgado SM, Lacoste MG, Anzulovich AC. Aging abolishes circadian rhythms and disrupts temporal organization of antioxidant-prooxidant status, endogenous clock activity and neurotrophin gene expression in the rat temporal cortex. Neuroscience 2024; 559:125-138. [PMID: 39244007 DOI: 10.1016/j.neuroscience.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Disruption of circadian rhythms contributes to deficits in cognitive functions during aging. Up to date, the biochemical, molecular and chronobiological bases of such deterioration have not been completely elucidated. Here, we aim: 1) to investigate the endogenous nature of 24 h-rhythms of antioxidant defenses, oxidative stress, clocḱ's, and neurotrophic factors expression, in the rat temporal cortex (TC), and 2) to study the consequences of aging on the circadian organization of those factors. We observed a circadian organization of antioxidant enzymes activity, lipoperoxidation and the clock, BMAL1 and RORa, proteins, in the TC of young rats. Such temporal organization suggests the existence of a two-way communication among clock transcription factors and antioxidant defenses. This might generate the rhythmic and circadian expression of Bdnf and Rc3 genes involved in the TC-depending cognitive function. Noteworthy, such circadian organization disappears in the TC of aged rats. Aging also reduces glutathione peroxidase activity and expression, and it increases lipid peroxidation, throughout a 24 h-period. An increased oxidative stress makes the cellular redox environment change into an oxidative status which alters the endogenous clock activity and disrupts the circadian organization of, at least part, of the molecular basis of the synaptic plasticity in the TC.
Collapse
Affiliation(s)
- Nicolás Andrés Deyurka
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research-San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina; Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Lorena Silvina Navigatore-Fonzo
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research-San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina; Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Cinthia Daiana Coria-Lucero
- Faculty of Health Sciences, National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Mariana Lucila Ferramola
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research-San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina; Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Silvia Marcela Delgado
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research-San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina; Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - María Gabriela Lacoste
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research-San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina; Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina.
| | - Ana Cecilia Anzulovich
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research-San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina; Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina.
| |
Collapse
|
3
|
Otobe Y, Jeong EM, Ito S, Shinohara Y, Kurabayashi N, Aiba A, Fukada Y, Kim JK, Yoshitane H. Phosphorylation of DNA-binding domains of CLOCK-BMAL1 complex for PER-dependent inhibition in circadian clock of mammalian cells. Proc Natl Acad Sci U S A 2024; 121:e2316858121. [PMID: 38805270 PMCID: PMC11161756 DOI: 10.1073/pnas.2316858121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
In mammals, CLOCK and BMAL1 proteins form a heterodimer that binds to E-box sequences and activates transcription of target genes, including Period (Per). Translated PER proteins then bind to the CLOCK-BMAL1 complex to inhibit its transcriptional activity. However, the molecular mechanism and the impact of this PER-dependent inhibition on the circadian clock oscillation remain elusive. We previously identified Ser38 and Ser42 in a DNA-binding domain of CLOCK as phosphorylation sites at the PER-dependent inhibition phase. In this study, knockout rescue experiments showed that nonphosphorylatable (Ala) mutations at these sites shortened circadian period, whereas their constitutive-phospho-mimetic (Asp) mutations completely abolished the circadian rhythms. Similarly, we found that nonphosphorylatable (Ala) and constitutive-phospho-mimetic (Glu) mutations at Ser78 in a DNA-binding domain of BMAL1 also shortened the circadian period and abolished the rhythms, respectively. The mathematical modeling predicted that these constitutive-phospho-mimetic mutations weaken the DNA binding of the CLOCK-BMAL1 complex and that the nonphosphorylatable mutations inhibit the PER-dependent displacement (reduction of DNA-binding ability) of the CLOCK-BMAL1 complex from DNA. Biochemical experiments supported the importance of these phosphorylation sites for displacement of the complex in the PER2-dependent inhibition. Our results provide direct evidence that phosphorylation of CLOCK-Ser38/Ser42 and BMAL1-Ser78 plays a crucial role in the PER-dependent inhibition and the determination of the circadian period.
Collapse
Affiliation(s)
- Yuta Otobe
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
- Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo156-8506, Japan
| | - Eui Min Jeong
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon34141, Republic of Korea
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
| | - Shunsuke Ito
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
- Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo156-8506, Japan
| | - Yuta Shinohara
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-Ku, Sapporo060-0815, Japan
| | - Nobuhiro Kurabayashi
- Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo156-8506, Japan
| | - Atsu Aiba
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
- Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo156-8506, Japan
| | - Jae Kyoung Kim
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon34141, Republic of Korea
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
| | - Hikari Yoshitane
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
- Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo156-8506, Japan
| |
Collapse
|
4
|
Del Olmo M, Legewie S, Brunner M, Höfer T, Kramer A, Blüthgen N, Herzel H. Network switches and their role in circadian clocks. J Biol Chem 2024; 300:107220. [PMID: 38522517 PMCID: PMC11044057 DOI: 10.1016/j.jbc.2024.107220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
Circadian rhythms are generated by complex interactions among genes and proteins. Self-sustained ∼24 h oscillations require negative feedback loops and sufficiently strong nonlinearities that are the product of molecular and network switches. Here, we review common mechanisms to obtain switch-like behavior, including cooperativity, antagonistic enzymes, multisite phosphorylation, positive feedback, and sequestration. We discuss how network switches play a crucial role as essential components in cellular circadian clocks, serving as integral parts of transcription-translation feedback loops that form the basis of circadian rhythm generation. The design principles of network switches and circadian clocks are illustrated by representative mathematical models that include bistable systems and negative feedback loops combined with Hill functions. This work underscores the importance of negative feedback loops and network switches as essential design principles for biological oscillations, emphasizing how an understanding of theoretical concepts can provide insights into the mechanisms generating biological rhythms.
