1
|
Mubarak ANM, Mufeeth Mohammathu MM, Kumara ADNT. Will future maize improvement programs leverage the canopy light-interception, photosynthetic, and biomass capacities of traditional accessions? PeerJ 2023; 11:e15233. [PMID: 37131994 PMCID: PMC10149054 DOI: 10.7717/peerj.15233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/24/2023] [Indexed: 05/04/2023] Open
Abstract
Maize germplasm has greater latent potential to address the global food and feed crisis because of its high radiation, water and nutrient efficiencies. Photosynthetic and canopy architectural traits in maize are important in determining yield. The present study aimed to screen a subset of local maize accessions in Sri Lanka to evaluate their photosynthetic, biomass and yield related traits and to identify resource efficient germplasm. Experiments were carried out in the Ampara district of Sri Lanka. Eight maize accessions viz; SEU2, SEU6, SEU9, SEU10, SEU14, SEU15, SEU17 and SEU17 and two elite F1 cultivars (cv. Pacific-999 and cv. Bhadra) were analyzed under field conditions. Our results showed that maize genotypes produced a lower leaf area index (LAI) at the third and tenth week after field planting (WAP). However, the LAI was significantly increased in six WAP by Pacific-999, SEU2, SEU9, and SEU15. A similar trend was observed for percentage of light interception at three WAP (47%), six WAP (>64%), and decreased at 10 WAP. In addition, LAI maximum values were between 3.0 and 3.5, allowing 80% of the incident light to be intercepted by maize canopies. The estimated light extinction coefficient (k) remained lower (<0.5), suggesting that maize leaves are eractophilic canopies. Although fractional interception (f) varies, SEU2 and SEU9 had the highest values (0.57), and quantum yields of PSII (>0.73) in dark-adapted leaves. In addition, Pacific-999, SEU2, SEU9, and SEU17 had significantly higher rates of photosynthesis with minimal stomatal conductance and transpiration rates. As a result, they outperformed the control plants in terms of biomass, cob weight and grain yield. This suggests that native maize germplasm could be introduced as novel, less resource-intensive cultivars to sustain global food security.
Collapse
|
2
|
Langstroff A, Heuermann MC, Stahl A, Junker A. Opportunities and limits of controlled-environment plant phenotyping for climate response traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1-16. [PMID: 34302493 PMCID: PMC8741719 DOI: 10.1007/s00122-021-03892-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 06/17/2021] [Indexed: 05/19/2023]
Abstract
Rising temperatures and changing precipitation patterns will affect agricultural production substantially, exposing crops to extended and more intense periods of stress. Therefore, breeding of varieties adapted to the constantly changing conditions is pivotal to enable a quantitatively and qualitatively adequate crop production despite the negative effects of climate change. As it is not yet possible to select for adaptation to future climate scenarios in the field, simulations of future conditions in controlled-environment (CE) phenotyping facilities contribute to the understanding of the plant response to special stress conditions and help breeders to select ideal genotypes which cope with future conditions. CE phenotyping facilities enable the collection of traits that are not easy to measure under field conditions and the assessment of a plant's phenotype under repeatable, clearly defined environmental conditions using automated, non-invasive, high-throughput methods. However, extrapolation and translation of results obtained under controlled environments to field environments is ambiguous. This review outlines the opportunities and challenges of phenotyping approaches under controlled environments complementary to conventional field trials. It gives an overview on general principles and introduces existing phenotyping facilities that take up the challenge of obtaining reliable and robust phenotypic data on climate response traits to support breeding of climate-adapted crops.
Collapse
Affiliation(s)
- Anna Langstroff
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich Buff-Ring 26, 35392, Giessen, Germany
| | - Marc C Heuermann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, OT Gatersleben, 06466, Seeland, Germany
| | - Andreas Stahl
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich Buff-Ring 26, 35392, Giessen, Germany
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kühn-Institut (JKI), Erwin-Baur-Strasse 27, 06484, Quedlinburg, Germany
| | - Astrid Junker
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, OT Gatersleben, 06466, Seeland, Germany.
| |
Collapse
|
3
|
Sällberg M, Pasetto A. Liver, Tumor and Viral Hepatitis: Key Players in the Complex Balance Between Tolerance and Immune Activation. Front Immunol 2020; 11:552. [PMID: 32292409 PMCID: PMC7119224 DOI: 10.3389/fimmu.2020.00552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is the third most common cause of cancer related death in the World. From an epidemiological point of view the risk factors associated to primary liver cancer are mainly viral hepatitis infection and alcohol consumption. Even though there is a clear correlation between liver inflammation, cirrhosis and cancer, other emerging liver diseases (like fatty liver) could also lead to liver cancer. Moreover, the liver is the major site of metastasis from colon, breast, ovarian and other cancers. In this review we will address the peculiar status of the liver as organ that has to balance between tolerance and immune activation. We will focus on macrophages and other key cellular components of the liver microenvironment that play a central role during tumor progression. We will also discuss how current and future therapies may affect the balance toward immune activation.
