1
|
Deng M, Zeng Q, Liu S, Jin M, Luo H, Luo J. Combining association with linkage mapping to dissect the phenolamides metabolism of the maize kernel. FRONTIERS IN PLANT SCIENCE 2024; 15:1376405. [PMID: 38681218 PMCID: PMC11047430 DOI: 10.3389/fpls.2024.1376405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Phenolamides are important secondary metabolites in plant species. They play important roles in plant defense responses against pathogens and insect herbivores, protection against UV irradiation and floral induction and development. However, the accumulation and variation in phenolamides content in diverse maize lines and the genes responsible for their biosynthesis remain largely unknown. Here, we combined genetic mapping, protein regulatory network and bioinformatics analysis to further enhance the understanding of maize phenolamides biosynthesis. Sixteen phenolamides were identified in multiple populations, and they were all significantly correlated with one or several of 19 phenotypic traits. By linkage mapping, 58, 58, 39 and 67 QTLs, with an average of 3.9, 3.6, 3.6 and 4.2 QTLs for each trait were mapped in BBE1, BBE2, ZYE1 and ZYE2, explaining 9.47%, 10.78%, 9.51% and 11.40% phenotypic variation for each QTL on average, respectively. By GWAS, 39 and 36 significant loci were detected in two different environments, 3.3 and 2.8 loci for each trait, explaining 10.00% and 9.97% phenotypic variation for each locus on average, respectively. Totally, 58 unique candidate genes were identified, 31% of them encoding enzymes involved in amine and derivative metabolic processes. Gene Ontology term analysis of the 358 protein-protein interrelated genes revealed significant enrichment in terms relating to cellular nitrogen metabolism, amine metabolism. GRMZM2G066142, GRMZM2G066049, GRMZM2G165390 and GRMZM2G159587 were further validated involvement in phenolamides biosynthesis. Our results provide insights into the genetic basis of phenolamides biosynthesis in maize kernels, understanding phenolamides biosynthesis and its nutritional content and ability to withstand biotic and abiotic stress.
Collapse
Affiliation(s)
- Min Deng
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Qingping Zeng
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Songqin Liu
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Min Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Hongbing Luo
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Jingyun Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Liu X, Yang M, Zhu J, Zeng J, Qiu F, Zeng L, Yang C, Zhang H, Lan X, Chen M, Liao Z, Zhao T. Functional divergence of two arginine decarboxylase genes in tropane alkaloid biosynthesis and root growth in Atropa belladonna. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108439. [PMID: 38408396 DOI: 10.1016/j.plaphy.2024.108439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/21/2023] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
Putrescine, produced via the arginine decarboxylase (ADC)/ornithine decarboxylase (ODC)-mediated pathway, is an initial precursor for polyamines metabolism and the root-specific biosynthesis of medicinal tropane alkaloids (TAs). These alkaloids are widely used as muscarinic acetylcholine antagonists in clinics. Although the functions of ODC in biosynthesis of polyamines and TAs have been well investigated, the role of ADC is still poorly understood. In this study, enzyme inhibitor treatment showed that ADC was involved in the biosynthesis of putrescine-derived metabolites and root growth in Atropa belladonna. Further analysis found that there were six ADC unigenes in the A. belladonna transcriptome, with two of them, AbADC1 and AbADC2, exhibiting high expression in the roots. To investigate their roles in TAs/polyamines metabolism and root growth, RNA interference (RNAi) was used to suppress either AbADC1 or AbADC2 expression in A. belladonna hairy roots. Suppression of the AbADC1 expression resulted in a significant reduction in the putrescine content and hairy root biomass. However, it had no noticeable effect on the levels of N-methylputrescine and the TAs hyoscyamine, anisodamine, and scopolamine. On the other hand, suppression of AbADC2 expression markedly reduced the levels of putrescine, N-methylputrescine, and TAs, but had no significant effect on hairy root biomass. According to β-glucuronidase (GUS) staining assays, AbADC1 was mainly expressed in the root elongation and division region while AbADC2 was mainly expressed in the cylinder of the root maturation region. These differences in expression led to functional divergence, with AbADC1 primarily regulating root growth and AbADC2 contributing to TA biosynthesis.
Collapse
Affiliation(s)
- Xiaoqiang Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Mei Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jiahui Zhu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Junlan Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Fei Qiu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lingjiang Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chunxian Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Hongbo Zhang
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiaozhong Lan
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, TAAHC-SWU Medicinal Plant Joint R&D Centre, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhihua Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Tengfei Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Tariq N, Yaseen M, Xu D, Rehman HM, Bibi M, Uzair M. Rice anther tapetum: a vital reproductive cell layer for sporopollenin biosynthesis and pollen exine patterning. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:233-245. [PMID: 36350096 DOI: 10.1111/plb.13485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The tapetum is the innermost layer of the four layers of the rice anther that provides protection and essential nutrients to pollen grain development and delivers precursors for pollen exine formation. The tapetum has a key role in the normal development of pollen grains and tapetal programmed cell death (PCD) that is linked with sporopollenin biosynthesis and transport. Recently, many genes have been identified that are involved in tapetum formation in rice and Arabidopsis. Genetic mutation in PCD-associated genes could affect normal tapetal PCD, which finally leads to aborted pollen grains and male sterility in rice. In this review, we discuss the most recent research on rice tapetum development, including genomic, transcriptomic and proteomic studies. Furthermore, tapetal PCD, sporopollenin biosynthesis, ROS activity for tapetum function and its role in male reproductive development are discussed in detail. This will improve our understanding of the role of the tapetum in male fertility using rice as a model system, and provide information that can be applied in rice hybridization and that of other major crops.
