1
|
Máthé C, Bóka K, Kónya Z, Erdődi F, Vasas G, Freytag C, Garda T. Microcystin-LR, a cyanotoxin, modulates division of higher plant chloroplasts through protein phosphatase inhibition and affects cyanobacterial division. CHEMOSPHERE 2024; 358:142125. [PMID: 38670509 DOI: 10.1016/j.chemosphere.2024.142125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Microcystin-LR (MC-LR) is a harmful cyanotoxin that inhibits 1 and 2A serine-threonine protein phosphatases. This study examines the influence of MC-LR on chloroplast division and the underlying mechanisms and consequences in Arabidopsis. MC-LR increased the frequency of dividing chloroplasts in hypocotyls in a time range of 1-96 h. At short-term exposures to MC-LR, small-sized chloroplasts (longitudinal diameters ≤6 μm) were more sensitive to these stimulatory effects, while both small and large chloroplasts showed stimulations at long-term exposure. After 48 h, the cyanotoxin increased the frequency of small-sized chloroplasts, indicating the stimulation of division. MC-LR inhibited protein phosphatases in whole hypocotyls and isolated chloroplasts, while it did not induce oxidative stress. We show for the first time that total cellular phosphatases play important roles in chloroplast division and that particular chloroplast phosphatases may be involved in these processes. Interestingly, MC-LR has a protective effect on cyanobacterial division during methyl-viologen (MV) treatments in Synechococcus PCC6301. MC-LR production has harmful effects on ecosystems and it may have an ancient cell division regulatory role in stressed cyanobacterial cells, the evolutionary ancestors of chloroplasts. We propose that cytoplasmic (eukaryotic) factors also contribute to the relevant effects of MC-LR in plants.
Collapse
Affiliation(s)
- Csaba Máthé
- Plant Cell and Developmental Biology Research Group, Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary.
| | - Károly Bóka
- Department of Plant Anatomy, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány P. s. 1/c, Budapest, H-1117, Hungary
| | - Zoltán Kónya
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary
| | - Gábor Vasas
- Plant and Algal Natural Product Research Group, Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary; Balaton Limnological Research Institute- HUN-REN, Klebelsberg str. 3, H-8237, Tihany, Hungary
| | - Csongor Freytag
- Plant Cell and Developmental Biology Research Group, Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary; One Health Institute, Faculty of Health Sciences, University of Debrecen, Nagyerdei krt. 98, H-4032, Debrecen, Hungary
| | - Tamás Garda
- Plant Cell and Developmental Biology Research Group, Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary
| |
Collapse
|
2
|
Lucinski R, Dobrogojski J, Ishikawa T, Adamiec M. The role of EGY2 protease in response to high light stress. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23243. [PMID: 38190657 DOI: 10.1071/fp23243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
In this study, we investigated the importance of one of the intramembrane proteases, EGY2, for the proper functioning of PSII under short-term high light stress conditions. EGY2 is a chloroplast intramembrane protease of the S2P family, whose absence in Arabidopsis thaliana affects PSII protein composition. The egy2 mutants exhibited a slower degradation of PsbA and decreased content of PsbC and PsbD. During exposure to high light stress, these stoichiometric changes affect the functional state of PSII, leading to its higher sensitivity to photoinhibition of the PSII reaction centre and increased heat dissipation. Furthermore, we explored the relationship between EGY2 and the pTAC16 transcription factor, which is a potential EGY2 substrate. Under light stress, WT plants showed decreased levels of pTAC16, while it remained unchanged in the egy2 mutants. This finding suggests that EGY2 may release pTAC16 from thylakoid membranes through proteolytic cleavage. We also confirmed the physical interaction between EGY2 and pTAC16 using the yeast two-hybrid system, providing evidence of EGY2's involvement in the regulation of PsbA and PsbC/PsbD operons by releasing pTAC16 from the thylakoid membrane.
Collapse
Affiliation(s)
- Robert Lucinski
- Adam Mickiewicz University, Faculty of Biology, Institute of Experimental Biology, Department of Plant Physiology, Poznan, Poland
| | - Jedrzej Dobrogojski
- University of Life Sciences, Faculty of Agronomy, Horticulture and Bioengineering, Department of Biochemistry and Biotechnology, Poznan, Poland
| | - Takao Ishikawa
- University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Environmental Microbiology and Biotechnology, ul. Miecznikowa 1, 02-096 Warszawa, Poland
| | - Malgorzata Adamiec
- Adam Mickiewicz University, Faculty of Biology, Institute of Experimental Biology, Department of Plant Physiology, Poznan, Poland
| |
Collapse
|
3
|
Vetoshkina D, Borisova-Mubarakshina M. Reversible protein phosphorylation in higher plants: focus on state transitions. Biophys Rev 2023; 15:1079-1093. [PMID: 37974979 PMCID: PMC10643769 DOI: 10.1007/s12551-023-01116-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/10/2023] [Indexed: 11/19/2023] Open
Abstract
Reversible protein phosphorylation is one of the comprehensive mechanisms of cell metabolism regulation in eukaryotic organisms. The review describes the impact of the reversible protein phosphorylation on the regulation of growth and development as well as in adaptation pathways and signaling network in higher plant cells. The main part of the review is devoted to the role of the reversible phosphorylation of light-harvesting proteins of photosystem II and the state transition process in fine-tuning the photosynthetic activity of chloroplasts. A separate section of the review is dedicated to comparing the mechanisms and functional significance of state transitions in higher plants, algae, and cyanobacteria that allows the evolution aspects of state transitions meaning in various organisms to be discussed. Environmental factors affecting the state transitions are also considered. Additionally, we gain insight into the possible influence of STN7-dependent phosphorylation of the target proteins on the global network of reversible protein phosphorylation in plant cells as well as into the probable effect of the STN7 kinase inhibition on long-term acclimation pathways in higher plants.