Collapse
Affiliation(s)
- Marta Del Olmo
- Institute for Theoretical Biology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Stefan Legewie
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany; Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Michael Brunner
- Biochemistry Center, Universität Heidelberg, Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Universität Heidelberg, Heidelberg, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Institute for Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nils Blüthgen
- Institute for Theoretical Biology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Berlin, Germany; Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Regmi P, Young M, Minigo G, Milic N, Gyawali P. Photoperiod and metabolic health: evidence, mechanism, and implications. Metabolism 2024; 152:155770. [PMID: 38160935 DOI: 10.1016/j.metabol.2023.155770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Circadian rhythms are evolutionarily programmed biological rhythms that are primarily entrained by the light cycle. Disruption of circadian rhythms is an important risk factor for several metabolic disorders. Photoperiod is defined as total duration of light exposure in a day. With the extended use of indoor/outdoor light, smartphones, television, computers, and social jetlag people are exposed to excessive artificial light at night increasing their photoperiod. Importantly long photoperiod is not limited to any geographical region, season, age, or socioeconomic group, it is pervasive. Long photoperiod is an established disrupter of the circadian rhythm and can induce a range of chronic health conditions including adiposity, altered hormonal signaling and metabolism, premature ageing, and poor psychological health. This review discusses the impact of exposure to long photoperiod on circadian rhythms, metabolic and mental health, hormonal signaling, and ageing and provides a perspective on possible preventive and therapeutic approaches for this pervasive challenge.
Collapse
Affiliation(s)
- Prashant Regmi
- Faculty of Health, Charles Darwin University, Australia.
| | - Morag Young
- Cardiovascular Endocrinology Laboratory, Baker IDI Heart and Diabetes Institute, Australia
| | | | - Natalie Milic
- Faculty of Health, Charles Darwin University, Australia
| | - Prajwal Gyawali
- Centre of Health Research and School of Health and Medical Sciences, University of Southern Queensland, Australia
| |
Collapse
|
6
|
Zhang H, Zhou Z, Guo J. The Function, Regulation, and Mechanism of Protein Turnover in Circadian Systems in Neurospora and Other Species. Int J Mol Sci 2024; 25:2574. [PMID: 38473819 DOI: 10.3390/ijms25052574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Circadian clocks drive a large array of physiological and behavioral activities. At the molecular level, circadian clocks are composed of positive and negative elements that form core oscillators generating the basic circadian rhythms. Over the course of the circadian period, circadian negative proteins undergo progressive hyperphosphorylation and eventually degrade, and their stability is finely controlled by complex post-translational pathways, including protein modifications, genetic codon preference, protein-protein interactions, chaperon-dependent conformation maintenance, degradation, etc. The effects of phosphorylation on the stability of circadian clock proteins are crucial for precisely determining protein function and turnover, and it has been proposed that the phosphorylation of core circadian clock proteins is tightly correlated with the circadian period. Nonetheless, recent studies have challenged this view. In this review, we summarize the research progress regarding the function, regulation, and mechanism of protein stability in the circadian clock systems of multiple model organisms, with an emphasis on Neurospora crassa, in which circadian mechanisms have been extensively investigated. Elucidation of the highly complex and dynamic regulation of protein stability in circadian clock networks would greatly benefit the integrated understanding of the function, regulation, and mechanism of protein stability in a wide spectrum of other biological processes.
Collapse
Affiliation(s)
- Haoran Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zengxuan Zhou
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jinhu Guo
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
7
|
Chen YC, Wang WS, Lewis SJG, Wu SL. Fighting Against the Clock: Circadian Disruption and Parkinson's Disease. J Mov Disord 2024; 17:1-14. [PMID: 37989149 PMCID: PMC10846969 DOI: 10.14802/jmd.23216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023] Open
Abstract
Circadian disruption is being increasingly recognized as a critical factor in the development and progression of Parkinson's disease (PD). This review aims to provide an in-depth overview of the relationship between circadian disruption and PD by exploring the molecular, cellular, and behavioral aspects of this interaction. This review will include a comprehensive understanding of how the clock gene system and transcription-translation feedback loops function and how they are diminished in PD. The article also discusses the role of clock genes in the regulation of circadian rhythms, as well as the impact of clock gene dysregulation on mitochondrial function, oxidative stress, and neuroinflammation, including the microbiota-gut-brain axis, which have all been proposed as being crucial mechanisms in the pathophysiology of PD. Finally, this review highlights potential therapeutic strategies targeting the clock gene system and circadian rhythm for the treatment of PD.
Collapse
Affiliation(s)
- Yen-Chung Chen
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Wei-Sheng Wang
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Simon J G Lewis
- Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Shey-Lin Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Electrical Engineering, National Changhua University of Education, Changhua, Taiwan
| |
Collapse
|
8
|
Lin Z, Green EW, Webster SG, Hastings MH, Wilcockson DC, Kyriacou CP. The circadian clock gene bmal1 is necessary for co-ordinated circatidal rhythms in the marine isopod Eurydice pulchra (Leach). PLoS Genet 2023; 19:e1011011. [PMID: 37856540 PMCID: PMC10617734 DOI: 10.1371/journal.pgen.1011011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 10/31/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
Circadian clocks in terrestrial animals are encoded by molecular feedback loops involving the negative regulators PERIOD, TIMELESS or CRYPTOCHROME2 and positive transcription factors CLOCK and BMAL1/CYCLE. The molecular basis of circatidal (~12.4 hour) or other lunar-mediated cycles (~15 day, ~29 day), widely expressed in coastal organisms, is unknown. Disrupting circadian clockworks does not appear to affect lunar-based rhythms in several organisms that inhabit the shoreline suggesting a molecular independence of the two cycles. Nevertheless, pharmacological inhibition of casein kinase 1 (CK1) that targets PERIOD stability in mammals and flies, affects both circadian and circatidal phenotypes in Eurydice pulchra (Ep), the speckled sea-louse. Here we show that these drug inhibitors of CK1 also affect the phosphorylation of EpCLK and EpBMAL1 and disrupt EpCLK-BMAL1-mediated transcription in Drosophila S2 cells, revealing a potential link between these two positive circadian regulators and circatidal behaviour. We therefore performed dsRNAi knockdown of Epbmal1 as well as the major negative regulator in Eurydice, Epcry2 in animals taken from the wild. Epcry2 and Epbmal1 knockdown disrupted Eurydice's circadian phenotypes of chromatophore dispersion, tim mRNA cycling and the circadian modulation of circatidal swimming, as expected. However, circatidal behaviour was particularly sensitive to Epbmal1 knockdown with consistent effects on the power, amplitude and rhythmicity of the circatidal swimming cycle. Thus, three Eurydice negative circadian regulators, EpCRY2, in addition to EpPER and EpTIM (from a previous study), do not appear to be required for the expression of robust circatidal behaviour, in contrast to the positive regulator EpBMAL1. We suggest a neurogenetic model whereby the positive circadian regulators EpBMAL1-CLK are shared between circadian and circatidal mechanisms in Eurydice but circatidal rhythms require a novel, as yet unknown negative regulator.
