1
|
Beckers A, Mamiya A, Furutani M, Bennett MJ, Fukaki H, Sawa S, Gantet P, Laplaze L, Guyomarc'h S. Multiple layers of regulators emerge in the network controlling lateral root organogenesis. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00268-1. [PMID: 39455398 DOI: 10.1016/j.tplants.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Lateral root (LR) formation is a postembryonic organogenesis process that is crucial for plant root system development and adaptation to heterogenous soil environments. Since the early 1990s, a wealth of experimental data on arabidopsis (Arabidopsis thaliana) has helped reveal the LR formation regulatory network, in which dynamic auxin distribution and transcriptional cascades direct root cells through their organogenesis pathway. Some parts of this network appear conserved across diverse plant species or distinct developmental contexts. Recently, our knowledge of this process dramatically expanded thanks to technical advances, from single cell profiling to whole-root system phenotyping. Interestingly, new players are now emerging in this network, such as fatty acids and reactive oxygen species (ROS), transforming our knowledge of this hidden half of plant biology.
Collapse
Affiliation(s)
- Antoine Beckers
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Akihito Mamiya
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Masahiko Furutani
- Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka, Japan; Institute of Industrial Nanomaterial (IINA), Kumamoto University, Kumamoto, Japan; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| | - Malcolm J Bennett
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Shinichiro Sawa
- Institute of Industrial Nanomaterial (IINA), Kumamoto University, Kumamoto, Japan; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan; International Research Center for Agricultural and Environmental Biology (IRCAEB), Kumamoto University, Kumamoto, Japan; Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Pascal Gantet
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Laurent Laplaze
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Soazig Guyomarc'h
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France.
| |
Collapse
|
2
|
Pedinotti L, Teyssendier de la Serve J, Roudaire T, San Clemente H, Aguilar M, Kohlen W, Frugier F, Frei Dit Frey N. The CEP peptide-CRA2 receptor module promotes arbuscular mycorrhizal symbiosis. Curr Biol 2024:S0960-9822(24)01326-5. [PMID: 39437785 DOI: 10.1016/j.cub.2024.09.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/16/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
C-terminally encoded peptides (CEPs) are small secreted signaling peptides that promote nitrogen-fixing root nodulation symbiosis in legumes, depending on soil mineral nitrogen availability.1 In Medicago truncatula, their action is mediated by the leucine-rich repeat receptor-like protein kinase COMPACT ROOT ARCHITECTURE 2 (CRA2).2,3,4 Like most land plants, under inorganic phosphate limitation, M. truncatula establishes another root endosymbiotic interaction with arbuscular fungi, the arbuscular mycorrhizal symbiosis (AMS). Because this interaction is beneficial for the plant but has a high energetic cost, it is tightly controlled by host plants to limit fungal infections mainly depending on phosphate availability.5 We show in this study that the expression of a subset of CEP-encoding genes is enhanced in the low-phosphate conditions and that overexpression of the low-phosphate-induced MtCEP1 gene, previously shown to promote the nitrogen-fixing root nodulation symbiosis, enhances AMS from the initial entry point of the fungi. Conversely, a loss-of-function mutation of the CRA2 receptor required for mediating CEP peptide action2 decreases the endomycorrhizal interaction from the same initial fungal entry stage. Transcriptomic analyses revealed that the cra2 mutant is negatively affected in the regulation of key phosphate transport and response genes as well as in the biosynthesis of strigolactone hormones that are required for establishing AMS. Accordingly, strigolactone contents were drastically decreased in cra2 mutant roots. Overall, we showed that the CEP/CRA2 pathway promotes both root nodulation and AMS in legume plants, depending on soil mineral nutrient availability.
Collapse
Affiliation(s)
- Léa Pedinotti
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, 31320 Castanet-Tolosan, France
| | - Juliette Teyssendier de la Serve
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, 31320 Castanet-Tolosan, France; Institute of Plant Sciences Paris Saclay (IPS2), Paris-Saclay University, CNRS, Paris-Cité University, INRAE, Univ d'Evry, Bat. 630, Avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Thibault Roudaire
- Laboratoire des Interactions Plantes Microbes-Environnement (LIPME), CNRS, INRAE, Université de Toulouse, 31320 Castanet-Tolosan, France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, 31320 Castanet-Tolosan, France
| | - Marielle Aguilar
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, 31320 Castanet-Tolosan, France
| | - Wouter Kohlen
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen 6708 PB, the Netherlands
| | - Florian Frugier
- Institute of Plant Sciences Paris Saclay (IPS2), Paris-Saclay University, CNRS, Paris-Cité University, INRAE, Univ d'Evry, Bat. 630, Avenue des Sciences, 91190 Gif-sur-Yvette, France.
| | - Nicolas Frei Dit Frey
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, 31320 Castanet-Tolosan, France.
| |
Collapse
|
3
|
Li Y, Chen H, Gu L, Wu J, Zheng X, Fan Z, Pan D, Li JT, Shu W, Rosendahl S, Wang Y. Domestication of rice may have changed its arbuscular mycorrhizal properties by modifying phosphorus nutrition-related traits and decreasing symbiotic compatibility. THE NEW PHYTOLOGIST 2024; 243:1554-1570. [PMID: 38853449 DOI: 10.1111/nph.19901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Modern cultivated rice (Oryza sativa) typically experiences limited growth benefits from arbuscular mycorrhizal (AM) symbiosis. This could be due to the long-term domestication of rice under favorable phosphorus conditions. However, there is limited understanding of whether and how the rice domestication has modified AM properties. This study compared AM properties between a collection of wild (Oryza rufipogon) and domesticated rice genotypes and investigated the mechanisms underlying their differences by analyzing physiological, genomic, transcriptomic, and metabolomic traits critical for AM symbiosis. The results revealed significantly lower mycorrhizal growth responses and colonization intensity in domesticated rice compared to wild rice, and this change of AM properties may be associated with the domestication modifications of plant phosphorus utilization efficiency at physiological and genomic levels. Domestication also resulted in a decrease in the activity of the mycorrhizal phosphorus acquisition pathway, which may be attributed to reduced mycorrhizal compatibility of rice roots by enhancing defense responses like root lignification and reducing carbon supply to AM fungi. In conclusion, rice domestication may have changed its AM properties by modifying P nutrition-related traits and reducing symbiotic compatibility. This study offers new insights for improving AM properties in future rice breeding programs to enhance sustainable agricultural production.
Collapse
Affiliation(s)
- Yingwei Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Hanwen Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Ling Gu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jingwen Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiutan Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhilan Fan
- Rice Research Institute, Guangdong Academy of Agricultural Science, Guangzhou, 510640, China
| | - Dajian Pan
- Rice Research Institute, Guangdong Academy of Agricultural Science, Guangzhou, 510640, China
| | - Jin-Tian Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wensheng Shu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Søren Rosendahl
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Yutao Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
4
|
Alaux PL, Courty PE, Fréville H, David J, Rocher A, Taschen E. Wheat dwarfing reshapes plant and fungal development in arbuscular mycorrhizal symbiosis. MYCORRHIZA 2024; 34:351-360. [PMID: 38816524 DOI: 10.1007/s00572-024-01150-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/27/2024] [Indexed: 06/01/2024]
Abstract
The introduction of Reduced height (Rht) dwarfing genes into elite wheat varieties has contributed to enhanced yield gain in high input agrosystems by preventing lodging. Yet, how modern selection for dwarfing has affected symbiosis remains poorly documented. In this study, we evaluated the response of both the plant and the arbuscular mycorrhizal fungus to plant genetic variation at a major Quantitative Trait Locus called QTL 4B2, known to harbor a Rht dwarfing gene, when forming the symbiosis. We used twelve inbred genotypes derived from a diversity base broadened durum wheat Evolutionary Pre-breeding Population and genotyped with a high-throughput Single Nucleotide Polymorphism (SNP) genotyping array. In a microcosm setup segregating roots and the extra-radical mycelium, each wheat genotype was grown with or without the presence of Rhizophagus irregularis. To characterize arbuscular mycorrhizal symbiosis, we assessed hyphal density, root colonization, spore production, and plant biomass. Additionally, we split the variation of these variables due either to genotypes or to the Rht dwarfing genes alone. The fungus exhibited greater development in the roots of Dwarf plants compared to non-Dwarf plants, showing increases of 27%, 37% and 51% in root colonization, arbuscules, and vesicles, respectively. In addition, the biomass of the extra-radical fungal structures increased by around 31% in Dwarf plants. The biomass of plant roots decreased by about 43% in mycorrhizal Dwarf plants. Interestingly, extraradical hyphal production was found to be partly genetically determined with no significant effect of Rht, as for plant biomasses. In contrast, variations in root colonization, arbuscules and extraradical spore production were explained by Rht dwarfing genes. Finally, when mycorrhizal, Dwarf plants had significantly lower total P content, pointing towards a less beneficial symbiosis for the plant and increased profit for the fungus. These results highlight the effect of Rht dwarfing genes on both root and fungal development. This calls for further research into the molecular mechanisms governing these effects, as well as changes in plant physiology, and their implications for fostering arbuscular mycorrhizal symbiosis in sustainable agrosystems.
Collapse
Affiliation(s)
- Pierre-Louis Alaux
- UMR 7205, Institut Systématique Evolution Biodiversité, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, 75005, Paris, France
- Agroécologie, Institut Agro Dijon, CNRS, Université de Bourgogne, INRAE, Dijon, France
- AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- UMR Eco & Sols, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Place Viala, 34060, Montpellier cedex 2, Montpellier, France
| | | | - Hélène Fréville
- AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jacques David
- AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Aline Rocher
- AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Elisa Taschen
- UMR Eco & Sols, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Place Viala, 34060, Montpellier cedex 2, Montpellier, France.
| |
Collapse
|
5
|
Bashyal S, Gautam CK, Müller LM. CLAVATA signaling in plant-environment interactions. PLANT PHYSIOLOGY 2024; 194:1336-1357. [PMID: 37930810 PMCID: PMC10904329 DOI: 10.1093/plphys/kiad591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 11/08/2023]
Abstract
Plants must rapidly and dynamically adapt to changes in their environment. Upon sensing environmental signals, plants convert them into cellular signals, which elicit physiological or developmental changes that allow them to respond to various abiotic and biotic cues. Because plants can be simultaneously exposed to multiple environmental cues, signal integration between plant cells, tissues, and organs is necessary to induce specific responses. Recently, CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) peptides and their cognate CLAVATA-type receptors received increased attention for their roles in plant-environment interactions. CLE peptides are mobile signaling molecules, many of which are induced by a variety of biotic and abiotic stimuli. Secreted CLE peptides are perceived by receptor complexes on the surface of their target cells, which often include the leucine-rich repeat receptor-like kinase CLAVATA1. Receptor activation then results in cell-type and/or environment-specific responses. This review summarizes our current understanding of the diverse roles of environment-regulated CLE peptides in modulating plant responses to environmental cues. We highlight how CLE signals regulate plant physiology by fine-tuning plant-microbe interactions, nutrient homeostasis, and carbon allocation. Finally, we describe the role of CLAVATA receptors in the perception of environment-induced CLE signals and discuss how diverse CLE-CLAVATA signaling modules may integrate environmental signals with plant physiology and development.
Collapse
Affiliation(s)
- Sagar Bashyal
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | | | - Lena Maria Müller
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
6
|
Sun J, Rong Z, Yang L, Zhu Q, Yuan Y, Feng Z, Li L, Li N, Zhang L, Guo S. Effects of AMF inoculation on the growth, photosynthesis and root physiological morphology of root-pruned Robinia pseudoacacia seedlings. TREE PHYSIOLOGY 2024; 44:tpad130. [PMID: 37847604 DOI: 10.1093/treephys/tpad130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
Root pruning hinders the absorption and utilization of nutrients and water by seedlings in the short term. Arbuscular mycorrhizal fungi (AMF) are an important source of nutrient and water for seedlings except for the root system. However, the mechanism by which AMF affect the physiological growth of seedlings after root pruning has rarely been studied. In this study, a pot experiment was conducted through a three-compartment partition system to clarify the effects of Funneliformis mosseae (F. mosseae) strain BGC XJ07A on the physiological growth of root-pruned Robinia pseudoacacia seedlings. Five root pruning treatments (zero, one-fifth, one-fourth, one-third and one-half of the taproot length were removed) were applied to noninoculated seedlings and those inoculated with F. mosseae. The results showed that the presence of F. mosseae significantly increased the shoot and root biomasses, leaf photosynthetic rate, stomatal conductance and transpiration rate. The root projected area, root surface area, average root diameter, root density, root volume and number of root tips of the inoculated seedlings were higher than those without inoculation in all root pruning treatments. The root cytokinin, gibberellins and indole-3-acetic acid concentrations, but root abscisic acid concentration, were higher than those measured in the absence of inoculation in all root pruning treatments. Moreover, the changes in the root endogenous hormone concentrations of the seedlings were closely related to the root morphological development and seedling biomass. The AMF increased the soil available nitrogen, soil available phosphorus, soil available potassium and soil organic matter concentrations compared with the noninoculated treatment. These results indicate that AMF can alleviate the adverse effects of root pruning on the physiological growth of R. pseudoacacia and soil properties, and can provide a basis for AMF application to forest cultivation and the sustainable development of forest ecosystems.
