1
|
Salis Torres A, Lee JE, Caporali A, Semple RK, Horrocks MH, MacRae VE. Mitochondrial Dysfunction as a Potential Mechanism Mediating Cardiac Comorbidities in Parkinson's Disease. Int J Mol Sci 2024; 25:10973. [PMID: 39456761 PMCID: PMC11507255 DOI: 10.3390/ijms252010973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Individuals diagnosed with Parkinson's disease (PD) often exhibit heightened susceptibility to cardiac dysfunction, reflecting a complex interaction between these conditions. The involvement of mitochondrial dysfunction in the development and progression of cardiac dysfunction and PD suggests a plausible commonality in some aspects of their molecular pathogenesis, potentially contributing to the prevalence of cardiac issues in PD. Mitochondria, crucial organelles responsible for energy production and cellular regulation, play important roles in tissues with high energetic demands, such as neurons and cardiac cells. Mitochondrial dysfunction can occur in different and non-mutually exclusive ways; however, some mechanisms include alterations in mitochondrial dynamics, compromised bioenergetics, biogenesis deficits, oxidative stress, impaired mitophagy, and disrupted calcium balance. It is plausible that these factors contribute to the increased prevalence of cardiac dysfunction in PD, suggesting mitochondrial health as a potential target for therapeutic intervention. This review provides an overview of the physiological mechanisms underlying mitochondrial quality control systems. It summarises the diverse roles of mitochondria in brain and heart function, highlighting shared pathways potentially exhibiting dysfunction and driving cardiac comorbidities in PD. By highlighting strategies to mitigate dysfunction associated with mitochondrial impairment in cardiac and neural tissues, our review aims to provide new perspectives on therapeutic approaches.
Collapse
Affiliation(s)
- Agustina Salis Torres
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RH, UK; (A.S.T.); (J.-E.L.)
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK;
| | - Ji-Eun Lee
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RH, UK; (A.S.T.); (J.-E.L.)
- IRR Chemistry Hub, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Andrea Caporali
- Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; (A.C.); (R.K.S.)
| | - Robert K. Semple
- Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; (A.C.); (R.K.S.)
| | - Mathew H. Horrocks
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK;
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Vicky E. MacRae
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RH, UK; (A.S.T.); (J.-E.L.)
| |
Collapse
|
2
|
Duft RG, Bonfante ILP, Palma-Duran SA, Chacon-Mikahil MPT, Griffin JL, Cavaglieri CR. Moderate-intensity Combined Training Induces Lipidomic Changes in Individuals With Obesity and Type 2 Diabetes. J Clin Endocrinol Metab 2024; 109:2182-2198. [PMID: 38488044 PMCID: PMC11318996 DOI: 10.1210/clinem/dgae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 06/01/2024]
Abstract
CONTEXT Alterations in the lipid metabolism are linked to metabolic disorders such as insulin resistance (IR), obesity and type 2 diabetes (T2D). Regular exercise, particularly combined training (CT), is a well-known nonpharmacological treatment that combines aerobic (AT) and resistance (RT) training benefits. However, it is unclear whether moderate-intensity exercise without dietary intervention induces changes in lipid metabolism to promote a "healthy lipidome." OBJECTIVE The study aimed to investigate the effect of 16 weeks of CT on plasma and white adipose tissue in both sexes, middle-aged individuals with normal weight, obesity (OB), and T2D using an ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) untargeted lipidomics approach. METHODS Body composition, maximum oxygen consumption (VO2max), strength, and biochemical markers were evaluated before and after the control/training period and correlated with lipid changes. CT consisted of 8 to 10 RT exercises, followed by 35 minutes of AT (45%-70% VO2max), 3 times a week for 16 weeks. RESULTS The CT significantly reduced the levels of saturated and monounsaturated fatty acid side-chains (SFA/MUFA) in sphingolipids, glycerolipids (GL) and glycerophospholipids (GP) as well as reducing fat mass, circumferences and IR. Increased levels of polyunsaturated fatty acids in GPs and GLs were also observed, along with increased fat-free mass, VO2 max, and strength (all P < .05) after training. CONCLUSION Our study revealed that 16 weeks of moderate-intensity CT remodeled the lipid metabolism in OB, and T2D individuals, even without dietary intervention, establishing a link between exercise-modulated lipid markers and mechanisms that reduce IR and obesity-related comorbidities.