Collapse
Affiliation(s)
- D.V. Vetoshkina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya st., 2, Pushchino, Russia
| | - M.M. Borisova-Mubarakshina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya st., 2, Pushchino, Russia
| |
Collapse
|
4
|
Vetoshkina D, Balashov N, Ivanov B, Ashikhmin A, Borisova-Mubarakshina M. Light harvesting regulation: A versatile network of key components operating under various stress conditions in higher plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:576-588. [PMID: 36529008 DOI: 10.1016/j.plaphy.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/22/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Light harvesting is finetuned through two main strategies controlling energy transfer to the reaction centers of photosystems: i) regulating the amount of light energy at the absorption level, ii) regulating the amount of the absorbed energy at the utilization level. The first strategy is ensured by changes in the cross-section, i.e., the size of the photosynthetic antenna. These changes can occur in a short-term (state transitions) or long-term way (changes in antenna protein biosynthesis) depending on the light conditions. The interrelation of these two ways is still underexplored. Regulating light absorption through the long-term modulation of photosystem II antenna size has been mostly considered as an acclimatory mechanism to light conditions. The present review highlights that this mechanism represents one of the most versatile mechanisms of higher plant acclimation to various conditions including drought, salinity, temperature changes, and even biotic factors. We suggest that H2O2 is the universal signaling agent providing the switch from the short-term to long-term modulation of photosystem II antenna size under these factors. The second strategy of light harvesting is represented by redirecting energy to waste mainly via thermal energy dissipation in the photosystem II antenna in high light through PsbS protein and xanthophyll cycle. In the latter case, H2O2 also plays a considerable role. This circumstance may explain the maintenance of the appropriate level of zeaxanthin not only upon high light but also upon other stress factors. Thus, the review emphasizes the significance of both strategies for ensuring plant sustainability under various environmental conditions.
Collapse
Affiliation(s)
- Daria Vetoshkina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya St., 2, Pushchino, Russia.
| | - Nikolay Balashov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya St., 2, Pushchino, Russia
| | - Boris Ivanov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya St., 2, Pushchino, Russia
| | - Aleksandr Ashikhmin
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya St., 2, Pushchino, Russia
| | - Maria Borisova-Mubarakshina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya St., 2, Pushchino, Russia.
| |
Collapse
|
5
|
Yang C, Yi-feng J, Yushu W, Yansong G, Qi W, Xue Y. Diverse roles of the CIPK gene family in transcription regulation and various biotic and abiotic stresses: A literature review and bibliometric study. Front Genet 2022; 13:1041078. [PMID: 36457742 PMCID: PMC9705351 DOI: 10.3389/fgene.2022.1041078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/24/2022] [Indexed: 12/10/2023] Open
Abstract
CIPKs are a subclass of serine/threonine (Ser/Thr) protein kinases. CBLs are ubiquitous Ca2+ sensors that interact with CIPK with the aid of secondary Ca2+ messengers for regulation of growth and development and response to stresses faced by plants. The divergent roles of the CIPK-CBL interaction in plants include responding to environmental stresses (salt, cold, drought, pH, ABA signaling, and ion toxicity), ion homeostasis (K+, NH4 +, NO3 -, and microelement homeostasis), biotic stress, and plant development. Each member of this gene family produces distinct proteins that help plants adapt to diverse stresses or stimuli by interacting with calcium ion signals. CIPK consists of two structural domains-an N-terminal domain and a C-terminal domain-connected by a junction domain. The N-terminal domain, the site of phosphorylation, is also called the activation domain and kinase domain. The C-terminal, also known as the regulatory domain of CIPK, further comprises NAF/FISL and PPI. CBL comprises four EF domains and conserved PFPF motifs and is the site of binding with the NAF/FISL domain of CIPK to form a CBL-CIPK complex. In addition, we also performed a bibliometric analysis of the CIPK gene family of data extracted from the WoSCC. A total of 95 documents were retrieved, which had been published by 47 sources. The production over time was zigzagged. The top key terms were gene, CIPK, abiotic stress, and gene expression. Beijing Forestry University was the top affiliation, while The Plant Cell was the top source. The genomics and metabolomics of this gene family require more study.
Collapse
Affiliation(s)
- Chen Yang
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Key Laboratory Resistance Gene Engineering, Qiqihar, China
| | - Jin Yi-feng
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Key Laboratory Resistance Gene Engineering, Qiqihar, China
| | - Wang Yushu
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Key Laboratory Resistance Gene Engineering, Qiqihar, China
| | - Gao Yansong
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Wang Qi
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - You Xue
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| |
Collapse
|
6
|
Kochetova GV, Avercheva OV, Bassarskaya EM, Zhigalova TV. Light quality as a driver of photosynthetic apparatus development. Biophys Rev 2022; 14:779-803. [PMID: 36124269 PMCID: PMC9481803 DOI: 10.1007/s12551-022-00985-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/13/2022] [Indexed: 12/18/2022] Open
Abstract
Light provides energy for photosynthesis and also acts as an important environmental signal. During their evolution, plants acquired sophisticated sensory systems for light perception and light-dependent regulation of their growth and development in accordance with the local light environment. Under natural conditions, plants adapted by using their light sensors to finely distinguish direct sunlight and dark in the soil, deep grey shade under the upper soil layer or litter, green shade under the canopy and even lateral green reflectance from neighbours. Light perception also allows plants to evaluate in detail the weather, time of day, day length and thus the season. However, in artificial lighting conditions, plants are confronted with fundamentally different lighting conditions. The advent of new light sources - light-emitting diodes (LEDs), which emit narrow-band light - allows growing plants with light of different spectral bands or their combinations. This sets the task of finding out how light of different quality affects the development and functioning of plants, and in particular, their photosynthetic apparatus (PSA), which is one of the basic processes determining plant yield. In this review, we briefly describe how plants perceive environment light signals by their five families of photoreceptors and by the PSA as a particular light sensor, and how they use this information to form their PSA under artificial narrow-band LED-based lighting of different spectral composition. We consider light regulation of the biosynthesis of photosynthetic pigments, photosynthetic complexes and chloroplast ATP synthase function, PSA photoprotection mechanisms, carbon assimilation reactions and stomatal development and function.
Collapse
|
7
|
New functions of CIPK gene family are continue to emerging. Mol Biol Rep 2022; 49:6647-6658. [PMID: 35229240 DOI: 10.1007/s11033-022-07255-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
Abstract
CIPK protein family is a key protein family in Ca2+ mediated plant signaling pathway, which plays an indispensable role in plant response to stress and development. Every gene in this family encodes specific proteins. They interact with calcium ion signals, make plants to deal with various stress or stimuli. This article mainly reviews the mechanism, positioning and physiological functions of the CIPK family in different species in recent years. According to our team's research, CIPK8 interacts with CBL5 to improve salt tolerance, and CIPK23 interacts with TGA1 to regulate nitrate uptake negatively in chrysanthemum. In addition, we discussed current limitations and future research directions. The article will enhance the understanding of the functional characteristics of the CIPK gene family under different stresses, provide insights for future breeding and the development of new crop varieties with enhanced stress tolerance.