Collapse
Affiliation(s)
- Jinhua Sun
- College of Forestry, Henan Agricultural University, Wenhua Road of Jinshui District in Zhengzhou City of Henan Province, Zhengzhou 450002, China
| | - Zheng Rong
- Henan Ecological and Environmental Monitoring Center, No. 10 Xueli Road, Zhengdong New District, Zhengzhou City, Henan Province, Zhengzhou 450046, China
| | - Liu Yang
- College of Forestry, Henan Agricultural University, Wenhua Road of Jinshui District in Zhengzhou City of Henan Province, Zhengzhou 450002, China
| | - Qimeng Zhu
- College of Forestry, Henan Agricultural University, Wenhua Road of Jinshui District in Zhengzhou City of Henan Province, Zhengzhou 450002, China
| | - Yabo Yuan
- College of Forestry, Henan Agricultural University, Wenhua Road of Jinshui District in Zhengzhou City of Henan Province, Zhengzhou 450002, China
| | - Zhipei Feng
- College of Forestry, Henan Agricultural University, Wenhua Road of Jinshui District in Zhengzhou City of Henan Province, Zhengzhou 450002, China
| | - Limei Li
- College of Forestry, Henan Agricultural University, Wenhua Road of Jinshui District in Zhengzhou City of Henan Province, Zhengzhou 450002, China
| | - Nixuan Li
- College of Forestry, Henan Agricultural University, Wenhua Road of Jinshui District in Zhengzhou City of Henan Province, Zhengzhou 450002, China
| | - Lei Zhang
- College of Forestry, Henan Agricultural University, Wenhua Road of Jinshui District in Zhengzhou City of Henan Province, Zhengzhou 450002, China
| | - Shaoxin Guo
- College of Forestry, Henan Agricultural University, Wenhua Road of Jinshui District in Zhengzhou City of Henan Province, Zhengzhou 450002, China
| |
Collapse
|
7
|
Sehar S, Adil MF, Askri SMH, Feng Q, Wei D, Sahito FS, Shamsi IH. Pan-transcriptomic Profiling Demarcates Serendipita Indica-Phosphorus Mediated Tolerance Mechanisms in Rice Exposed to Arsenic Toxicity. RICE (NEW YORK, N.Y.) 2023; 16:28. [PMID: 37354226 DOI: 10.1186/s12284-023-00645-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
Inadvertent accumulation of arsenic (As) in rice (Oryza sativa L.) is a concern for people depending on it for their subsistence, as it verily causes epigenetic alterations across the genome as well as in specific cells. To ensure food safety, certain attempts have been made to nullify this highest health hazard encompassing physiological, chemical and biological methods. Albeit, the use of mycorrhizal association along with nutrient reinforcement strategy has not been explored yet. Mechanisms of response and resistance of two rice genotypes to As with or without phosphorus (P) nutrition and Serendipita indica (S. indica; S.i) colonization were explored by root transcriptome profiling in the present study. Results revealed that the resistant genotype had higher auxin content and root plasticity, which helped in keeping the As accumulation and P starvation response to a minimum under alone As stress. However, sufficient P supply and symbiotic relationship switched the energy resources towards plant's developmental aspects rather than excessive root proliferation. Higher As accumulating genotype (GD-6) displayed upregulation of ethylene signaling/biosynthesis, root stunting and senescence related genes under As toxicity. Antioxidant defense system and cytokinin biosynthesis/signaling of both genotypes were strengthened under As + S.i + P, while the upregulation of potassium (K) and zinc (Zn) transporters depicted underlying cross-talk with iron (Fe) and P. Differential expression of phosphate transporters, peroxidases and GSTs, metal detoxification/transport proteins, as well as phytohormonal metabolism were responsible for As detoxification. Taken together, S. indica symbiosis fortified with adequate P-fertilizer can prove to be effective in minimizing As acquisition and accumulation in rice plants.
Collapse
Affiliation(s)
- Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Syed Muhammad Hassan Askri
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qidong Feng
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dongming Wei
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Falak Sehar Sahito
- Dow International Medical College, Dow University of Health Sciences, Karachi, 74200, Pakistan
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Xia H, Yang C, Liang Y, He Z, Guo Y, Lang Y, Wei J, Tian X, Lin L, Deng H, Wang J, Lv X, Liang D. Melatonin and arbuscular mycorrhizal fungi synergistically improve drought toleration in kiwifruit seedlings by increasing mycorrhizal colonization and nutrient uptake. FRONTIERS IN PLANT SCIENCE 2022; 13:1073917. [PMID: 36531404 PMCID: PMC9752077 DOI: 10.3389/fpls.2022.1073917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Kiwifruit is a vine fruit tree that is vulnerable to water deficiency due to its shallow root system and large leaves. Although mycorrhizal inoculation and melatonin application has been proved to improve plants drought tolerance, their interaction effects are still unclear. In this study, arbuscular mycorrhizal (AM) fungi incubation and melatonin (MT) irrigation were applied to kiwifruit seedlings alone or in combination to investigate their effect on drought tolerance. The results revealed that AM had more effect on promoting root biomass, water use efficiency, and uptake of nitrogen, phosphorus and iron. While MT was more effective in promoting shoot biomass and antioxidant enzyme activities to remove reactive oxygen species accumulation. Moreover, MT supplementary significantly increased the AM colonization, spore density and hyphal length density in roots. Therefore, combined application of AM fungi and MT had additive effects on improvement biomass accumulation, increasing chlorophyll content, photosynthetic efficiency, catalase activity, and decreasing malondialdehyde accumulation under drought stress, thus promoting plant growth and alleviating the drought damage to plant. These results provide guidance for AM and MT combined application to improve abiotic resistance in plants.
Collapse
Affiliation(s)
- Hui Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Chunguo Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Zunzhen He
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuqi Guo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuxuan Lang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jie Wei
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xinbo Tian
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Honghong Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiulan Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Dong Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Huang R, Li Z, Shen X, Choi J, Cao Y. The Perspective of Arbuscular Mycorrhizal Symbiosis in Rice Domestication and Breeding. Int J Mol Sci 2022; 23:ijms232012383. [PMID: 36293238 PMCID: PMC9604486 DOI: 10.3390/ijms232012383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/21/2022] Open
Abstract
In nature, symbiosis with arbuscular mycorrhizal (AM) fungi contributes to sustainable acquisition of phosphorus and other elements in over 80% of plant species; improving interactions with AM symbionts may mitigate some of the environmental problems associated with fertilizer application in grain crops such as rice. Recent developments of high-throughput genome sequencing projects of thousands of rice cultivars and the discovery of the molecular mechanisms underlying AM symbiosis suggest that interactions with AM fungi might have been an overlooked critical trait in rice domestication and breeding. In this review, we discuss genetic variation in the ability of rice to form AM symbioses and how this might have affected rice domestication. Finally, we discuss potential applications of AM symbiosis in rice breeding for more sustainable agriculture.
Collapse
Affiliation(s)
- Renliang Huang
- National Engineering Research Center of Rice (Nanchang), Key Laboratory of Rice Physiology and Genetics of Jiangxi Province, Rice Research Institute, Jiangxi Academy of Agriculture Science, Nanchang 330200, China
| | - Zheng Li
- State Key Laboratory of Agriculture Microbiology, Hubei Hongshan Laboratory, Huazhong Agriculture University, Wuhan 430000, China
| | - Xianhua Shen
- National Engineering Research Center of Rice (Nanchang), Key Laboratory of Rice Physiology and Genetics of Jiangxi Province, Rice Research Institute, Jiangxi Academy of Agriculture Science, Nanchang 330200, China
| | - Jeongmin Choi
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Yangrong Cao
- State Key Laboratory of Agriculture Microbiology, Hubei Hongshan Laboratory, Huazhong Agriculture University, Wuhan 430000, China
- Correspondence:
| |
Collapse
|
10
|
Phour M, Sindhu SS. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability. PLANTA 2022; 256:85. [PMID: 36125564 DOI: 10.1007/s00425-022-03997-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
The responses of plants to different abiotic stresses and mechanisms involved in their mitigation are discussed. Production of osmoprotectants, antioxidants, enzymes and other metabolites by beneficial microorganisms and their bioengineering ameliorates environmental stresses to improve food production. Progressive intensification of global agriculture, injudicious use of agrochemicals and change in climate conditions have deteriorated soil health, diminished the microbial biodiversity and resulted in environment pollution along with increase in biotic and abiotic stresses. Extreme weather conditions and erratic rains have further imposed additional stress for the growth and development of plants. Dominant abiotic stresses comprise drought, temperature, increased salinity, acidity, metal toxicity and nutrient starvation in soil, which severely limit crop production. For promoting sustainable crop production in environmentally challenging environments, use of beneficial microbes has emerged as a safer and sustainable means for mitigation of abiotic stresses resulting in improved crop productivity. These stress-tolerant microorganisms play an effective role against abiotic stresses by enhancing the antioxidant potential, improving nutrient acquisition, regulating the production of plant hormones, ACC deaminase, siderophore and exopolysaccharides and accumulating osmoprotectants and, thus, stimulating plant biomass and crop yield. In addition, bioengineering of beneficial microorganisms provides an innovative approach to enhance stress tolerance in plants. The use of genetically engineered stress-tolerant microbes as inoculants of crop plants may facilitate their use for enhanced nutrient cycling along with amelioration of abiotic stresses to improve food production for the ever-increasing population. In this chapter, an overview is provided about the current understanding of plant-bacterial interactions that help in alleviating abiotic stress in different crop systems in the face of climate change. This review largely focuses on the importance and need of sustainable and environmentally friendly approaches using beneficial microbes for ameliorating the environmental stresses in our agricultural systems.
Collapse
Affiliation(s)
- Manisha Phour
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Satyavir S Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India.
| |
Collapse
|
11
|
Abstract
Peptide signaling is an emerging paradigm in molecular plant-microbe interactions with vast implications for our understanding of plant-nematode interactions and beyond. Plant-like peptide hormones, first discovered in cyst nematodes, are now recognized as an important class of peptide effectors mediating several different types of pathogenic and symbiotic interactions. Here, we summarize what has been learned about nematode-secreted CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) peptide effectors since the last comprehensive review on this topic a decade ago. We also highlight new discoveries of a diverse array of peptide effectors that go beyond the CLE peptide effector family in not only phytonematodes but in organisms beyond the phylum Nematoda.
Collapse
Affiliation(s)
- Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, USA; ,
| | - Xunliang Liu
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, USA; ,
| |
Collapse
|
12
|
Bartoli C, Boivin S, Marta M, Gris C, Gasciolli V, Gaston M, Auriac MC, Debellé F, Cottret L, Carlier A, Masson-Boivin C, Lepetit M, Lefebvre B. Rhizobium leguminosarum symbiovar viciae strains are natural wheat endophytes that can stimulate root development. Environ Microbiol 2022; 24:5509-5523. [PMID: 35920038 DOI: 10.1111/1462-2920.16148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
Although rhizobia that establish a nitrogen-fixing symbiosis with legumes are also known to promote growth in non-legumes, studies on rhizobial associations with wheat roots are scarce. We searched for Rhizobium leguminosarum symbiovar viciae (Rlv) strains naturally competent to endophytically colonize wheat roots. We isolated 20 strains from surface-sterilized wheat roots, and found a low diversity of Rlv compared to that observed in the Rlv species complex. We tested the ability of a subset of these Rlv for wheat root colonization when co-inoculated with other Rlv. Only a few strains, including those isolated from wheat roots, and one strain isolated from pea nodules, were efficient in colonizing roots in co-inoculation conditions, while all the strains tested in single strain inoculation conditions were found to colonize the surface and interior of roots. Furthermore, Rlv strains isolated from wheat roots were able to stimulate root development and early arbuscular mycorrhizal fungi colonization. These responses were strain and host genotype dependent. Our results suggest that wheat can be an alternative host for Rlv; nevertheless, there is a strong competition between Rlv strains for wheat root colonization. In addition, we showed that Rlv are endophytic wheat root bacteria with potential ability to modify wheat development.