Collapse
Affiliation(s)
- N Tariq
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - M Yaseen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Institute of Rice Research, Sichuan Agricultural University, Sichuan, China
| | - D Xu
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - H M Rehman
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - M Bibi
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, Korea
| | - M Uzair
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
4
|
Zhao T, Zeng J, Yang M, Qiu F, Tang Y, Zeng L, Yang C, He P, Lan X, Chen M, Liao Z, Zhang F. Ornithine decarboxylase regulates putrescine-related metabolism and pollen development in Atropa belladonna. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:110-119. [PMID: 36219994 DOI: 10.1016/j.plaphy.2022.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Polyamines, including putrescine, spermidine, and spermine, play critical roles in cell physiology by different forms. As a rate-limiting enzyme that converts ornithine to putrescine, ornithine decarboxylase (ODC, EC 1.1.1.37) has been studied in detail in animals and microorganisms, but its specific functions are poorly understood in plants. In this study, the metabolic and developmental roles of the ODC gene were studied through RNAi-mediated suppression of the ODC gene (AbODC) in A. belladonna. Suppression of AbODC reduced the production of precursors of medicinal tropane alkaloids, including putrescine and N-methylputrescine, as well as hyoscyamine and scopolamine. In AbODC-RNAi roots, the production of putrescine and spermidine in free form was reduced, but in the AbODC-RNAi leaves, the content of free polyamines was not altered. In the roots/leaves of AbODC-RNAi plants, the production of conjugated and bound polyamines was reduced. In addition, suppression of the ODC gene resulted in reduction of polyamines and pollen sterility in AbODC-RNAi flowers. In floral organs, GUS-staining results indicated that AbODC was domainantly expressed in pollen. In summary, ornithine decarboxylase not only plays a key role in regulating the biosynthesis of diverse forms of polyamines and medicinal tropane alkaloids, but also participates in pollen development.
Collapse
Affiliation(s)
- Tengfei Zhao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Junlan Zeng
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Mei Yang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Fei Qiu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yueli Tang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lingjiang Zeng
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chunxian Yang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Ping He
- Chongqing Academy of Science and Technology, Chongqing, 401123, China
| | - Xiaozhong Lan
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Tibet Agriculture and Animal Husbandry University, Nyingchi of Tibet, 860000, China
| | - Min Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhihua Liao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China; Chongqing Academy of Science and Technology, Chongqing, 401123, China.
| | - Fangyuan Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
5
|
Bernard G, Buges J, Delporte M, Molinié R, Besseau S, Bouchereau A, Watrin A, Fontaine JX, Mathiron D, Berardocco S, Bassard S, Quéro A, Hilbert JL, Rambaud C, Gagneul D. Consecutive action of two BAHD acyltransferases promotes tetracoumaroyl spermine accumulation in chicory. PLANT PHYSIOLOGY 2022; 189:2029-2043. [PMID: 35604091 PMCID: PMC9343010 DOI: 10.1093/plphys/kiac234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Fully substituted phenolamide accumulation in the pollen coat of Eudicotyledons is a conserved evolutionary chemical trait. Interestingly, spermidine derivatives are replaced by spermine derivatives as the main phenolamide accumulated in the Asteraceae family. Here, we show that the full substitution of spermine in chicory (Cichorium intybus) requires the successive action of two enzymes, that is spermidine hydroxycinnamoyl transferase-like proteins 1 and 2 (CiSHT1 and CiSHT2), two members of the BAHD enzyme family. Deletion of these genes in chicory using CRISPR/Cas9 gene editing technology evidenced that CiSHT2 catalyzes the first N-acylation steps, whereas CiSHT1 fulfills the substitution to give rise to tetracoumaroyl spermine. Additional experiments using Nicotiana benthamiana confirmed these findings. Expression of CiSHT2 alone promoted partially substituted spermine accumulation, and coexpression of CiSHT2 and CiSHT1 promoted synthesis and accumulation of the fully substituted spermine. Structural characterization of the main product of CiSHT2 using nuclear magnetic resonance revealed that CiSHT2 preferentially catalyzed N-acylation of secondary amines to form N5,N10-dicoumaroyl spermine, whereas CiSHT1 used this substrate to synthesize tetracoumaroyl spermine. We showed that spermine availability may be a key determinant toward preferential accumulation of spermine derivatives over spermidine derivatives in chicory. Our results reveal a subfunctionalization among the spermidine hydroxycinnamoyl transferase that was accompanied by a modification of free polyamine metabolism that has resulted in the accumulation of this new phenolamide in chicory and most probably in all Asteraceae. Finally, genetically engineered yeast (Saccharomyces cerevisiae) was shown to be a promising host platform to produce these compounds.
Collapse
Affiliation(s)
- Guillaume Bernard
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| | - Julie Buges
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| | - Marianne Delporte
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| | - Roland Molinié
- UMR Transfontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417-BIOlogie des Plantes et Innovation (BIOPI), Amiens 80025, France
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours 37200, France
| | - Alain Bouchereau
- UMR 1349 IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu 35650, France
| | - Amandine Watrin
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| | - Jean-Xavier Fontaine
- UMR Transfontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417-BIOlogie des Plantes et Innovation (BIOPI), Amiens 80025, France
| | - David Mathiron
- Plateforme Analytique (PFA), Université de Picardie Jules Verne, Amiens 80039, France
| | - Solenne Berardocco
- UMR 1349 IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu 35650, France
| | - Solène Bassard
- UMR Transfontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417-BIOlogie des Plantes et Innovation (BIOPI), Amiens 80025, France
| | - Anthony Quéro
- UMR Transfontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417-BIOlogie des Plantes et Innovation (BIOPI), Amiens 80025, France
| | - Jean-Louis Hilbert
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| | - Caroline Rambaud
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| | - David Gagneul
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| |
Collapse
|
6
|
Fischerová L, Gemperlová L, Cvikrová M, Matušíková I, Moravčíková J, Gerši Z, Malbeck J, Kuderna J, Pavlíčková J, Motyka V, Eliášová K, Vondráková Z. The humidity level matters during the desiccation of Norway spruce somatic embryos. FRONTIERS IN PLANT SCIENCE 2022; 13:968982. [PMID: 35968100 PMCID: PMC9372446 DOI: 10.3389/fpls.2022.968982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
In Norway spruce, as in many other conifers, the germination capacity of somatic embryos is strongly influenced by the desiccation phase inserted after maturation. The intensity of drying during desiccation eminently affected the formation of emblings (i.e., seedlings developed from somatic embryos). Compared to non-desiccated embryos, the germination capacity of embryos desiccated at 100% relative humidity was about three times higher, but the reduction of relative humidity to 95 and 90% had a negative effect on the subsequent embryo development. The water loss observed in these embryos did not lead to an increase in lipid peroxidation, as shown by malondialdehyde levels. Another metabolic pathway in plants that mediates a response to abiotic stresses is directed toward the biosynthesis of polyamines (PAs). The activities of PA biosynthetic enzymes increased steadily in embryos during desiccation at 100% relative humidity, whereas they decreased at lower humidity. The total content of free PAs in the embryos gradually decreased throughout desiccation. The increase in free putrescine (Put) and perchloric acid-insoluble Put conjugates was observed in embryos desiccated at lower humidity. These changes were accompanied to some extent by the transcription of the genes for the PA biosynthesis enzymes. Desiccation at 100% relative humidity increased the activity of the cell wall-modifying enzymes β-1,3-glucanases and chitinases; the activities of these enzymes were also significantly suppressed at reduced humidity. The same pattern was observed in the transcription of some β-1,3-glucanase and chitinase genes. Desiccation treatments triggered metabolic processes that responded to water availability, suggesting an active response of the embryo to the reduction in humidity. A positive effect was demonstrated only for desiccation at high relative humidity. Some of the physiological characteristics described can be used as markers of inappropriate relative humidity during somatic embryo desiccation.