Collapse
Affiliation(s)
- Matti Sällberg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Pasetto
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Osmond B, Chow WS, Pogson BJ, Robinson SA. Probing functional and optical cross-sections of PSII in leaves during state transitions using fast repetition rate light induced fluorescence transients. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:567-583. [PMID: 32172734 DOI: 10.1071/fp18054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 02/07/2019] [Indexed: 05/11/2023]
Abstract
Plants adjust the relative sizes of PSII and PSI antennae in response to the spectral composition of weak light favouring either photosystem by processes known as state transitions (ST), attributed to a discrete antenna migration involving phosphorylation of light-harvesting chlorophyll-protein complexes in PSII. Here for the first time we monitored the extent and dynamics of ST in leaves from estimates of optical absorption cross-section (relative PSII antenna size; aPSII). These estimates were obtained from in situ measurements of functional absorption cross-section (σPSII) and maximum photochemical efficiency of PSII (φPSII); i.e. aPSII = σPSII/φPSII (Kolber et al. 1998) and other parameters from a light induced fluorescence transient (LIFT) device (Osmond et al. 2017). The fast repetition rate (FRR) QA flash protocol of this instrument monitors chlorophyll fluorescence yields with reduced QA irrespective of the redox state of plastoquinone (PQ), as well as during strong ~1 s white light pulses that fully reduce the PQ pool. Fitting this transient with the FRR model monitors kinetics of PSII → PQ, PQ → PSI, and the redox state of the PQ pool in the 'PQ pool control loop' that underpins ST, with a time resolution of a few seconds. All LIFT/FRR criteria confirmed the absence of ST in antenna mutant chlorina-f2 of barley and asLhcb2-12 of Arabidopsis, as well as STN7 kinase mutants stn7 and stn7/8. In contrast, wild-type barley and Arabidopsis genotypes Col, npq1, npq4, OEpsbs, pgr5 bkg and pgr5, showed normal ST. However, the extent of ST (and by implication the size of the phosphorylated LHCII pool participating in ST) deduced from changes in a'PSII and other parameters with reduced QA range up to 35%. Estimates from strong WL pulses in the same assay were only ~10%. The larger estimates of ST from the QA flash are discussed in the context of contemporary dynamic structural models of ST involving formation and participation of PSII and PSI megacomplexes in an 'energetically connected lake' of phosphorylated LHCII trimers (Grieco et al. 2015). Despite the absence of ST, asLhcb2-12 displays normal wild-type modulation of electron transport rate (ETR) and the PQ pool during ST assays, reflecting compensatory changes in antenna LHCIIs in this genotype. Impaired LHCII phosphorylation in stn7 and stn7/8 accelerates ETR from PSII →PQ, over-reducing the PQ pool and abolishing the yield difference between the QA flash and WL pulse, with implications for photochemical and thermal phases of the O-J-I-P transient.
Collapse
Affiliation(s)
- Barry Osmond
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; and Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivan's Creek Road, Acton, ACT 2601, Australia; and Corresponding author.