Collapse
|
8
|
Ahmadizadeh M, Chen JT, Hasanzadeh S, Ahmar S, Heidari P. Insights into the genes involved in the ethylene biosynthesis pathway in Arabidopsis thaliana and Oryza sativa. J Genet Eng Biotechnol 2020; 18:62. [PMID: 33074438 PMCID: PMC7572930 DOI: 10.1186/s43141-020-00083-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
Background Ethylene is a gaseous plant hormone that acts as a requisite role in many aspects of the plant life cycle, and it is also a regulator of plant responses to abiotic and biotic stresses. In this study, we attempt to provide comprehensive information through analyses of existing data using bioinformatics tools to compare the identified ethylene biosynthesis genes between Arabidopsis (as dicotyledonous) and rice (as monocotyledonous). Results The results exposed that the Arabidopsis proteins of the ethylene biosynthesis pathway had more potential glycosylation sites than rice, and 1-aminocyclopropane-1-carboxylate oxidase proteins were less phosphorylated than 1-aminocyclopropane-1-carboxylate synthase and S-adenosylmethionine proteins. According to the gene expression patterns, S-adenosylmethionine genes were more involved in the rice-ripening stage while in Arabidopsis, ACS2, and 1-aminocyclopropane-1-carboxylate oxidase genes were contributed to seed maturity. Furthermore, the result of miRNA targeting the transcript sequences showed that ath-miR843 and osa-miR1858 play a key role to regulate the post-transcription modification of S-adenosylmethionine genes in Arabidopsis and rice, respectively. The discovered cis- motifs in the promoter site of all the ethylene biosynthesis genes of A. thaliana genes were engaged to light-induced response in the cotyledon and root genes, sulfur-responsive element, dehydration, cell cycle phase-independent activation, and salicylic acid. The ACS4 protein prediction demonstrated strong protein-protein interaction in Arabidopsis, as well as, SAM2, Os04T0578000, Os01T0192900, and Os03T0727600 predicted strong protein-protein interactions in rice. Conclusion In the current study, the complex between miRNAs with transcript sequences of ethylene biosynthesis genes in A. thaliana and O. sativa were identified, which could be helpful to understand the gene expression regulation after the transcription process. The binding sites of common transcription factors such as MYB, WRKY, and ABRE that control target genes in abiotic and biotic stresses were generally distributed in promoter sites of ethylene biosynthesis genes of A. thaliana. This was the first time to wide explore the ethylene biosynthesis pathway using bioinformatics tools that markedly showed the capability of the in silico study to integrate existing data and knowledge and furnish novel insights into the understanding of underlying ethylene biosynthesis pathway genes that will be helpful for more dissection.
Collapse
Affiliation(s)
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 811, Taiwan
| | - Soosan Hasanzadeh
- Department of Horticultural Sciences, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Sunny Ahmar
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Parviz Heidari
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
9
|
Patterson JA, Tetlow IJ, Emes MJ. Bioinformatic and in vitro Analyses of Arabidopsis Starch Synthase 2 Reveal Post-translational Regulatory Mechanisms. FRONTIERS IN PLANT SCIENCE 2018; 9:1338. [PMID: 30283470 PMCID: PMC6156364 DOI: 10.3389/fpls.2018.01338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/24/2018] [Indexed: 05/13/2023]
Abstract
Starch synthase 2 (SS2) is an important enzyme in leaf starch synthesis, elongating intermediate-length glucan chains. Loss of SS2 results in a distorted starch granule phenotype and altered physiochemical properties, highlighting its importance in starch biosynthesis, however, the post-translational regulation of SS2 is poorly understood. In this study, a combination of bioinformatic and in vitro analysis of recombinant SS2 was used to identify and characterize SS2 post-translational regulatory mechanisms. The SS2 N-terminal region, comprising the first 185 amino acids of the mature protein sequence, was shown to be highly variable between species, and was predicted to be intrinsically disordered. Intrinsic disorder in proteins is often correlated with protein phosphorylation and protein-protein interactions. Recombinant Arabidopsis thaliana SS2 formed homodimers that required the N-terminal region, but N-terminal peptides could not form stable homodimers alone. Recombinant SS2 was shown to be phosphorylated by chloroplast protein kinases and recombinant casein kinase II at two N-terminal serine residues (S63, S65), but mutation of these phosphorylation sites (Ser>Ala) revealed that they are not required for homo-dimerization. Heteromeric enzyme complex (HEC) formation between SS2 and SBE2.2 was shown to be ATP-dependent. However, SS2 homo-dimerization and protein phosphorylation are not required for its interaction with SBE2.2, as truncation of the SS2 N-terminus did not disrupt ATP-dependent HEC assembly. SS2 phosphorylation had no affect on its catalytic activity. Intriguingly, the removal of the N-terminal region of SS2 resulted in a 47-fold increase in its activity. As N-terminal truncation disrupted dimerization, this suggests that SS2 is more active when monomeric, and that transitions between oligomeric state may be a mechanism for SS2 regulation.
Collapse
Affiliation(s)
| | | | - Michael J. Emes
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
10
|
Wang Y, Berkowitz O, Selinski J, Xu Y, Hartmann A, Whelan J. Stress responsive mitochondrial proteins in Arabidopsis thaliana. Free Radic Biol Med 2018; 122:28-39. [PMID: 29555593 DOI: 10.1016/j.freeradbiomed.2018.03.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/05/2018] [Accepted: 03/16/2018] [Indexed: 12/27/2022]
Abstract
In the last decade plant mitochondria have emerged as a target, sensor and initiator of signalling cascades to a variety of stress and adverse growth conditions. A combination of various 'omic profiling approaches combined with forward and reverse genetic studies have defined how mitochondria respond to stress and the signalling pathways and regulators of these responses. Reactive oxygen species (ROS)-dependent and -independent pathways, specific metabolites, complex I dysfunction, and the mitochondrial unfolded protein response (UPR) pathway have been proposed to date. These pathways are regulated by kinases (sucrose non-fermenting response like kinase; cyclin dependent protein kinase E 1) and transcription factors from the abscisic acid-related, WRKY and NAC families. A number of independent studies have revealed that these mitochondrial signalling pathways interact with a variety of phytohormone signalling pathways. While this represents significant progress in the last decade there are more pathways to be uncovered. Post-transcriptional/translational regulation is also a likely determinant of the mitochondrial stress response. Unbiased analyses of the expression of genes encoding mitochondrial proteins in a variety of stress conditions reveal a modular network exerting a high degree of anterograde control. As abiotic and biotic stresses have significant impact on the yield of important crops such as rice, wheat and barley we will give an outlook of how knowledge gained in Arabidopsis may help to increase crop production and how emerging technologies may contribute.