Collapse
Affiliation(s)
- Lucie Fischerová
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Lenka Gemperlová
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Milena Cvikrová
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Ildiko Matušíková
- Department of Ecochemistry and Radioecology, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Jana Moravčíková
- Department of Biotechnologies, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Zuzana Gerši
- Department of Biology, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Jiří Malbeck
- Laboratory of Mass Spectroscopy, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jan Kuderna
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jana Pavlíčková
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Václav Motyka
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Kateřina Eliášová
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Zuzana Vondráková
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
7
|
Roumani M, Besseau S, Gagneul D, Robin C, Larbat R. Phenolamides in plants: an update on their function, regulation, and origin of their biosynthetic enzymes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2334-2355. [PMID: 33315095 DOI: 10.1093/jxb/eraa582] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Phenolamides represent a family of specialized metabolites, consisting of the association of hydroxycinnamic acid derivatives with aliphatic or aromatic amines. Since the discovery of the first phenolamide in the late 1940s, decades of phytochemical analyses have revealed a high structural diversity for this family and a wide distribution in the plant kingdom. The occurrence of structurally diverse phenolamides in almost all plant organs has led to early hypotheses on their involvement in floral initiation and fertility, as well as plant defense against biotic and abiotic stress. In the present work, we critically review the literature ascribing functional hypotheses to phenolamides and recent evidence on the control of their biosynthesis in response to biotic stress. We additionally provide a phylogenetic analysis of the numerous N-hydroxycinnamoyltransferases involved in the synthesis of phenolamides and discuss the potential role of other enzyme families in their diversification. The data presented suggest multiple evolutionary events that contributed to the extension of the taxonomic distribution and diversity of phenolamides.
Collapse
Affiliation(s)
- Marwa Roumani
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| | - Sébastien Besseau
- EA 2106, Biomolécules et biotechnologies végétales (BBV), Université de Tours, Tours, France
| | - David Gagneul
- UMR 1158, BioEcoAgro, Université de Lille, INRAe, Université de Liège, UPJV, YNCREA, Université d'Artois, Université Littoral Côte d'Opale, Institut Charles Viollette (ICV), Lille, France
| | - Christophe Robin
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| | - Romain Larbat
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| |
Collapse
|
8
|
Kaltenegger E, Prakashrao AS, Çiçek SS, Ober D. Development of an activity assay for characterizing deoxyhypusine synthase and its diverse reaction products. FEBS Open Bio 2021; 11:10-25. [PMID: 33247548 PMCID: PMC7780104 DOI: 10.1002/2211-5463.13046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/04/2020] [Accepted: 11/24/2020] [Indexed: 02/02/2023] Open
Abstract
Deoxyhypusine synthase transfers an aminobutyl moiety from spermidine to the eukaryotic translation initiation factor 5A (eIF5A) in the first step of eIF5A activation. This exclusive post-translational modification is conserved in all eukaryotes. Activated eIF5A has been shown to be essential for cell proliferation and viability. Recent reports have linked the activation of eIF5A to several human diseases. Deoxyhypusine synthase, which is encoded by a single gene copy in most eukaryotes, was duplicated in several plant lineages during evolution, the copies being repeatedly recruited to pyrrolizidine alkaloid biosynthesis. However, the function of many of these duplicates is unknown. Notably, deoxyhypusine synthase is highly promiscuous and can catalyze various reactions, often of unknown biological relevance. To facilitate in-depth biochemical studies of this enzyme, we report here the development of a simple and robust in vitro enzyme assay. It involves precolumn derivatization of the polyamines taking part in the reaction and avoids the need for the previously used radioactively labeled tracers. The derivatized polyamines are quantified after high-performance liquid chromatography coupled to diode array and fluorescence detectors. By performing kinetic analyses of deoxyhypusine synthase and its paralog from the pyrrolizidine alkaloid-producing plant Senecio vernalis, we demonstrate that the assay unequivocally differentiates the paralogous enzymes. Furthermore, it detects and quantifies, in a single assay, the side reactions that occur in parallel to the main reaction. The presented assay thus provides a detailed biochemical characterization of deoxyhypusine synthase and its paralogs.
Collapse
Affiliation(s)
- Elisabeth Kaltenegger
- Biochemical Ecology and Molecular Evolution GroupBotanical Institute and Kiel Botanic GardensChristian‐Albrechts‐UniversityKielGermany
| | - Arunraj S. Prakashrao
- Biochemical Ecology and Molecular Evolution GroupBotanical Institute and Kiel Botanic GardensChristian‐Albrechts‐UniversityKielGermany
| | - Serhat S. Çiçek
- Pharmacognosy GroupPharmaceutical InstituteChristian‐Albrechts‐UniversityKielGermany
| | - Dietrich Ober
- Biochemical Ecology and Molecular Evolution GroupBotanical Institute and Kiel Botanic GardensChristian‐Albrechts‐UniversityKielGermany
| |
Collapse
|
9
|
Anwar R, Fatima S, Mattoo AK, Handa AK. Fruit Architecture in Polyamine-Rich Tomato Germplasm Is Determined via a Medley of Cell Cycle, Cell Expansion, and Fruit Shape Genes. PLANTS 2019; 8:plants8100387. [PMID: 31569586 PMCID: PMC6843802 DOI: 10.3390/plants8100387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 12/26/2022]
Abstract
Shape and size are important features of fruits. Studies using tomatoes expressing yeast Spermidine Synthase under either a constitutive or a fruit-ripening promoter showed obovoid fruit phenotype compared to spherical fruit in controls, suggesting that polyamines (PAs) have a role in fruit shape. The obovoid fruit pericarp exhibited decreased cell layers and pericarp thickness compared to wild-type fruit. Transgenic floral buds and ovaries accumulated higher levels of free PAs, with the bound form of PAs being predominant. Transcripts of the fruit shape genes, SUN1 and OVATE, and those of CDKB2, CYCB2, KRP1 and WEE1 genes increased significantly in the transgenic ovaries 2 and 5 days after pollination (DAP). The levels of cell expansion genes CCS52A/B increased at 10 and 20 DAP in the transgenic fruits and exhibited negative correlation with free or bound forms of PAs. In addition, the cell layers and pericarp thickness of the transgenic fruits were inversely associated with free or bound PAs in 10 and 20 DAP transgenic ovaries. Collectively, these results provide evidence for a linkage between PA homeostasis and expression patterns of fruit shape, cell division, and cell expansion genes during early fruit development, and suggest role(s) of PAs in tomato fruit architecture.
