1
|
Pokoo-Aikins A, McDonough CM, Mitchell TR, Hawkins JA, Adams LF, Read QD, Li X, Shanmugasundaram R, Rodewald E, Acharya P, Glenn AE, Gold SE. Mycotoxin contamination and the nutritional content of corn targeted for animal feed. Poult Sci 2024; 103:104303. [PMID: 39299014 PMCID: PMC11426393 DOI: 10.1016/j.psj.2024.104303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
Mycotoxin contaminated corn poses a risk to poultry production. Although mycotoxin regulatory guidelines are based on the hazards of individual mycotoxin contamination, feed and feed ingredients may be contaminated with multiple mycotoxins. The objective of this study was to assess mycotoxin co-contamination and its impact on the nutrient content of corn grain. Corn samples (n = 328) originating from various regions in the Southeastern U.S. were quantitatively analyzed for fumonisin (FUM), deoxynivalenol (DON), aflatoxin (AFB1) and zearalenone (ZEA) by HPLC-MS/MS. Nutritional content was analyzed by near-infrared spectroscopy, and color data were collected. All 328 samples were found to be contaminated with at least 1 mycotoxin: 100% contained FUM (19-24,680 µg/kg), 69.82% contained DON (0-9,640 µg/kg), 17.07% contained AFB1 (0-939 µg/kg), and 43.60% had detectable levels of ZEA (0-8,093.5 µg/kg). Most of the samples were contaminated with 2 or more mycotoxins, with only 18.29% of the samples containing a single mycotoxin. 38.41% of the samples had 2 mycotoxins present, 36.59 % had 3 mycotoxins, and 4.88% of the samples had all 4 tested mycotoxins present. Samples contaminated with AFB1 had significantly lower fat (P = 0.007) and lightness (P = 0.007); samples contaminated with DON had significantly higher starch (P < 0.001) and lower protein (P < 0.001). Samples contaminated with FUM had significantly higher protein (P = 0.008) and moisture (P = 0.019) and lower starch (P < 0.001). ZEA contaminated samples had significantly lower starch (P = 0.034). A correlation was observed between mycotoxin contamination and altered nutrient content in corn. This study provides further evidence that co-contamination of mycotoxins is the norm in corn, and that mycotoxin contamination correlates with impacts on the nutrient profile of feed corn.
Collapse
Affiliation(s)
- Anthony Pokoo-Aikins
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA.
| | - Callie M McDonough
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Trevor R Mitchell
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Jaci A Hawkins
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Lincoln F Adams
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Quentin D Read
- Southeast Area, Agricultural Research Service, U.S. Department of Agriculture, Raleigh, NC, USA
| | - Xiang Li
- U.S. National Poultry Research Center, Egg and Poultry Production Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Revathi Shanmugasundaram
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - ElsiAnna Rodewald
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA
| | - Pratima Acharya
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA
| | - Anthony E Glenn
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Scott E Gold
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| |
Collapse
|
2
|
Adugna C, Wang K, Du J, Li C. Deoxynivalenol mycotoxin dietary exposure on broiler performance and small intestine health: A comprehensive meta-analysis. Poult Sci 2024; 103:104412. [PMID: 39461271 PMCID: PMC11544052 DOI: 10.1016/j.psj.2024.104412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
The effect of DON mycotoxins on broiler production performance and the small intestine is a critical factor in the health and well-being of broilers. Several studies have been conducted on this topic and have reported varying results and conclusions. Therefore, it is necessary to conduct systematic reviews and meta-analyses to thoroughly examine and draw unique conclusions. In this meta-analysis, we conducted a systematic review of multiple studies on the effects of DON mycotoxins in broilers. The analysis comprised 26 articles from reputable journals, and 14 parameters were identified based on the predetermined criteria. The forest plot results showed that DON treatment significantly reduced the ADFI and ADWG (SMD-1.50, 95 %CI [-1.68, -1.18]; I2= 51 %; p < 0.00001) and affected FCR (SMD 0.95, 95 %CI [ 0.62, 1.28]; I2= 77; p < 0.00001). In addition, it affects the small intestine structure duodenum (SMD -3.46, 95 %CI [-3.88, -3.05]; I2= 48 %; p < 0.00001), Jejunum (SMD -5.35, 95 %CI [-5.86, -4.83]; I2= 62 %; p < 0.00001), Ileum (SMD -2.6, 95 % CI [-3.12, -2.08]; I2= 82 %; p < 0.00001). Furthermore, DON exposure affects immunoglobulin (SMD -1.92, 95 % CI [ -2.39, -1.46]; I2 = 54 %; p < 0.00001) and antioxidant activities (SMD -2.1, 95 % CI [ -2.45, -1.75]; I2= 47 %; p < 0.00001). The overall effect of DON treatment was statistically significant compared with that of the control group. Furthermore, funnel plot analysis for publication bias did not reveal any significant asymmetry in most included studies. The results of this meta-analysis indicate that DON mycotoxins have a significant impact on both production performance and small intestine health and require strategic intervention.