Collapse
Affiliation(s)
- Claudia Bartoli
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France.,LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Stéphane Boivin
- Laboratoire des Symbioses Tropicales et Méditerranéennes INRAE, IRD, CIRAD, University of Montpellier, Montpellier SupAgro Montpellier, France
| | - Marchetti Marta
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Carine Gris
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | | - Mégane Gaston
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Marie-Christine Auriac
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France.,FRAIB-TRI Imaging Platform Facilities, Université de Toulouse, CNRS, 24 chemin de Borderouge, Castanet-Tolosan, France
| | - Frédéric Debellé
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Ludovic Cottret
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Aurélien Carlier
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | | - Marc Lepetit
- Laboratoire des Symbioses Tropicales et Méditerranéennes INRAE, IRD, CIRAD, University of Montpellier, Montpellier SupAgro Montpellier, France.,Institut Sophia Agrobiotech INRAE, CNRS, University Côte d'azur, Sophia Antipolis, France
| | - Benoit Lefebvre
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
13
|
Jaiswal V, Kakkar M, Kumari P, Zinta G, Gahlaut V, Kumar S. Multifaceted Roles of GRAS Transcription Factors in Growth and Stress Responses in Plants. iScience 2022; 25:105026. [PMID: 36117995 PMCID: PMC9474926 DOI: 10.1016/j.isci.2022.105026] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Vandana Jaiswal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mrinalini Kakkar
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India
| | - Priya Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Gaurav Zinta
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Corresponding author
| | - Vijay Gahlaut
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India
- Corresponding author
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
14
|
Sugimura Y, Kawahara A, Maruyama H, Ezawa T. Plant Foraging Strategies Driven by Distinct Genetic Modules: Cross-Ecosystem Transcriptomics Approach. FRONTIERS IN PLANT SCIENCE 2022; 13:903539. [PMID: 35860530 PMCID: PMC9290524 DOI: 10.3389/fpls.2022.903539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Plants have evolved diverse strategies for foraging, e.g., mycorrhizae, modification of root system architecture, and secretion of phosphatase. Despite extensive molecular/physiological studies on individual strategies under laboratory/greenhouse conditions, there is little information about how plants orchestrate these strategies in the field. We hypothesized that individual strategies are independently driven by corresponding genetic modules in response to deficiency/unbalance in nutrients. Roots colonized by mycorrhizal fungi, leaves, and root-zone soils were collected from 251 maize plants grown across the United States Corn Belt and Japan, which provided a large gradient of soil characteristics/agricultural practice and thus gene expression for foraging. RNA was extracted from the roots, sequenced, and subjected to gene coexpression network analysis. Nineteen genetic modules were defined and functionally characterized, from which three genetic modules, mycorrhiza formation, phosphate starvation response (PSR), and root development, were selected as those directly involved in foraging. The mycorrhizal module consists of genes responsible for mycorrhiza formation and was upregulated by both phosphorus and nitrogen deficiencies. The PSR module that consists of genes encoding phosphate transporter, secreted acid phosphatase, and enzymes involved in internal-phosphate recycling was regulated independent of the mycorrhizal module and strongly upregulated by phosphorus deficiency relative to nitrogen. The root development module that consists of regulatory genes for root development and cellulose biogenesis was upregulated by phosphorus and nitrogen enrichment. The expression of this module was negatively correlated with that of the mycorrhizal module, suggesting that root development is intrinsically an opposite strategy of mycorrhizae. Our approach provides new insights into understanding plant foraging strategies in complex environments at the molecular level.
Collapse
Affiliation(s)
- Yusaku Sugimura
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ai Kawahara
- Health & Crop Sciences Research Laboratory, Sumitomo Chemical, Co., Ltd., Takarazuka, Japan
| | - Hayato Maruyama
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Tatsuhiro Ezawa
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
15
|
Arbuscular Mycorrhizal Fungi Symbiosis to Enhance Plant–Soil Interaction. SUSTAINABILITY 2022. [DOI: 10.3390/su14137840] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) form a symbiotic relationship with plants; a symbiotic relationship is one in which both partners benefit from each other. Fungi benefit plants by improving uptake of water and nutrients, especially phosphorous, while plants provide 10–20% of their photosynthates to fungus. AMF tend to make associations with 85% of plant families and play a significant role in the sustainability of an ecosystem. Plants’ growth and productivity are negatively affected by various biotic and abiotic stresses. AMF proved to enhance plants’ tolerance against various stresses, such as drought, salinity, high temperature, and heavy metals. There are some obstacles impeding the beneficial formation of AMF communities, such as heavy tillage practices, high fertilizer rates, unchecked pesticide application, and monocultures. Keeping in view the stress-extenuation potential of AMF, the present review sheds light on their role in reducing erosion, nutrient leaching, and tolerance to abiotic stresses. In addition, recent advances in commercial production of AMF are discussed.
Collapse
|
16
|
Fiorilli V, Maghrebi M, Novero M, Votta C, Mazzarella T, Buffoni B, Astolfi S, Vigani G. Arbuscular Mycorrhizal Symbiosis Differentially Affects the Nutritional Status of Two Durum Wheat Genotypes under Drought Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060804. [PMID: 35336686 PMCID: PMC8954065 DOI: 10.3390/plants11060804] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 05/17/2023]
Abstract
Durum wheat is one of the most important agricultural crops, currently providing 18% of the daily intake of calories and 20% of daily protein intake for humans. However, being wheat that is cultivated in arid and semiarid areas, its productivity is threatened by drought stress, which is being exacerbated by climate change. Therefore, the identification of drought tolerant wheat genotypes is critical for increasing grain yield and also improving the capability of crops to uptake and assimilate nutrients, which are seriously affected by drought. This work aimed to determine the effect of arbuscular mycorrhizal fungi (AMF) on plant growth under normal and limited water availability in two durum wheat genotypes (Svevo and Etrusco). Furthermore, we investigated how the plant nutritional status responds to drought stress. We found that the response of Svevo and Etrusco to drought stress was differentially affected by AMF. Interestingly, we revealed that AMF positively affected sulfur homeostasis under drought conditions, mainly in the Svevo cultivar. The results provide a valuable indication that the identification of drought tolerant plants cannot ignore their nutrient use efficiency or the impact of other biotic soil components (i.e., AMF).
Collapse
Affiliation(s)
- Valentina Fiorilli
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, 10124 Torino, Italy; (V.F.); (M.M.); (M.N.); (C.V.); (T.M.); (B.B.)
| | - Moez Maghrebi
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, 10124 Torino, Italy; (V.F.); (M.M.); (M.N.); (C.V.); (T.M.); (B.B.)
| | - Mara Novero
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, 10124 Torino, Italy; (V.F.); (M.M.); (M.N.); (C.V.); (T.M.); (B.B.)
| | - Cristina Votta
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, 10124 Torino, Italy; (V.F.); (M.M.); (M.N.); (C.V.); (T.M.); (B.B.)
| | - Teresa Mazzarella
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, 10124 Torino, Italy; (V.F.); (M.M.); (M.N.); (C.V.); (T.M.); (B.B.)
| | - Beatrice Buffoni
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, 10124 Torino, Italy; (V.F.); (M.M.); (M.N.); (C.V.); (T.M.); (B.B.)
| | - Stefania Astolfi
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy;
| | - Gianpiero Vigani
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, 10124 Torino, Italy; (V.F.); (M.M.); (M.N.); (C.V.); (T.M.); (B.B.)
- Correspondence: ; Tel.: +39-0116706360
| |
Collapse
|
17
|
Giri B, Rawat R, Saxena G, Manchanda P, Wu QS, Sharma A. Effect of Rhizoglomus fasciculatum and Paecilomyces lilacinus in the biocontrol of root-knot nematode, Meloidogyne incognita in Capsicum annuum L. Commun Integr Biol 2022; 15:75-87. [PMID: 35273677 PMCID: PMC8903792 DOI: 10.1080/19420889.2021.2025195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Root-knot nematodes possess a major threat to agricultural production of various crops worldwide. The intensive use of chemical nematicides to control plant parasitic nematodes has adverse effects on our environment and human health. Owing to the importance of developing new strategies, an experiment was conducted to reveal the influence of arbuscular mycorrhizal fungus, Rhizoglomus fasciculatum and nematophagous fungus, Paecilomyces lilacinus alone or in combination with various organic amendments such as superphosphate, green and organic manure to control the infection of root-knot, nematode Meloidogyne incognita in a vegetable crop Capsicum annuum. These two fungi along with soil amendments significantly improved plant growth and fruit yield and effectively controlled infection of M. incognita. The dual inoculation of P. lilacinus and R. fasciculatum reduced the number of galls and egg masses, thereby revealing the controlled proliferation of M. incognita infection in C. annuum roots. The beneficial effect of these fungi further increased on supplementation of soil with organic or green manures. Inoculation of C. annuum with these two fungi showed a significant increase in egg parasitization; however, maximum effect was detected on dual inoculation. Amongst the soil amendments, the best response was obtained in case of green manure along with mycorrhizal fungus and P. lilacinus. Present study revealed that nematophagous and AM fungi, in combination with green manure were effective in controlling M. incognita, thus suggesting the use of such agents for biocontrol of plant parasitic nematodes in agriculture.
Collapse
Affiliation(s)
- Bhoopander Giri
- Department of Botany, Swami Shraddhanand College, University of Delhi, Delhi, India
| | - Renuka Rawat
- Department of Botany, University of Delhi, Delhi, India
| | - Geeta Saxena
- Department of Botany, Swami Shraddhanand College, University of Delhi, Delhi, India
| | | | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Anuradha Sharma
- Department of Botany, Hindu College, University of Delhi, Delhi, India
| |
Collapse
|
18
|
Koyama T, Murakami S, Karasawa T, Ejiri M, Shiono K. Complete root specimen of plants grown in soil-filled root box: sampling, measuring, and staining method. PLANT METHODS 2021; 17:97. [PMID: 34544441 PMCID: PMC8454053 DOI: 10.1186/s13007-021-00798-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Detailed datasets containing root system and its architecture in soil are required to improve understanding of resource capture by roots. However, most of the root study methods have paid little attention to make and preserve whole root specimens. This study introduces root system sampling equipment that makes the entire root specimen with minimum impairment and without displacement of the spatial arrangement of the root system in root boxes. The objectives are to assess: whether the equipment can rapidly sample the entire root system; whether root surface area is measurable from a scanned digital image of the root specimen; and whether staining of the entire root specimens would provide multidimensional visual information on the interaction between soil and physiological function of root system architecture (RSA). For validation, we examined the root response of two soybean cultivars to arbuscular mycorrhizal (AM) inoculation and the effect of waterlogging stress on the physiological activity of buckwheat RSA. RESULTS The root boxes allowed soybean and buckwheat plants to grow uniformly across the replications. Both species showed significant differences between cultivars and/or among treatments in shoot and root traits. The equipment enabled to sample the whole-root specimens of soybean and buckwheat, where the tips of the fine roots were alive (diameter < 0.2 mm). Also, the whole root specimens of soybean were made in about 7 min. The root surface area calculated from the scanned soybean specimens showed a significant correlation with that calculated from the roots spread out in water (a common method). Staining of the soybean root specimens enabled us to observe the localized root proliferation induced by AM colonization. Moreover, staining of the buckwheat root specimens made it possible to examine the respiratory activity of each root at different depths. CONCLUSIONS The present method realized: fast and accurate production of the whole root specimen and precise calculation of the specimens' root surface area. Moreover, staining of the root specimens enabled analyzing the interaction between soil and physiological function of RSA. The evaluation of root traits, using our methods, will contribute to developing agronomic management and breeding program for sustainable food production.