Collapse
Affiliation(s)
- Zhang Lin
- Department of Genetics & Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Edward W. Green
- German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
| | - Simon G. Webster
- School of Biological Sciences, Bangor University, Bangor, United Kingdom
| | | | - David C. Wilcockson
- Department of Life Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | | |
Collapse
|
9
|
Pérez-Villa A, Echeverría-Garcés G, Ramos-Medina MJ, Prathap L, Martínez-López M, Ramírez-Sánchez D, García-Cárdenas JM, Armendáriz-Castillo I, Guerrero S, Paz C, López-Cortés A. Integrated multi-omics analysis reveals the molecular interplay between circadian clocks and cancer pathogenesis. Sci Rep 2023; 13:14198. [PMID: 37648722 PMCID: PMC10469199 DOI: 10.1038/s41598-023-39401-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023] Open
Abstract
Circadian rhythms (CRs) are fundamental biological processes that significantly impact human well-being. Disruption of these rhythms can trigger insufficient neurocognitive development, insomnia, mental disorders, cardiovascular diseases, metabolic dysfunctions, and cancer. The field of chronobiology has increased our understanding of how rhythm disturbances contribute to cancer pathogenesis, and how circadian timing influences the efficacy of cancer treatments. As the circadian clock steadily gains recognition as an emerging factor in tumorigenesis, a thorough and comprehensive multi-omics analysis of CR genes/proteins has never been performed. To shed light on this, we performed, for the first time, an integrated data analysis encompassing genomic/transcriptomic alterations across 32 cancer types (n = 10,918 tumors) taken from the PanCancer Atlas, unfavorable prognostic protein analysis, protein-protein interactomics, and shortest distance score pathways to cancer hallmark phenotypes. This data mining strategy allowed us to unravel 31 essential CR-related proteins involved in the signaling crossroad between circadian rhythms and cancer. In the context of drugging the clock, we identified pharmacogenomic clinical annotations and drugs currently in late phase clinical trials that could be considered as potential cancer therapeutic strategies. These findings highlight the diverse roles of CR-related genes/proteins in the realm of cancer research and therapy.
Collapse
Affiliation(s)
- Andy Pérez-Villa
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
- Programa de Investigación en Salud Global, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
| | - Gabriela Echeverría-Garcés
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Quito, Ecuador
| | - María José Ramos-Medina
- German Cancer Research Center (DKFZ), Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Lavanya Prathap
- Department of Anatomy, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mayra Martínez-López
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - David Ramírez-Sánchez
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Jennyfer M García-Cárdenas
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
- Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
| | - Isaac Armendáriz-Castillo
- Programa de Investigación en Salud Global, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
- Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Santiago Guerrero
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Clara Paz
- Grupo de Investigación Bienestar, Salud y Sociedad, Universidad de Las Américas, Quito, Ecuador
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador.
| |
Collapse
|
10
|
Hohor S, Mandanach C, Maftei A, Zugravu CA, Oțelea MR. Impaired Melatonin Secretion, Oxidative Stress and Metabolic Syndrome in Night Shift Work. Antioxidants (Basel) 2023; 12:antiox12040959. [PMID: 37107334 PMCID: PMC10135726 DOI: 10.3390/antiox12040959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic syndrome has been associated in many studies with working in shifts. Even if the mechanistic details are not fully understood, forced sleep deprivation and exposure to light, as happens during night shifts, or irregular schedules with late or very early onset of the working program, lead to a sleep-wake rhythm misalignment, metabolic dysregulation and oxidative stress. The cyclic melatonin secretion is regulated by the hypothalamic suprachiasmatic nuclei and light exposure. At a central level, melatonin promotes sleep and inhibits wake-signals. Beside this role, melatonin acts as an antioxidant and influences the functionality of the cardiovascular system and of different metabolic processes. This review presents data about the influence of night shifts on melatonin secretion and oxidative stress. Assembling data from epidemiological, experimental and clinical studies contributes to a better understanding of the pathological links between chronodisruption and the metabolic syndrome related to working in shifts.