Collapse
Affiliation(s)
- Chala Adugna
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Ambo University College of Agriculture and Veterinary Science, Ethiopia
| | - Kai Wang
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Du
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Shanmugasundaram R, Ajao AM, Fathima S, Oladeinde A, Selvaraj RK, Applegate TJ, Olukosi OA. Growth performance and immune response of broilers during active Eimeria infection are modified by dietary inclusion of canola meal or corn-DDGS in reduced-protein corn-soybean meal diets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:442-452. [PMID: 39650693 PMCID: PMC11621932 DOI: 10.1016/j.aninu.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/23/2024] [Accepted: 05/05/2024] [Indexed: 12/11/2024]
Abstract
The objective of this experiment was to study the effects of partial replacement of soybean meal (SBM) with canola meal (CM) or corn-distillers' dried grains with solubles (cDDGS) in reduced-protein (RP) diets for Eimeria-infected broilers. A total of 1120 broiler chicks were distributed in a 4 × 2 (4 diets × with or without infection) factorial arrangement with 7 replicates per treatment and 20 birds per replicate. The 4 diets, fed between d 7 and 42, were (i) a standard diet with crude protein at 200 g/kg (SP); (ii) a RP (crude protein at 160 g/kg) corn-SBM diet (RP-SBM); (iii) a RP diet in which 80 g/kg CM replaced 60 g/kg SBM (RP-CM); and (iv) a RP diet in which 100 g/kg cDDGS replaced 50 g/kg SBM (RP-cDDGS). On d 15, birds were infected with mixed Eimeria (+E) oocysts. Birds and feed were weighed at intervals for growth performance, and samples for immunology responses were collected on d 21. The results showed as follows: 1) during the acute infection phase, diet × Eimeria infection was shown by the diets having no effect in the uninfected group. In contrast, the RP-SBM diet tended to produce higher (P < 0.10) weight gain among the infected birds. The d 42 body weight was greater (P = 0.001) for the uninfected birds. 2) There was a significant diet × Eimeria infection on bile anti-Eimeria immunoglobulin A (IgA) concentrations (P = 0.015), splenocyte proliferation, macrophage nitric oxide (NO) production (P < 0.001), and cecal tonsil interleukin (IL)-17 mRNA amounts (P < 0.001). Most of these responses were not influenced by the diets in the uninfected birds. However, among the infected birds, birds fed RP-SBM had higher (P < 0.05) bile IgA than those fed SP or RP-cDDGS. For the spleen, the interaction was that birds fed RP-SBM or RP-cDDGS diets had the highest or lowest NO production, respectively, and birds that received RP-SBM had greater (P < 0.05) splenic CD8+:CD4+ cell ratio than other diets. In conclusion, partial replacement of SBM with CM or cDDGS had only a marginal effect on d 42 body weight and FCR of the broiler chickens receiving the RP diets. In contrast, these had a negative impact on the immune responses of the broiler chickens.