Collapse
Affiliation(s)
- Takuya Koyama
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan.
| | - Shun Murakami
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan
| | - Toshihiko Karasawa
- Central Region Agricultural Research Center (Kanto, Tokai and Hokuriku Regions), National Agriculture and Food Research Organization (NARO), 2-1-18 Kannondai, Tsukuba, 305-8666, Japan
| | - Masato Ejiri
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji, Fukui, 910-1195, Japan
| | - Katsuhiro Shiono
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji, Fukui, 910-1195, Japan
| |
Collapse
|
19
|
Effects of green-manure and tillage management on soil microbial community composition, nutrients and tree growth in a walnut orchard. Sci Rep 2021; 11:16882. [PMID: 34413432 PMCID: PMC8377041 DOI: 10.1038/s41598-021-96472-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 08/09/2021] [Indexed: 11/09/2022] Open
Abstract
This study characterized the effect of green manures (February orchid, hairy vetch, rattail fescue and a no-green-manure control) and the termination method (flail or disk) on nutrient contents, enzyme activities, microbial biomass, microbial community structure of rhizosphere soil and vegetative growth of walnut tree. All three selected green manures significantly enhanced the water content, organic C, total N and available P. The rattail fescue significantly decreased the mineral N. Total organic C, total N, mineral N and available P were significantly greater under flail than under disk. Hairy vetch and February orchid significantly improved levels of soil β-glucosidase, N-acetyl-glucosaminidase and acid phosphatase activity, whereas rattail fescue improved only β-glucosidase activity. All of the green manures significantly decreased phenoloxidase activity. β-glucosidase, N-acetyl-glucosaminidase and acid phosphatase activities were significantly greater under flail relative to disk. The termination method had no significant effect on phenoloxidase activity. The different types of green manures and termination methods significantly altered the soil microbial biomass and microbial community structure. The green-manure treatments were characterized by a significantly greater abundance of Gram-positive (Gram +) bacteria, total bacteria and saprophytic fungi compared to the control. Hairy vetch significantly decreased the abundance of arbuscular mycorrhizal fungi (AMF) while February orchid and rattail fescue increased their abundance compared to the no-green-manure treatment. The abundance rates of Gram+ bacteria, actinomycetes, saprophytic fungi and AMF were significantly greater in soils under flail than under disk. In terms of vegetative growth of walnut tree, hairy vetch showed the greatest positive effects. The growth of walnut tree was significantly greater under flail relative to disk. Our results indicate that green-manure application benefits the rhizosphere soil micro-ecology, rhizosphere soil nutrient contents and tree growth. Overall, the hairy vetch and flail combined treatment is recommended for walnut orchards in northern China.
Collapse
|
20
|
Sager R, Bennett M, Lee JY. A Tale of Two Domains Pushing Lateral Roots. TRENDS IN PLANT SCIENCE 2021; 26:770-779. [PMID: 33685810 DOI: 10.1016/j.tplants.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Successful plant organ development depends on well-coordinated intercellular communication between the cells of the organ itself, as well as with surrounding cells. Intercellular signals often move via the symplasmic pathway using plasmodesmata. Intriguingly, brief periods of symplasmic isolation may also be necessary to promote organ differentiation and functionality. Recent findings suggest that symplasmic isolation of a subset of parental root cells and newly forming lateral root primordia (LRPs) plays a vital role in modulating lateral root development and emergence. In this opinion article we discuss how two symplasmic domains may be simultaneously established within an LRP and its overlying cells, and the significance of plasmodesmata in this process.
Collapse
Affiliation(s)
- Ross Sager
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Malcolm Bennett
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
| | - Jung-Youn Lee
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA; Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA.
| |
Collapse
|
21
|
Quo vadis: signaling molecules and small secreted proteins from mycorrhizal fungi at the early stage of mycorrhiza formation. Symbiosis 2021. [DOI: 10.1007/s13199-021-00793-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Bijalwan P, Jeddi K, Saini I, Sharma M, Kaushik P, Hessini K. Mitigation of saline conditions in watermelon with mycorrhiza and silicon application. Saudi J Biol Sci 2021; 28:3678-3684. [PMID: 34220218 PMCID: PMC8241603 DOI: 10.1016/j.sjbs.2021.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
Salt stress effects agronomic traits and uptake of minerals. Salt stress also enhanced the oxidative stress biomarkers like hydrogen peroxide (H2O2). Supplementation of Mycorrhiza enhances the agronomical traits and alleviates slat stress. Silicon application also mitigates the salt stress through modulating antioxidant enzymes. The combination of Mycorrhiza and Silicon were more effective than their individual effect.
Citrullus lanatus L. is critical vegetable for salinity stress. Arbuscular mycorrhizal fungi (AMF) and silicon treatments are known to help as bio-ameliorator of saline soils that can improve salinity tolerance in plants. But their combined effect has never been examined on watermelon therefore, present study investigated the effect of inoculation with the Arbuscular mycorrhizal fungi (AMF) along with silicon on the growth and yield parameters, antioxidant enzyme activities, pigment and mineral content of Citrullus lanatus L. plants grown during salt stress conditions. Outcomes from the study point out that salt stressed watermelon plants showed the best morphological and biochemical values when inoculated with Silicon (4 mM) + Glomus mosseae + Gigaspora gigantean. In addition, the plants inoculated by similar treatment demonstrated less osmotic activity, electrolyte leakage, as well as peroxide content. Treatments comprising Silicon (4 mM) with either Glomus mosseae and Gigaspora gigantean also performed significantly similar for most of the traits studied in the present investigation and better than the treatment only with either one of Glomus mosseae and Gigaspora gigantean. Antioxidant efficiency of melon was certainly appreciably enhanced after incubation with AMF and Si combination in salinity stress. Overall, the application of mycorrhiza and silicon can be considered to overcome the salinity stress in watermelon.
Collapse
Affiliation(s)
- Priyanka Bijalwan
- Defence Institute of Bio-Energy Research, DRDO, Pithoragarh, Uttarakhand 262501, India
| | - Kaouthar Jeddi
- Laboratory of Plant Biodiversity and Dynamic of Ecosystems in Arid Area, Faculty of Sciences of Sfax, B.P. 1171, Sfax 3000, Tunisia
| | - Ishan Saini
- Department of Botany, Kurukshetra University, Kurukshetra, 136118 Haryana, India
| | - Meenakshi Sharma
- Department of Botany, Kurukshetra University, Kurukshetra, 136118 Haryana, India
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Kamel Hessini
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
23
|
Abdelhafez AA, Eid KE, El-Abeid SE, Abbas MHH, Ahmed N, Mansour RRME, Zou G, Iqbal J, Fahad S, Elkelish A, Alamri S, Siddiqui MH, Mohamed I. Application of soil biofertilizers to a clayey soil contaminated with Sclerotium rolfsii can promote production, protection and nutritive status of Phaseolus vulgaris. CHEMOSPHERE 2021; 271:129321. [PMID: 33434829 DOI: 10.1016/j.chemosphere.2020.129321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Sclerotium rolfsii is a soil-borne fungus that causes big losses in productivity of various plant species including Phaseolus vulgaris L. The objectives of this study were to (1) evaluate the impacts of Sclerotium rolfsii on growth and production of common bean plants, (2) determine the effects of Sclerotium rolfsii on nutritive contents of beans, and (3) test the efficacy of bio-inoculants on suppressing plant infection with Sclerotium rolfsii. To fulfill these objectives, we used a coupled pot and field experimental approaches during two growing seasons. Common beans were inoculated with either arbuscular mycorrhizal fungi (Claroideoglomus etunicatum), Saccharomyces cerevisiae, or Trichoderma viride solely or in different combinations. Non-inoculated plants and fungicide treated ones were considered as reference treatments. Throughout these experiments, minimal amounts of rock phosphate were added during soil preparation for bio-inoculated treatments, while the non-inoculated reference treatments received a full dose of P as calcium superphosphate. Results revealed that all tested bioinoculants significantly raised the activities of plant defense enzymes i.e. chitinase, peroxidase and polyphenoloxidase as compared to non-inoculated control. Likewise, pre-, post- and plant survival percentages significantly increased due to these bio-inoculations. Increased survival percentages were attributed to the concurrent increases in uptake of N, P and Zn nutrients by plants treated with bioinoculants. In this concern, plant nutrients uptake was higher in combined than single bio-inoculant treatments. Moreover, the uptake values of plant nutrients owing to the combined bio-inoculants were higher than the corresponding ones achieved due to fungicide treatment. In conclusion, application of the tested bio-inoculants, especially the combined ones can be considered an eco-friendly approach that not only enhances plants resistance against infection with Sclerotium rolfsii but also improves plant nutritive status.
Collapse
Affiliation(s)
- Ahmed A Abdelhafez
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science (SAAS), China; New Valley University, Faculty of Agriculture, Soils and Water Department, Egypt; National Committee of Soil Science, Academy of Scientific Research and Technology, Egypt
| | - Khaled E Eid
- Plant Pathology Department, Faculty of Agriculture, Benha University Egypt
| | - Sozan E El-Abeid
- Plant Pathology Research Institute, Agriculture Research Centre (ARC), Giza, Egypt
| | - Mohamed H H Abbas
- Soils and Water Department, Faculty of Agriculture, Benha University, Egypt
| | - Nevin Ahmed
- Plant Protection Department, Faculty of Agriculture, Benha University, Egypt
| | | | - Guoyan Zou
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science (SAAS), China
| | - Javed Iqbal
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, China; Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan.
| | - Amr Elkelish
- Botany Department, Faculty of Science, Suze Canal University, Ismailia, Egypt
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Ibrahim Mohamed
- Soils and Water Department, Faculty of Agriculture, Benha University, Egypt.
| |
Collapse
|
24
|
Berger F, Gutjahr C. Factors affecting plant responsiveness to arbuscular mycorrhiza. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101994. [PMID: 33450718 DOI: 10.1016/j.pbi.2020.101994] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Arbuscular mycorrhiza (AM) is an ancient, widespread symbiosis between most land plants and fungi of the Glomeromycotina, which receives increasing interest for agricultural application because it can promote plant growth and yield. The ability of plants to react to AM with changes in morphology and/or performance in terms of yield is called 'AM responsiveness'. Its amplitude depends on the plant- fungal genotype combination and the abiotic and biotic environment. A molecular understanding of AM responsiveness is key for enabling rational application of AM in agriculture, for example through targeted breeding of AM-optimised crops. However, the genetic and mechanistic underpinnings of AM responsiveness variation remain still unknown. Here, we review current knowledge on AM responsiveness, with a focus on agricultural crops, and speculate on mechanisms that may contribute to the variation in AM response.
Collapse
Affiliation(s)
- Florian Berger
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil-Ramann-Str. 4, 85354 Freising, Germany.
| |
Collapse
|
25
|
González-González MF, Ocampo-Alvarez H, Santacruz-Ruvalcaba F, Sánchez-Hernández CV, Casarrubias-Castillo K, Becerril-Espinosa A, Castañeda-Nava JJ, Hernández-Herrera RM. Physiological, Ecological, and Biochemical Implications in Tomato Plants of Two Plant Biostimulants: Arbuscular Mycorrhizal Fungi and Seaweed Extract. FRONTIERS IN PLANT SCIENCE 2020; 11:999. [PMID: 32765545 PMCID: PMC7379914 DOI: 10.3389/fpls.2020.00999] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/17/2020] [Indexed: 05/14/2023]
Abstract
The worldwide use of plant biostimulants (PBs) represents an environmentally friendly tool to increase crop yield and productivity. PBs include different substances, compounds, and growth-promoting microorganism formulations, such as those derived from arbuscular mycorrhizal fungi (AMF) or seaweed extracts (SEs), which are used to regulate or enhance physiological processes in plants. This study analyzed the physiological, ecological, and biochemical implications of the addition of two PBs, AMF or SE (both alone and in combination), on tomato plants (Solanum lycopersicum L. cv. "Rio Fuego"). The physiological responses evaluated were related to plant growth and photosynthetic performance. The ecological benefits were assessed based on the success of AMF colonization, flowering, resistance capacity, nonphotochemical quenching (NPQ), and polyphenol content. Biochemical effects were evaluated via protein, lipid, carbohydrate, nitrogen, and phosphorous content. Each PB was found to benefit tomato plants in a different but complementary manner. AMF resulted in an energetically expensive (high ETRMAX but low growth) but protective (high NPQ and polyphenol content) response. AMF + nutritive solution (NS) induced early floration but resulted in low protein, carbohydrate, and lipid content. Both AMF and AMF + NS favored foliar instead of root development. In contrast, SE and SE + NS favored protein content and root development and did not promote flowering. However, the combination of both PBs (AMF + SE) resulted in an additive effect, reflected in an increase in both foliar and root growth as well as protein and carbohydrate content. Moreover, a synergistic effect was also found, which was expressed in accelerated flowering and AMF colonization. We present evidence of benefits to plant performance (additive and synergistic) due to the interactive effects between microbial (AMF) and nonmicrobial (SEs) PBs and propose that the complementary modes of action of both PBs may be responsible for the observed positive effects due to the new and emerging properties of their components instead of exclusively being the result of known constituents. These results will be an important contribution to biostimulant research and to the development of a second generation of PBs in which combined and complementary mechanisms may be functionally designed.