Collapse
Affiliation(s)
- Raheel Anwar
- Department of Horticulture and Landscape Architecture, 625 Agriculture Mall Drive, Purdue University, West Lafayette, IN 47906, USA.
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Punjab 38040, Pakistan.
| | - Shazia Fatima
- Department of Horticulture and Landscape Architecture, 625 Agriculture Mall Drive, Purdue University, West Lafayette, IN 47906, USA.
| | - Autar K Mattoo
- Sustainable Agricultural Systems Laboratory, U.S. Department of Agriculture, Agricultural Research Service, The Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705, USA.
| | - Avtar K Handa
- Department of Horticulture and Landscape Architecture, 625 Agriculture Mall Drive, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
10
|
Battat M, Eitan A, Rogachev I, Hanhineva K, Fernie A, Tohge T, Beekwilder J, Aharoni A. A MYB Triad Controls Primary and Phenylpropanoid Metabolites for Pollen Coat Patterning. PLANT PHYSIOLOGY 2019; 180:87-108. [PMID: 30755473 PMCID: PMC6501115 DOI: 10.1104/pp.19.00009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/30/2019] [Indexed: 05/17/2023]
Abstract
The pollen wall is a complex, durable structure essential for plant reproduction. A substantial portion of phenylpropanoids (e.g. flavonols) produced by pollen grain tapetal cells are deposited in the pollen wall. Transcriptional regulation of pollen wall formation has been studied extensively, and a specific regulatory mechanism for Arabidopsis (Arabidopsis thaliana) pollen flavonol biosynthesis has been postulated. Here, metabolome and transcriptome analyses of anthers from mutant and overexpression genotypes revealed that Arabidopsis MYB99, a putative ortholog of the petunia (Petunia hybrida) floral scent regulator ODORANT1 (ODO1), controls the exclusive production of tapetum diglycosylated flavonols and hydroxycinnamic acid amides. We discovered that MYB99 acts in a regulatory triad with MYB21 and MYB24, orthologs of emission of benzenoids I and II, which together with ODO1 coregulate petunia scent biosynthesis genes. Furthermore, promoter-activation assays showed that MYB99 directs precursor supply from the Calvin cycle and oxidative pentose-phosphate pathway in primary metabolism to phenylpropanoid biosynthesis by controlling TRANSKETOLASE2 expression. We provide a model depicting the relationship between the Arabidopsis MYB triad and structural genes from primary and phenylpropanoid metabolism and compare this mechanism with petunia scent control. The discovery of orthologous protein triads producing related secondary metabolites suggests that analogous regulatory modules exist in other plants and act to regulate various branches of the intricate phenylpropanoid pathway.
Collapse
Affiliation(s)
- Maor Battat
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Asa Eitan
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ilana Rogachev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Alisdair Fernie
- Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Jules Beekwilder
- Plant Research International, 6700 AA Wageningen, The Netherlands
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
11
|
Vogt T. Unusual spermine-conjugated hydroxycinnamic acids on pollen: function and evolutionary advantage. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5311-5315. [PMID: 30476279 PMCID: PMC6255709 DOI: 10.1093/jxb/ery359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Thomas Vogt
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, Halle (Saale), Germany
| |
Collapse
|
12
|
Abstract
Polyamines (PAs) are essential biomolecules that are known to be involved in the regulation of many plant developmental and growth processes as well as their response to different environmental stimuli. Maintaining the cellular pools of PAs or their metabolic precursors and by-products is critical to accomplish their normal functions. Therefore, the titre of PAs in the cells must be under tight regulation to enable cellular PA homeostasis. Polyamine homeostasis is hence achieved by the regulation of their input into the cellular PA pool, their conversion into secondary metabolites, their transport to other issues/organs, and their catabolism or turnover. The major contributors of input to the PA pools are their in vivo biosynthesis, interconversion between different PAs, and transport from other tissues/organs; while the output or turnover of PAs is facilitated by transport, conjugation and catabolism. Polyamine metabolic pathways including the biosynthesis, catabolism/turnover and conjugation with various organic molecules have been widely studied in all kingdoms. Discoveries on the molecular transporters facilitating the intracellular and intercellular translocation of PAs have also been reported. Numerous recent studies using transgenic approaches and mutagenesis have shown that plants can tolerate quite large concentrations of PAs in the cells; even though, at times, high cellular accumulation of PAs is quite detrimental, and so is high rate of catabolism. The mechanism by which plants tolerate such large quantities of PAs is still unclear. Interestingly, enhanced PA biosynthesis via manipulation of the PA metabolic networks has been suggested to contribute directly to increased growth and improvements in plant abiotic and biotic stress responses; hence greater biomass and productivity. Genetic manipulation of the PA metabolic networks has also been shown to improve plant nitrogen assimilation capacity, which may in turn lead to enhanced carbon assimilation. These potential benefits on top of the widely accepted role of PAs in improving plants' tolerance to biotic and abiotic stressors are invaluable tools for future plant improvement strategies.