Collapse
Affiliation(s)
- Yan Wang
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.
| | - Jennifer Selinski
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Yue Xu
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Andreas Hartmann
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
11
|
White-Gloria C, Johnson JJ, Marritt K, Kataya A, Vahab A, Moorhead GB. Protein Kinases and Phosphatases of the Plastid and Their Potential Role in Starch Metabolism. FRONTIERS IN PLANT SCIENCE 2018; 9:1032. [PMID: 30065742 PMCID: PMC6056723 DOI: 10.3389/fpls.2018.01032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/25/2018] [Indexed: 05/03/2023]
Abstract
Phospho-proteomic studies have confirmed that phosphorylation is a common mechanism to regulate protein function in the chloroplast, including the enzymes of starch metabolism. In addition to the photosynthetic machinery protein kinases (STN7 and STN8) and their cognate protein phosphatases PPH1 (TAP38) and PBCP, multiple other protein kinases and phosphatases have now been localized to the chloroplast. Here, we build a framework for understanding protein kinases and phosphatases, their regulation, and potential roles in starch metabolism. We also catalog mapped phosphorylation sites on proteins of chloroplast starch metabolism to illustrate the potential and mostly unknown roles of protein phosphorylation in the regulation of starch biology.
Collapse
Affiliation(s)
- Chris White-Gloria
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jayde J. Johnson
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Kayla Marritt
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Amr Kataya
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Department of Chemistry and Biosciences, University of Stavanger, Stavanger, Norway
| | - Ahmad Vahab
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Greg B. Moorhead
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- *Correspondence: Greg B. Moorhead,
| |
Collapse
|
12
|
1- N-histidine phosphorylation of ChlD by the AAA + ChlI2 stimulates magnesium chelatase activity in chlorophyll synthesis. Biochem J 2017; 474:2095-2105. [PMID: 28487379 DOI: 10.1042/bcj20161094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/28/2017] [Accepted: 05/09/2017] [Indexed: 11/17/2022]
Abstract
Magnesium chelatase (Mg-chelatase) inserts magnesium into protoporphyrin during the biosynthesis of chlorophyll and bacteriochlorophyll. Enzyme activity is reconstituted by forming two separate preactivated complexes consisting of a GUN4/ChlH/protoporphyrin IX substrate complex and a ChlI/ChlD enzyme 'motor' complex. Formation of the ChlI/ChlD complex in both Chlamydomonas reinhardtii and Oryza sativa is accompanied by phosphorylation of ChlD by ChlI, but the orthologous protein complex from Rhodobacter capsulatus, BchI/BchD, gives no detectable phosphorylation of BchD. Phosphorylation produces a 1-N-phospho-histidine within ChlD. Proteomic analysis indicates that phosphorylation occurs at a conserved His residue in the C-terminal integrin I domain of ChlD. Comparative analysis of the ChlD phosphorylation with enzyme activities of various ChlI/ChlD complexes correlates the phosphorylation by ChlI2 with stimulation of Mg-chelatase activity. Mutation of the H641 of CrChlD to E641 prevents both phosphorylation and stimulation of Mg-chelatase activity, confirming that phosphorylation at H641 stimulates Mg-chelatase. The properties of ChlI2 compared with ChlI1 of Chlamydomonas and with ChlI of Oryza, shows that ChlI2 has a regulatory role in Chlamydomonas.
Collapse
|
13
|
Schmidt C, Beilsten-Edmands V, Mohammed S, Robinson CV. Acetylation and phosphorylation control both local and global stability of the chloroplast F 1 ATP synthase. Sci Rep 2017; 7:44068. [PMID: 28276484 PMCID: PMC5343439 DOI: 10.1038/srep44068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/03/2017] [Indexed: 12/14/2022] Open
Abstract
ATP synthases (ATPases) are enzymes that produce ATP and control the pH in the cell or cellular compartments. While highly conserved over different species, ATPases are structurally well-characterised but the existence and functional significance of many post-translational modifications (PTMs) is not well understood. We combined a range of mass spectrometric techniques to unravel the location and extent of PTMs in the chloroplast ATP synthase (cATPase) purified from spinach leaves. We identified multiple phosphorylation and acetylation sites and found that both modifications stabilise binding of ε and δ subunits. Comparing cross-linking of naturally modified cATPase with the in vitro deacetylated enzyme revealed a major conformational change in the ε subunit in accord with extended and folded forms of the subunit. Locating modified residues within the catalytic head we found that phosphorylated and acetylated residues are primarily on α/β and β/α interfaces respectively. By aligning along different interfaces the higher abundance acetylated residues are proximal to the regulatory sites while the lower abundance phosphorylation sites are more densely populated at the catalytic sites. We propose that modifications in the catalytic head, together with the conformational change in subunit ε, work in synergy to fine-tune the enzyme during adverse conditions.
Collapse
Affiliation(s)
- Carla Schmidt
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | | | - Shabaz Mohammed
- Department of Chemistry, University of Oxford, Oxford, United Kingdom.,Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Piro A, Serra IA, Spadafora A, Cardilio M, Bianco L, Perrotta G, Santos R, Mazzuca S. Purification of intact chloroplasts from marine plant Posidonia oceanica suitable for organelle proteomics. Proteomics 2016; 15:4159-74. [PMID: 26444578 DOI: 10.1002/pmic.201500246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/24/2015] [Accepted: 09/30/2015] [Indexed: 12/20/2022]
Abstract
Posidonia oceanica is a marine angiosperm, or seagrass, adapted to grow to the underwater life from shallow waters to 50 m depth. This raises questions of how their photosynthesis adapted to the attenuation of light through the water column and leads to the assumption that biochemistry and metabolism of the chloroplast are the basis of adaptive capacity. In the present study, we described a protocol that was adapted from those optimized for terrestrial plants, to extract chloroplasts from as minimal tissue as possible. We obtained the best balance between tissue amount/intact chloroplasts yield using one leaf from one plant. After isopynic separations, the chloroplasts purity and integrity were evaluated by biochemical assay and using a proteomic approach. Chloroplast proteins were extracted from highly purified organelles and resolved by 1DE SDS-PAGE. Proteins were sequenced by nLC-ESI-IT-MS/MS of 1DE gel bands and identified against NCBInr green plant databases, Dr. Zompo database for seagrasses in a local customized dataset. The curated localization of proteins in sub-plastidial compartments (i.e. envelope, stroma and thylakoids) was retrieved in the AT_CHLORO database. This purification protocol and the validation of compartment markers may serve as basis for sub-cellular proteomics in P. oceanica and other seagrasses.