Collapse
Affiliation(s)
- Renata Garbellini Duft
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London SW7 2AZ, UK
- Laboratory of Exercise Physiology, Faculty of Physical Education, University of Campinas, 13083-851, São Paulo, Brazil
- The Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Ivan Luiz Padilha Bonfante
- Laboratory of Exercise Physiology, Faculty of Physical Education, University of Campinas, 13083-851, São Paulo, Brazil
| | - Susana Alejandra Palma-Duran
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London SW7 2AZ, UK
- Department of Food Science, Research Centre in Food and Development AC, Hermosillo, 83304, Mexico
| | | | - Julian Leether Griffin
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London SW7 2AZ, UK
- The Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Cláudia Regina Cavaglieri
- Laboratory of Exercise Physiology, Faculty of Physical Education, University of Campinas, 13083-851, São Paulo, Brazil
| |
Collapse
|
3
|
Oppedisano F, Nesci S, Spagnoletta A. Mitochondrial sirtuin 3 and role of natural compounds: the effect of post-translational modifications on cellular metabolism. Crit Rev Biochem Mol Biol 2024; 59:199-220. [PMID: 38993040 DOI: 10.1080/10409238.2024.2377094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Sirtuins (SIRTs) are a family of proteins with enzymatic activity. In particular, they are a family of class III NAD+-dependent histone deacetylases and ADP-ribosyltransferases. NAD+-dependent deac(et)ylase activities catalyzed by sirtuin include ac(et)ylation, propionylation, butyrylation, crotonylation, manylation, and succinylation. Specifically, human SIRT3 is a 399 amino acid protein with two functional domains: a large Rossmann folding motif and NAD+ binding, and a small complex helix and zinc-binding motif. SIRT3 is widely expressed in mitochondria-rich tissues and is involved in maintaining mitochondrial integrity, homeostasis, and function. Moreover, SIRT3 regulates related diseases, such as aging, hepatic, kidney, neurodegenerative and cardiovascular disease, metabolic diseases, and cancer development. In particular, one of the most significant and damaging post-translational modifications is irreversible protein oxidation, i.e. carbonylation. This process is induced explicitly by increased ROS production due to mitochondrial dysfunction. SIRT3 is carbonylated by 4-hydroxynonenal at the level of Cys280. The carbonylation induces conformational changes in the active site, resulting in allosteric inhibition of SIRT3 activity and loss of the ability to deacetylate and regulate antioxidant enzyme activity. Phytochemicals and, in particular, polyphenols, thanks to their strong antioxidant activity, are natural compounds with a positive regulatory action on SIRT3 in various pathologies. Indeed, the enzymatic SIRT3 activity is modulated, for example, by different natural polyphenol classes, including resveratrol and the bergamot polyphenolic fraction. Thus, this review aims to elucidate the mechanisms by which phytochemicals can interact with SIRT3, resulting in post-translational modifications that regulate cellular metabolism.
Collapse
Affiliation(s)
- Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-Università di Bologna, Ozzano Emilia, Italy
| | - Anna Spagnoletta
- Laboratory "Regenerative Circular Bioeconomy", ENEA-Trisaia Research Centre, Rotondella, Italy
| |
Collapse
|
4
|
Stepaniuk N, Stepaniuk A, Hudz N, Havryliuk I. The impact of mitochondrial dysfunction on the pathogenesis of atherosclerosis. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2024; 77:153-159. [PMID: 38431820 DOI: 10.36740/wlek202401119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
OBJECTIVE Aim: To determine the role of mitochondrial dysfunction in the pathogenesis of atherosclerosis based on the analysis of research data and statistics from the MEDLINE, Scopus and Web of Science Core Collection electronic databases for 2007-2023. PATIENTS AND METHODS Materials and Methods: A comprehensive review of literature sources from the MEDLINE, Scopus and Web of Science Core Collection electronic databases was conducted to critically analyse the data and determine the role of mitochondrial dysfunction in the pathogenesis of atherosclerosis. CONCLUSION Conclusions: In this review, we have summarized the latest literature data on the association between mitochondrial dysfunction and the development of atherosclerosis. Mitochondria have been recognized as a novel therapeutic target in the development of atherosclerosis. However, the presence of current gaps in therapeutic strategies for mitochondrial dysfunction control still hinders clinical success in the prevention and treatment of atherosclerosis. Both antioxidants and gene therapy are appealing approaches to treating atherosclerosis. Nevertheless, further research is needed to determine the proper therapeutic strategy to reduce the impact of mitochondrial dysfunction on the progression of atherosclerosis.