Collapse
Affiliation(s)
- Wegi Wuddineh
- Department of Biological Sciences, University of New Hampshire, 46 College Road, Rudman Hall, RM 103, Durham, NH, 03824, USA
| | - Rakesh Minocha
- USDA Forest Service, Northern Research Station, Durham, NH, 03824, USA
| | - Subhash C Minocha
- Department of Biological Sciences, University of New Hampshire, 46 College Road, Rudman Hall, RM 103, Durham, NH, 03824, USA.
| |
Collapse
|
13
|
Groß F, Rudolf EE, Thiele B, Durner J, Astier J. Copper amine oxidase 8 regulates arginine-dependent nitric oxide production in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2149-2162. [PMID: 28383668 PMCID: PMC5447880 DOI: 10.1093/jxb/erx105] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nitric oxide (NO) is a key signaling molecule in plants, regulating a wide range of physiological processes. However, its origin in plants remains unclear. It can be generated from nitrite through a reductive pathway, notably via the action of the nitrate reductase (NR), and evidence suggests an additional oxidative pathway, involving arginine. From an initial screen of potential Arabidopsis thaliana mutants impaired in NO production, we identified copper amine oxidase 8 (CuAO8). Two cuao8 mutant lines displayed a decreased NO production in seedlings after elicitor treatment and salt stress. The NR-dependent pathway was not responsible for the impaired NO production as no change in NR activity was found in the mutants. However, total arginase activity was strongly increased in cuao8 knockout mutants after salt stress. Moreover, NO production could be restored in the mutants by arginase inhibition or arginine addition. Furthermore, arginine supplementation reversed the root growth phenotype observed in the mutants. These results demonstrate that CuAO8 participates in NO production by influencing arginine availability through the modulation of arginase activity. The influence of CuAO8 on arginine-dependent NO synthesis suggests a new regulatory pathway for NO production in plants.
Collapse
Affiliation(s)
- Felicitas Groß
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology,D-85764 Neuherberg, Germany
| | - Eva-Esther Rudolf
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology,D-85764 Neuherberg, Germany
| | - Björn Thiele
- Forschungszentrum Jülich, Institute for Bio-and Geoscience, IBG-2, D-52428 Jülich, Germany
| | - Jörg Durner
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
- Technical University Munich, Wissenschaftszentrum Weihenstephan, D-80333 München, Germany
| | - Jeremy Astier
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology,D-85764 Neuherberg, Germany
| |
Collapse
|
14
|
Dalton HL, Blomstedt CK, Neale AD, Gleadow R, DeBoer KD, Hamill JD. Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3367-81. [PMID: 27126795 PMCID: PMC4892731 DOI: 10.1093/jxb/erw166] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana.
Collapse
Affiliation(s)
- Heidi L Dalton
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Cecilia K Blomstedt
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Alan D Neale
- Deakin University, Centre for Regional and Rural Futures (CeRRF), Geelong, Victoria 3216, Australia
| | - Ros Gleadow
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Kathleen D DeBoer
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| | - John D Hamill
- Deakin University, Centre for Regional and Rural Futures (CeRRF), Geelong, Victoria 3216, Australia
| |
Collapse
|
15
|
Mo HJ, Sun YX, Zhu XL, Wang XF, Zhang Y, Yang J, Yan GJ, Ma ZY. Cotton S-adenosylmethionine decarboxylase-mediated spermine biosynthesis is required for salicylic acid- and leucine-correlated signaling in the defense response to Verticillium dahliae. PLANTA 2016; 243:1023-39. [PMID: 26757733 DOI: 10.1007/s00425-015-2463-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/25/2015] [Indexed: 05/06/2023]
Abstract
Cotton S-adenosylmethionine decarboxylase-, rather than spermine synthase-, mediated spermine biosynthesis is required for salicylic acid- and leucine-correlated signaling in the defense response to Verticillium dahliae. Spermine (Spm) signaling is correlated with plant resistance to the fungal pathogen Verticillium dahliae. We identified genes for key rate-limiting enzymes in the biosynthesis of Spm, namely S-adenosylmethionine decarboxylase (GhSAMDC) and Spm synthase (GhSPMS). These were found by screening suppression subtractive hybridization and cDNA libraries of cotton (Gossypium) species tolerant to Verticillium wilt. Both were induced early and strongly by inoculation with V. dahliae and application of plant hormones. Silencing of GhSPMS or GhSAMDC in cotton leaves led to a significant accumulation of upstream substrates and, ultimately, enhanced plant susceptibility to Verticillium infection. Exogenous supplementation of Spm to the silenced cotton plants improved resistance. When compared with the wild type (WT), constitutive expression of GhSAMDC in Arabidopsis thaliana was associated with greater Verticillium wilt resistance and higher accumulations of Spm, salicylic acid, and leucine during the infection period. By contrast, transgenic Arabidopsis plants that over-expressed GhSPMS were unexpectedly more susceptible than the WT to V. dahliae and they also had impaired levels of putrescine (Put) and salicylic acid (SA). The susceptibility exhibited in GhSPMS-overexpressing Arabidopsis plants was partially reversed by the exogenous supply of Put or SA. In addition, the responsiveness of those two transgenic Arabidopsis lines to V. dahliae was associated with an alteration in transcripts of genes involved in plant resistance to epidermal penetrations and amino acid signaling. Together, these results suggest that GhSAMDC-, rather than GhSPMS-, mediated spermine biosynthesis contributes to plant resistance against V. dahliae through SA- and leucine-correlated signaling.
Collapse
Affiliation(s)
- Hui-Juan Mo
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Yan-Xiang Sun
- Institute of Genetics and Breeding, Langfang Teachers University, Langfang, 065000, China
| | - Xiao-Li Zhu
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Xing-Fen Wang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Yan Zhang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Jun Yang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Gui-Jun Yan
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
- School of Plant Biology, Faculty of Science and The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
| | - Zhi-Ying Ma
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
16
|
Aloisi I, Cai G, Serafini-Fracassini D, Del Duca S. Polyamines in Pollen: From Microsporogenesis to Fertilization. FRONTIERS IN PLANT SCIENCE 2016; 7:155. [PMID: 26925074 PMCID: PMC4757701 DOI: 10.3389/fpls.2016.00155] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/29/2016] [Indexed: 05/20/2023]
Abstract
The entire pollen life span is driven by polyamine (PA) homeostasis, achieved through fine regulation of their biosynthesis, oxidation, conjugation, compartmentalization, uptake, and release. The critical role of PAs, from microsporogenesis to pollen-pistil interaction during fertilization, is suggested by high and dynamic transcript levels of PA biosynthetic genes, as well as by the activities of the corresponding enzymes. Moreover, exogenous supply of PAs strongly affects pollen maturation and pollen tube elongation. A reduction of endogenous free PAs impacts pollen viability both in the early stages of pollen development and during fertilization. A number of studies have demonstrated that PAs largely function by modulating transcription, by structuring pollen cell wall, by modulating protein (mainly cytoskeletal) assembly as well as by modulating the level of reactive oxygen species. Both free low-molecular weight aliphatic PAs, and PAs conjugated to proteins and hydroxyl-cinnamic acids take part in these complex processes. Here, we review both historical and recent evidence regarding molecular events underlying the role of PAs during pollen development. In the concluding remarks, the outstanding issues and directions for future research that will further clarify our understanding of PA involvement during pollen life are outlined.