Collapse
Affiliation(s)
- Amalia Piro
- Laboratory of Plant Biology and Plant Proteomics (Lab.Bio.Pro.Ve), Department of Chemistry and Chemical Technologies, Università della Calabria, Rende, Italy
| | - Ilia Anna Serra
- Laboratory of Plant Biology and Plant Proteomics (Lab.Bio.Pro.Ve), Department of Chemistry and Chemical Technologies, Università della Calabria, Rende, Italy
| | - Antonia Spadafora
- Laboratory of Plant Biology and Plant Proteomics (Lab.Bio.Pro.Ve), Department of Chemistry and Chemical Technologies, Università della Calabria, Rende, Italy
| | | | - Linda Bianco
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), TRISAIA Research Center, Rotondella (Matera), Italy
| | - Gaetano Perrotta
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), TRISAIA Research Center, Rotondella (Matera), Italy
| | - Rui Santos
- ALGAE - Marine Plant Ecology, Center of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Silvia Mazzuca
- Laboratory of Plant Biology and Plant Proteomics (Lab.Bio.Pro.Ve), Department of Chemistry and Chemical Technologies, Università della Calabria, Rende, Italy
| |
Collapse
|
15
|
Trotta A, Suorsa M, Rantala M, Lundin B, Aro EM. Serine and threonine residues of plant STN7 kinase are differentially phosphorylated upon changing light conditions and specifically influence the activity and stability of the kinase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:484-94. [PMID: 27214592 DOI: 10.1111/tpj.13213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/04/2016] [Accepted: 05/09/2016] [Indexed: 05/22/2023]
Abstract
STN7 kinase catalyzes the phosphorylation of the globally most common membrane proteins, the light-harvesting complex II (LHCII) in plant chloroplasts. STN7 itself possesses one serine (Ser) and two threonine (Thr) phosphosites. We show that phosphorylation of the Thr residues protects STN7 against degradation in darkness, low light and red light, whereas increasing light intensity and far red illumination decrease phosphorylation and induce STN7 degradation. Ser phosphorylation, in turn, occurs under red and low intensity white light, coinciding with the client protein (LHCII) phosphorylation. Through analysis of the counteracting LHCII phosphatase mutant tap38/pph1, we show that Ser phosphorylation and activation of the STN7 kinase for subsequent LHCII phosphorylation are heavily affected by pre-illumination conditions. Transitions between the three activity states of the STN7 kinase (deactivated in darkness and far red light, activated in low and red light, inhibited in high light) are shown to modulate the phosphorylation of the STN7 Ser and Thr residues independently of each other. Such dynamic regulation of STN7 kinase phosphorylation is crucial for plant growth and environmental acclimation.
Collapse
Affiliation(s)
- Andrea Trotta
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, FI-20520, Finland
| | - Marjaana Suorsa
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, FI-20520, Finland
| | - Marjaana Rantala
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, FI-20520, Finland
| | - Björn Lundin
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, 405 30, Sweden
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, FI-20520, Finland.
| |
Collapse
|
16
|
Zhu X, Yu F, Yang Z, Liu S, Dai C, Lu X, Liu C, Yu W, Li N. In plantachemical cross-linking and mass spectrometry analysis of protein structure and interaction in Arabidopsis. Proteomics 2016; 16:1915-27. [DOI: 10.1002/pmic.201500310] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 04/18/2016] [Accepted: 05/17/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Xinliang Zhu
- Division of Life Science; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi Province P. R. China
| | - Fengchao Yu
- Division of Biomedical Engineering; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
| | - Zhu Yang
- Division of Life Science; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
| | - Shichang Liu
- Division of Life Science; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
| | - Chen Dai
- Proteomics Center; Nanjing Agriculture University; Nanjing P. R. China
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi Province P. R. China
| | - Chenyu Liu
- Division of Life Science; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
| | - Weichuan Yu
- Division of Biomedical Engineering; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
- Department of Electronic and Computer Engineering; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
| | - Ning Li
- Division of Life Science; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
- Division of Biomedical Engineering; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
- HKUST Shenzhen Research Institute; Shenzhen P. R. China
| |
Collapse
|
17
|
Grieco M, Jain A, Ebersberger I, Teige M. An evolutionary view on thylakoid protein phosphorylation uncovers novel phosphorylation hotspots with potential functional implications. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3883-96. [PMID: 27117338 DOI: 10.1093/jxb/erw164] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The regulation of photosynthetic light reactions by reversible protein phosphorylation is well established today, but functional studies have so far mostly been restricted to processes affecting light-harvesting complex II and the core proteins of photosystem II. Virtually no functional data are available on regulatory effects at the other photosynthetic complexes despite the identification of multiple phosphorylation sites. Therefore we summarize the available data from 50 published phospho-proteomics studies covering the main complexes involved in photosynthetic light reactions in the 'green lineage' (i.e. green algae and land plants) as well as its cyanobacterial counterparts. In addition, we performed an extensive orthologue search for the major photosynthetic thylakoid proteins in 41 sequenced genomes and generated sequence alignments to survey the phylogenetic distribution of phosphorylation sites and their evolutionary conservation from green algae to higher plants. We observed a number of uncharacterized phosphorylation hotspots at photosystem I and the ATP synthase with potential functional relevance as well as an unexpected divergence of phosphosites. Although technical limitations might account for a number of those differences, we think that many of these phosphosites have important functions. This is particularly important for mono- and dicot plants, where these sites might be involved in regulatory processes such as stress acclimation.
Collapse
Affiliation(s)
- Michele Grieco
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| | - Arpit Jain
- Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe University, Max-von-Laue Str. 13, D-60438 Frankfurt, Germany
| | - Ingo Ebersberger
- Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe University, Max-von-Laue Str. 13, D-60438 Frankfurt, Germany Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Anlage 25, D-60325 Frankfurt, Germany
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| |
Collapse
|
18
|
Lohscheider JN, Friso G, van Wijk KJ. Phosphorylation of plastoglobular proteins in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3975-84. [PMID: 26962209 PMCID: PMC4915526 DOI: 10.1093/jxb/erw091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plastoglobules (PGs) are plastid lipid-protein particles with a small specialized proteome and metabolome. Among the 30 core PG proteins are six proteins of the ancient ABC1 atypical kinase (ABC1K) family and their locations in an Arabidopsis mRNA-based co-expression network suggested central regulatory roles. To identify candidate ABC1K targets and a possible ABC1K hierarchical phosphorylation network within the chloroplast PG proteome, we searched Arabidopsis phosphoproteomics data from publicly available sources. Evaluation of underlying spectra and/or associated information was challenging for a variety of reasons, but supported pSer sites and a few pThr sites in nine PG proteins, including five FIBRILLINS. PG phosphorylation motifs are discussed in the context of possible responsible kinases. The challenges of collection and evaluation of published Arabidopsis phosphorylation data are discussed, illustrating the importance of deposition of all mass spectrometry data in well-organized repositories such as PRIDE and ProteomeXchange. This study provides a starting point for experimental testing of phosho-sites in PG proteins and also suggests that phosphoproteomics studies specifically designed toward the PG proteome and its ABC1K are needed to understand phosphorylation networks in these specialized particles.