Collapse
Affiliation(s)
- Mario Felipe González-González
- Laboratorio de Investigación en Biotecnología, Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Héctor Ocampo-Alvarez
- Laboratorio de Ecología Molecular, Microbiología y Taxonomía, Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Fernando Santacruz-Ruvalcaba
- Laboratorio de Biotecnología Vegetal, Departamento de Producción Agrícola, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Carla Vanessa Sánchez-Hernández
- Laboratorio de Marcadores Moleculares, Departamento de Producción Agrícola, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Kena Casarrubias-Castillo
- Laboratorio de Ecología Molecular, Microbiología y Taxonomía, Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Amayaly Becerril-Espinosa
- CONACYT, Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - José Juvencio Castañeda-Nava
- Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| | - Rosalba Mireya Hernández-Herrera
- Laboratorio de Investigación en Biotecnología, Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
- *Correspondence: Rosalba Mireya Hernández-Herrera, ;
| |
Collapse
|
26
|
Laser Microdissection as a Useful Tool to Study Gene Expression in Plant and Fungal Partners in AM Symbiosis. Methods Mol Biol 2020; 2146:171-184. [PMID: 32415603 DOI: 10.1007/978-1-0716-0603-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Laser microdissection (LMD) technology has been widely applied to plant tissues, offering novel information on the role of different cell-type populations during plant-microbe interactions. In this chapter, protocols to apply the LMD approach to study plant and fungal transcript profiles in different cell-type populations from arbuscular mycorrhizal (AM) roots are described in detail, starting from the biological material preparation to gene expression analyses by RT-PCR and RT-qPCR.
Collapse
|
27
|
Girardin A, Wang T, Ding Y, Keller J, Buendia L, Gaston M, Ribeyre C, Gasciolli V, Auriac MC, Vernié T, Bendahmane A, Ried MK, Parniske M, Morel P, Vandenbussche M, Schorderet M, Reinhardt D, Delaux PM, Bono JJ, Lefebvre B. LCO Receptors Involved in Arbuscular Mycorrhiza Are Functional for Rhizobia Perception in Legumes. Curr Biol 2019; 29:4249-4259.e5. [PMID: 31813608 PMCID: PMC6926482 DOI: 10.1016/j.cub.2019.11.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/09/2019] [Accepted: 11/12/2019] [Indexed: 01/10/2023]
Abstract
Bacterial lipo-chitooligosaccharides (LCOs) are key mediators of the nitrogen-fixing root nodule symbiosis (RNS) in legumes. The isolation of LCOs from arbuscular mycorrhizal fungi suggested that LCOs are also signaling molecules in arbuscular mycorrhiza (AM). However, the corresponding plant receptors have remained uncharacterized. Here we show that petunia and tomato mutants in the LysM receptor-like kinases LYK10 are impaired in AM formation. Petunia and tomato LYK10 proteins have a high affinity for LCOs (Kd in the nM range) comparable to that previously reported for a legume LCO receptor essential for the RNS. Interestingly, the tomato and petunia LYK10 promoters, when introduced into a legume, were active in nodules similarly to the promoter of the legume orthologous gene. Moreover, tomato and petunia LYK10 coding sequences restored nodulation in legumes mutated in their orthologs. This combination of genetic and biochemical data clearly pinpoints Solanaceous LYK10 as part of an ancestral LCO perception system involved in AM establishment, which has been directly recruited during evolution of the RNS in legumes.
Collapse
Affiliation(s)
- Ariane Girardin
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Tongming Wang
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Yi Ding
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville, BP42617, 31326 Castanet-Tolosan, France
| | - Luis Buendia
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Mégane Gaston
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Camille Ribeyre
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Virginie Gasciolli
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Marie-Christine Auriac
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France; Institut Fédératif de Recherche 3450, Université de Toulouse, CNRS, UPS, Plateforme Imagerie TRI-Genotoul, 31326 Castanet-Tolosan, France
| | - Tatiana Vernié
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville, BP42617, 31326 Castanet-Tolosan, France
| | | | | | - Martin Parniske
- Genetics, Faculty of Biology, University of Munich (LMU), 82152 Martinsried, Germany
| | - Patrice Morel
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Michiel Vandenbussche
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Martine Schorderet
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Didier Reinhardt
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville, BP42617, 31326 Castanet-Tolosan, France
| | - Jean-Jacques Bono
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Benoit Lefebvre
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France.
| |
Collapse
|
28
|
Huang L, Chen D, Zhang H, Song Y, Chen H, Tang M. Funneliformis mosseae Enhances Root Development and Pb Phytostabilization in Robinia pseudoacacia in Pb-Contaminated Soil. Front Microbiol 2019; 10:2591. [PMID: 31781076 PMCID: PMC6861453 DOI: 10.3389/fmicb.2019.02591] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/25/2019] [Indexed: 12/01/2022] Open
Abstract
It is possible that arbuscular mycorrhizal fungi play a pivotal role in root development and Pb phytostabilization in plants grown in Pb-contaminated soil. In this study, a pot experiment was conducted over 4 months to evaluate the effects of Funneliformis mosseae strain BGCXJ01A on root characteristics of black locust (Robinia pseudoacacia L.) seedlings in Pb-contaminated soil. Four Pb treatments (0, 90, 900, and 3,000 mg kg–1) were applied to soil in the presence and absence of F. mosseae. Inoculation with F. mosseae prominently improved root length, surface area, volume, and tip number in the plants across all Pb treatments. The F. mosseae inoculation also increased root diameter and fork number, especially under high Pb treatments. The presence of F. mosseae significantly increased the root activity and root tolerance index. However, there was little difference in specific root length between inoculated and non-inoculated plants. The biomass of roots, stems, and leaves all increased following inoculation with F. mosseae. Inoculated plants had greater accumulation and translocation capacities for Pb in the roots and stems, but lower capacities were found in the leaves when compared with those in non-inoculated plants. These results highlight that F. mosseae can alleviate the toxic effects of Pb on root development and can immobilize Pb in the roots and stems of R. pseudoacacia grown in Pb-contaminated soil. This study provides a model system for phytoremediation of Pb-contaminated soil via reciprocal symbiosis between arbuscular mycorrhizal fungi and woody legumes.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China.,Food Science and Engineering, Beibu Gulf University, Qinzhou, China
| | - Deqiang Chen
- Food Science and Engineering, Beibu Gulf University, Qinzhou, China
| | - Haoqiang Zhang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Yingying Song
- College of Forestry, Northwest A&F University, Yangling, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
29
|
Cope KR, Bascaules A, Irving TB, Venkateshwaran M, Maeda J, Garcia K, Rush TA, Ma C, Labbé J, Jawdy S, Steigerwald E, Setzke J, Fung E, Schnell KG, Wang Y, Schlief N, Bücking H, Strauss SH, Maillet F, Jargeat P, Bécard G, Puech-Pagès V, Ané JM. The Ectomycorrhizal Fungus Laccaria bicolor Produces Lipochitooligosaccharides and Uses the Common Symbiosis Pathway to Colonize Populus Roots. THE PLANT CELL 2019; 31:2386-2410. [PMID: 31416823 PMCID: PMC6790088 DOI: 10.1105/tpc.18.00676] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 05/17/2019] [Accepted: 08/06/2019] [Indexed: 05/21/2023]
Abstract
Mycorrhizal fungi form mutualistic associations with the roots of most land plants and provide them with mineral nutrients from the soil in exchange for fixed carbon derived from photosynthesis. The common symbiosis pathway (CSP) is a conserved molecular signaling pathway in all plants capable of associating with arbuscular mycorrhizal fungi. It is required not only for arbuscular mycorrhizal symbiosis but also for rhizobia-legume and actinorhizal symbioses. Given its role in such diverse symbiotic associations, we hypothesized that the CSP also plays a role in ectomycorrhizal associations. We showed that the ectomycorrhizal fungus Laccaria bicolor produces an array of lipochitooligosaccharides (LCOs) that can trigger both root hair branching in legumes and, most importantly, calcium spiking in the host plant Populus in a CASTOR/POLLUX-dependent manner. Nonsulfated LCOs enhanced lateral root development in Populus in a calcium/calmodulin-dependent protein kinase (CCaMK)-dependent manner, and sulfated LCOs enhanced the colonization of Populus by L. bicolor Compared with the wild-type Populus, the colonization of CASTOR/POLLUX and CCaMK RNA interference lines by L. bicolor was reduced. Our work demonstrates that similar to other root symbioses, L. bicolor uses the CSP for the full establishment of its mutualistic association with Populus.
Collapse
Affiliation(s)
- Kevin R Cope
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Adeline Bascaules
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Thomas B Irving
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Junko Maeda
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Kevin Garcia
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Tomás A Rush
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Cathleen Ma
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Sara Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Edward Steigerwald
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - Jonathan Setzke
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - Emmeline Fung
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Kimberly G Schnell
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Yunqian Wang
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - Nathaniel Schlief
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Heike Bücking
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota 57007
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331
| | - Fabienne Maillet
- Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Patricia Jargeat
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
- Laboratoire Evolution et Diversité Biologique, Université de Toulouse, UPS, CNRS, IRD, 31077 Toulouse, France
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Virginie Puech-Pagès
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
30
|
Xue L, Almario J, Fabiańska I, Saridis G, Bucher M. Dysfunction in the arbuscular mycorrhizal symbiosis has consistent but small effects on the establishment of the fungal microbiota in Lotus japonicus. THE NEW PHYTOLOGIST 2019; 224:409-420. [PMID: 31125425 PMCID: PMC6773208 DOI: 10.1111/nph.15958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/15/2019] [Indexed: 05/10/2023]
Abstract
Most land plants establish mutualistic interactions with arbuscular mycorrhizal (AM) fungi. Intracellular accommodation of AM fungal symbionts remodels important host traits like root morphology and nutrient acquisition. How mycorrhizal colonization impacts plant microbiota is unclear. To understand the impact of AM symbiosis on fungal microbiota, ten Lotus japonicus mutants impaired at different stages of AM formation were grown in non-sterile natural soil and their root-associated fungal communities were studied. Plant mutants lacking the capacity to form mature arbuscules (arb- ) exhibited limited growth performance associated with altered phosphorus (P) acquisition and reduction-oxidation (redox) processes. Furthermore, arb- plants assembled moderately but consistently different root-associated fungal microbiota, characterized by the depletion of Glomeromycota and the concomitant enrichment of Ascomycota, including Dactylonectria torresensis. Single and co-inoculation experiments showed a strong reduction of root colonization by D. torresensis in the presence of AM fungus Rhizophagus irregularis, particularly in arbuscule-forming plants. Our results suggest that impairment of central symbiotic functions in AM host plants leads to specific changes in root microbiomes and in tripartite interactions between the host plant, AM and non-AM fungi. This lays the foundation for mechanistic studies on microbe-microbe and microbe-host interactions in AM symbiosis of the model L. japonicus.