Collapse
Affiliation(s)
- Iris Aloisi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università degli Studi di BolognaBologna, Italia
| | - Giampiero Cai
- Dipartimento di Scienze della Vita, Università di SienaSiena, Italia
| | | | - Stefano Del Duca
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università degli Studi di BolognaBologna, Italia
- *Correspondence: Stefano Del Duca,
| |
Collapse
|
17
|
Payyavula RS, Shakya R, Sengoda VG, Munyaneza JE, Swamy P, Navarre DA. Synthesis and regulation of chlorogenic acid in potato: Rerouting phenylpropanoid flux in HQT-silenced lines. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:551-64. [PMID: 25421386 DOI: 10.1111/pbi.12280] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/16/2014] [Accepted: 09/21/2014] [Indexed: 05/22/2023]
Abstract
Chlorogenic acid (CGA) is the major phenolic sink in potato tubers and can constitute over 90% of total phenylpropanoids. The regulation of CGA biosynthesis in potato and the role of the CGA biosynthetic gene hydroxycinnamoyl CoA:quinate hydroxycinnamoyl transferase (HQT) was characterized. A sucrose induced accumulation of CGA correlated with the increased expression of phenylalanine ammonia-lyase (PAL) rather than HQT. Transient expression of the potato MYB transcription factor StAN1 (anthocyanin 1) in tobacco increased CGA. RNAi suppression of HQT resulted in over a 90% reduction in CGA and resulted in early flowering. The reduction in total phenolics and antioxidant capacity was less than the reduction in CGA, suggesting flux was rerouted into other phenylpropanoids. Network analysis showed distinct patterns in different organs, with anthocyanins and phenolic acids showing negative correlations in leaves and flowers and positive in tubers. Some flavonols increased in flowers, but not in leaves or tubers. Anthocyanins increased in flowers and showed a trend to increase in leaves, but not tubers. HQT suppression increased biosynthesis of caffeoyl polyamines, some of which are not previously reported in potato. Decreased PAL expression and enzyme activity was observed in HQT suppressed lines, suggesting the existence of a regulatory loop between CGA and PAL. Electrophysiology detected no effect of CGA suppression on potato psyllid feeding. Collectively, this research showed that CGA in potatoes is synthesized through HQT and HQT suppression altered phenotype and redirected phenylpropanoid flux.
Collapse
Affiliation(s)
- Raja S Payyavula
- Irrigated Agricultural Research and Extension Center, Washington State University, Prosser, WA, USA
| | | | | | | | | | | |
Collapse
|
18
|
Häusler RE, Ludewig F, Krueger S. Amino acids--a life between metabolism and signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:225-237. [PMID: 25443849 DOI: 10.1016/j.plantsci.2014.09.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 05/09/2023]
Abstract
Amino acids serve as constituents of proteins, precursors for anabolism, and, in some cases, as signaling molecules in mammalians and plants. This review is focused on new insights, or speculations, on signaling functions of serine, γ-aminobutyric acid (GABA) and phenylalanine-derived phenylpropanoids. Serine acts as signal in brain tissue and mammalian cancer cells. In plants, de novo serine biosynthesis is also highly active in fast growing tissues such as meristems, suggesting a similar role of serine as in mammalians. GABA functions as inhibitory neurotransmitter in the brain. In plants, GABA is also abundant and seems to be involved in sexual reproduction, cell elongation, patterning and cell identity. The aromatic amino acids phenylalanine, tyrosine, and tryptophan are precursors for the production of secondary plant products. Besides their pharmaceutical value, lignans, neolignans and hydroxycinnamic acid amides (HCAA) deriving from phenylpropanoid metabolism and, in the case of HCAA, also from arginine have been shown to fulfill signaling functions or are involved in the response to biotic and abiotic stress. Although some basics on phenylpropanoid-derived signaling have been described, little is known on recognition- or signal transduction mechanisms. In general, mutant- and transgenic approaches will be helpful to elucidate the mechanistic basis of metabolite signaling.
Collapse
Affiliation(s)
- Rainer E Häusler
- Department of Botany II, University of Cologne, Cologne Biocenter, Zülpicherstr. 47B, 50674 Cologne, Germany.
| | - Frank Ludewig
- Department of Botany II, University of Cologne, Cologne Biocenter, Zülpicherstr. 47B, 50674 Cologne, Germany
| | - Stephan Krueger
- Department of Botany II, University of Cologne, Cologne Biocenter, Zülpicherstr. 47B, 50674 Cologne, Germany
| |
Collapse
|
19
|
Gaquerel E, Gulati J, Baldwin IT. Revealing insect herbivory-induced phenolamide metabolism: from single genes to metabolic network plasticity analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:679-92. [PMID: 24617849 PMCID: PMC5140026 DOI: 10.1111/tpj.12503] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/20/2014] [Accepted: 03/03/2014] [Indexed: 05/18/2023]
Abstract
The phenylpropanoid metabolic space comprises a network of interconnected metabolic branches that contribute to the biosynthesis of a large array of compounds with functions in plant development and stress adaptation. During biotic challenges, such as insect attack, a major rewiring of gene networks associated with phenylpropanoid metabolism is observed. This rapid reconfiguration of gene expression allows prioritized production of metabolites that help the plant solve ecological problems. Phenolamides are a group of phenolic derivatives that originate from diversion of hydroxycinnamoyl acids from the main phenylpropanoid pathway after N-acyltransferase-dependent conjugation to polyamines or aryl monoamines. These structurally diverse metabolites are abundant in the reproductive organs of many plants, and have recently been shown to play roles as induced defenses in vegetative tissues. In the wild tobacco, Nicotiana attenuata, in which herbivory-induced regulation of these metabolites has been studied, rapid elevations of the levels of phenolamides that function as induced defenses result from a multi-hormonal signaling network that re-shapes connected metabolic pathways. In this review, we summarize recent findings in the regulation of phenolamides obtained by mass spectrometry-based metabolomics profiling, and outline a conceptual framework for gene discovery in this pathway. We also introduce a multifactorial approach that is useful in deciphering metabolic pathway reorganizations among tissues in response to stress.