Collapse
Affiliation(s)
| | - Adeleye M. Ajao
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Shahna Fathima
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | | | | | - Todd J. Applegate
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
4
|
Paneru D, Sharma MK, Shi H, Goo D, Choppa VSR, Gyawali I, Shanmugasundaram R, Kim WK. Effects of deoxynivalenol contaminated corn distiller's dried grains with solubles on growth performance, body composition, immunological response, and gastrointestinal health in young pullets. Poult Sci 2024; 104:104611. [PMID: 39675103 DOI: 10.1016/j.psj.2024.104611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Mycotoxins, particularly deoxynivalenol (DON), are common contaminants in feed ingredients such as corn distiller's dried grains with solubles (DDGS) and pose significant risks to poultry health. This study investigated the effects of feeding naturally DON contaminated DDGS on growth performance, body composition, immunological response, and gastrointestinal health in young pullets. A total of 360, 4-week-old Hy-Line W36 pullets were randomly assigned to diets with increasing levels of naturally DON contaminated DDGS (0, 5, 10, 15, and 20%) over 28 days, resulting in dietary DON concentrations ranging from below the limit of quantification to 15.4 ppm. Diets with DON concentration exceeding 8.9 ppm, corresponding to 15% and 20% DDGS inclusion, resulted in significantly lower body weight gain (BWG) and feed intake (FI) from experimental day 14 to day 28 compared to DON concentration below 5.9 ppm (0, 5 and 10% DDGS groups; P = 0.024 and P = 0.007, respectively). Body composition analysis showed a higher tissue fat percentage in the 20% DDGS group (15.4 ppm DON) by day 28 compared to lower inclusion levels (P = 0.021). Immunologically, a significant increase in the CD4+:CD8+ ratio in spleen was observed in the 20% DDGS group compared to the 0% DDGS group (P = 0.013), whereas both 15 and 20% DDGS inclusion levels significantly increased the ratio in cecal tonsil (P < 0.001). Additionally, interleukin 1β (IL-1β) expression significantly increased in the cecal tonsil by day 28 with 15 and 20% DDGS inclusions (P = 0.002). Gut health was compromised as gut permeability increased linearly with increasing DDGS inclusion (linear, P = 0.043), aligning with significant alterations in the expression of the tight junction protein occludin (OCLN; P = 0.007). Antioxidant responses in the liver showed increased superoxide dismutase (SOD) activity in early exposure (day 13, P = 0.038), followed by decreased SOD activity (P = 0.001) and reduced glutathione (GSH) levels (P < 0.001) by day 28. In conclusion, feeding DON-contaminated DDGS at higher inclusion levels (15% and 20%) with final diet DON concentrations exceeding 8.9 ppm over 28 days adversely affects growth performance, immune function, and gut integrity in young pullets.
Collapse
Affiliation(s)
- Deependra Paneru
- Department of Poultry Science, University of Georgia, Athens, GA 30602 United States
| | - Milan K Sharma
- Department of Poultry Science, University of Georgia, Athens, GA 30602 United States
| | - Hanyi Shi
- Department of Poultry Science, University of Georgia, Athens, GA 30602 United States
| | - Doyun Goo
- Department of Poultry Science, University of Georgia, Athens, GA 30602 United States
| | - Venkata S R Choppa
- Department of Poultry Science, University of Georgia, Athens, GA 30602 United States
| | - Ishwari Gyawali
- Department of Poultry Science, University of Georgia, Athens, GA 30602 United States
| | - Revathi Shanmugasundaram
- U.S. Department of Agriculture, Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, GA 30605 United States
| | - Woo K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602 United States.
| |
Collapse
|
5
|
Fathima S, Al Hakeem WG, Shanmugasundaram R, Periyannan V, Varadhan R, Selvaraj RK. Effect of 125% and 135% arginine on the growth performance, intestinal health, and immune responses of broilers during necrotic enteritis challenge. Poult Sci 2024; 103:103826. [PMID: 38761462 PMCID: PMC11133980 DOI: 10.1016/j.psj.2024.103826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/20/2024] Open
Abstract
The objective of this study was to evaluate the effects of 25% and 35% arginine supplementation in partially alleviating the effects of necrotic enteritis (NE) challenge on the production performance, intestinal integrity, and relative gene expression of tight junction proteins and inflammatory cytokines in broilers. Four hundred and eighty 1-day-old chicks were randomly allocated to the 4 treatments- Uninfected + Basal, NE + Basal, NE + Arg 125%, and NE + Arg 135%. NE was induced by inoculating 1 × 104Eimeria maxima sporulated oocysts on d 14 and 1 × 108 CFU/bird C. perfringens on d 19, 20, and 21 of age by oral gavage. The NE challenge significantly decreased body weight gain (BWG) (p < 0.05) and increased the feed conversion ratio (FCR) (p < 0.05). On d 21, the NE challenge also increased the jejunal lesion score (p < 0.05) and relative gene expression of IL-10 and decreased the expression of the tight junction proteins occludin (p < 0.05) and claudin-4 (p < 0.05). The 125% arginine diet significantly increased intestinal permeability (p < 0.05) and the relative gene expression of iNOS (p < 0.05) and IFN-γ (p < 0.05) on d 21 and the bile anti-C. perfringens IgA concentration by 39.74% (p < 0.05) on d 28. The 135% arginine diet significantly increased the feed intake during d 0 - 28 (p < 0.05) and 0 to 35 (p < 0.05) and increased the FCR on d 0 to 35 (p < 0.05). The 135% and 125% arginine diet increased the spleen CD8+: CD4+ T-cell ratio on d 28 (p < 0.05) and 35 (p < 0.05), respectively. The 135% arginine diet increased the CT CD8+:CD4+ T-cell ratio on d 35 (p < 0.05). In conclusion, the 125% and 135% arginine diets did not reverse the effect of the NE challenge on the growth performance. However, the 125% arginine diet significantly increased the cellular and humoral immune response to the challenge. Hence, the 125% arginine diet could be used with other feed additives to improve the immune response of the broilers during the NE challenge.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, University of Georgia, Athens, GA USA
| | - Walid G Al Hakeem
- Department of Poultry Science, University of Georgia, Athens, GA USA
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture, Athens, GA 30605, USA
| | - Vasanthakumar Periyannan
- Department of Animal Nutrition, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ranganathan Varadhan
- Department of Veterinary Pharmacology, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ramesh K Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA USA.