Collapse
Affiliation(s)
- Jens N Lohscheider
- Section of Plant Biology, School of Integrated Plant Science (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Giulia Friso
- Section of Plant Biology, School of Integrated Plant Science (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrated Plant Science (SIPS), Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
19
|
Richter AS, Gartmann H, Fechler M, Rödiger A, Baginsky S, Grimm B. Identification of four plastid-localized protein kinases. FEBS Lett 2016; 590:1749-56. [PMID: 27214872 DOI: 10.1002/1873-3468.12223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/16/2023]
Abstract
In chloroplasts, protein phosphorylation regulates important processes, including metabolism, photosynthesis, gene expression, and signaling. Because the hitherto known plastid protein kinases represent only a fraction of existing kinases, we aimed at the identification of novel plastid-localized protein kinases that potentially phosphorylate enzymes of the tetrapyrrole biosynthesis (TBS) pathway. We screened publicly available databases for proteins annotated as putative protein kinase family proteins with predicted chloroplast localization. Additionally, we analyzed chloroplast fractions which were separated by sucrose density gradient centrifugation by mass spectrometry. We identified four new candidates for protein kinases, which were confirmed to be plastid localized by expression of GFP-fusion proteins in tobacco leaves. A phosphorylation assay with the purified kinases confirmed the protein kinase activity for two of them.
Collapse
Affiliation(s)
- Andreas S Richter
- Humboldt Universität zu Berlin, Institute of Biology/Plant Physiology, Berlin, Germany
| | - Hans Gartmann
- Humboldt Universität zu Berlin, Institute of Biology/Plant Physiology, Berlin, Germany
| | - Mona Fechler
- Humboldt Universität zu Berlin, Institute of Biology/Plant Physiology, Berlin, Germany
| | - Anja Rödiger
- Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Sacha Baginsky
- Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Bernhard Grimm
- Humboldt Universität zu Berlin, Institute of Biology/Plant Physiology, Berlin, Germany
| |
Collapse
|
20
|
Weisz DA, Gross ML, Pakrasi HB. The Use of Advanced Mass Spectrometry to Dissect the Life-Cycle of Photosystem II. FRONTIERS IN PLANT SCIENCE 2016; 7:617. [PMID: 27242823 PMCID: PMC4862242 DOI: 10.3389/fpls.2016.00617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/22/2016] [Indexed: 05/23/2023]
Abstract
Photosystem II (PSII) is a photosynthetic membrane-protein complex that undergoes an intricate, tightly regulated cycle of assembly, damage, and repair. The available crystal structures of cyanobacterial PSII are an essential foundation for understanding PSII function, but nonetheless provide a snapshot only of the active complex. To study aspects of the entire PSII life-cycle, mass spectrometry (MS) has emerged as a powerful tool that can be used in conjunction with biochemical techniques. In this article, we present the MS-based approaches that are used to study PSII composition, dynamics, and structure, and review the information about the PSII life-cycle that has been gained by these methods. This information includes the composition of PSII subcomplexes, discovery of accessory PSII proteins, identification of post-translational modifications and quantification of their changes under various conditions, determination of the binding site of proteins not observed in PSII crystal structures, conformational changes that underlie PSII functions, and identification of water and oxygen channels within PSII. We conclude with an outlook for the opportunity of future MS contributions to PSII research.
Collapse
Affiliation(s)
- Daniel A. Weisz
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| | - Himadri B. Pakrasi
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
| |
Collapse
|
21
|
Friso G, van Wijk KJ. Posttranslational Protein Modifications in Plant Metabolism. PLANT PHYSIOLOGY 2015; 169:1469-87. [PMID: 26338952 PMCID: PMC4634103 DOI: 10.1104/pp.15.01378] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 05/18/2023]
Abstract
Posttranslational modifications (PTMs) of proteins greatly expand proteome diversity, increase functionality, and allow for rapid responses, all at relatively low costs for the cell. PTMs play key roles in plants through their impact on signaling, gene expression, protein stability and interactions, and enzyme kinetics. Following a brief discussion of the experimental and bioinformatics challenges of PTM identification, localization, and quantification (occupancy), a concise overview is provided of the major PTMs and their (potential) functional consequences in plants, with emphasis on plant metabolism. Classic examples that illustrate the regulation of plant metabolic enzymes and pathways by PTMs and their cross talk are summarized. Recent large-scale proteomics studies mapped many PTMs to a wide range of metabolic functions. Unraveling of the PTM code, i.e. a predictive understanding of the (combinatorial) consequences of PTMs, is needed to convert this growing wealth of data into an understanding of plant metabolic regulation.
