1
|
Li H, Yin Y, Cao W, Chen S, Chen J, Xing Y, Yang H. Enhanced autophagy and cholesterol efflux in mouse mesenchymal stem cells infected with H37Rv compared to H37Ra. Microb Pathog 2024; 199:107199. [PMID: 39653283 DOI: 10.1016/j.micpath.2024.107199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Autophagy, metabolism, and associated signaling pathways play critical roles in bacterial survival within mammalian cells and influence the immunopathogenesis of infections. Mesenchymal stem cells (MSCs) are important host cells during Mycobacterium tuberculosis (Mtb) infection, yet how autophagy, metabolism, and related pathways are modulated in MSCs infected with the virulent H37Rv or the attenuated H37Ra strain of Mtb remains poorly understood. In this study, we utilized RNA-Seq screening, qRT-PCR, and Western Blotting to investigate the differences in these processes between H37Rv and H37Ra infections. Our results show that, at early time points (no more than 24h), infection with H37Rv significantly increased the expression of TlLR2, Prkaa2, and Prkaa2 phosphorylation in MSCs compared with H37Ra infection. Further analysis revealed that H37Rv infection induced a stronger autophagic response (evidenced by increased Atg9b and LC3II/LC3I) through the TLR2-AMP-AMPK pathway than H37Ra infection. Despite these differences in autophagy, there was no statistically significant difference in bacillary loads, suggesting that, in addition to autophagy, other factors such as apoptosis and immune-inflammatory responses may also regulate Mtb growth in MSCs. Additionally, the metabolic analysis showed that H37Rv infection led to increased expression of SLC2A3, PFKFB3, HK1, and ABCA1 in MSCs compared to H37Ra infection. These findings confirm that, during the early stages of infection, H37Rv induces enhanced autophagy, glucose metabolism, and cholesterol efflux through a more active TLR2-AMP-AMPK pathway than H37Ra. Therefore, MSCs may represent a novel target for the prevention and treatment of tuberculosis.
Collapse
Affiliation(s)
- Heng Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yan Yin
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Wei Cao
- Institute of Health, Shanghai Institute of Life Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shichao Chen
- College of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Jianxia Chen
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; TB Department, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yanchun Xing
- Department of Medicine, Anhui Huangshan Vocational and Technical College, Huangshan, Anhui, 245000, China.
| | - Hong Yang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; TB Department, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
2
|
Wu T, Yu Z, Dai J, Li J, Ning F, Liu X, Zhu N, Zhang X. JPH203 alleviates peritoneal fibrosis via inhibition of amino acid-mediated mTORC1 signaling. Biochem Biophys Res Commun 2024; 734:150656. [PMID: 39362029 DOI: 10.1016/j.bbrc.2024.150656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND AND AIMS The mesothelial-mesenchymal transition (MMT) of mesothelial cells has been recognized as a critical process during progression of peritoneal fibrosis (PF). Despite its crucial role in amino acid transport and metabolism, the involvement of L-type amino acid transporter 1 (LAT1) and the potential therapeutic role of its inhibitor, JPH203, in fibrotic diseases remain unexplored. Considering the paucity of research on amino acid-mediated mTORC1 activation in PF, our study endeavors to elucidate the protective effects of JPH203 against PF and explore the involvement of amino acid-mediated mTORC1 signaling in this context. METHODS We established the transforming growth factor beta 1 (TGF-β1) induced MMT model in primary human mesothelial cells and the peritoneal dialysis fluid (PDF) induced PF model in mice. The therapeutic effects of JPH203 on PF were then examined on these two models by real-time quantitative polymerase chain reaction, western blotting, immunofluorescence staining, Masson's trichrome staining, H&E staining, picro-sirius red staining, and immunohistochemistry. The involvement of amino acid-mediated mTORC1 signaling was screened by RNA sequencing and further verified by western blotting in vitro. RESULTS LAT1 was significantly upregulated and JPH203 markedly attenuated fibrotic phenotype both in vitro and in vivo. RNA-seq unveiled a significant enrichment of mTOR signaling pathway in response to JPH203 treatment. Western blotting results indicated that JPH203 alleviates PF by inhibiting amino acid-mediated mTORC1 signaling, which differs from the direct inhibition observed with rapamycin. CONCLUSION JPH203 alleviates PF by inhibiting amino acid-mediated mTORC1 signaling.
Collapse
Affiliation(s)
- Tiangang Wu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Zanzhe Yu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Junhao Dai
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiayang Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Fengling Ning
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xin Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Nan Zhu
- Department of Nephrology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; School of Pharmacy, East China Normal University, Shanghai, China.
| |
Collapse
|
3
|
Lee MM, Chou YX, Huang SH, Cheng HT, Liu CH, Huang GJ. Renoprotective Effects of Brown-Strain Flammulina velutipes Singer in Chronic Kidney Disease-Induced Mice Through Modulation of Oxidative Stress and Inflammation and Regulation of Renal Transporters. Int J Mol Sci 2024; 25:12096. [PMID: 39596166 PMCID: PMC11593982 DOI: 10.3390/ijms252212096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Cisplatin, widely used in chemotherapy, acts through mechanisms such as oxidative stress to damage the DNA and cause the apoptosis of cancer cells. Although effective, cisplatin treatment is associated with considerable side effects including chronic kidney disease (CKD). Studies on brown-strain Flammulina velutipes Singer (FVB) have shown its significant antioxidant and immunomodulatory effects. High-performance liquid chromatography (HPLC) confirmed that the FVB extract contained gallic acid and quercetin. This study investigated whether FVB extract can improve and protect against cisplatin-induced CKD in mice. C57BL/6 mice were used as an animal model, and CKD was induced through intraperitoneal cisplatin injection. FVB was orally administered to the mice for 14 consecutive days. N-acetylcysteine (NAC) was administered in the positive control group. Organ pathology and serum biochemical analyses were conducted after the mice were sacrificed. Significant dose-dependent differences were discovered in body mass, kidney mass, histopathology, renal function, inflammatory factors, and antioxidant functions among the different groups. FVB extract reduced the severity of cisplatin-induced CKD in pathways related to inflammation, autophagy, apoptosis, fibrosis, oxidative stress, and organic ion transport proteins; FVB extract, thus, displays protective physiological activity in kidney cells. Additionally, orally administered high doses of the FVB extract resulted in significantly superior renal function, inflammatory factors, antioxidative activity, and fibrotic pathways. This study establishes a strategy for future clinical adjunctive therapy using edible-mushroom-derived FVB extract to protect kidney function.