| |
Collapse
|
6
|
Fathima S, Hakeem WGA, Shanmugasundaram R, Selvaraj RK. Effect of arginine supplementation on the growth performance, intestinal health, and immune responses of broilers during necrotic enteritis challenge. Poult Sci 2024; 103:103815. [PMID: 38713988 PMCID: PMC11091696 DOI: 10.1016/j.psj.2024.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/07/2024] [Accepted: 04/24/2024] [Indexed: 05/09/2024] Open
Abstract
The objective of this study was to evaluate the effect of 25% arginine supplementation as a functional amino acid in partially alleviating the detrimental effects of necrotic enteritis (NE) on the growth performance, serum biochemistry, gut integrity, and the relative gene expression of tight junction proteins and inflammatory cytokines in broilers during NE. Three hundred and sixty 1-day-old chicks were randomly allocated to 4 treatments in a 2 × 2 factorial arrangement -basal diet and 125% arginine diet, with or without NE challenge. NE was induced by inoculating 1 × 104Eimeria maxima sporulated oocysts on d 14 and 1 × 108 CFU/bird C. perfringens on d 19, 20, and 21. The NE challenge had a significant effect on the BWG (p < 0.05), FCR (p < 0.05), serum AST (p < 0.05), GLU (p < 0.05), and K+ (p < 0.05) levels, and intestinal permeability (p < 0.05) and jejunal lesion score (p < 0.05). A significant challenge × diet interaction effect was observed in the cecal tonsil CD8+: CD4+ T-cell ratio on d 21 (p < 0.05) and 28 (p < 0.05) and spleen CD8+: CD4+ T-cell ratio on d 21 (p < 0.05) and 35 (p < 0.05). Arginine supplementation significantly increased the CD8+: CD4+ T-cell ratio in uninfected birds but decreased the CD8+: CD4+ T-cell ratio in infected birds. On d 21, a significant interaction effect was observed on the relative expression of the iNOS gene (p < 0.05). Arginine supplementation significantly downregulated the expression of the iNOS gene in infected birds. A significant effect of the challenge (p < 0.05) was observed on the relative gene expression of the ZO-1 gene in the jejunum. NE challenge significantly downregulated the expression of the ZO-1 gene on d 21. In conclusion, arginine supplementation did not alleviate the depression in growth performance and disease severity during the NE challenge. However, arginine downregulated the expression of inflammatory cytokines and enzymes, preventing inflammatory injury to the tissues during NE. Hence, arginine might be supplemented with other alternatives to downregulate inflammatory response during NE in poultry.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Walid G Al Hakeem
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture, Athens, GA 30605, USA
| | - Ramesh K Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA, USA.