Collapse
Affiliation(s)
- Sorina Hohor
- Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Cristina Mandanach
- Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Andreea Maftei
- Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
- "Dr. Carol Davila" Central Military Emergency University Hospital, 134 Calea Plevnei, Sector 1, 010242 Bucharest, Romania
| | - Corina Aurelia Zugravu
- Department of Hygiene and Ecology, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Marina Ruxandra Oțelea
- Clinical Department 5, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| |
Collapse
|
11
|
Lodovichi C, Ratto GM. Control of circadian rhythm on cortical excitability and synaptic plasticity. Front Neural Circuits 2023; 17:1099598. [PMID: 37063387 PMCID: PMC10098176 DOI: 10.3389/fncir.2023.1099598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/09/2023] [Indexed: 04/18/2023] Open
Abstract
Living organisms navigate through a cyclic world: activity, feeding, social interactions are all organized along the periodic succession of night and day. At the cellular level, periodic activity is controlled by the molecular machinery driving the circadian regulation of cellular homeostasis. This mechanism adapts cell function to the external environment and its crucial importance is underlined by its robustness and redundancy. The cell autonomous clock regulates cell function by the circadian modulation of mTOR, a master controller of protein synthesis. Importantly, mTOR integrates the circadian modulation with synaptic activity and extracellular signals through a complex signaling network that includes the RAS-ERK pathway. The relationship between mTOR and the circadian clock is bidirectional, since mTOR can feedback on the cellular clock to shift the cycle to maintain the alignment with the environmental conditions. The mTOR and ERK pathways are crucial determinants of synaptic plasticity and function and thus it is not surprising that alterations of the circadian clock cause defective responses to environmental challenges, as witnessed by the bi-directional relationship between brain disorders and impaired circadian regulation. In physiological conditions, the feedback between the intrinsic clock and the mTOR pathway suggests that also synaptic plasticity should undergo circadian regulation.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Padova Neuroscience Center, Universitá degli Studi di Padova, Padova, Italy
| | - Gian Michele Ratto
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Padova, Italy
- Padova Neuroscience Center, Universitá degli Studi di Padova, Padova, Italy
- National Enterprise for NanoScience and NanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
12
|
Chen X, Liu X, Gan X, Li S, Ma H, Zhang L, Wang P, Li Y, Huang T, Yang X, Fang L, Liang Y, Wu J, Chen T, Zhou Z, Liu X, Guo J. Differential regulation of phosphorylation, structure and stability of circadian clock protein FRQ isoforms. J Biol Chem 2023; 299:104597. [PMID: 36898580 PMCID: PMC10140173 DOI: 10.1016/j.jbc.2023.104597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 03/12/2023] Open
Abstract
Neurospora crassa is an important model for circadian clock research. The Neurospora core circadian component FRQ protein has two isoforms, large FRQ (l-FRQ) and small FRQ (s-FRQ), of which l-FRQ bears an additional N-terminal 99-amino acid fragment. However, how the FRQ isoforms operate differentially in regulating the circadian clock remains elusive. Here, we show l-FRQ and s-FRQ play different roles in regulating the circadian negative feedback loop. Compared to s-FRQ, l-FRQ is less stable at three temperatures, and undergoes hypophosphorylation and faster degradation. The phosphorylation of the C-terminal l-FRQ 794-aa fragment was markedly higher than that of s-FRQ, suggesting the l-FRQ N-terminal 99-aa region may regulate phosphorylation of the entire FRQ protein. Quantitative label-free LC/MS analysis identified several peptides that were differentially phosphorylated between l-FRQ and s-FRQ, which were distributed in FRQ in an interlaced fashion. Furthermore, we identified two novel phosphorylation sites, S765 and T781; mutations S765A and T781A showed no significant effects on conidiation rhythmicity, although T781 conferred FRQ stability. These findings demonstrate that FRQ isoforms play differential roles in the circadian negative feedback loop and undergo different regulation of phosphorylation, structure, and stability. The l-FRQ N-terminal 99-aa region plays an important role in regulating the phosphorylation, stability, conformation, and function of the FRQ protein. As the FRQ circadian clock counterparts in other species also have isoforms or paralogues, these findings will also further our understanding of the underlying regulatory mechanisms of the circadian clock in other organisms based on the high conservation of circadian clocks in eukaryotes.
Collapse
Affiliation(s)
- Xianyun Chen
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaolan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xihui Gan
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Silin Li
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huan Ma
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Peiliang Wang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yunzhen Li
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tianyu Huang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaolin Yang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Fang
- Sun Yat-sen University Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingying Liang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingjing Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tongyue Chen
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zengxuan Zhou
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinhu Guo
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
13
|
Wang B, Stevenson EL, Dunlap JC. Functional analysis of 110 phosphorylation sites on the circadian clock protein FRQ identifies clusters determining period length and temperature compensation. G3 (BETHESDA, MD.) 2023; 13:jkac334. [PMID: 36537198 PMCID: PMC9911066 DOI: 10.1093/g3journal/jkac334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/13/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
In the negative feedback loop driving the Neurospora circadian oscillator, the negative element, FREQUENCY (FRQ), inhibits its own expression by promoting phosphorylation of its heterodimeric transcriptional activators, White Collar-1 (WC-1) and WC-2. FRQ itself also undergoes extensive time-of-day-specific phosphorylation with over 100 phosphosites previously documented. Although disrupting individual or certain clusters of phosphorylation sites has been shown to alter circadian period lengths to some extent, it is still elusive how all the phosphorylations on FRQ control its activity. In this study, we systematically investigated the role in period determination of all 110 reported FRQ phosphorylation sites, using mutagenesis and luciferase reporter assays. Surprisingly, robust FRQ phosphorylation is still detected even when 84 phosphosites were eliminated altogether; further mutating another 26 phosphoresidues completely abolished FRQ phosphorylation. To identify phosphoresidue(s) on FRQ impacting circadian period length, a series of clustered frq phosphomutants covering all the 110 phosphosites were generated and examined for period changes. When phosphosites in the N-terminal and middle regions of FRQ were eliminated, longer periods were typically seen while removal of phosphorylation in the C-terminal tail resulted in extremely short periods, among the shortest reported. Interestingly, abolishing the 11 phosphosites in the C-terminal tail of FRQ not only results in an extremely short period, but also impacts temperature compensation (TC), yielding an overcompensated circadian oscillator. In addition, the few phosphosites in the middle of FRQ are also found to be crucial for TC. When different groups of FRQ phosphomutations were combined intramolecularly, expected additive effects were generally observed except for one novel case of intramolecular epistasis, where arrhythmicity resulting from one cluster of phosphorylation site mutants was restored by eliminating phosphorylation at another group of sites.