Collapse
Affiliation(s)
- Min-Min Lee
- Department of Food Nutrition and Healthy Biotechnology, College of Medical and Health Sciences, Asia University, Taichung 413, Taiwan; (M.-M.L.); (Y.-X.C.); (H.-T.C.)
| | - Yun-Xuan Chou
- Department of Food Nutrition and Healthy Biotechnology, College of Medical and Health Sciences, Asia University, Taichung 413, Taiwan; (M.-M.L.); (Y.-X.C.); (H.-T.C.)
| | - Sheng-Hsiung Huang
- Department of Healthcare Administration, Asia University, Taichung 413, Taiwan;
| | - Hsu-Tang Cheng
- Department of Food Nutrition and Healthy Biotechnology, College of Medical and Health Sciences, Asia University, Taichung 413, Taiwan; (M.-M.L.); (Y.-X.C.); (H.-T.C.)
- Department of Surgery, Asia University Hospital, Taichung 413, Taiwan
| | - Chung-Hsiang Liu
- Department of Neurology, China Medical University Hospital, China Medical University, Taichung 404, Taiwan;
| | - Guan-Jhong Huang
- Department of Food Nutrition and Healthy Biotechnology, College of Medical and Health Sciences, Asia University, Taichung 413, Taiwan; (M.-M.L.); (Y.-X.C.); (H.-T.C.)
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
4
|
Kang Y, Liu Y, Fu P, Ma L. Peritoneal fibrosis: from pathophysiological mechanism to medicine. Front Physiol 2024; 15:1438952. [PMID: 39301425 PMCID: PMC11411570 DOI: 10.3389/fphys.2024.1438952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
Peritoneal dialysis (PD) is currently one of the effective methods for treating end-stage renal disease (ESRD). However, long-term exposure to high concentration glucose in peritoneal dialysis environment could lead to peritoneal fibrosis (PF), impaired peritoneal filtration function, decreased peritoneal dialysis efficiency, and even withdrawal from peritoneal dialysis in patients. Considerable evidence suggests that peritoneal fibrosis after peritoneal dialysis is related to crucial factors such as mesothelial-to-mesenchymal transition (MMT), inflammatory response, and angiogenesis, etc. In our review, we summarize the pathophysiological mechanisms and further illustrate the future strategies against PF.
Collapse
Affiliation(s)
- Yingxi Kang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Liu
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Fu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Liang Ma
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
5
|
He H, Sun S, Xu W, Zhang M. Network Pharmacology Followed by Experimental Validation to Explore the Mechanism of Stigmasterol in Sangbaipi Decoction Regulating PI3K/Akt Signaling to Alleviate Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2024; 19:1819-1834. [PMID: 39140079 PMCID: PMC11319098 DOI: 10.2147/copd.s459814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
Purpose Sangbaipi decoction (SBPD), a traditional Chinese medicine (TCM) prescription, has been widely used to treat acute exacerbation of chronic obstructive pulmonary disease (AECOPD), while the underlying pharmacological mechanism remains unclear due to the complexity of composition. Methods A TCM-active ingredient-drug target network of SBPD was constructed utilizing the TCM-Systems-Pharmacology database. AECOPD-relevant proteins were gathered from Gene Cards and the Online-Mendelian-Inheritance-in-Man database. Protein-protein interaction, GO and KEGG enrichment analyses of the targets from the intersection of SBPD and AECOPD targets were performed to identify the core signaling pathway, followed by molecular docking verification of its interaction with active ingredients. The network pharmacology results were checked using in-vivo experiments. To induce AECOPD, rats were exposure to combined tobacco smoke and lipopolysaccharide (LPS). Then rats underwent gavage with stigmasterol (SM) after successful modeling. The involvement of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling was investigated using its inhibitor, LY294002. Lung function and histopathology were examined. The levels of inflammatory cytokines in the lung and serum were assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blot and/or Enzyme-linked immunosorbent assay (ELISA). Results SM was recognized as an active ingredient of SBPD and stably bound to Akt1. SM improved lung function and histological abnormalities, concomitant with suppressed PI3K/Akt signaling, downregulated lung and serum Interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) levels and serum transforming growth factor-β (TGF-β) levels and upregulated lung and serum Interleukin 10 (IL-10) levels in AECOPD rats. In AECOPD rats, LY294002 restored lung function, and it also improved lung histological abnormalities and inflammation, which was found to be potentiated by SM. Conclusion SM targets PI3K/Akt signaling to reduce lung injury and inflammation in AECOPD rats.
Collapse
Affiliation(s)
- Haidong He
- Department of Pulmonary and Critical Care Medicine, Tongde Hospital of Zhejiang Province, Hangzhou City, Zhejiang Province, People’s Republic of China
| | - Shuihua Sun
- Department of Medical Oncology, Tongde Hospital of Zhejiang Province, Hangzhou City, Zhejiang Province, People’s Republic of China
| | - Weihua Xu
- Department of Pulmonary and Critical Care Medicine, Tongde Hospital of Zhejiang Province, Hangzhou City, Zhejiang Province, People’s Republic of China
| | - Mingwan Zhang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou City, Zhejiang Province, People’s Republic of China
| |
Collapse
|
6
|
Liao H, Wang Y, Zou L, Fan Y, Wang X, Tu X, Zhu Q, Wang J, Liu X, Dong C. Relationship of mTORC1 and ferroptosis in tumors. Discov Oncol 2024; 15:107. [PMID: 38583115 PMCID: PMC10999401 DOI: 10.1007/s12672-024-00954-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/28/2024] [Indexed: 04/08/2024] Open
Abstract
Ferroptosis is a novel form of programmed death, dependent on iron ions and oxidative stress, with a predominant intracellular form of lipid peroxidation. In recent years, ferroptosis has gained more and more interest of people in the treatment mechanism of targeted tumors. mTOR, always overexpressed in the tumor, and controlling cell growth and metabolic activities, has an important role in both autophagy and ferroptosis. Interestingly, the selective types of autophay plays an important role in promoting ferroptosis, which is related to mTOR and some metabolic pathways (especially in iron and amino acids). In this paper, we list the main mechanisms linking ferroptosis with mTOR signaling pathway and further summarize the current compounds targeting ferroptosis in these ways. There are growing experimental evidences that targeting mTOR and ferroptosis may have effective impact in many tumors, and understanding the mechanisms linking mTOR to ferroptosis could provide a potential therapeutic approach for tumor treatment.