| |
Collapse
|
7
|
Kappari L, Dasireddy JR, Applegate TJ, Selvaraj RK, Shanmugasundaram R. MicroRNAs: exploring their role in farm animal disease and mycotoxin challenges. Front Vet Sci 2024; 11:1372961. [PMID: 38803799 PMCID: PMC11129562 DOI: 10.3389/fvets.2024.1372961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/04/2024] [Indexed: 05/29/2024] Open
Abstract
MicroRNAs (miRNAs) serve as key regulators in gene expression and play a crucial role in immune responses, holding a significant promise for diagnosing and managing diseases in farm animals. This review article summarizes current research on the role of miRNAs in various farm animal diseases and mycotoxicosis, highlighting their potential as biomarkers and using them for mitigation strategies. Through an extensive literature review, we focused on the impact of miRNAs in the pathogenesis of several farm animal diseases, including viral and bacterial infections and mycotoxicosis. They regulate gene expression by inducing mRNA deadenylation, decay, or translational inhibition, significantly impacting cellular processes and protein synthesis. The research revealed specific miRNAs associated with the diseases; for instance, gga-miR-M4 is crucial in Marek's disease, and gga-miR-375 tumor-suppressing function in Avian Leukosis. In swine disease such as Porcine Respiratory and Reproductive Syndrome (PRRS) and swine influenza, miRNAs like miR-155 and miR-21-3p emerged as key regulatory factors. Additionally, our review highlighted the interaction between miRNAs and mycotoxins, suggesting miRNAs can be used as a biomarker for mycotoxin exposure. For example, alterations in miRNA expression, such as the dysregulation observed in response to Aflatoxin B1 (AFB1) in chickens, may indicate potential mechanisms for toxin-induced changes in lipid metabolism leading to liver damage. Our findings highlight miRNAs potential for early disease detection and intervention in farm animal disease management, potentially reducing significant economic losses in agriculture. With only a fraction of miRNAs functionally characterized in farm animals, this review underlines more focused research on specific miRNAs altered in distinct diseases, using advanced technologies like CRISPR-Cas9 screening, single-cell sequencing, and integrated multi-omics approaches. Identifying specific miRNA targets offers a novel pathway for early disease detection and the development of mitigation strategies against mycotoxin exposure in farm animals.
Collapse
Affiliation(s)
- Laharika Kappari
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | | | - Todd J. Applegate
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| |
Collapse
|
8
|
Moore RJ. Necrotic enteritis and antibiotic-free production of broiler chickens: Challenges in testing and using alternative products. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:288-298. [PMID: 38371475 PMCID: PMC10869589 DOI: 10.1016/j.aninu.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 02/20/2024]
Abstract
The global trend towards raising broiler chickens without the use of in-feed antibiotics (IFAs) means that there is an ongoing need to develop alternative treatments capable of delivering the benefits that IFAs previously provided. IFAs supported the productivity performance of chickens and played a key role in maintaining their health. Necrotic enteritis (NE) is an important disease of broilers that affects health, productivity, and welfare, and was previously well controlled by IFAs. However, with the reduction in IFA use, NE is resurgent in some countries. Vaccines and various feed additives, including pre-, pro-, and postbiotics, phytobiotics, fatty acids, and phage therapies have been introduced as alternative methods of NE control. While some of these feed additives have specific activity against the NE pathogen, Clostridium perfringens, most have the more general goal of reinforcing gut health. Extensive reviews of the effects of many of these feed additives on gut health have been published recently. Hence, rather than cover previously well reviewed areas of research this review focuses on the challenges and pitfalls in undertaking experimental assessment of alternative NE treatments and translating laboratory research to real world commercial production settings. The review is based on the author's particular experience, reading, thoughts, and analysis of the available information and inevitably presents a particular understanding that is likely to be at odds with others thinking on these issues. It is put forward to stimulate thinking and discussion on the issues covered.
Collapse
Affiliation(s)
- Robert J. Moore
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
9
|
de Souza M, Baptista AAS, Menck-Costa MF, Justino L, da Glória EM, Shimizu GD, Ferraz CR, Verri WA, Van Immerseel F, Bracarense APFRL. Modulation of Broiler Intestinal Changes Induced by Clostridium perfringens and Deoxynivalenol through Probiotic, Paraprobiotic, and Postbiotic Supplementation. Toxins (Basel) 2024; 16:46. [PMID: 38251262 PMCID: PMC10820081 DOI: 10.3390/toxins16010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Deoxynivalenol (DON) is a predisposing factor for necrotic enteritis. This study aimed to investigate the effects of a DON and Clostridium perfringens (CP) challenge on the intestinal morphology, morphometry, oxidative stress, and immune response of broilers. Additionally, we evaluated the potential of a Lactobacillus spp. mixture as an approach to mitigate the damage induced by the challenge. One-day-old broiler chickens (n = 252) were divided into seven treatment groups: Control, DON, CP, CP + DON, VL (DON + CP + viable Lactobacillus spp. mixture), HIL (DON + CP + heat-inactivated Lactobacillus spp. mixture), and LCS (DON + CP + Lactobacillus spp. mixture culture supernatant). Macroscopic evaluation of the intestines revealed that the CP + DON group exhibited the highest lesion score, while the VL and HIL groups showed the lowest scores. Microscopically, all Lactobacillus spp. treatments mitigated the morphological changes induced by the challenge. DON increased levels of reactive oxygen species (ROS) in the jejunum, and CP increased ROS levels in the jejunum and ileum. Notably, the Lactobacillus spp. treatments did not improve the antioxidant defense against CP-induced oxidative stress. In summary, a Lactobacillus spp. mixture, whether used as a probiotic, paraprobiotic, or postbiotic, exerted a partially protective effect in mitigating most of the intestinal damage induced by DON and CP challenges.