Collapse
Affiliation(s)
- Bin Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755, USA
| | - Elizabeth-Lauren Stevenson
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755, USA
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
14
|
Häfker NS, Andreatta G, Manzotti A, Falciatore A, Raible F, Tessmar-Raible K. Rhythms and Clocks in Marine Organisms. ANNUAL REVIEW OF MARINE SCIENCE 2023; 15:509-538. [PMID: 36028229 DOI: 10.1146/annurev-marine-030422-113038] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The regular movements of waves and tides are obvious representations of the oceans' rhythmicity. But the rhythms of marine life span across ecological niches and timescales, including short (in the range of hours) and long (in the range of days and months) periods. These rhythms regulate the physiology and behavior of individuals, as well as their interactions with each other and with the environment. This review highlights examples of rhythmicity in marine animals and algae that represent important groups of marine life across different habitats. The examples cover ecologically highly relevant species and a growing number of laboratory model systems that are used to disentangle key mechanistic principles. The review introduces fundamental concepts of chronobiology, such as the distinction between rhythmic and endogenous oscillator-driven processes. It also addresses the relevance of studying diverse rhythms and oscillators, as well as their interconnection, for making better predictions of how species will respond to environmental perturbations, including climate change. As the review aims to address scientists from the diverse fields of marine biology, ecology, and molecular chronobiology, all of which have their own scientific terms, we provide definitions of key terms throughout the article.
Collapse
Affiliation(s)
- N Sören Häfker
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Gabriele Andreatta
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Alessandro Manzotti
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR 7141, CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France;
| | - Angela Falciatore
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR 7141, CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France;
| | - Florian Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
15
|
Kamat PK, Khan MB, Smith C, Siddiqui S, Baban B, Dhandapani K, Hess DC. The time dimension to stroke: Circadian effects on stroke outcomes and mechanisms. Neurochem Int 2023; 162:105457. [PMID: 36442686 PMCID: PMC9839555 DOI: 10.1016/j.neuint.2022.105457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022]
Abstract
The circadian system is widely involved in the various pathological outcomes affected by time dimension changes. In the brain, the master circadian clock, also known as the "pacemaker," is present in the hypothalamus's suprachiasmatic nucleus (SCN). The SCN consists of molecular circadian clocks that operate in each neuron and other brain cells. These circadian mechanisms are controlled by the transcription and translation of specific genes such as the clock circadian regulator (Clock) and brain and muscle ARNT-Like 1 (Bmal1). Period (Per1-3) and cryptochrome (Cry1 and 2) negatively feedback and regulate the clock genes. Variations in the circadian cycle and these clock genes can affect stroke outcomes. Studies suggest that the peak stroke occurs in the morning after patients awaken from sleep, while stroke severity and poor outcomes worsen at midnight. The main risk factor associated with stroke is high blood pressure (hypertension). Blood pressure usually dips by 15-20% during sleep, but many hypertensives do not display this normal dipping pattern and are non-dippers. A sleep blood pressure is the primary determinant of stroke risk. This article discusses the possible mechanism associated with circadian rhythm and stroke outcomes.
Collapse
Affiliation(s)
- Pradip K Kamat
- Departments of Neurology, Medical College of Georgia, Augusta University, USA.
| | | | - Cameron Smith
- Departments of Neurology, Medical College of Georgia, Augusta University, USA
| | - Shahneela Siddiqui
- Departments of Neurology, Medical College of Georgia, Augusta University, USA
| | - Babak Baban
- Departments of Oral Biology, Dental College of Georgia, Augusta University, USA
| | - Krishnan Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, USA
| | - David C Hess
- Departments of Neurology, Medical College of Georgia, Augusta University, USA
| |
Collapse
|
16
|
Petrenko V, Sinturel F, Loizides-Mangold U, Montoya JP, Chera S, Riezman H, Dibner C. Type 2 diabetes disrupts circadian orchestration of lipid metabolism and membrane fluidity in human pancreatic islets. PLoS Biol 2022; 20:e3001725. [PMID: 35921354 PMCID: PMC9348689 DOI: 10.1371/journal.pbio.3001725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022] Open
Abstract
Recent evidence suggests that circadian clocks ensure temporal orchestration of lipid homeostasis and play a role in pathophysiology of metabolic diseases in humans, including type 2 diabetes (T2D). Nevertheless, circadian regulation of lipid metabolism in human pancreatic islets has not been explored. Employing lipidomic analyses, we conducted temporal profiling in human pancreatic islets derived from 10 nondiabetic (ND) and 6 T2D donors. Among 329 detected lipid species across 8 major lipid classes, 5% exhibited circadian rhythmicity in ND human islets synchronized in vitro. Two-time point-based lipidomic analyses in T2D human islets revealed global and temporal alterations in phospho- and sphingolipids. Key enzymes regulating turnover of sphingolipids were rhythmically expressed in ND islets and exhibited altered levels in ND islets bearing disrupted clocks and in T2D islets. Strikingly, cellular membrane fluidity, measured by a Nile Red derivative NR12S, was reduced in plasma membrane of T2D diabetic human islets, in ND donors’ islets with disrupted circadian clockwork, or treated with sphingolipid pathway modulators. Moreover, inhibiting the glycosphingolipid biosynthesis led to strong reduction of insulin secretion triggered by glucose or KCl, whereas inhibiting earlier steps of de novo ceramide synthesis resulted in milder inhibitory effect on insulin secretion by ND islets. Our data suggest that circadian clocks operative in human pancreatic islets are required for temporal orchestration of lipid homeostasis, and that perturbation of temporal regulation of the islet lipid metabolism upon T2D leads to altered insulin secretion and membrane fluidity. These phenotypes were recapitulated in ND islets bearing disrupted clocks.