Collapse
Affiliation(s)
- Giulia Friso
- School for Integrative Plant Sciences, Section Plant Biology, Cornell University, Ithaca, New York 14853
| | - Klaas J van Wijk
- School for Integrative Plant Sciences, Section Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
22
|
Regulation and function of tetrapyrrole biosynthesis in plants and algae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:968-85. [PMID: 25979235 DOI: 10.1016/j.bbabio.2015.05.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/21/2015] [Accepted: 05/07/2015] [Indexed: 12/20/2022]
Abstract
Tetrapyrroles are macrocyclic molecules with various structural variants and multiple functions in Prokaryotes and Eukaryotes. Present knowledge about the metabolism of tetrapyrroles reflects the complex evolution of the pathway in different kingdoms of organisms, the complexity of structural and enzymatic variations of enzymatic steps, as well as a wide range of regulatory mechanisms, which ensure adequate synthesis of tetrapyrrole end-products at any time of development and environmental condition. This review intends to highlight new findings of research on tetrapyrrole biosynthesis in plants and algae. In the course of the heme and chlorophyll synthesis in these photosynthetic organisms, glutamate, one of the central and abundant metabolites, is converted into highly photoreactive tetrapyrrole intermediates. Thereby, several mechanisms of posttranslational control are thought to be essential for a tight regulation of each enzymatic step. Finally, we wish to discuss the potential role of tetrapyrroles in retrograde signaling and point out perspectives of the formation of macromolecular protein complexes in tetrapyrrole biosynthesis as an efficient mechanism to ensure a fine-tuned metabolic flow in the pathway. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
|
23
|
Lu Q, Ding S, Reiland S, Rödiger A, Roschitzki B, Xue P, Gruissem W, Lu C, Baginsky S. Identification and characterization of chloroplast casein kinase II from Oryza sativa (rice). JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:175-87. [PMID: 25316064 DOI: 10.1093/jxb/eru405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plastid casein kinase II is an important regulator of transcription, posttranscriptional processes, and, most likely, different metabolic functions in dicotyledonous species. Here we report the identification and characterization of pCKII from the monocotyledonous species Oryza sativa. OspCKII activity was enriched from isolated rice chloroplasts using heparin-Sepharose chromatography, in which it co-elutes with the transcriptionally active chromosome (TAC) and several ribosomal proteins. Inclusion mass scanning of the kinase-active fraction identified the gene model for OspCKII. Transient expression of GFP fused to the 184 N-terminal amino acids of the OspCKII sequence in rice confirmed the chloroplastic localization of the kinase. OspCKII activity shows the characteristic features of casein kinase II, such as the utilization of GTP as phosphate donor, inhibition by low concentrations of heparin and poly-lysine, and utilization of the canonical pCKII motif E-S-E-G-E in the model substrate RNP29. Phosphoproteome analysis of a protein extract from rice leaves combined with a meta-analysis with published phosphoproteomics data revealed differences in the target protein spectrum between rice and Arabidopsis. Consistently, several pCKII phosphorylation sites in dicotyledonous plants are not conserved in monocots and algae, suggesting that details of pCKII regulation in plastids have changed during evolution.
Collapse
Affiliation(s)
- Qingtao Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shunhua Ding
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Sonja Reiland
- Department of Biology, Plant Biotechnology, ETH Zurich, 8092 Zurich, Switzerland
| | - Anja Rödiger
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Bernd Roschitzki
- Functional Genomics Center Zurich, University of Zurich \ ETH Zurich, 8057 Zurich, Switzerland
| | - Peng Xue
- Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wilhelm Gruissem
- Department of Biology, Plant Biotechnology, ETH Zurich, 8092 Zurich, Switzerland Functional Genomics Center Zurich, University of Zurich \ ETH Zurich, 8057 Zurich, Switzerland
| | - Congming Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Sacha Baginsky
- Department of Biology, Plant Biotechnology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
24
|
Schönberg A, Bergner E, Helm S, Agne B, Dünschede B, Schünemann D, Schutkowski M, Baginsky S. The peptide microarray "ChloroPhos1.0" identifies new phosphorylation targets of plastid casein kinase II (pCKII) in Arabidopsis thaliana. PLoS One 2014; 9:e108344. [PMID: 25295873 PMCID: PMC4189921 DOI: 10.1371/journal.pone.0108344] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/19/2014] [Indexed: 11/18/2022] Open
Abstract
We report the development of a peptide microarray based on previously determined phosphorylation sites in chloroplast proteins. Altogether, 905 peptides were spotted as 15mers in nine replicates onto glass slides. We used the microarray for in vitro phosphorylation experiments and specifically assessed the peptide substrate spectrum of chloroplast casein kinase II (pCKII). To this end, native pCKII from Arabidopsis thaliana and Sinapis alba chloroplasts was enriched by Heparin-Sepharose chromatography and its activity on the microarray was compared to the activity of a recombinant Arabidopsis pCKII. All three kinase preparations phosphorylated a similar set of peptides that were clearly distinct from those phosphorylated by bovine heart protein kinase A (PKA) in control experiments. The majority of the pCKII phosphorylation targets are involved in plastid gene expression, supporting the earlier denomination of pCKII as plastid transcription kinase (PTK). In addition we identified Alb3 as pCKII substrate that is essential for the integration of light-harvesting complex subunits (LHC) into the thylakoid membrane. Plastid CKII phosphorylation activity was characterized in greater detail in vitro with recombinant wildtype Alb3 and phosphorylation site mutants as substrates, establishing S424 as the pCKII phosphorylation site. Our data show that the peptide microarray ChloroPhos1.0 is a suitable tool for the identification of new kinase downstream targets in vitro that can be validated subsequently by in vivo experiments.
Collapse
Affiliation(s)
- Anna Schönberg
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Elena Bergner
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Stefan Helm
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Birgit Agne
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, Bochum, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, Bochum, Germany
| | - Mike Schutkowski
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- Steinbeis-Forschungszentrum, Peptide Microarrays, Halle (Saale), Germany
| | - Sacha Baginsky
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- * E-mail:
| |
Collapse
|
25
|
Wang Y, Chang H, Hu S, Lu X, Yuan C, Zhang C, Wang P, Xiao W, Xiao L, Xue GP, Guo X. Plastid casein kinase 2 knockout reduces abscisic acid (ABA) sensitivity, thermotolerance, and expression of ABA- and heat-stress-responsive nuclear genes. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4159-75. [PMID: 24803505 PMCID: PMC4112627 DOI: 10.1093/jxb/eru190] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plastid casein kinase 2 (CK2) is a major Ser/Thr-specific enzyme for protein phosphorylation in the chloroplast stroma and its kinase activity is regulated by redox signals. To understand the role of CK2 phosphorylation of chloroplast proteins in abiotic stress signalling, an Arabidopsis plastid CK2 (CKA4) knockout mutant was investigated in terms of the plant response to abscisic acid (ABA) and heat stress. CKA4 expression was upregulated by ABA and heat treatment. The cka4 mutant showed reduced sensitivity to ABA during seed germination and seedling growth, and increased stomatal aperture and leaf water loss with a slightly reduced leaf ABA level. The cka4 mutant was more sensitive to heat stress than the wild-type Columbia-0. The expression levels of a number of genes in the ABA regulatory network were reduced in the cka4 mutant. Many heat-upregulated genes (heat-shock factors and heat-shock proteins) were also reduced in the cka4 mutant. The cka4 mutant showed reduced expression levels of plastid-encoded RNA polymerase target genes (atpB and psbA). CKA4 knockout mutation also resulted in a reduction in expression of some critical genes (PTM, ABI4, and PRS1) involved in retrograde signalling from the chloroplast to the nucleus. Similar results were observed in mutant plants with the knockout mutation in both CKA4 and CKA3, which encodes a nuclear CK2 α3 subunit. CKA3 expression was not responsive to ABA and heat stress. These results suggest that CKA4 is an enhancing factor in abiotic stress signalling through modulating the expression of some molecular players in retrograde signalling.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, PR China