Collapse
Affiliation(s)
- Huilin Liao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei, China, 443002
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China, 443002
| | - Yueqing Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei, China, 443002
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China, 443002
| | - Lili Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei, China, 443002
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China, 443002
| | - Yanmei Fan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei, China, 443002
| | - Xinyue Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei, China, 443002
| | - Xiancong Tu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei, China, 443002
| | - Qiaobai Zhu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei, China, 443002
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China, 443002
| | - Jun Wang
- The People's Hospital of China Three Gorges University and The First People's Hospital of Yichang, Yichang, Hubei, China, 443002
| | - Xiaowen Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei, China, 443002.
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China, 443002.
| | - Chuanjiang Dong
- Department of Urology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China, 523000.
| |
Collapse
|
7
|
Li S, Zhuang Y, Ji Y, Chen X, He L, Chen S, Luo Y, Shen L, Xiao J, Wang H, Luo C, Peng F, Long H. BRG1 accelerates mesothelial cell senescence and peritoneal fibrosis by inhibiting mitophagy through repression of OXR1. Free Radic Biol Med 2024; 214:54-68. [PMID: 38311259 DOI: 10.1016/j.freeradbiomed.2024.01.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Peritoneal mesothelial cell senescence promotes the development of peritoneal dialysis (PD)-related peritoneal fibrosis. We previously revealed that Brahma-related gene 1 (BRG1) is increased in peritoneal fibrosis yet its role in modulating peritoneal mesothelial cell senescence is still unknown. This study evaluated the mechanism of BRG1 in peritoneal mesothelial cell senescence and peritoneal fibrosis using BRG1 knockdown mice, primary peritoneal mesothelial cells and human peritoneal samples from PD patients. The augmentation of BRG1 expression accelerated peritoneal mesothelial cell senescence, which attributed to mitochondrial dysfunction and mitophagy inhibition. Mitophagy activator salidroside rescued fibrotic responses and cellular senescence induced by BRG1. Mechanistically, BRG1 was recruited to oxidation resistance 1 (OXR1) promoter, where it suppressed transcription of OXR1 through interacting with forkhead box protein p2. Inhibition of OXR1 abrogated the improvement of BRG1 deficiency in mitophagy, fibrotic responses and cellular senescence. In a mouse PD model, BRG1 knockdown restored mitophagy, alleviated senescence and ameliorated peritoneal fibrosis. More importantly, the elevation level of BRG1 in human PD was associated with PD duration and D/P creatinine values. In conclusion, BRG1 accelerates mesothelial cell senescence and peritoneal fibrosis by inhibiting mitophagy through repression of OXR1. This indicates that modulating BRG1-OXR1-mitophagy signaling may represent an effective treatment for PD-related peritoneal fibrosis.
Collapse
Affiliation(s)
- Shuting Li
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Department of Nephrology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Yiyi Zhuang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yue Ji
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaowen Chen
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Liying He
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sijia Chen
- Department of Nephrology and Rheumatology, The First Hospital of Changsha, Changsha, China
| | - Yating Luo
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lingyu Shen
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Xiao
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huizhen Wang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Congwei Luo
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Fenfen Peng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Haibo Long
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Adzraku SY, Cao C, Zhou Q, Yuan K, Hao X, Li Y, Yuan S, Huang Y, Xu K, Qiao J, Ju W, Zeng L. Endothelial Robo4 suppresses endothelial-to-mesenchymal transition induced by irradiation and improves hematopoietic reconstitution. Cell Death Dis 2024; 15:159. [PMID: 38383474 PMCID: PMC10881562 DOI: 10.1038/s41419-024-06546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Bone marrow ablation is routinely performed before hematopoietic stem cell transplantation (HSCT). Hematopoietic stem and progenitor cells (HSPCs) require a stable bone marrow microenvironment to expand and refill the peripheral blood cell pool after ablation. Roundabout guidance receptor 4 (Robo4) is a transmembrane protein exclusive to endothelial cells and is vital in preserving vascular integrity. Hence, the hypothesis is that Robo4 maintains the integrity of bone marrow endothelial cells following radiotherapy. We created an endothelial cell injury model with γ-radiation before Robo4 gene manipulation using lentiviral-mediated RNAi and gene overexpression techniques. We demonstrate that Robo4 and specific mesenchymal proteins (Fibronectin, Vimentin, αSma, and S100A4) are upregulated in endothelial cells exposed to irradiation (IR). We found that Robo4 depletion increases the expression of endoglin (CD105), an auxiliary receptor for the transforming growth factor (TGF-β) family of proteins, and promotes endothelial-to-mesenchymal transition (End-MT) through activation of both the canonical (Smad) and non-canonical (AKT/NF-κB) signaling pathways to facilitate Snail1 activation and its nuclear translocation. Endothelial Robo4 overexpression stimulates the expression of immunoglobulin-like adhesion molecules (ICAM-1 and VCAM-1) and alleviates irradiation-induced End-MT. Our coculture model showed that transcriptional downregulation of endothelial Robo4 reduces HSPC proliferation and increases HSC quiescence and apoptosis. However, Robo4 overexpression mitigated the damaged endothelium's suppressive effects on HSC proliferation and differentiation. These findings indicate that by controlling End-MT, Robo4 preserves microvascular integrity after radiation preconditioning, protects endothelial function, and lessens the inhibitory effect of damaged endothelium on hematopoietic reconstitution.
Collapse
Affiliation(s)
- Seyram Yao Adzraku
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
- Xuzhou Ruihu Health Management Consulting Co, Ltd, xuzhou, 221002, China
| | - Can Cao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
- Xuzhou Ruihu Health Management Consulting Co, Ltd, xuzhou, 221002, China
| | - Qi Zhou
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
- Xuzhou Ruihu Health Management Consulting Co, Ltd, xuzhou, 221002, China
| | - Ke Yuan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Xiaowen Hao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yue Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Shengnan Yuan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yujin Huang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China.