Collapse
Affiliation(s)
- Li Xue
- Botanical InstituteCologne BiocenterUniversity of Cologne50674CologneGermany
| | - Juliana Almario
- Botanical InstituteCologne BiocenterUniversity of Cologne50674CologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)University of Cologne50674CologneGermany
| | - Izabela Fabiańska
- Botanical InstituteCologne BiocenterUniversity of Cologne50674CologneGermany
| | - Georgios Saridis
- Botanical InstituteCologne BiocenterUniversity of Cologne50674CologneGermany
| | - Marcel Bucher
- Botanical InstituteCologne BiocenterUniversity of Cologne50674CologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)University of Cologne50674CologneGermany
| |
Collapse
|
31
|
Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L. Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2019; 10:1068. [PMID: 31608075 PMCID: PMC6761482 DOI: 10.3389/fpls.2019.01068] [Citation(s) in RCA: 374] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/07/2019] [Indexed: 05/12/2023]
Abstract
Abiotic stresses hamper plant growth and productivity. Climate change and agricultural malpractices like excessive use of fertilizers and pesticides have aggravated the effects of abiotic stresses on crop productivity and degraded the ecosystem. There is an urgent need for environment-friendly management techniques such as the use of arbuscular mycorrhizal fungi (AMF) for enhancing crop productivity. AMF are commonly known as bio-fertilizers. Moreover, it is widely believed that the inoculation of AMF provides tolerance to host plants against various stressful situations like heat, salinity, drought, metals, and extreme temperatures. AMF may both assist host plants in the up-regulation of tolerance mechanisms and prevent the down-regulation of key metabolic pathways. AMF, being natural root symbionts, provide essential plant inorganic nutrients to host plants, thereby improving growth and yield under unstressed and stressed regimes. The role of AMF as a bio-fertilizer can potentially strengthen plants' adaptability to changing environment. Thus, further research focusing on the AMF-mediated promotion of crop quality and productivity is needed. The present review provides a comprehensive up-to-date knowledge on AMF and their influence on host plants at various growth stages, their advantages and applications, and consequently the importance of the relationships of different plant nutrients with AMF.
Collapse
Affiliation(s)
- Naheeda Begum
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Cheng Qin
- College of Life Sciences, Northwest A&F University, Yangling, China
| | | | - Sajjad Raza
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | | | | | - Nadeem Ahmed
- College of Life Sciences, Northwest A&F University, Yangling, China
- Department of Botany, Mohi-Ud-Din Islamic University Azad Jammu and Kashmir, Pakistan
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
32
|
Buendia L, Ribeyre C, Bensmihen S, Lefebvre B. Brachypodium distachyon tar2lhypo mutant shows reduced root developmental response to symbiotic signal but increased arbuscular mycorrhiza. PLANT SIGNALING & BEHAVIOR 2019; 14:e1651608. [PMID: 31392918 PMCID: PMC6768201 DOI: 10.1080/15592324.2019.1651608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Auxin is a major phytohormone that controls root development. A role for auxin is also emerging in the control of plant-microbe interactions, including for the establishment of root endosymbiosis between plants and arbuscular mycorrhizal fungi (AMF). Auxin perception is important both for root colonization by AMF and for arbuscule formation. AMF produce symbiotic signals called lipo-chitooligosaccharides (LCOs) that can modify auxin homeostasis and promote lateral root formation (LRF). Since Brachypodium distachyon (Brachypodium) has a different auxin sensitivity compared to other plant species, we wondered whether this would interfere with the effect of auxin in arbuscular mycorrhizal (AM) symbiosis. Here we tested whether tar2lhypo a Brachypodium mutant with an increase in endogenous auxin content is affected in LRF stimulation by LCOs and in AM symbiosis. We found that, in contrast to control plants, LCO treatment inhibited LRF of the tar2lhypo mutant. However, the level of AMF colonization and the abundance of arbuscules were increased in tar2lhypo compared to control plants, suggesting that auxin also plays a positive role in both AMF colonization and arbuscule formation in Brachypodium.
Collapse
Affiliation(s)
- Luis Buendia
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Camille Ribeyre
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Sandra Bensmihen
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Benoit Lefebvre
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
33
|
Le Marquer M, Bécard G, Frei Dit Frey N. Arbuscular mycorrhizal fungi possess a CLAVATA3/embryo surrounding region-related gene that positively regulates symbiosis. THE NEW PHYTOLOGIST 2019; 222:1030-1042. [PMID: 30554405 DOI: 10.1111/nph.15643] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/07/2018] [Indexed: 05/03/2023]
Abstract
The arbuscular mycorrhizal (AM) symbiosis is a beneficial association established between land plants and the members of a subphylum of fungi, the Glomeromycotina. How the two symbiotic partners regulate their association is still enigmatic. Secreted fungal peptides are candidates for regulating this interaction. We searched for fungal peptides with similarities with known plant signalling peptides. We identified CLAVATA (CLV)/EMBRYO SURROUNDING REGION (ESR)-RELATED PROTEIN (CLE) genes in phylogenetically distant AM fungi: four Rhizophagus species and one Gigaspora species. These CLE genes encode a signal peptide for secretion and the conserved CLE C-terminal motif. They seem to be absent in the other fungal clades. Rhizophagus irregularis and Gigaspora rosea CLE genes (RiCLE1 and GrCLE1) are transcriptionally induced in symbiotic vs asymbiotic conditions. Exogenous application of synthetic RiCLE1 peptide on Medicago truncatula affects root architecture, by slowing the apical growth of primary roots and stimulating the formation of lateral roots. In addition, pretreatment of seedlings with RiCLE1 peptide stimulates mycorrhization. Our findings demonstrate for the first time that in addition to plants and nematodes, AM fungi also possess CLE genes. These results pave the way for deciphering new mechanisms by which AM fungi modulate plant cellular responses during the establishment of AM symbiosis.
Collapse
Affiliation(s)
- Morgane Le Marquer
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Nicolas Frei Dit Frey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| |
Collapse
|
34
|
Buendia L, Maillet F, O'Connor D, van de-Kerkhove Q, Danoun S, Gough C, Lefebvre B, Bensmihen S. Lipo-chitooligosaccharides promote lateral root formation and modify auxin homeostasis in Brachypodium distachyon. THE NEW PHYTOLOGIST 2019; 221:2190-2202. [PMID: 30347445 DOI: 10.1111/nph.15551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/12/2018] [Indexed: 05/25/2023]
Abstract
Lipo-chitooligosaccharides (LCOs) are microbial symbiotic signals that also influence root growth. In Medicago truncatula, LCOs stimulate lateral root formation (LRF) synergistically with auxin. However, the molecular mechanisms of this phenomenon and whether it is restricted to legume plants are not known. We have addressed the capacity of the model monocot Brachypodium distachyon (Brachypodium) to respond to LCOs and auxin for LRF. For this, we used a combination of root phenotyping assays, live-imaging and auxin quantification, and analysed the regulation of auxin homeostasis genes. We show that LCOs and a low dose of the auxin precursor indole-3-butyric acid (IBA) stimulated LRF in Brachypodium, while a combination of LCOs and IBA led to different regulations. Both LCO and IBA treatments locally increased endogenous indole-3-acetic acid (IAA) content, whereas the combination of LCO and IBA locally increased the endogenous concentration of a conjugated form of IAA (IAA-Ala). LCOs, IBA and the combination differentially controlled expression of auxin homeostasis genes. These results demonstrate that LCOs are active on Brachypodium roots and stimulate LRF probably through regulation of auxin homeostasis. The interaction between LCO and auxin treatments observed in Brachypodium on root architecture opens interesting avenues regarding their possible combined effects during the arbuscular mycorrhizal symbiosis.
Collapse
Affiliation(s)
- Luis Buendia
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Fabienne Maillet
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Devin O'Connor
- Sainsbury Laboratory, Cambridge University, 47 Bateman Street, Cambridge, CB2 1LR, UK
| | | | - Saida Danoun
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, CNRS, 24 chemin de Borde Rouge-Auzeville, 31326, Castanet-Tolosan, France
| | - Clare Gough
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Benoit Lefebvre
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Sandra Bensmihen
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| |
Collapse
|
35
|
Ajmera I, Hodgman TC, Lu C. An Integrative Systems Perspective on Plant Phosphate Research. Genes (Basel) 2019; 10:E139. [PMID: 30781872 PMCID: PMC6410211 DOI: 10.3390/genes10020139] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/31/2022] Open
Abstract
The case for improving crop phosphorus-use-efficiency is widely recognized. Although much is known about the molecular and regulatory mechanisms, improvements have been hampered by the extreme complexity of phosphorus (P) dynamics, which involves soil chemistry; plant-soil interactions; uptake, transport, utilization and remobilization within plants; and agricultural practices. The urgency and direction of phosphate research is also dependent upon the finite sources of P, availability of stocks to farmers and reducing environmental hazards. This work introduces integrative systems approaches as a way to represent and understand this complexity, so that meaningful links can be established between genotype, environment, crop traits and yield. It aims to provide a large set of pointers to potential genes and research practice, with a view to encouraging members of the plant-phosphate research community to adopt such approaches so that, together, we can aid efforts in global food security.
Collapse
Affiliation(s)
- Ishan Ajmera
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Loughborough LE12 5RD, UK.
| | - T Charlie Hodgman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Loughborough LE12 5RD, UK.
| | - Chungui Lu
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0 QF, UK.
| |
Collapse
|
36
|
Karmakar K, Nath U, Nataraja KN, Chakravortty D. Root mediated uptake of Salmonella is different from phyto-pathogen and associated with the colonization of edible organs. BMC PLANT BIOLOGY 2018; 18:344. [PMID: 30537948 PMCID: PMC6290541 DOI: 10.1186/s12870-018-1578-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Pre-harvest contamination of fruits and vegetables by Salmonella in fields is one of the causes of food-borne outbreaks. Natural openings like stomata, hydathodes and fruit cracks are known to serve as entry points. While there are reports indicating that Salmonella colonize and enter root through lateral root emerging area, further investigations regarding how the accessibility of Salmonella to lateral root is different from phyto-pathogenic bacteria, the efficacy of lateral root to facilitate entry have remained unexplored. In this study we attempted to investigate the lateral root mediated entry of Salmonella, and to bridge this gap in knowledge. RESULTS Unlike phytopathogens, Salmonella cannot utilize cellulose as the sole carbon source. This negates the fact of active entry by degrading plant cellulose and pectin. Endophytic Salmonella colonization showed a high correlation with number of lateral roots. When given equal opportunity to colonize the plants with high or low lateral roots, Salmonella internalization was found higher in the plants with more lateral roots. However, the epiphytic colonization in both these plants remained unaltered. To understand the ecological significance, we induced lateral root production by increasing soil salinity which made the plants susceptible to Salmonella invasion and the plants showed higher Salmonella burden in the aerial organs. CONCLUSION Salmonella, being unable to degrade plant cell wall material relies heavily on natural openings. Therefore, its invasion is highly dependent on the number of lateral roots which provides an entry point because of the epidermis remodeling. Thus, when number of lateral root was enhanced by increasing the soil salinity, plants became susceptible to Salmonella invasion in roots and its transmission to aerial organs.
Collapse
Affiliation(s)
- Kapudeep Karmakar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 India
| | - Karaba N. Nataraja
- Department of Crop Physiology, University of Agricultural Science, GKVK, Bangalore, 560065 India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012 India
| |
Collapse
|
37
|
Chen M, Arato M, Borghi L, Nouri E, Reinhardt D. Beneficial Services of Arbuscular Mycorrhizal Fungi - From Ecology to Application. FRONTIERS IN PLANT SCIENCE 2018; 9:1270. [PMID: 30233616 PMCID: PMC6132195 DOI: 10.3389/fpls.2018.01270] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/10/2018] [Indexed: 05/12/2023]
Abstract
Arbuscular mycorrhiza (AM) is the most common symbiotic association of plants with microbes. AM fungi occur in the majority of natural habitats and they provide a range of important ecological services, in particular by improving plant nutrition, stress resistance and tolerance, soil structure and fertility. AM fungi also interact with most crop plants including cereals, vegetables, and fruit trees, therefore, they receive increasing attention for their potential use in sustainable agriculture. Basic research of the past decade has revealed the existence of a dedicated recognition and signaling pathway that is required for AM. Furthermore, recent evidence provided new insight into the exchange of nutritional benefits between the symbiotic partners. The great potential for application of AM has given rise to a thriving industry for AM-related products for agriculture, horticulture, and landscaping. Here, we discuss new developments in these fields, and we highlight future potential and limits toward the use of AM fungi for plant production.