Collapse
Affiliation(s)
- Volodymyr Petrenko
- Thoracic and Endocrine Surgery Division, Department of Surgery, University Hospital of Geneva, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - Flore Sinturel
- Thoracic and Endocrine Surgery Division, Department of Surgery, University Hospital of Geneva, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - Ursula Loizides-Mangold
- Thoracic and Endocrine Surgery Division, Department of Surgery, University Hospital of Geneva, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - Jonathan Paz Montoya
- Proteomics Core Facility, EPFL, Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Simona Chera
- Thoracic and Endocrine Surgery Division, Department of Surgery, University Hospital of Geneva, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Howard Riezman
- Department of Biochemistry, Faculty of Science, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Charna Dibner
- Thoracic and Endocrine Surgery Division, Department of Surgery, University Hospital of Geneva, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
- * E-mail:
| |
Collapse
|
17
|
Fagiani F, Baronchelli E, Pittaluga A, Pedrini E, Scacchi C, Govoni S, Lanni C. The Circadian Molecular Machinery in CNS Cells: A Fine Tuner of Neuronal and Glial Activity With Space/Time Resolution. Front Mol Neurosci 2022; 15:937174. [PMID: 35845604 PMCID: PMC9283971 DOI: 10.3389/fnmol.2022.937174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
The circadian molecular machinery is a fine timekeeper with the capacity to harmonize physiological and behavioral processes with the external environment. This tight-knit regulation is coordinated by multiple cellular clocks across the body. In this review, we focus our attention on the molecular mechanisms regulated by the clock in different brain areas and within different cells of the central nervous system. Further, we discuss evidence regarding the role of circadian rhythms in the regulation of neuronal activity and neurotransmitter systems. Not only neurons, but also astrocytes and microglia actively participate in the maintenance of timekeeping within the brain, and the diffusion of circadian information among these cells is fine-tuned by neurotransmitters (e.g., dopamine, serotonin, and γ-aminobutyric acid), thus impacting on the core clock machinery. The bidirectional interplay between neurotransmitters and the circadian clockwork is fundamental in maintaining accuracy and precision in daily timekeeping throughout different brain areas. Deepening the knowledge of these correlations allows us to define the basis of drug interventions to restore circadian rhythms, as well as to predict the onset of drug treatment/side effects that might promote daily desynchronization. Furthermore, it may lead to a deeper understanding of the potential impacts of modulations in rhythmic activities on the pace of aging and provide an insight in to the pathogenesis of psychiatric diseases and neurodegenerative disorders.
Collapse
Affiliation(s)
- Francesca Fagiani
- Institute of Experimental Neurology, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Eva Baronchelli
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Anna Pittaluga
- Department of Pharmacy (DiFar), School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
- Center of Excellence for Biomedical Research, 3Rs Center, University of Genoa, Genoa, Italy
| | - Edoardo Pedrini
- Institute of Experimental Neurology, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Chiara Scacchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Cristina Lanni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
- Centro 3R (Inter-University Center for the Promotion of the 3Rs Principles in Teaching and Research), Italy
- *Correspondence: Cristina Lanni
| |
Collapse
|
18
|
Protein interaction networks of the mammalian core clock proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 131:207-233. [PMID: 35871891 DOI: 10.1016/bs.apcsb.2022.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Circadian rhythm is a 24-h cycle that regulates the biochemical and behavioral changes of organisms. It controls a wide range of functions, from gene expression to behavior, allowing organisms to anticipate daily changes in their environment. In mammals, circadian rhythm is generated by a complex transcriptional and translational feedback loop mechanism. The binding of CLOCK/BMAL1 heterodimer to the E-box of DNA located within the promoter region initiates transcription of clock control genes including the transcription of the other two core clock genes of Periods (Pers) and Cryptochromes (Crys). Then PERs and CRYs along with casein kinase 1ɛ/Δ translocate into the nucleus where they suppress CLOCK/BMAL1 transactivation and, in turn, clock-regulated gene expression. Various clock components must be operational to aid in their stabilization and period extension in circadian rhythm. In this review, we have highlighted the recent progress for the core clock interacting proteins to maintain and to stabilize circadian rhythm in mammals.
Collapse
|
19
|
Physical Interaction between Cyclin-Dependent Kinase 5 (CDK5) and Clock Factors Affects the Circadian Rhythmicity in Peripheral Oscillators. Clocks Sleep 2022; 4:185-201. [PMID: 35323171 PMCID: PMC8946863 DOI: 10.3390/clockssleep4010017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/22/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022] Open
Abstract
Circadian rhythms are self-sustained oscillators with a period of 24 h that is based on the output of transcriptional and post-translational feedback loops. Phosphorylation is considered one of the most important post-translational modifications affecting rhythmicity from cyanobacteria to mammals. For example, the lack of cyclin-dependent kinase 5 (CDK5) shortened the period length of the circadian oscillator in the Suprachiasmatic Nuclei (SCN) of mice via the destabilization of the PERIOD 2 (PER2) protein. Here, we show that CDK5 kinase activity and its interaction with clock components, including PER2 and CLOCK, varied over time in mouse embryonic fibroblast cells. Furthermore, the deletion of Cdk5 from cells resulted in a prolonged period and shifted the transcription of clock-controlled genes by about 2 to 4 h with a simple delay of chromatin binding of ARNTL (BMAL1) CLOCK. Taken together, our data indicate that CDK5 is critically involved in regulating the circadian clock in vitro at the molecular level.
Collapse
|
20
|
Kumar D, Jahan S. Circadian Liver Metabolism Affects Management of Type 2 Diabetes Mellitus During Cytokine Storm Due to COVID-19. CHRONOBIOLOGY IN MEDICINE 2021; 3:129-136. [DOI: 10.33069/cim.2021.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 10/30/2021] [Indexed: 01/03/2025]
Abstract
Diabetes is managed to keep the blood sugar in normal range. This involves liver as glucose metabolizing organ and sensitization of somatic cells to utilize this glucose for daily energy requirements. The management is subjected to the rhythmic glucose intake as diet and liver circadian cycles that runs parallel to this zeitgeber. COVID-19 patients having diabetes as comorbid condition face the challenges of inflammatory cytokine management along with the organization of glucose. Increased blood glucose level during the cytokine storm further aggravates the pathophysiology of COVID-19 patients leading to high morbidity and mortality in such patients. Clinical treatment of these patients requires multidimensional approach involving circadian variation of hepatic physiology, glucose intake, and inflammatory cytokine release.