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China.
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China.
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China.
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
- Xuzhou Ruihu Health Management Consulting Co, Ltd, xuzhou, 221002, China.
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China.
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China.
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
9
|
Culibrk RA, Ebbert KA, Yeisley DJ, Chen R, Qureshi FA, Hahn J, Hahn MS. Impact of Suramin on Key Pathological Features of Sporadic Alzheimer's Disease-Derived Forebrain Neurons. J Alzheimers Dis 2024; 98:301-318. [PMID: 38427475 DOI: 10.3233/jad-230600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Alzheimer's disease (AD) is characterized by disrupted proteostasis and macroautophagy (hereafter "autophagy"). The pharmacological agent suramin has known autophagy modulation properties with potential efficacy in mitigating AD neuronal pathology. Objective In the present work, we investigate the impact of forebrain neuron exposure to suramin on the Akt/mTOR signaling pathway, a major regulator of autophagy, in comparison with rapamycin and chloroquine. We further investigate the effect of suramin on several AD-related biomarkers in sporadic AD (sAD)-derived forebrain neurons. Methods Neurons differentiated from ReNcell neural progenitors were used to assess the impact of suramin on the Akt/mTOR signaling pathway relative to the autophagy inducer rapamycin and autophagy inhibitor chloroquine. Mature forebrain neurons were differentiated from induced pluripotent stem cells (iPSCs) sourced from a late-onset sAD patient and treated with 100μM suramin for 72 h, followed by assessments for amyloid-β, phosphorylated tau, oxidative/nitrosative stress, and synaptic puncta density. Results Suramin treatment of sAD-derived neurons partially ameliorated the increased p-Tau(S199)/Tau ratio, and fully remediated the increased glutathione to oxidized nitric oxide ratio, observed in untreated sAD-derived neurons relative to healthy controls. These positive results may be due in part to the distinct increases in Akt/mTOR pathway mediator p-p70S6K noted with suramin treatment of both ReNcell-derived and iPSC-derived neurons. Longer term neuronal markers, such as synaptic puncta density, were unaffected by suramin treatment. Conclusions These findings provide initial evidence supporting the potential of suramin to reduce the degree of dysregulation in sAD-derived forebrain neurons in part via the modulation of autophagy.
Collapse
Affiliation(s)
- Robert A Culibrk
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Katherine A Ebbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Daniel J Yeisley
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Rui Chen
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Fatir A Qureshi
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Juergen Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
10
|
Yang F, Zhang Y, Dong L, Song Z. Cordyceps cicadae ameliorates inflammatory responses, oxidative stress, and fibrosis by targeting the PI3K/mTOR-mediated autophagy pathway in the renal of MRL/lpr mice. Immun Inflamm Dis 2024; 12:e1168. [PMID: 38270299 PMCID: PMC10808846 DOI: 10.1002/iid3.1168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND The vast majority of systemic lupus erythematosus patients develop lupus nephritis (LN) with severe renal manifestations, such as inflammatory responses, oxidative stress, and fibrosis. The purpose of this research was to investigate Cordyceps cicadae as a potential therapeutic target for treating inflammatory responses, oxidative stress, and fibrosis in LN. METHODS The effects of C. cicadae on lupus symptoms in mice with LN were determined. MRL/lpr mice were treated with C. cicadae (4 g/kg/day, i.e., CC group, n = 8) or an equal volume of saline (model group, n = 8), and MRL/MP mice were treated with an equal volume of saline (control group, n = 8). Renal function indices, renal pathology, inflammatory markers, oxidative stress markers, and renal interstitial fibrosis levels were evaluated after C. cicadae treatment. Western blot analysis was performed to investigate the effect of C. cicadae on the expression of fibrosis biomarkers and the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR)-mediated autophagy pathway in the renal tissues of mice. RESULTS C. cicadae ameliorated renal lesions, the inflammatory response, and oxidative stress damage in MRL/lpr mice. C. cicadae treatment inhibited renal fibrosis (16.31 ± 4.16 vs. 31.25 ± 5.61) and downregulated the expression of the fibrosis biomarkers alpha-smooth muscle actin, fibronectin, and collagen I (COL I) in the kidneys of MRL/lpr mice. In addition, further research showed that the PI3K/mTOR-mediated autophagy pathway was involved in C. cicadae-mediated effects on renal fibrosis in MRL/lpr mice. Furthermore, the therapeutic effect of C. cicadae on repairing renal fibrosis and damage in MRL/lpr mice was abolished by the PI3K agonist 740 Y-P. CONCLUSIONS The findings of the present research showed that C. cicadae could alleviate inflammatory responses, oxidative stress, and fibrosis in the renal tissues of mice with LN by targeting the PI3K/mTOR-mediated autophagy pathway.
Collapse
Affiliation(s)
- Feng Yang
- Department of RheumatologyYantai Hospital of Traditional Chinese MedicineYantai CityShandongChina
| | - Yanyan Zhang
- Department of RheumatologyYantai Hospital of Traditional Chinese MedicineYantai CityShandongChina
| | - Lei Dong
- Department of RheumatologyYantai Hospital of Traditional Chinese MedicineYantai CityShandongChina
| | - Zhichao Song
- Department of RheumatologyYantai Hospital of Traditional Chinese MedicineYantai CityShandongChina
| |
Collapse
|
11
|
Chen J, Rodriguez AS, Morales MA, Fang X. Autophagy Modulation and Its Implications on Glioblastoma Treatment. Curr Issues Mol Biol 2023; 45:8687-8703. [PMID: 37998723 PMCID: PMC10670099 DOI: 10.3390/cimb45110546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Autophagy is a vital cellular process that functions to degrade and recycle damaged organelles into basic metabolites. This allows a cell to adapt to a diverse range of challenging conditions. Autophagy assists in maintaining homeostasis, and it is tightly regulated by the cell. The disruption of autophagy has been associated with many diseases, such as neurodegenerative disorders and cancer. This review will center its discussion on providing an in-depth analysis of the current molecular understanding of autophagy and its relevance to brain tumors. We will delve into the current literature regarding the role of autophagy in glioma pathogenesis by exploring the major pathways of JAK2/STAT3 and PI3K/AKT/mTOR and summarizing the current therapeutic interventions and strategies for glioma treatment. These treatments will be evaluated on their potential for autophagy induction and the challenges associated with their utilization. By understanding the mechanism of autophagy, clinical applications for future therapeutics in treating gliomas can be better targeted.