Collapse
Affiliation(s)
- Min Chen
- Department of Biology, Rte Albert Gockel, University of Fribourg, Fribourg, Switzerland
| | | | - Lorenzo Borghi
- Institute of Plant and Molecular Biology, University of Zurich, Zurich, Switzerland
| | - Eva Nouri
- Department of Biology, Rte Albert Gockel, University of Fribourg, Fribourg, Switzerland
| | - Didier Reinhardt
- Department of Biology, Rte Albert Gockel, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
38
|
Butt H, Jamil M, Wang JY, Al-Babili S, Mahfouz M. Engineering plant architecture via CRISPR/Cas9-mediated alteration of strigolactone biosynthesis. BMC PLANT BIOLOGY 2018; 18:174. [PMID: 30157762 PMCID: PMC6116466 DOI: 10.1186/s12870-018-1387-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 08/07/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Precision plant genome engineering holds much promise for targeted improvement of crop traits via unprecedented single-base level control over the genetic material. Strigolactones (SLs) are a key determinant of plant architecture, known for their role in inhibiting shoot branching (tillering). RESULTS We used CRISPR/Cas9 in rice (Oryza sativa) for targeted disruption of CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7), which controls a key step in SL biosynthesis. The ccd7 mutants exhibited a striking increase in tillering, combined with a reduced height, which could be rescued by application of the synthetic SL analog GR24. Striga germination assays and liquid chromatography-mass spectrometry analysis showed that root exudates of ccd7 mutants were also SL deficient. CONCLUSIONS Taken together, our results show the potential and feasibility of the use of the CRISPR/Cas9 system for targeted engineering of plant architecture and for elucidating the molecular underpinnings of architecture-related traits.
Collapse
Affiliation(s)
- Haroon Butt
- Laboratory for Genome Engineering, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
| | - Muhammad Jamil
- The Bioactives Lab, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
| | - Jian You Wang
- The Bioactives Lab, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
| | - Salim Al-Babili
- The Bioactives Lab, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
| |
Collapse
|
39
|
Yu P, Wang C, Baldauf JA, Tai H, Gutjahr C, Hochholdinger F, Li C. Root type and soil phosphate determine the taxonomic landscape of colonizing fungi and the transcriptome of field-grown maize roots. THE NEW PHYTOLOGIST 2018; 217:1240-1253. [PMID: 29154441 DOI: 10.1111/nph.14893] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/15/2017] [Indexed: 05/03/2023]
Abstract
Different root types of plants are colonized by a myriad of soil microorganisms, including fungi, which influence plant health and performance. The distinct functional and metabolic characteristics of these root types may influence root type-inhabiting fungal communities. We performed internal transcribed spacer (ITS) DNA profiling to determine the composition of fungal communities in field-grown axial and lateral roots of maize (Zea mays) and in response to two different soil phosphate (P) regimes. In parallel, these root types were subjected to transcriptome profiling by RNA sequencing (RNA-Seq). We demonstrated that fungal communities were influenced by soil P levels in a manner specific to root types. Moreover, maize transcriptome sequencing revealed root type-specific shifts in cell wall metabolism and defense gene expression in response to high P. Furthermore, lateral roots specifically accumulated defense-related transcripts at high P levels. This observation was correlated with a shift in fungal community composition, including a reduction in colonization by arbuscular mycorrhizal fungi, as observed in ITS sequence data and microscopic evaluation of root colonization. Our findings suggest soil nutrient-dependent changes in functional niches within root systems and provide new insights into the interaction of individual root types with soil microbiota.
Collapse
Affiliation(s)
- Peng Yu
- Department of Plant Nutrition, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
| | - Chao Wang
- Department of Plant Nutrition, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jutta A Baldauf
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
| | - Huanhuan Tai
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
- Faculty of Biology, Genetics, LMU Munich, Martinsried, 82152, Germany
| | - Caroline Gutjahr
- Faculty of Biology, Genetics, LMU Munich, Martinsried, 82152, Germany
- Plant Genetics, School of Life Science Weihenstephan, Technical University of Munich (TUM), Freising, 85354, Germany
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
| | - Chunjian Li
- Department of Plant Nutrition, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
40
|
Vangelisti A, Natali L, Bernardi R, Sbrana C, Turrini A, Hassani-Pak K, Hughes D, Cavallini A, Giovannetti M, Giordani T. Transcriptome changes induced by arbuscular mycorrhizal fungi in sunflower (Helianthus annuus L.) roots. Sci Rep 2018; 8:4. [PMID: 29311719 PMCID: PMC5758643 DOI: 10.1038/s41598-017-18445-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/08/2017] [Indexed: 01/11/2023] Open
Abstract
Arbuscular mycorrhizal (AM) fungi are essential elements of soil fertility, plant nutrition and productivity, facilitating soil mineral nutrient uptake. Helianthus annuus is a non-model, widely cultivated species. Here we used an RNA-seq approach for evaluating gene expression variation at early and late stages of mycorrhizal establishment in sunflower roots colonized by the arbuscular fungus Rhizoglomus irregulare. mRNA was isolated from roots of plantlets at 4 and 16 days after inoculation with the fungus. cDNA libraries were built and sequenced with Illumina technology. Differential expression analysis was performed between control and inoculated plants. Overall 726 differentially expressed genes (DEGs) between inoculated and control plants were retrieved. The number of up-regulated DEGs greatly exceeded the number of down-regulated DEGs and this difference increased in later stages of colonization. Several DEGs were specifically involved in known mycorrhizal processes, such as membrane transport, cell wall shaping, and other. We also found previously unidentified mycorrhizal-induced transcripts. The most important DEGs were carefully described in order to hypothesize their roles in AM symbiosis. Our data add a valuable contribution for deciphering biological processes related to beneficial fungi and plant symbiosis, adding an Asteraceae, non-model species for future comparative functional genomics studies.
Collapse
Affiliation(s)
- Alberto Vangelisti
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Lucia Natali
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Rodolfo Bernardi
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Cristiana Sbrana
- CNR, Institute of Agricultural Biology and Biotechnology UOS Pisa, Pisa, Italy
| | - Alessandra Turrini
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | | | - David Hughes
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Andrea Cavallini
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy.
| |
Collapse
|
41
|
Chiu CH, Choi J, Paszkowski U. Independent signalling cues underpin arbuscular mycorrhizal symbiosis and large lateral root induction in rice. THE NEW PHYTOLOGIST 2018; 217:552-557. [PMID: 29194644 DOI: 10.1111/nph.14936] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Perception of arbuscular mycorrhizal fungi (AMF) triggers distinct plant signalling responses for parallel establishment of symbiosis and induction of lateral root formation. Rice receptor kinase CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) and α/β-fold hydrolase DWARF14-LIKE (D14L) are involved in pre-symbiotic fungal perception. After 6 wk post-inoculation with Rhizophagus irregularis, root developmental responses, fungal colonization and transcriptional responses were monitored in two independent cerk1 null mutants; a deletion mutant lacking D14L, and with D14L complemented as well as their respective wild-type cultivars (cv Nipponbare and Nihonmasari). Here we show that although essential for symbiosis, D14L is dispensable for AMF-induced root architectural modulation, which conversely relies on CERK1. Our results demonstrate uncoupling of symbiosis and the symbiotic root developmental signalling during pre-symbiosis with CERK1 required for AMF-induced root architectural changes.
Collapse
Affiliation(s)
- Chai Hao Chiu
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Jeongmin Choi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Uta Paszkowski
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
42
|
Dreher D, Yadav H, Zander S, Hause B. Is there genetic variation in mycorrhization of Medicago truncatula? PeerJ 2017; 5:e3713. [PMID: 28894638 PMCID: PMC5592082 DOI: 10.7717/peerj.3713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/28/2017] [Indexed: 12/30/2022] Open
Abstract
Differences in the plant's response among ecotypes or accessions are often used to identify molecular markers for the respective process. In order to analyze genetic diversity of Medicago truncatula in respect to interaction with the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis, mycorrhizal colonization was evaluated in 32 lines of the nested core collection representing the genetic diversity of the SARDI collection. All studied lines and the reference line Jemalong A17 were inoculated with R. irregularis and the mycorrhization rate was determined at three time points after inoculation. There were, however, no reliable and consistent differences in mycorrhization rates among all lines. To circumvent possible overlay of potential differences by use of the highly effective inoculum, native sandy soil was used in an independent experiment. Here, significant differences in mycorrhization rates among few of the lines were detectable, but the overall high variability in the mycorrhization rate hindered clear conclusions. To narrow down the number of lines to be tested in more detail, root system architecture (RSA) of in vitro-grown seedlings of all lines under two different phosphate (Pi) supply condition was determined in terms of primary root length and number of lateral roots. Under high Pi supply (100 µM), only minor differences were observed, whereas in response to Pi-limitation (3 µM) several lines exhibited a drastically changed number of lateral roots. Five lines showing the highest alterations or deviations in RSA were selected and inoculated with R. irregularis using two different Pi-fertilization regimes with either 13 mM or 3 mM Pi. Mycorrhization rate of these lines was checked in detail by molecular markers, such as transcript levels of RiTubulin and MtPT4. Under high phosphate supply, the ecotypes L000368 and L000555 exhibited slightly increased fungal colonization and more functional arbuscules, respectively. To address the question, whether capability for mycorrhizal colonization might be correlated to general invasion by microorganisms, selected lines were checked for infection by the root rot causing pathogen, Aphanoymces euteiches. The mycorrhizal colonization phenotype, however, did not correlate with the resistance phenotype upon infection with two strains of A. euteiches as L000368 showed partial resistance and L000555 exhibited high susceptibility as determined by quantification of A. euteiches rRNA within infected roots. Although there is genetic diversity in respect to pathogen infection, genetic diversity in mycorrhizal colonization of M. truncatula is rather low and it will be rather difficult to use it as a trait to access genetic markers.
Collapse
Affiliation(s)
- Dorothée Dreher
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Heena Yadav
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Sindy Zander
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| |
Collapse
|
43
|
|
44
|
Sheridan C, Depuydt P, De Ro M, Petit C, Van Gysegem E, Delaere P, Dixon M, Stasiak M, Aciksöz SB, Frossard E, Paradiso R, De Pascale S, Ventorino V, De Meyer T, Sas B, Geelen D. Microbial Community Dynamics and Response to Plant Growth-Promoting Microorganisms in the Rhizosphere of Four Common Food Crops Cultivated in Hydroponics. MICROBIAL ECOLOGY 2017; 73:378-393. [PMID: 27645138 DOI: 10.1007/s00248-016-0855-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/05/2016] [Indexed: 05/25/2023]
Abstract
Plant growth promoting microorganisms (PGPMs) of the plant root zone microbiome have received limited attention in hydroponic cultivation systems. In the framework of a project aimed at the development of a biological life support system for manned missions in space, we investigated the effects of PGPMs on four common food crops (durum and bread wheat, potato and soybean) cultivated in recirculating hydroponic systems for a whole life cycle. Each crop was inoculated with a commercial PGPM mixture and the composition of the microbial communities associated with their root rhizosphere, rhizoplane/endosphere and with the recirculating nutrient solution was characterised through 16S- and ITS-targeted Illumina MiSeq sequencing. PGPM addition was shown to induce changes in the composition of these communities, though these changes varied both between crops and over time. Microbial communities of PGPM-treated plants were shown to be more stable over time. Though additional development is required, this study highlights the potential benefits that PGPMs may confer to plants grown in hydroponic systems, particularly when cultivated in extreme environments such as space.