Collapse
Affiliation(s)
- Emmanuel Gaquerel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
- Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360,69120 Heidelberg, Germany
| | - Jyotasana Gulati
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| |
Collapse
|
20
|
Tiburcio AF, Altabella T, Bitrián M, Alcázar R. The roles of polyamines during the lifespan of plants: from development to stress. PLANTA 2014. [PMID: 24659098 DOI: 10.1007/s00425-014-2055-2059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Compelling evidence indicates that free polyamines (PAs) (mainly putrescine, spermidine, spermine, and its isomer thermospermine), some PA conjugates to hydroxycinnamic acids, and the products of PA oxidation (hydrogen peroxide and γ-aminobutyric acid) are required for different processes in plant development and participate in abiotic and biotic stress responses. A tight regulation of PA homeostasis is required, since depletion or overaccumulation of PAs can be detrimental for cell viability in many organisms. In plants, homeostasis is achieved by modulation of PA biosynthesis, conjugation, catabolism, and transport. However, recent data indicate that such mechanisms are not mere modulators of PA pools but actively participate in PA functions. Examples are found in the spermidine-dependent eiF5A hypusination required for cell division, PA hydroxycinnamic acid conjugates required for pollen development, and the involvement of thermospermine in cell specification. Recent advances also point to implications of PA transport in stress tolerance, PA-dependent transcriptional and translational modulation of genes and transcripts, and posttranslational modifications of proteins. Overall, the molecular mechanisms identified suggest that PAs are intricately coordinated and/or mediate different stress and developmental pathways during the lifespan of plants.
Collapse
|
21
|
Tiburcio AF, Altabella T, Bitrián M, Alcázar R. The roles of polyamines during the lifespan of plants: from development to stress. PLANTA 2014; 240:1-18. [PMID: 24659098 DOI: 10.1007/s00425-014-2055-9] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/05/2014] [Indexed: 05/18/2023]
Abstract
Compelling evidence indicates that free polyamines (PAs) (mainly putrescine, spermidine, spermine, and its isomer thermospermine), some PA conjugates to hydroxycinnamic acids, and the products of PA oxidation (hydrogen peroxide and γ-aminobutyric acid) are required for different processes in plant development and participate in abiotic and biotic stress responses. A tight regulation of PA homeostasis is required, since depletion or overaccumulation of PAs can be detrimental for cell viability in many organisms. In plants, homeostasis is achieved by modulation of PA biosynthesis, conjugation, catabolism, and transport. However, recent data indicate that such mechanisms are not mere modulators of PA pools but actively participate in PA functions. Examples are found in the spermidine-dependent eiF5A hypusination required for cell division, PA hydroxycinnamic acid conjugates required for pollen development, and the involvement of thermospermine in cell specification. Recent advances also point to implications of PA transport in stress tolerance, PA-dependent transcriptional and translational modulation of genes and transcripts, and posttranslational modifications of proteins. Overall, the molecular mechanisms identified suggest that PAs are intricately coordinated and/or mediate different stress and developmental pathways during the lifespan of plants.
Collapse
|
22
|
Liu T, Kim DW, Niitsu M, Maeda S, Watanabe M, Kamio Y, Berberich T, Kusano T. Polyamine oxidase 7 is a terminal catabolism-type enzyme in Oryza sativa and is specifically expressed in anthers. PLANT & CELL PHYSIOLOGY 2014; 55:1110-22. [PMID: 24634478 DOI: 10.1093/pcp/pcu047] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Polyamine oxidase (PAO), which requires FAD as a cofactor, functions in polyamine catabolism. Plant PAOs are classified into two groups based on their reaction modes. The terminal catabolism (TC) reaction always produces 1,3-diaminopropane (DAP), H2O2, and the respective aldehydes, while the back-conversion (BC) reaction produces spermidine (Spd) from tetraamines, spermine (Spm) and thermospermine (T-Spm) and/or putrescine from Spd, along with 3-aminopropanal and H2O2. The Oryza sativa genome contains seven PAO-encoded genes termed OsPAO1-OsPAO7. To date, we have characterized four OsPAO genes. The products of these genes, i.e. OsPAO1, OsPAO3, OsPAO4 and OsPAO5, catalyze BC-type reactions. Whereas OsPAO1 remains in the cytoplasm, the other three PAOs localize to peroxisomes. Here, we examined OsPAO7 and its gene product. OsPAO7 shows high identity to maize ZmPAO1, the best characterized plant PAO having TC-type activity. OsPAO7 seems to remain in a peripheral layer of the plant cell with the aid of its predicted signal peptide and transmembrane domain. Recombinant OsPAO7 prefers Spm and Spd as substrates, and it produces DAP from both substrates in a time-dependent manner, indicating that OsPAO7 is the first TC-type enzyme identified in O. sativa. The results clearly show that two types of PAOs co-exist in O. sativa. Furthermore, OsPAO7 is specifically expressed in anthers, with an expressional peak at the bicellular pollen stage. The physiological function of OsPAO7 in anthers is discussed.
Collapse
Affiliation(s)
- Taibo Liu
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577 Japan
| | - Dong Wook Kim
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577 Japan
| | - Masaru Niitsu
- Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, 370-0290 Japan
| | - Shunsuke Maeda
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577 Japan
| | - Masao Watanabe
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577 Japan
| | - Yoshiyuki Kamio
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577 JapanShokei Gakuin University, 4-10-1 Yurigaoka, Natori, Miyagi, 981-1295 Japan
| | - Thomas Berberich
- Biodiversity and Climate Research Center, Laboratory Centre, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany
| | - Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577 Japan
| |
Collapse
|
23
|
Park S, Keereetaweep J, James CN, Gidda SK, Chapman KD, Mullen RT, Dyer JM. CGI-58, a key regulator of lipid homeostasis and signaling in plants, also regulates polyamine metabolism. PLANT SIGNALING & BEHAVIOR 2014; 9:e27723. [PMID: 24492485 PMCID: PMC4091556 DOI: 10.4161/psb.27723] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Comparative Gene Identification-58 (CGI-58) is an α/β hydrolase-type protein that regulates lipid homeostasis and signaling in eukaryotes by interacting with and stimulating the activity of several different types of proteins, including a lipase in mammalian cells and a peroxisomal ABC transporter (PXA1) in plant cells. Here we show that plant CGI-58 also interacts with spermidine synthase 1 (SPDS1), an enzyme that plays a central role in polyamine metabolism by converting putrescine into spermidine. Analysis of polyamine contents in Arabidopsis thaliana plants revealed that spermidine levels were significantly reduced, and putrescine increased, in both cgi-58 and cgi-58/pxa1 mutant plants, relative to pxa1 mutant or wild-type plants. Evaluation of polyamine-related gene expression levels, however, revealed similar increases in transcript abundance in all mutants, including cgi-58, pxa1, and cgi-58/pxa1, in comparison to wild type. Taken together, the data support a model whereby CGI-58 and PXA1 contribute to the regulation of polyamine metabolism at the transcriptional level, perhaps through a shared lipid-signaling pathway, and that CGI-58 also acts independently of PXA1 to increase spermidine content at a post-transcriptional level, possibly through protein-protein interaction with SPDS1.