Collapse
|
21
|
Aviram R, Dandavate V, Manella G, Golik M, Asher G. Ultradian rhythms of AKT phosphorylation and gene expression emerge in the absence of the circadian clock components Per1 and Per2. PLoS Biol 2021; 19:e3001492. [PMID: 34968386 PMCID: PMC8718012 DOI: 10.1371/journal.pbio.3001492] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
Rhythmicity of biological processes can be elicited either in response to environmental cycles or driven by endogenous oscillators. In mammals, the circadian clock drives about 24-hour rhythms of multitude metabolic and physiological processes in anticipation to environmental daily oscillations. Also at the intersection of environment and metabolism is the protein kinase—AKT. It conveys extracellular signals, primarily feeding-related signals, to regulate various key cellular functions. Previous studies in mice identified rhythmicity in AKT activation (pAKT) with elevated levels in the fed state. However, it is still unknown whether rhythmic AKT activation can be driven through intrinsic mechanisms. Here, we inspected temporal changes in pAKT levels both in cultured cells and animal models. In cultured cells, pAKT levels showed circadian oscillations similar to those observed in livers of wild-type mice under free-running conditions. Unexpectedly, in livers of Per1,2−/− but not of Bmal1−/− mice we detected ultradian (about 16 hours) oscillations of pAKT levels. Importantly, the liver transcriptome of Per1,2−/− mice also showed ultradian rhythms, corresponding to pAKT rhythmicity and consisting of AKT-related genes and regulators. Overall, our findings reveal ultradian rhythms in liver gene expression and AKT phosphorylation that emerge in the absence of environmental rhythms and Per1,2−/− genes. This study reveals ultradian (16-hour) rhythms in the activation of the protein kinase AKT in the livers of mice, accompanied by corresponding downstream changes in gene expression. Intriguingly, these oscillations emerge in the absence of rhythmic environmental cues and in mice lacking the circadian clock proteins Per1 and Per2.
Collapse
Affiliation(s)
- Rona Aviram
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Vaishnavi Dandavate
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gal Manella
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Marina Golik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
22
|
Juste YR, Kaushik S, Bourdenx M, Aflakpui R, Bandyopadhyay S, Garcia F, Diaz A, Lindenau K, Tu V, Krause GJ, Jafari M, Singh R, Muñoz J, Macian F, Cuervo AM. Reciprocal regulation of chaperone-mediated autophagy and the circadian clock. Nat Cell Biol 2021; 23:1255-1270. [PMID: 34876687 PMCID: PMC8688252 DOI: 10.1038/s41556-021-00800-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/22/2021] [Indexed: 01/02/2023]
Abstract
Circadian rhythms align physiological functions with the light-dark cycle through oscillatory changes in the abundance of proteins in the clock transcriptional programme. Timely removal of these proteins by different proteolytic systems is essential to circadian strength and adaptability. Here we show a functional interplay between the circadian clock and chaperone-mediated autophagy (CMA), whereby CMA contributes to the rhythmic removal of clock machinery proteins (selective chronophagy) and to the circadian remodelling of a subset of the cellular proteome. Disruption of this autophagic pathway in vivo leads to temporal shifts and amplitude changes of the clock-dependent transcriptional waves and fragmented circadian patterns, resembling those in sleep disorders and ageing. Conversely, loss of the circadian clock abolishes the rhythmicity of CMA, leading to pronounced changes in the CMA-dependent cellular proteome. Disruption of this circadian clock/CMA axis may be responsible for both pathways malfunctioning in ageing and for the subsequently pronounced proteostasis defect.
Collapse
Affiliation(s)
- Yves R Juste
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mathieu Bourdenx
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ranee Aflakpui
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Fernando Garcia
- Proteomic Unit, Spanish National Cancer Research Center (CNIO) Proteored-ISCIII, Madrid, Spain
| | - Antonio Diaz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kristen Lindenau
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vincent Tu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gregory J Krause
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maryam Jafari
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rajat Singh
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Javier Muñoz
- Proteomic Unit, Spanish National Cancer Research Center (CNIO) Proteored-ISCIII, Madrid, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Fernando Macian
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
23
|
Yan J, Li S, Kim YJ, Zeng Q, Radziejwoski A, Wang L, Nomura Y, Nakagami H, Somers DE. TOC1 clock protein phosphorylation controls complex formation with NF-YB/C to repress hypocotyl growth. EMBO J 2021; 40:e108684. [PMID: 34726281 DOI: 10.15252/embj.2021108684] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/09/2022] Open
Abstract
Plant photoperiodic growth is coordinated by interactions between circadian clock and light signaling networks. How post-translational modifications of clock proteins affect these interactions to mediate rhythmic growth remains unclear. Here, we identify five phosphorylation sites in the Arabidopsis core clock protein TIMING OF CAB EXPRESSION 1 (TOC1) which when mutated to alanine eliminate detectable phosphorylation. The TOC1 phospho-mutant fails to fully rescue the clock, growth, and flowering phenotypes of the toc1 mutant. Further, the TOC1 phospho-mutant shows advanced phase, a faster degradation rate, reduced interactions with PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) and HISTONE DEACETYLASE 15 (HDA15), and poor binding at pre-dawn hypocotyl growth-related genes (PHGs), leading to a net de-repression of hypocotyl growth. NUCLEAR FACTOR Y subunits B and C (NF-YB/C) stabilize TOC1 at target promoters, and this novel trimeric complex (NF-TOC1) acts as a transcriptional co-repressor with HDA15 to inhibit PIF-mediated hypocotyl elongation. Collectively, we identify a molecular mechanism suggesting how phosphorylation of TOC1 alters its phase, stability, and physical interactions with co-regulators to precisely phase PHG expression to control photoperiodic hypocotyl growth.