Collapse
Affiliation(s)
- Johnny Chen
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Andrea Salinas Rodriguez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Maximiliano Arath Morales
- Department of Biology, College of Science, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Xiaoqian Fang
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| |
Collapse
|
12
|
Xie M, Xia B, Xiao L, Yang D, Li Z, Wang H, Wang X, Zhang X, Peng Q. Astragaloside IV ameliorates peritoneal fibrosis by promoting PGC-1α to reduce apoptosis in vitro and in vivo. J Cell Mol Med 2023; 27:2945-2955. [PMID: 37494130 PMCID: PMC10538260 DOI: 10.1111/jcmm.17871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 06/24/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023] Open
Abstract
Prolonged exposure of the peritoneum to high glucose dialysate leads to the development of peritoneal fibrosis (PF), and apoptosis of peritoneal mesothelial cells (PMCs) is a major cause of PF. The aim of this study is to investigate whether Astragaloside IV could protect PMCs from apoptosis and alleviate PF. PMCs and rats PF models were induced by high glucose peritoneal fluid. We examined the pathology of rat peritoneal tissue by HE staining, the thickness of rat peritoneal tissue by Masson's staining, the number of mitochondria and oxidative stress levels in peritoneal tissue by JC-1 and DHE fluorescence staining, and mitochondria-related proteins and apoptosis-related proteins such as PGC-1α, NRF1, TFAM, Caspase3, Bcl2 smad2 were measured. We used hoechst staining and flow cytometry to assess the apoptotic rate of PMCs in the PF model, and further validated the observed changes in the expressions of PGC-1α, NRF1, TFAM, Caspase3, Bcl2 smad2 in PMCs. We further incubated PMCs with MG-132 (proteasome inhibitor) and Cyclohexylamine (protein synthesis inhibitor). The results demonstrated that Astragaloside IV increased the expression of PGC-1α by reducing the ubiquitination of PGC-1α. It was further found that the protective effects of Astragaloside IV on PMCs were blocked when PGC-1α was inhibited. In conclusion, Astragaloside IV effectively alleviated PF both in vitro and in vivo, possibly by promoting PGC-1α to enhance mitochondrial synthesis to reduce apoptotic effects.
Collapse
Affiliation(s)
- Mingxia Xie
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, People's Republic of China
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Bohou Xia
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, People's Republic of China
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Lan Xiao
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, People's Republic of China
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Dun Yang
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, People's Republic of China
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Zhenghong Li
- Departments of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Hanqing Wang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
- College of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Xiaoye Wang
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Xi Zhang
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Qinghua Peng
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, People's Republic of China
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| |
Collapse
|
13
|
Zhao H, Zhang HL, Jia L. High glucose dialysate-induced peritoneal fibrosis: Pathophysiology, underlying mechanisms and potential therapeutic strategies. Biomed Pharmacother 2023; 165:115246. [PMID: 37523983 DOI: 10.1016/j.biopha.2023.115246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023] Open
Abstract
Peritoneal dialysis is an efficient renal replacement therapy for patients with end-stage kidney disease. However, continuous exposure of the peritoneal membrane to dialysate frequently leads to peritoneal fibrosis, which alters the function of the peritoneal membrane and results in withdrawal from peritoneal dialysis in patients. Among others, high glucose dialysate is considered as a predisposing factor for peritoneal fibrosis in patients on peritoneal dialysis. Glucose-induced inflammation, metabolism disturbance, activation of the renin-angiotensin-aldosterone system, angiogenesis and noninflammation-induced reactive oxygen species are implicated in the pathogenesis of high glucose dialysate-induced peritoneal fibrosis. Specifically, high glucose causes chronic inflammation and recurrent peritonitis, which could cause migration and polarization of inflammatory cells, as well as release of cytokines and fibrosis. High glucose also interferes with lipid metabolism and glycolysis by activating the sterol-regulatory element-binding protein-2/cleavage-activating protein pathway and increasing hypoxia inducible factor-1α expression, leading to angiogenesis and peritoneal fibrosis. Activation of the renin-angiotensin-aldosterone system and Ras-mitogen activated protein kinase signaling pathway is another contributing factor in high glucose dialysate-induced fibrosis. Ultimately, activation of the transforming growth factor-β1/Smad pathway is involved in mesothelial-mesenchymal transition or epithelial-mesenchymal transition, which leads to the development of fibrosis. Although possible intervention strategies for peritoneal dialysate-induced fibrosis by targeting the transforming growth factor-β1/Smad pathway have occasionally been proposed, lack of laboratory evidence renders clinical decision-making difficult. We therefore aim to revisit the upstream pathways of transforming growth factor-beta1/Smad and propose potential therapeutic targets for high glucose-induced peritoneal fibrosis.
Collapse
Affiliation(s)
- Hanxue Zhao
- First Clinical Medical College, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Beijing 100053, China
| | - Hong-Liang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, No. 83 Shuangqing Road, Beijing 100085, China.
| | - Linpei Jia
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Beijing 100053, China.
| |
Collapse
|
14
|
Nasci VL, Liu P, Marks AM, Williams AC, Kriegel AJ. Transcriptomic analysis identifies novel candidates in cardiorenal pathology mediated by chronic peritoneal dialysis. Sci Rep 2023; 13:10051. [PMID: 37344499 DOI: 10.1038/s41598-023-36647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
Peritoneal dialysis (PD) is associated with increased cardiovascular (CV) risk. Studies of PD-related CV pathology in animal models are lacking despite the clinical importance. Here we introduce the phenotypic evaluation of a rat model of cardiorenal syndrome in response to chronic PD, complemented by a rich transcriptomic dataset detailing chronic PD-induced changes in left ventricle (LV) and kidney tissues. This study aims to determine how PD alters CV parameters and risk factors while identifying pathways for potential therapeutic targets. Sprague Dawley rats underwent Sham or 5/6 nephrectomy (5/6Nx) at 10 weeks of age. Six weeks later an abdominal dialysis catheter was placed in all rats before random assignment to Control or PD (3 daily 1-h exchanges) groups for 8 days. Renal and LV pathology and transcriptomic analysis was performed. The PD regimen reduced circulating levels of BUN in 5/6Nx, indicating dialysis efficacy. PD did not alter blood pressure or cardiovascular function in Sham or 5/6Nx rats, though it attenuated cardiac hypertrophy. Importantly PD increased serum triglycerides in 5/6Nx rats. Furthermore, transcriptomic analysis revealed that PD induced numerous changed transcripts involved with inflammatory pathways, including neutrophil activation and atherosclerosis signaling. We have adapted a uremic rat model of chronic PD. Chronic PD induced transcriptomic changes related to inflammatory signaling that occur independent of 5/6Nx and augmented circulating triglycerides and predicted atherosclerosis signaling in 5/6Nx LV tissues. The changes are indicative of increased CV risk due to PD and highlight several pathways for potential therapeutic targets.