Collapse
Affiliation(s)
- C Sheridan
- In Vitro Biology and Horticulture, Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, 653 Coupure Links, 9000, Ghent, Belgium
| | - P Depuydt
- In Vitro Biology and Horticulture, Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, 653 Coupure Links, 9000, Ghent, Belgium
| | - M De Ro
- In Vitro Biology and Horticulture, Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, 653 Coupure Links, 9000, Ghent, Belgium
| | - C Petit
- In Vitro Biology and Horticulture, Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, 653 Coupure Links, 9000, Ghent, Belgium
| | - E Van Gysegem
- In Vitro Biology and Horticulture, Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, 653 Coupure Links, 9000, Ghent, Belgium
| | - P Delaere
- In Vitro Biology and Horticulture, Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, 653 Coupure Links, 9000, Ghent, Belgium
| | - M Dixon
- Controlled Environment Systems Research Facility, School of Environmental Sciences, University of Guelph, Guelph, ON, NIG 2W1, Canada
| | - M Stasiak
- Controlled Environment Systems Research Facility, School of Environmental Sciences, University of Guelph, Guelph, ON, NIG 2W1, Canada
| | - S B Aciksöz
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - E Frossard
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - R Paradiso
- Division of Plant Biology and Crop Science, Department of Agricultural Sciences, University of Naples Federico II Naples, Via Università, 100 80055, Portici, Naples, Italy
| | - S De Pascale
- Division of Plant Biology and Crop Science, Department of Agricultural Sciences, University of Naples Federico II Naples, Via Università, 100 80055, Portici, Naples, Italy
| | - V Ventorino
- Division of Microbiology, Department of Agricultural Sciences, University of Naples Federico II Naples, Via Università, 100 80055, Portici, Naples, Italy
| | - T De Meyer
- Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium
| | - B Sas
- Department of Food Quality and Food Safety, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - D Geelen
- In Vitro Biology and Horticulture, Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, 653 Coupure Links, 9000, Ghent, Belgium.
| |
Collapse
|
45
|
Chen W, Li J, Zhu H, Xu P, Chen J, Yao Q. Arbuscular Mycorrhizal Fungus Enhances Lateral Root Formation in Poncirus trifoliata (L.) as Revealed by RNA-Seq Analysis. FRONTIERS IN PLANT SCIENCE 2017; 8:2039. [PMID: 29238356 PMCID: PMC5713035 DOI: 10.3389/fpls.2017.02039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/14/2017] [Indexed: 05/14/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) establish symbiosis with most terrestrial plants, and greatly regulate lateral root (LR) formation. Phosphorus (P), sugar, and plant hormones are proposed being involved in this regulation, however, no global evidence regarding these factors is available so far, especially in woody plants. In this study, we inoculated trifoliate orange seedlings (Poncirus trifoliata L. Raf) with an AMF isolate, Rhizophagus irregularis BGC JX04B. After 4 months of growth, LR formation was characterized, and sugar contents in roots were determined. RNA-Seq analysis was performed to obtain the transcriptomes of LR root tips from non-mycorrhizal and mycorrhizal seedlings. Quantitative real time PCR (qRT-PCR) of selected genes was also conducted for validation. The results showed that AMF significantly increased LR number, as well as plant biomass and shoot P concentration. The contents of glucose and fructose in primary root, and sucrose content in LR were also increased. A total of 909 differentially expressed genes (DEGs) were identified in response to AMF inoculation, and qRT-PCR validated the transcriptomic data. The numbers of DEGs related to P, sugar, and plant hormones were 31, 32, and 25, respectively. For P metabolism, the most up-regulated DEGs mainly encoded phosphate transporter, and the most down-regulated DEGs encoded acid phosphatase. For sugar metabolism, the most up-regulated DEGs encoded polygalacturonase and chitinase. For plant hormones, the most up-regulated DEGs were related to auxin signaling, and the most down-regulated DEGs were related to ethylene signaling. PLS-SEM analysis indicates that P metabolism was the most important pathway by which AMF regulates LR formation in this study. These data reveal the changes of genome-wide gene expression in responses to AMF inoculation in trifoliate orange and provide a solid basis for the future identification and characterization of key genes involved in LR formation induced by AMF.
Collapse
Affiliation(s)
- Weili Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Juan Li
- Department of Horticulture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Honghui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Pengyang Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jiezhong Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Qing Yao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, College of Horticulture, South China Agricultural University, Guangzhou, China
- *Correspondence: Qing Yao
| |
Collapse
|
46
|
Yu P, Gutjahr C, Li C, Hochholdinger F. Genetic Control of Lateral Root Formation in Cereals. TRENDS IN PLANT SCIENCE 2016; 21:951-961. [PMID: 27524642 DOI: 10.1016/j.tplants.2016.07.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/19/2016] [Accepted: 07/28/2016] [Indexed: 05/03/2023]
Abstract
Cereals form complex root systems composed of different root types. Lateral root formation is a major determinant of root architecture and is instrumental for the efficient uptake of water and nutrients. Positioning and patterning of lateral roots and cell types involved in their formation are unique in monocot cereals. Recent discoveries advanced the molecular understanding of the intrinsic genetic control of initiation and elongation of lateral roots in cereals by distinct, in part root-type-specific genetic programs. Moreover, molecular networks modulating the plasticity of lateral root formation in response to water and nutrient availability and arbuscular mycorrhizal fungal colonization have been identified. These novel discoveries provide a better mechanistic understanding of postembryonic lateral root development in cereals.
Collapse
Affiliation(s)
- Peng Yu
- China Agricultural University, College of Resources and Environmental Science, Department of Plant Nutrition, 100193 Beijing, China; University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Crop Functional Genomics, 53113 Bonn, Germany
| | | | - Chunjian Li
- China Agricultural University, College of Resources and Environmental Science, Department of Plant Nutrition, 100193 Beijing, China.
| | - Frank Hochholdinger
- University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Crop Functional Genomics, 53113 Bonn, Germany.
| |
Collapse
|
47
|
Couzigou JM, Combier JP. Plant microRNAs: key regulators of root architecture and biotic interactions. THE NEW PHYTOLOGIST 2016; 212:22-35. [PMID: 27292927 DOI: 10.1111/nph.14058] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/08/2016] [Indexed: 05/24/2023]
Abstract
Contents 22 I. 22 II. 24 III. 25 IV. 27 V. 29 VI. 10 31 References 32 SUMMARY: Plants have evolved a remarkable faculty of adaptation to deal with various and changing environmental conditions. In this context, the roots have taken over nutritional aspects and the root system architecture can be modulated in response to nutrient availability or biotic interactions with soil microorganisms. This adaptability requires a fine tuning of gene expression. Indeed, root specification and development are highly complex processes requiring gene regulatory networks involved in hormonal regulations and cell identity. Among the different molecular partners governing root development, microRNAs (miRNAs) are key players for the fast regulation of gene expression. miRNAs are small RNAs involved in most developmental processes and are required for the normal growth of organisms, by the negative regulation of key genes, such as transcription factors and hormone receptors. Here, we review the known roles of miRNAs in root specification and development, from the embryonic roots to the establishment of root symbioses, highlighting the major roles of miRNAs in these processes.
Collapse
Affiliation(s)
- Jean-Malo Couzigou
- UMR5546, Laboratoire de Recherche en Sciences Végétales, UPS, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Jean-Philippe Combier
- UMR5546, Laboratoire de Recherche en Sciences Végétales, UPS, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| |
Collapse
|
48
|
Heck C, Kuhn H, Heidt S, Walter S, Rieger N, Requena N. Symbiotic Fungi Control Plant Root Cortex Development through the Novel GRAS Transcription Factor MIG1. Curr Biol 2016; 26:2770-2778. [DOI: 10.1016/j.cub.2016.07.059] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/30/2016] [Accepted: 07/22/2016] [Indexed: 11/24/2022]
|
49
|
Ueda Y, Frindte K, Knief C, Ashrafuzzaman M, Frei M. Effects of Elevated Tropospheric Ozone Concentration on the Bacterial Community in the Phyllosphere and Rhizoplane of Rice. PLoS One 2016; 11:e0163178. [PMID: 27643794 PMCID: PMC5028031 DOI: 10.1371/journal.pone.0163178] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 09/02/2016] [Indexed: 12/23/2022] Open
Abstract
Microbes constitute a vital part of the plant holobiont. They establish plant-microbe or microbe-microbe associations, forming a unique microbiota with each plant species and under different environmental conditions. These microbial communities have to adapt to diverse environmental conditions, such as geographical location, climate conditions and soil types, and are subjected to changes in their surrounding environment. Elevated ozone concentration is one of the most important aspects of global change, but its effect on microbial communities living on plant surfaces has barely been investigated. In the current study, we aimed at elucidating the potential effect of elevated ozone concentrations on the phyllosphere (aerial part of the plant) and rhizoplane (surface of the root) microbiota by adopting next-generation 16S rRNA amplicon sequencing. A standard japonica rice cultivar Nipponbare and an ozone-tolerant breeding line L81 (Nipponbare background) were pre-grown in a greenhouse for 10 weeks and then exposed to ozone at 85 ppb for 7 h daily for 30 days in open top chambers. Microbial cells were collected from the phyllosphere and rhizoplane separately. The treatment or different genotypes did not affect various diversity indices. On the other hand, the relative abundance of some bacterial taxa were significantly affected in the rhizoplane community of ozone-treated plants. A significant effect of ozone was detected by homogeneity of molecular variance analysis in the phyllosphere, meaning that the community from ozone-treated phyllosphere samples was more variable than those from control plants. In addition, a weak treatment effect was observed by clustering samples based on the Yue and Clayton and weighted UniFrac distance matrices among samples. We therefore conclude that the elevated ozone concentrations affected the bacterial community structure of the phyllosphere and the rhizosplane as a whole, even though this effect was rather weak and did not lead to changes of the function of the communities.
Collapse
Affiliation(s)
- Yoshiaki Ueda
- Institute of Crop Science and Resource Conservation (INRES) – Plant Nutrition, University of Bonn, Bonn, Germany
| | - Katharina Frindte
- Institute of Crop Science and Resource Conservation (INRES) – Molecular Biology of the Rhizosphere, University of Bonn, Bonn, Germany
| | - Claudia Knief
- Institute of Crop Science and Resource Conservation (INRES) – Molecular Biology of the Rhizosphere, University of Bonn, Bonn, Germany
| | - Md Ashrafuzzaman
- Institute of Crop Science and Resource Conservation (INRES) – Plant Nutrition, University of Bonn, Bonn, Germany
| | - Michael Frei
- Institute of Crop Science and Resource Conservation (INRES) – Plant Nutrition, University of Bonn, Bonn, Germany
| |
Collapse
|
50
|
Akamatsu A, Shimamoto K, Kawano Y. Crosstalk of Signaling Mechanisms Involved in Host Defense and Symbiosis Against Microorganisms in Rice. Curr Genomics 2016; 17:297-307. [PMID: 27499679 PMCID: PMC4955034 DOI: 10.2174/1389202917666160331201602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 01/01/2023] Open
Abstract
Rice is one of the most important food crops, feeding about half population in the world. Rice pathogens cause enormous damage to rice production worldwide. In plant immunity research, considerable progress has recently been made in our understanding of the molecular mechanisms underlying microbe-associated molecular pattern (MAMP)-triggered immunity. Using genome sequencing and molecular techniques, a number of new MAMPs and their receptors have been identified in the past two decades. Notably, the mechanisms for chitin perception via the lysine motif (LysM) domain-containing receptor OsCERK1, as well as the mechanisms for bacterial MAMP (e.g. flg22, elf18) perception via the leucine-rich repeat (LRR) domain-containing receptors FLS2 and EFR, have been clarified in rice and Arabidopsis, respectively. In chitin signaling in rice, two direct substrates of OsCERK1, Rac/ROP GTPase guanine nucleotide exchange factor OsRacGEF1 and receptor-like cytoplasmic kinase OsRLCK185, have been identified as components of the OsCERK1 complex and are rapidly phosphorylated by OsCERK1 in response to chitin. Interestingly, OsCERK1 also participates in symbiosis with arbuscular mycorrhizal fungi (AMF) in rice and plays a role in the recognition of short-chitin molecules (CO4/5), which are symbiotic signatures included in AMF germinated spore exudates and induced by synthetic strigolactone. Thus, OsCERK1 contributes to both immunity and symbiotic responses. In this review, we describe recent studies on pathways involved in rice immunity and symbiotic signaling triggered by interactions with microorganisms. In addition, we describe recent advances in genetic engineering by using plant immune receptors and symbiotic microorganisms to enhance disease resistance of rice.
Collapse
Affiliation(s)
- Akira Akamatsu
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara,Japan;; Present address: Cell and Developmental Biology, John Innes Centre, Norwich,United Kingdom
| | - Ko Shimamoto
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara,Japan
| | - Yoji Kawano
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara,Japan;; Present address: Shanghai Center for Plant Stress Biology, Shanghai,P.R. China;; Kihara Institute for Biological Research, Yokohama,Japan
| |
Collapse
|