Collapse
Affiliation(s)
| | - Alla Stepaniuk
- VINNYTSIA NATIONAL PYROHOV MEMORIAL MEDICAL UNIVERSITY, VINNYTSIA, UKRAINE
| | - Nataliia Hudz
- DANYLO HALYTSKY LVIV NATIONAL MEDICAL UNIVERSITY, LVIV, UKRAINE; UNIVERSITY OF OPOLE, OPOLE, POLAND
| | - Iryna Havryliuk
- DANYLO HALYTSKY LVIV NATIONAL MEDICAL UNIVERSITY, LVIV, UKRAINE
| |
Collapse
|
5
|
Prem PN, Kurian GA. Cardiac damage following renal ischemia reperfusion injury increased with excessive consumption of high fat diet but enhanced the cardiac resistance to reperfusion stress in rat. Heliyon 2023; 9:e22273. [PMID: 38053866 PMCID: PMC10694322 DOI: 10.1016/j.heliyon.2023.e22273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
Renal ischemia-reperfusion (IR) injury inflicts remote cardiac dysfunction. Studies on rats fed with a high-fat diet (HD) showed contradictory results: some demonstrated increased sensitivity of the heart and kidney to IR injury, while others reported resistance. In this study, we examined cardiac dysfunction and compromised cardiac tolerance associated with renal IR in HD and standard diet (SD) fed rats. Male Wistar rats fed with HD or SD diet for 16 weeks were subjected to either renal sham or IR protocol (bilateral clamping for 45 min and reperfusion for 24 h). The hearts isolated from these rats were further subjected to normal perfusion or IR procedure to study cardiac response. Renal IR surgery negatively affected cardiac function with substantial changes in the cardiac tissues, like mitochondrial dysfunction, elevated oxidative stress, and inflammation. HD-fed rat hearts exhibited hypertrophy at the end of 16 weeks, and the consequential impact on the heart was higher in the animals underwent renal IR surgery than with sham surgery. However, the IR induction in the isolated heart from renal sham or renal IR operation showed significant tissue injury resistance and better physiological recovery in HD-fed rats. However, in SD-fed rats, only hearts from renal IR-operated rats showed resistance to cardiac IR, whereas hearts from renal sham-operated rats were more susceptible to IR damage. The augmented IR resistance in the heart with prior renal surgery was due to preserved mitochondrial bioenergetics function, reduced oxidative stress, and activation of the PI3K/AKT signaling axis.
Collapse
Affiliation(s)
- Priyanka N. Prem
- Vascular Biology Lab. School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| | - Gino A. Kurian
- Vascular Biology Lab. School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| |
Collapse
|
6
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H. Glucose-Lowering Effects of Imeglimin and Its Possible Beneficial Effects on Diabetic Complications. BIOLOGY 2023; 12:biology12050726. [PMID: 37237539 DOI: 10.3390/biology12050726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Mitochondrial dysfunction is a prominent pathological feature of type 2 diabetes, which contributes to β-cell mass reduction and insulin resistance. Imeglimin is a novel oral hypoglycemic agent with a unique mechanism of action targeting mitochondrial bioenergetics. Imeglimin reduces reactive oxygen species production, improves mitochondrial function and integrity, and also improves the structure and function of endoplasmic reticulum (ER), changes which enhance glucose-stimulated insulin secretion and inhibit the apoptosis of β-cells, leading to β-cell mass preservation. Further, imeglimin inhibits hepatic glucose production and ameliorates insulin sensitivity. Clinical trials into the effects of imeglimin monotherapy and combination therapy exhibited an excellent hypoglycemic efficacy and safety profile in type 2 diabetic patients. Mitochondrial impairment is closely associated with endothelial dysfunction, which is a very early event in atherosclerosis. Imeglimin improved endothelial dysfunction in patients with type 2 diabetes via both glycemic control-dependent and -independent mechanisms. In experimental animals, imeglimin improved cardiac and kidney function via an improvement in mitochondrial and ER function or/and an improvement in endothelial function. Furthermore, imeglimin reduced ischemia-induced brain damage. In addition to glucose-lowering effects, imeglimin can be a useful therapeutic option for diabetic complications in type 2 diabetic patients.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Hiroki Adachi
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Mariko Hakoshima
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Hisayuki Katsuyama
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| |
Collapse
|