Collapse
Affiliation(s)
- Victoria L Nasci
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Amanda M Marks
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Adaysha C Williams
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
15
|
Bao B, Liu J, Li T, Yang Z, Wang G, Xin J, Bi H, Guo D. Elevated retinal fibrosis in experimental myopia is involved in the activation of the PI3K/AKT/ERK signaling pathway. Arch Biochem Biophys 2023; 743:109663. [PMID: 37290701 DOI: 10.1016/j.abb.2023.109663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVE This study aimed to investigate the regulatory role of the PI3K/AKT/ERK signaling pathway in retinal fibrosis in -6.0 diopter (D) lens-induced myopic (LIM) guinea pigs. METHODS Biological measurements of eye tissues were performed on guinea pigs to obtain their refraction, axial length, retinal thickness, physiological function, and fundus retinal status. In addition, Masson staining and immunohistochemical (IHC) assay were further done to explore the changes in retinal morphology after myopic induction. Meanwhile, hydroxyproline (HYP) content was measured to evaluate the degree of retinal fibrosis. Moreover, the levels of the PI3K/AKT/ERK signaling pathway and fibrosis-related molecules in retinal tissues including matrix metalloproteinase 2(MMP2), collagen type I (Collagen I), and α-smooth muscle actin (α-SMA) were detected by real-time quantitative PCR (qPCR) and Western blot. RESULTS The LIM guinea pigs showed a significant myopic shift in refractive error and an increase in axial length compared with those of the normal control (NC) group. Masson staining, hydroxyproline content determination, and IHC showed an increase in retinal fibrosis. After myopic induction, qPCR and western blot analyses showed that phosphatidylinositol-3-kinase catalytic subunit α (PIK3CA), protein kinase B (AKT), extracellular regulated protein kinase 1/2 (ERK1/2), MMP2, Collagen I, and α-SMA were consistently elevated in the LIM group than those in the NC group. CONCLUSION The PI3K/AKT/ERK signaling pathway was activated in the retinal tissues of myopic guinea pigs, which exaggerated fibrotic lesions and reduced retinal thickness, ultimately leading to retinal physiological dysfunctions in myopic guinea pigs.
Collapse
Affiliation(s)
- Bo Bao
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Jinpeng Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Tuling Li
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Zhaohui Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Guimin Wang
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Jizhao Xin
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, 250002, China.
| |
Collapse
|
16
|
Su HY, Yang JJ, Zou R, An N, Chen XC, Yang C, Yang HJ, Yao CW, Liu HF. Autophagy in peritoneal fibrosis. Front Physiol 2023; 14:1187207. [PMID: 37256065 PMCID: PMC10226653 DOI: 10.3389/fphys.2023.1187207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Peritoneal dialysis (PD) is a widely accepted renal replacement therapy for patients with end-stage renal disease (ESRD). Morphological and functional changes occur in the peritoneal membranes (PMs) of patients undergoing long-term PD. Peritoneal fibrosis (PF) is a common PD-related complication that ultimately leads to PM injury and peritoneal ultrafiltration failure. Autophagy is a cellular process of "self-eating" wherein damaged organelles, protein aggregates, and pathogenic microbes are degraded to maintain intracellular environment homeostasis and cell survival. Growing evidence shows that autophagy is involved in fibrosis progression, including renal fibrosis and hepatic fibrosis, in various organs. Multiple risk factors, including high-glucose peritoneal dialysis solution (HGPDS), stimulate the activation of autophagy, which participates in PF progression, in human peritoneal mesothelial cells (HPMCs). Nevertheless, the underlying roles and mechanisms of autophagy in PF progression remain unclear. In this review, we discuss the key roles and potential mechanisms of autophagy in PF to offer novel perspectives on future therapy strategies for PF and their limitations.
Collapse
|
17
|
Tang AL, Liu XY, Gao N, Hu TP, Yan ST, Zhang GQ. Dl-3-n-butylphthalide improves intestinal microcirculation disorders in septic rats by regulating the PI3K/AKT signaling pathway and autophagy. Int Immunopharmacol 2023; 118:110049. [PMID: 37018980 DOI: 10.1016/j.intimp.2023.110049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/25/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023]
Abstract
PURPOSE Sepsis has complex pathophysiological mechanisms that bring new challenges in the treatment of sepsis at a time when the intestinal microcirculation in sepsis is receiving increasing attention. Dl-3-n-butylphthalide (NBP), which is a drug that can improve multiorgan ischemic diseases, is also worth examining to improve the intestinal microcirculation in sepsis. METHODS In this study, male Sprague-Dawley rats were divided into the sham group (n = 6), CLP group (n = 6), NBP group (n = 6) and NBP + LY294002 group (n = 6). The rat model of severe sepsis was established by cecal ligation and puncture (CLP). Abdominal wall incisions and sutures were performed in the first group, and CLP was performed in the latter three groups. Normal saline/NBP/NBP + LY294002 solution was injected intraperitoneally 2 h or 1 h before modeling. Hemodynamic data (blood pressure and heart rate) were recorded at 0, 2, 4 and 6 h. Sidestream dark field (SDF) imaging and the Medsoft System were used to observe the intestinal microcirculation of rats and obtain data at 0, 2, 4, and 6 h. Six hours after the model was established, the serum levels of TNF-α and IL-6 were measured to evaluate the level of systemic inflammation. Pathological damage to the small intestine was evaluated by electron microscopy and histological analysis. The expression levels of P-PI3K, PI3K, P-AKT, AKT, LC3 and p62 in the small intestine were analyzed by Western blotting. The expressions of P-PI3K, P-AKT, LC3 and P62 in small intestine were detected by immunohistochemical staining. RESULTS NBP improved intestinal microcirculation disturbances in septic rats, alleviated the systemic inflammatory response, reduced the destruction of the small intestinal mucosa and the disruption of microvascular endothelial cells, and alleviated autophagy in vascular endothelial cells. NBP increased the ratio of P-PI3K/total PI3K, P-AKT/total AKT, and P62/β-actin and decreased the ratio of LC3 II/LC3 I. CONCLUSION NBP ameliorated intestinal microcirculation disturbances and the destruction of small intestinal vascular endothelial cells in septic rats by activating the PI3K/Akt signaling pathway and regulating autophagy.