Collapse
Affiliation(s)
- Jiapei Yan
- Molecular Genetics, Ohio State University, Columbus, OH, USA
| | - Shibai Li
- Molecular Genetics, Ohio State University, Columbus, OH, USA.,Memorial Sloan Kettering Cancer Center, Molecular Biology Program, New York, NY, USA
| | - Yeon Jeong Kim
- Molecular Genetics, Ohio State University, Columbus, OH, USA
| | - Qingning Zeng
- Molecular Genetics, Ohio State University, Columbus, OH, USA
| | | | - Lei Wang
- Molecular Genetics, Ohio State University, Columbus, OH, USA.,The Chinese Academy of Sciences, Institute of Botany, Beijing, China
| | - Yuko Nomura
- RIKEN Center for Sustainable Resource Science (CSRS), Plant Proteomics Research Unit, Yokohama, Japan
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science (CSRS), Plant Proteomics Research Unit, Yokohama, Japan.,Max Planck Institute for Plant Breeding Research, Protein Mass Spectrometry, Cologne, Germany
| | - David E Somers
- Molecular Genetics, Ohio State University, Columbus, OH, USA.,POSTECH, Division of Integrative Biosciences and Biotechnology, Pohang, South Korea
| |
Collapse
|
24
|
Ruta V, Pagliarini V, Sette C. Coordination of RNA Processing Regulation by Signal Transduction Pathways. Biomolecules 2021; 11:biom11101475. [PMID: 34680108 PMCID: PMC8533259 DOI: 10.3390/biom11101475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Signal transduction pathways transmit the information received from external and internal cues and generate a response that allows the cell to adapt to changes in the surrounding environment. Signaling pathways trigger rapid responses by changing the activity or localization of existing molecules, as well as long-term responses that require the activation of gene expression programs. All steps involved in the regulation of gene expression, from transcription to processing and utilization of new transcripts, are modulated by multiple signal transduction pathways. This review provides a broad overview of the post-translational regulation of factors involved in RNA processing events by signal transduction pathways, with particular focus on the regulation of pre-mRNA splicing, cleavage and polyadenylation. The effects of several post-translational modifications (i.e., sumoylation, ubiquitination, methylation, acetylation and phosphorylation) on the expression, subcellular localization, stability and affinity for RNA and protein partners of many RNA-binding proteins are highlighted. Moreover, examples of how some of the most common signal transduction pathways can modulate biological processes through changes in RNA processing regulation are illustrated. Lastly, we discuss challenges and opportunities of therapeutic approaches that correct RNA processing defects and target signaling molecules.
Collapse
Affiliation(s)
- Veronica Ruta
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Correspondence:
| |
Collapse
|
25
|
Sujino M, Koinuma S, Minami Y, Shigeyoshi Y. Heavy Water Lengthens the Molecular Circadian Clock Period in the Suprachiasmatic Nucleus of Mice In Vitro. J Biol Rhythms 2021; 36:410-418. [PMID: 33969745 DOI: 10.1177/07487304211012905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heavy water lengthens the periods of circadian rhythms in various plant and animal species. Many studies have reported that drinking heavy water lengthens the periods of circadian activity rhythms of rodents by slowing the clock mechanism in the suprachiasmatic nucleus (SCN), the mammalian circadian center. The SCN clock is stable and robust against disturbance, due to its intercellular network. It is unclear whether this robustness provides resistance to the effects of heavy water. Here, we report that heavy water lengthened the rhythm period of clock gene expression of the SCN and peripheral tissues in vitro using a PERIOD2::LUCIFERASE bioluminescence reporter. Our results show that the period-elongation rate of the SCN is similar to those of other tissues. Therefore, the intercellular network of the SCN is not resistant to the period-elongation effect of heavy water.
Collapse
Affiliation(s)
- Mitsugu Sujino
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Satoshi Koinuma
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Yoichi Minami
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| |
Collapse
|
26
|
Parnell AA, De Nobrega AK, Lyons LC. Translating around the clock: Multi-level regulation of post-transcriptional processes by the circadian clock. Cell Signal 2021; 80:109904. [PMID: 33370580 PMCID: PMC8054296 DOI: 10.1016/j.cellsig.2020.109904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
The endogenous circadian clock functions to maintain optimal physiological health through the tissue specific coordination of gene expression and synchronization between tissues of metabolic processes throughout the 24 hour day. Individuals face numerous challenges to circadian function on a daily basis resulting in significant incidences of circadian disorders in the United States and worldwide. Dysfunction of the circadian clock has been implicated in numerous diseases including cancer, diabetes, obesity, cardiovascular and hepatic abnormalities, mood disorders and neurodegenerative diseases. The circadian clock regulates molecular, metabolic and physiological processes through rhythmic gene expression via transcriptional and post-transcriptional processes. Mounting evidence indicates that post-transcriptional regulation by the circadian clock plays a crucial role in maintaining tissue specific biological rhythms. Circadian regulation affecting RNA stability and localization through RNA processing, mRNA degradation, and RNA availability for translation can result in rhythmic protein synthesis, even when the mRNA transcripts themselves do not exhibit rhythms in abundance. The circadian clock also targets the initiation and elongation steps of translation through multiple pathways. In this review, the influence of the circadian clock across the levels of post-transcriptional, translation, and post-translational modifications are examined using examples from humans to cyanobacteria demonstrating the phylogenetic conservation of circadian regulation. Lastly, we briefly discuss chronotherapies and pharmacological treatments that target circadian function. Understanding the complexity and levels through which the circadian clock regulates molecular and physiological processes is important for future advancement of therapeutic outcomes.
Collapse
Affiliation(s)
- Amber A Parnell
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
27
|
Costa R, Montagnese S. The role of astrocytes in generating circadian rhythmicity in health and disease. J Neurochem 2021; 157:42-52. [PMID: 33539604 DOI: 10.1111/jnc.15312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 01/26/2023]
Abstract
Evidence is accumulating that the mammalian circadian clock system is considerably more complex than previously believed, also in terms of the cell types that actually contribute to generating the oscillation within the master clock, in the suprachiasmatic nuclei of the hypothalamus. Here we review the evidence that has lead to the identification of a bona fide astrocytic circadian clock, and that of the potential contribution of such clock to the generation of circadian and seasonal rhythmicity in health and in neurodegenerative disorders. Finally, we speculate on the role of the astrocytic clock in determining some of the clinical features of hepatic encephalopathy, a reversible neuropsychiatric syndrome associated with advanced liver disease, which is characterized by transient, profound morphological and functional astrocytic abnormalities, in the absence of significant, structural neuronal changes.
Collapse
Affiliation(s)
- Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy
| | | |
Collapse
|