Collapse
Affiliation(s)
- Sunjung Park
- USDA-ARS; US Arid-Land Agricultural Research Center; Maricopa, AZ USA
- Department of Biological Sciences; Center for Plant Lipid Research; University of North Texas; Denton, TX USA
| | - Jantana Keereetaweep
- Department of Biological Sciences; Center for Plant Lipid Research; University of North Texas; Denton, TX USA
| | - Christopher N James
- Department of Biological Sciences; Center for Plant Lipid Research; University of North Texas; Denton, TX USA
| | - Satinder K Gidda
- Department of Molecular and Cellular Biology; University of Guelph; Guelph, ON Canada
| | - Kent D Chapman
- Department of Biological Sciences; Center for Plant Lipid Research; University of North Texas; Denton, TX USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology; University of Guelph; Guelph, ON Canada
| | - John M Dyer
- USDA-ARS; US Arid-Land Agricultural Research Center; Maricopa, AZ USA
- Correspondence to: John M Dyer,
| |
Collapse
|
24
|
Putrescine overproduction does not affect the catabolism of spermidine and spermine in poplar and Arabidopsis. Amino Acids 2013; 46:743-57. [PMID: 24013280 DOI: 10.1007/s00726-013-1581-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/12/2013] [Indexed: 12/26/2022]
Abstract
The effect of up-regulation of putrescine (Put) production by genetic manipulation on the turnover of spermidine (Spd) and spermine (Spm) was investigated in transgenic cells of poplar (Populus nigra × maximowiczii) and seedlings of Arabidopsis thaliana. Several-fold increase in Put production was achieved by expressing a mouse ornithine decarboxylase cDNA either under the control of a constitutive (in poplar) or an inducible (in Arabidopsis) promoter. The transgenic poplar cells produced and accumulated 8-10 times higher amounts of Put than the non-transgenic cells, whereas the Arabidopsis seedlings accumulated up to 40-fold higher amounts of Put; however, in neither case the cellular Spd or Spm increased consistently. The rate of Spd and Spm catabolism and the half-life of cellular Spd and Spm were measured by pulse-chase experiments using [(14)C]Spd or [(14)C]Spm. Spermidine half-life was calculated to be about 22-32 h in poplar and 52-56 h in Arabidopsis. The half-life of cellular Spm was calculated to be approximately 24 h in Arabidopsis and 36-48 h in poplar. Both species were able to convert Spd to Spm and Put, and Spm to Spd and Put. The rates of Spd and Spm catabolism in both species were several-fold slower than those of Put, and the overproduction of Put had only a small effect on the overall rates of turnover of Spd or Spm. There was little effect on the rates of Spd to Spm conversion as well as the conversion of Spm into lower polyamines. While Spm was mainly converted back to Spd and not terminally degraded, Spd was removed from the cells largely through terminal catabolism in both species.
Collapse
|
25
|
Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis. Biochem J 2013; 451:145-54. [PMID: 23535167 DOI: 10.1042/bj20121744] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Both Met (methionine) and SAM (S-adenosylmethionine), the activated form of Met, participate in a number of essential metabolic pathways in plants. The subcellular compartmentalization of Met fluxes will be discussed in the present review with respect to regulation and communication with the sulfur assimilation pathway, the network of the aspartate-derived amino acids and the demand for production of SAM. SAM enters the ethylene, nicotianamine and polyamine biosynthetic pathways and provides the methyl group for the majority of methylation reactions required for plant growth and development. The multiple essential roles of SAM require regulation of its synthesis, recycling and distribution to sustain these different pathways. A particular focus of the present review will be on the function of recently identified genes of the Met salvage cycle or Yang cycle and the importance of the Met salvage cycle in the metabolism of MTA (5'-methylthioadenosine). MTA has the potential for product inhibition of ethylene, nicotianamine and polyamine biosynthesis which provides an additional link between these pathways. Interestingly, regulation of Met cycle genes was found to differ between plant species as shown for Arabidopsis thaliana and Oryza sativa.
Collapse
|
26
|
Sinha R, Rajam MV. RNAi silencing of three homologues of S-adenosylmethionine decarboxylase gene in tapetal tissue of tomato results in male sterility. PLANT MOLECULAR BIOLOGY 2013; 82:169-80. [PMID: 23543321 DOI: 10.1007/s11103-013-0051-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 03/23/2013] [Indexed: 05/06/2023]
Abstract
Polyamines play very important role in various cellular metabolic functions, including floral induction, floral differentiation and fertility regulation. In the present study, S-adenosylmethionine decarboxylase (SAMDC), a key gene involved in polyamine biosynthesis, has been targeted in tapetal tissue of tomato using RNAi to examine its effect on tapetum development and pollen viability. The target SAMDC gene fragments of three homologues were cloned in a hairpin RNA construct under the control of tapetal-specific A9 promoter, which was used to generate several RNAi tomato plants. These RNAi lines expressed the intended small interfering RNAs in the anther and showed the aborted and sterile pollen exhibiting shrunken and distorted morphology. These RNAi tomato plants having sterile pollen, failed to set fruits but female fertility of the plants remained unaffected as cross pollination resulted in fruit setting. Expression profiling of SAMDC genes showed considerable decrease in transcripts of SAMDC1 (5-8 fold) and SAMDC2 and SAMDC3 (2-3 fold) in the anthers of RNAi plants. The other polyamine biosynthesis genes, ADC and SPDSYN exhibited ~1.5 fold decrease in their transcript levels. Presence of siRNA molecules specific to SAMDC homologues in anther and tapetal-specific activity of A9 promoter as shown with GUS reporter system of RNAi plants suggested down-regulation of the target genes in tapetum by RNAi. These observations indicate the importance of SAMDC, in turn polyamines in pollen development, and thus tapetum-specific down-regulation of SAMDC genes using RNAi can be used for developing male sterile plants.
Collapse
Affiliation(s)
- Ranjita Sinha
- Plant Polyamine, Transgenic and RNAi Laboratory, Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India
| | | |
Collapse
|