Collapse
Affiliation(s)
- A-Ling Tang
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China; Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiao-Yu Liu
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China; Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Nan Gao
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China; Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Tian-Peng Hu
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China; Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Sheng-Tao Yan
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Guo-Qiang Zhang
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
18
|
Chen M, Yu Y, Mi T, Guo Q, Xiang B, Tian X, Jin L, Long C, Shen L, Liu X, Pan J, Zhang Y, Xu T, Zhang D, Wei G. MK-2206 Alleviates Renal Fibrosis by Suppressing the Akt/mTOR Signaling Pathway In Vivo and In Vitro. Cells 2022; 11:3505. [PMID: 36359901 PMCID: PMC9655032 DOI: 10.3390/cells11213505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 09/06/2024] Open
Abstract
Renal fibrosis is a common pathological feature of various kidney diseases, leading to irreversible renal failure and end-stage renal disease. However, there are still no effective treatments to reverse renal fibrosis. This study aimed to explore the potential mechanism of a targeted drug for fibrosis. Here, unilateral ureteral obstruction (UUO)-treated mice and a TGF-β1-treated human renal tubular epithelial cell line (HK-2 cells) were used as models of renal fibrosis. Based on the changes of mRNA in UUO kidneys detected by transcriptome sequencing, MK-2206, an Akt inhibitor, was predicted as a potential drug to alleviate renal fibrosis through bioinformatics. We dissolved UUO mice with MK-2206 by gastric gavage and cultured TGF-β-induced HK-2 cells with MK-2206. Histopathological examinations were performed after MK-2206 intervention, and the degree of renal fibrosis, as well as the expression of Akt/mTOR pathway-related proteins, were evaluated by immunohistochemical staining, immunofluorescence staining, and Western blot. The results showed that MK-2206 significantly improved the pathological structure of the kidney. Furthermore, MK-2206 intervention effectively inhibited UUO- and TGF-β1-induced epithelial-mesenchymal transition, fibroblast activation, and extracellular matrix deposition. Mechanistically, MK-2206 treatment attenuated the activation of the Akt/mTOR signaling pathway. Taken together, our study revealed for the first time that MK-2206 is a promising drug for the improvement of renal fibrosis.
Collapse
Affiliation(s)
- Meiling Chen
- Department of Urology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Yihang Yu
- Department of Urology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Tao Mi
- Department of Urology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Qitong Guo
- Department of Urology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Bin Xiang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Xiaomao Tian
- Department of Urology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Liming Jin
- Department of Urology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Chunlan Long
- Department of Urology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Lianju Shen
- Department of Urology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Xing Liu
- Department of Urology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Jianbo Pan
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Tao Xu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Deying Zhang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
| | - Guanghui Wei
- Department of Urology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
| |
Collapse
|
19
|
Zhao J, Wu Q, Yang T, Nie L, Liu S, Zhou J, Chen J, Jiang Z, Xiao T, Yang J, Chu C. Gaseous signal molecule SO 2 regulates autophagy through PI3K/AKT pathway inhibits cardiomyocyte apoptosis and improves myocardial fibrosis in rats with type II diabetes. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:541-556. [PMID: 36302628 PMCID: PMC9614393 DOI: 10.4196/kjpp.2022.26.6.541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022]
Abstract
Myocardial fibrosis is a key link in the occurrence and development of diabetic cardiomyopathy. Its etiology is complex, and the effect of drugs is not good. Cardiomyocyte apoptosis is an important cause of myocardial fibrosis. The purpose of this study was to investigate the effect of gaseous signal molecule sulfur dioxide (SO2) on diabetic myocardial fibrosis and its internal regulatory mechanism. Masson and TUNEL staining, Western-blot, transmission electron microscopy, RT-qPCR, immunofluorescence staining, and flow cytometry were used in the study, and the interstitial collagen deposition, autophagy, apoptosis, and changes in phosphatidylinositol 3-kinase (PI3K)/AKT pathways were evaluated from in vivo and in vitro experiments. The results showed that diabetic myocardial fibrosis was accompanied by cardiomyocyte apoptosis and down-regulation of endogenous SO2-producing enzyme aspartate aminotransferase (AAT)1/2. However, exogenous SO2 donors could up-regulate AAT1/2, reduce apoptosis of cardiomyocytes induced by diabetic rats or high glucose, inhibit phosphorylation of PI3K/AKT protein, up-regulate autophagy, and reduce interstitial collagen deposition. In conclusion, the results of this study suggest that the gaseous signal molecule SO2 can inhibit the PI3K/AKT pathway to promote cytoprotective autophagy and inhibit cardiomyocyte apoptosis to improve myocardial fibrosis in diabetic rats. The results of this study are expected to provide new targets and intervention strategies for the prevention and treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Junxiong Zhao
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China,Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Qian Wu
- Department of General Practice, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Ting Yang
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China,School of Pharmaceutical Science of University of South China, Hengyang 421000, China
| | - Liangui Nie
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Shengquan Liu
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Jia Zhou
- Department of Ultrasound Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Jian Chen
- Department of Critical Care Medicine, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Zhentao Jiang
- Department of Cardiology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Ting Xiao
- Department of Cardiology, Shenzhen Longhua District Central Hospital, Longhua Central Hospital Affiliated Guang-dong Medical University, Shenzhen 518000, China,Ting Xiao, E-mail:
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China,Jun Yang, E-mail:
| | - Chun Chu
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China,Correspondence Chun Chu, E-mail:
| |
Collapse
|
20
|
Umer N, Phadke S, Shakeri F, Arévalo L, Lohanadan K, Kirfel G, Sylvester M, Buness A, Schorle H. PFN4 is required for manchette development and acrosome biogenesis during mouse spermiogenesis. Development 2022; 149:276289. [PMID: 35950913 PMCID: PMC9481974 DOI: 10.1242/dev.200499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022]
Abstract
Profilin 4 (Pfn4) is expressed during spermiogenesis and localizes to the acrosome-acroplaxome-manchette complex. Here, we generated PFN4-deficient mice, with sperm displaying severe impairment in manchette formation. Interestingly, HOOK1 staining suggests that the perinuclear ring is established; however, ARL3 staining is disrupted, suggesting that lack of PFN4 does not interfere with the formation of the perinuclear ring and initial localization of HOOK1, but impedes microtubular organization of the manchette. Furthermore, amorphous head shape and flagellar defects were detected, resulting in reduced sperm motility. Disrupted cis- and trans-Golgi networks and aberrant production of proacrosomal vesicles caused impaired acrosome biogenesis. Proteomic analysis showed that the proteins ARF3, SPECC1L and FKBP1, which are involved in Golgi membrane trafficking and PI3K/AKT pathway, are more abundant in Pfn4−/− testes. Levels of PI3K, AKT and mTOR were elevated, whereas AMPK level was reduced, consistent with inhibition of autophagy. This seems to result in blockage of autophagic flux, which could explain the failure in acrosome formation. In vitro fertilization demonstrated that PFN4-deficient sperm is capable of fertilizing zona-free oocytes, suggesting a potential treatment for PFN4-related human infertility. Summary: PFN4-deficient male mice exhibit impaired acrosome formation and malformation of the manchette, leading to amorphous sperm head shape, flagellar abnormalities and sterility.