Collapse
Affiliation(s)
- Marielen de Souza
- Laboratory of Animal Pathology (LAP), Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
- Laboratory of Avian Medicine (LAM), Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (A.A.S.B.); (M.F.M.-C.); (L.J.)
- Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Ana Angelita Sampaio Baptista
- Laboratory of Avian Medicine (LAM), Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (A.A.S.B.); (M.F.M.-C.); (L.J.)
| | - Maísa Fabiana Menck-Costa
- Laboratory of Avian Medicine (LAM), Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (A.A.S.B.); (M.F.M.-C.); (L.J.)
| | - Larissa Justino
- Laboratory of Avian Medicine (LAM), Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (A.A.S.B.); (M.F.M.-C.); (L.J.)
| | - Eduardo Micotti da Glória
- Biological Science Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, Brazil;
| | - Gabriel Danilo Shimizu
- Department of Statistics, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
| | - Camila Rodrigues Ferraz
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of General Pathology, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (C.R.F.); (W.A.V.)
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of General Pathology, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (C.R.F.); (W.A.V.)
| | - Filip Van Immerseel
- Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | | |
Collapse
|
10
|
Shanmugasundaram R, Lourenco J, Hakeem WA, Dycus MM, Applegate TJ. Subclinical doses of dietary fumonisins and deoxynivalenol cause cecal microbiota dysbiosis in broiler chickens challenged with Clostridium perfringens. Front Microbiol 2023; 14:1106604. [PMID: 37082176 PMCID: PMC10111830 DOI: 10.3389/fmicb.2023.1106604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
Fusarium toxins are one of the most common contaminants in poultry diets. The co-occurrence of fumonisins (FUM) and deoxynivalenol (DON), even at a subclinical dose, negatively affects the growth performance, intestinal integrity and induce subclinical necrotic enteritis in broiler chickens. Loss of gut integrity can be expected to alter the intestinal microbiota’s composition. The objective of this study was to identify the effects of combined FUM and DON on the cecal microbiome profile and predicted metabolic functions and a short chain fatty acid profile in broilers challenged with Clostridium perfringens. A total of 240 1 day-old chicks were randomly assigned to two treatments: a control diet and the control diet with 3 mg/kg FUM + 4 mg/kg DON each with eight replications. All the birds were received cocci vaccine at d0. All birds in both treatment groups were challenged with C. perfringens 1 × 108 CFU via feed on d 19 and 20 to achieve 5% mortality. On d 35, the FUM and DON contaminated diet numerically (P = 0.06) decreased the body weight gain (BWG) by 84 g compared to the control group. The bacterial compositions of the cecal contents were analyzed by sequencing the V3–V4 region of the 16S rRNA gene. Overall, microbial richness and diversity increased (P < 0.02) during the studied period (d 21–35). Cecal contents of birds in the FUM + DON group had greater (P < 0.05) microbial evenness and diversity (Shannon index) compared to the control group. FUM + DON exposure decreased (P = 0.001) the relative abundance of Proteobacteria in the cecal content, compared to the control group. The combined FUM + DON significantly increased the relative abundance of the Defluviitaleaceae and Lachnospiraceae families (P < 0.05) but decreased the abundances of the Moraxellaceae and Streptococcaceae (P < 0.05) compared to the control group birds. At the genus level, FUM + DON exposure decreased (P < 0.05) Acinetobacter and Pseudomonas abundance and had a tendency (P = 0.08) to decrease Thermincola abundance compared to the control group. In the ileum, no NE-specific microscopic abnormalities were found; however, the tip of the ileal villi were compromised. The present findings showed that dietary FUM and DON contamination, even at subclinical levels, altered cecal microbial composition, dysregulated intestinal functions, and impaired the gut immune response, potentially predisposing the birds to necrotic enteritis.
Collapse
Affiliation(s)
- Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
- *Correspondence: Revathi Shanmugasundaram,
| | - Jeferson Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
- Jeferson Lourenco,
| | - Walid Al Hakeem
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Madison M. Dycus
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Todd J. Applegate
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| |
Collapse
|