| | - Hongping Chang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, PR China
| | - Shuai Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, PR China
| | - Xiutao Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, PR China
| | - Congying Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, PR China
| | - Chen Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, PR China
| | - Ping Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, PR China
| | - Wenjun Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, PR China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128, PR China
| | - Gang-Ping Xue
- CSIRO Plant Industry, 306 Carmody Road, St Lucia, QLD 4067, Australia
| | - Xinhong Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, PR China
| |
Collapse
|
26
|
Renvoisé M, Bonhomme L, Davanture M, Valot B, Zivy M, Lemaire C. Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. J Proteomics 2014; 106:140-50. [DOI: 10.1016/j.jprot.2014.04.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/14/2014] [Accepted: 04/12/2014] [Indexed: 11/16/2022]
|
27
|
van Wijk KJ, Friso G, Walther D, Schulze WX. Meta-Analysis of Arabidopsis thaliana Phospho-Proteomics Data Reveals Compartmentalization of Phosphorylation Motifs. THE PLANT CELL 2014; 26:2367-2389. [PMID: 24894044 PMCID: PMC4114939 DOI: 10.1105/tpc.114.125815] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 03/27/2014] [Accepted: 05/09/2014] [Indexed: 05/18/2023]
Abstract
Protein (de)phosphorylation plays an important role in plants. To provide a robust foundation for subcellular phosphorylation signaling network analysis and kinase-substrate relationships, we performed a meta-analysis of 27 published and unpublished in-house mass spectrometry-based phospho-proteome data sets for Arabidopsis thaliana covering a range of processes, (non)photosynthetic tissue types, and cell cultures. This resulted in an assembly of 60,366 phospho-peptides matching to 8141 nonredundant proteins. Filtering the data for quality and consistency generated a set of medium and a set of high confidence phospho-proteins and their assigned phospho-sites. The relation between single and multiphosphorylated peptides is discussed. The distribution of p-proteins across cellular functions and subcellular compartments was determined and showed overrepresentation of protein kinases. Extensive differences in frequency of pY were found between individual studies due to proteomics and mass spectrometry workflows. Interestingly, pY was underrepresented in peroxisomes but overrepresented in mitochondria. Using motif-finding algorithms motif-x and MMFPh at high stringency, we identified compartmentalization of phosphorylation motifs likely reflecting localized kinase activity. The filtering of the data assembly improved signal/noise ratio for such motifs. Identified motifs were linked to kinases through (bioinformatic) enrichment analysis. This study also provides insight into the challenges/pitfalls of using large-scale phospho-proteomic data sets to nonexperts.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York 14850
| | - Giulia Friso
- Department of Plant Biology, Cornell University, Ithaca, New York 14850
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, 14476 Golm, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| |
Collapse
|
28
|
Larkin RM. Chloroplast Signaling in Plants. Mol Biol 2014. [DOI: 10.1007/978-1-4614-7570-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Towards a critical understanding of the photosystem II repair mechanism and its regulation during stress conditions. FEBS Lett 2013; 587:3372-81. [DOI: 10.1016/j.febslet.2013.09.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 02/08/2023]
|
30
|
Puthiyaveetil S, Ibrahim IM, Allen JF. Evolutionary rewiring: a modified prokaryotic gene-regulatory pathway in chloroplasts. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120260. [PMID: 23754813 DOI: 10.1098/rstb.2012.0260] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Photosynthetic electron transport regulates chloroplast gene transcription through the action of a bacterial-type sensor kinase known as chloroplast sensor kinase (CSK). CSK represses photosystem I (PS I) gene transcription in PS I light and thus initiates photosystem stoichiometry adjustment. In cyanobacteria and in non-green algae, CSK homologues co-exist with their response regulator partners in canonical bacterial two-component systems. In green algae and plants, however, no response regulator partner of CSK is found. Yeast two-hybrid analysis has revealed interaction of CSK with sigma factor 1 (SIG1) of chloroplast RNA polymerase. Here we present further evidence for the interaction between CSK and SIG1. We also show that CSK interacts with quinone. Arabidopsis SIG1 becomes phosphorylated in PS I light, which then specifically represses transcription of PS I genes. In view of the identical signalling properties of CSK and SIG1 and of their interactions, we suggest that CSK is a SIG1 kinase. We propose that the selective repression of PS I genes arises from the operation of a gene-regulatory phosphoswitch in SIG1. The CSK-SIG1 system represents a novel, rewired chloroplast-signalling pathway created by evolutionary tinkering. This regulatory system supports a proposal for the selection pressure behind the evolutionary stasis of chloroplast genes.
Collapse
Affiliation(s)
- Sujith Puthiyaveetil
- School of Biological and Chemical Sciences, Queen Mary University of London, , Mile End Road, London E1 4NS, UK.
| | | | | |
Collapse
|
31
|
Larkin RM. Cytoplasm: Chloroplast Signaling. Mol Biol 2013. [DOI: 10.1007/978-1-4939-0263-7_10-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Schmidt C, Zhou M, Marriott H, Morgner N, Politis A, Robinson CV. Comparative cross-linking and mass spectrometry of an intact F-type ATPase suggest a role for phosphorylation. Nat Commun 2013; 4:1985. [PMID: 23756419 PMCID: PMC3709506 DOI: 10.1038/ncomms2985] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/07/2013] [Indexed: 11/13/2022] Open
Abstract
F-type ATPases are highly conserved enzymes used primarily for the synthesis of ATP. Here we apply mass spectrometry to the F1FO-ATPase, isolated from spinach chloroplasts, and uncover multiple modifications in soluble and membrane subunits. Mass spectra of the intact ATPase define a stable lipid 'plug' in the FO complex and reveal the stoichiometry of nucleotide binding in the F1 head. Comparing complexes formed in solution from an untreated ATPase with one incubated with a phosphatase reveals that the dephosphorylated enzyme has reduced nucleotide occupancy and decreased stability. By contrasting chemical cross-linking of untreated and dephosphorylated forms we show that cross-links are retained between the head and base, but are significantly reduced in the head, stators and stalk. Conformational changes at the catalytic interface, evidenced by changes in cross-linking, provide a rationale for reduced nucleotide occupancy and highlight a role for phosphorylation in regulating nucleotide binding and stability of the chloroplast ATPase.
Collapse
Affiliation(s)
- Carla Schmidt
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Min Zhou
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Hazel Marriott
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Nina Morgner
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Argyris Politis
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Carol V. Robinson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| |
Collapse
|