Collapse
Affiliation(s)
- Naila Umer
- Institute of Pathology, University Hospital Bonn 1 Department of Developmental Pathology , , 53127 Bonn , Germany
| | - Sharang Phadke
- Institute of Pathology, University Hospital Bonn 1 Department of Developmental Pathology , , 53127 Bonn , Germany
| | - Farhad Shakeri
- Institute for Medical Biometry, Informatics and Epidemiology 2 , Medical Faculty , , 53127 Bonn , Germany
- University of Bonn 2 , Medical Faculty , , 53127 Bonn , Germany
- Institute for Genomic Statistics and Bioinformatics 3 , Medical Faculty , , 53127 Bonn , Germany
- University of Bonn 3 , Medical Faculty , , 53127 Bonn , Germany
| | - Lena Arévalo
- Institute of Pathology, University Hospital Bonn 1 Department of Developmental Pathology , , 53127 Bonn , Germany
| | | | - Gregor Kirfel
- Institute for Cell Biology, University of Bonn 4 , 53121 Bonn , Germany
| | - Marc Sylvester
- Institute of Biochemistry and Molecular Biology 5 Core Facility Mass Spectrometry , , Medical Faculty , , 53115 Bonn , Germany
- University of Bonn 5 Core Facility Mass Spectrometry , , Medical Faculty , , 53115 Bonn , Germany
| | - Andreas Buness
- Institute for Medical Biometry, Informatics and Epidemiology 2 , Medical Faculty , , 53127 Bonn , Germany
- University of Bonn 2 , Medical Faculty , , 53127 Bonn , Germany
- Institute for Genomic Statistics and Bioinformatics 3 , Medical Faculty , , 53127 Bonn , Germany
- University of Bonn 3 , Medical Faculty , , 53127 Bonn , Germany
| | - Hubert Schorle
- Institute of Pathology, University Hospital Bonn 1 Department of Developmental Pathology , , 53127 Bonn , Germany
| |
Collapse
|
21
|
You X, Wu Y, Li Q, Sheng W, Zhou Q, Fu W. Astragalus–Scorpion Drug Pair Inhibits the Development of Prostate Cancer by Regulating GDPD4-2/PI3K/AKT/mTOR Pathway and Autophagy. Front Pharmacol 2022; 13:895696. [PMID: 35847007 PMCID: PMC9277392 DOI: 10.3389/fphar.2022.895696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Prostate cancer (PCa) is an epithelial malignancy of the prostate that currently lacks effective treatment. Traditional Chinese medicine (TCM) can play an anticancer role through regulating the immune system, anti-tumor angiogenesis, regulating tumor cell apoptosis, autophagy dysfunction, and other mechanisms. This study attempted to explore the active ingredients and potential mechanism of action of the Astragalus–Scorpion (A–S) drug pair in PCa, in order to provide new insights into the treatment of PCa. Methods: Network pharmacology was used to analyze the A–S drug pair and PCa targets. Bioinformatics analysis was used to analyze the LncRNAs with significant differences in PCa. The expression of LC3 protein was detected by immunofluorescence. CCK8 was used to detect cell proliferation. The expressions of GDPD4-2, AC144450.1, LINC01513, AC004009.2, AL096869.1, AP005210.1, and BX119924.1 were detected by RT-qPCR. The expression of the PI3K/AKT/mTOR pathway and autophagy-related proteins were detected by western blot. LC-MS/MS was used to identify the active components of Astragalus and Scorpion. Results: A–S drug pair and PCa have a total of 163 targets, which were mainly related to the prostate cancer and PI3K/AKT pathways. A–S drug pair inhibited the formation of PCa, promoted the expression of LC3Ⅱ and Beclin1 proteins, and inhibited the expression of P62 and PI3K–AKT pathway proteins in PCa mice. Astragaloside IV and polypeptide extract from scorpion venom (PESV) were identified as the main active components of the A–S drug pair. GDPD4-2 was involved in the treatment of PCa by Astragaloside IV-PESV. Silencing GDPD4-2 reversed the therapeutic effects of Astragaloside IV-PESV by regulating the PI3K/AKT/mTOR pathway. Conclusion: Astragaloside IV-PESV is the main active components of A–S drug pair treated PCa by regulating the GDPD4-2/PI3K–AKT/mTOR pathway and autophagy.
Collapse
Affiliation(s)
- Xujun You
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
- Department of Andrology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yongrong Wu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qixin Li
- Department of Andrology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wen Sheng
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Qing Zhou
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Qing Zhou, ; Wei Fu,
| | - Wei Fu
- Department of Andrology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
- *Correspondence: Qing Zhou, ; Wei Fu,
| |
Collapse
|