| | - Wah Soon Chow
- Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivan's Creek Road, Acton, ACT 2601, Australia
| | - Barry J Pogson
- Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivan's Creek Road, Acton, ACT 2601, Australia
| | - Sharon A Robinson
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| |
Collapse
|
5
|
Ganguly DR, Crisp PA, Eichten SR, Pogson BJ. Maintenance of pre-existing DNA methylation states through recurring excess-light stress. PLANT, CELL & ENVIRONMENT 2018; 41:1657-1672. [PMID: 29707792 DOI: 10.1111/pce.13324] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 05/23/2023]
Abstract
The capacity for plant stress priming and memory and the notion of this being underpinned by DNA methylation-mediated memory is an appealing hypothesis for which there is mixed evidence. We previously established a lack of drought-induced methylome variation in Arabidopsis thaliana (Arabidopsis); however, this was tied to only minor observations of physiological memory. There are numerous independent observations demonstrating that photoprotective mechanisms, induced by excess-light stress, can lead to robust programmable changes in newly developing leaf tissues. Although key signalling molecules and transcription factors are known to promote this priming signal, an untested question is the potential involvement of chromatin marks towards the maintenance of light stress acclimation, or memory. Thus, we systematically tested our previous hypothesis of a stress-resistant methylome using a recurring excess-light stress, then analysing new, emerging, and existing tissues. The DNA methylome showed negligible stress-associated variation, with the vast majority attributable to stochastic differences. Yet, photoacclimation was evident through enhanced photosystem II performance in exposed tissues, and nonphotochemical quenching and fluorescence decline ratio showed evidence of mitotic transmission. Thus, we have observed physiological acclimation in new and emerging tissues in the absence of substantive DNA methylome changes.
Collapse
Affiliation(s)
- Diep R Ganguly
- Australian Research Council Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Peter A Crisp
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Steven R Eichten
- Australian Research Council Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
6
|
Tschiersch H, Junker A, Meyer RC, Altmann T. Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses. PLANT METHODS 2017; 13:54. [PMID: 28690669 PMCID: PMC5496596 DOI: 10.1186/s13007-017-0204-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/30/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Automated plant phenotyping has been established as a powerful new tool in studying plant growth, development and response to various types of biotic or abiotic stressors. Respective facilities mainly apply non-invasive imaging based methods, which enable the continuous quantification of the dynamics of plant growth and physiology during developmental progression. However, especially for plants of larger size, integrative, automated and high throughput measurements of complex physiological parameters such as photosystem II efficiency determined through kinetic chlorophyll fluorescence analysis remain a challenge. RESULTS We present the technical installations and the establishment of experimental procedures that allow the integrated high throughput imaging of all commonly determined PSII parameters for small and large plants using kinetic chlorophyll fluorescence imaging systems (FluorCam, PSI) integrated into automated phenotyping facilities (Scanalyzer, LemnaTec). Besides determination of the maximum PSII efficiency, we focused on implementation of high throughput amenable protocols recording PSII operating efficiency (ΦPSII). Using the presented setup, this parameter is shown to be reproducibly measured in differently sized plants despite the corresponding variation in distance between plants and light source that caused small differences in incident light intensity. Values of ΦPSII obtained with the automated chlorophyll fluorescence imaging setup correlated very well with conventionally determined data using a spot-measuring chlorophyll fluorometer. The established high throughput operating protocols enable the screening of up to 1080 small and 184 large plants per hour, respectively. The application of the implemented high throughput protocols is demonstrated in screening experiments performed with large Arabidopsis and maize populations assessing natural variation in PSII efficiency. CONCLUSIONS The incorporation of imaging systems suitable for kinetic chlorophyll fluorescence analysis leads to a substantial extension of the feature spectrum to be assessed in the presented high throughput automated plant phenotyping platforms, thus enabling the simultaneous assessment of plant architectural and biomass-related traits and their relations to physiological features such as PSII operating efficiency. The implemented high throughput protocols are applicable to a broad spectrum of model and crop plants of different sizes (up to 1.80 m height) and architectures. The deeper understanding of the relation of plant architecture, biomass formation and photosynthetic efficiency has a great potential with respect to crop and yield improvement strategies.
Collapse
Affiliation(s)
- Henning Tschiersch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, OT Gatersleben, Germany
| | - Astrid Junker
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, OT Gatersleben, Germany
| | - Rhonda C. Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, OT Gatersleben, Germany
| | - Thomas Altmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, OT Gatersleben, Germany
| |
Collapse
|
7
|
Junker A, Muraya MM, Weigelt-Fischer K, Arana-Ceballos F, Klukas C, Melchinger AE, Meyer RC, Riewe D, Altmann T. Optimizing experimental procedures for quantitative evaluation of crop plant performance in high throughput phenotyping systems. FRONTIERS IN PLANT SCIENCE 2015; 5:770. [PMID: 25653655 PMCID: PMC4299434 DOI: 10.3389/fpls.2014.00770] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/12/2014] [Indexed: 05/17/2023]
Abstract
Detailed and standardized protocols for plant cultivation in environmentally controlled conditions are an essential prerequisite to conduct reproducible experiments with precisely defined treatments. Setting up appropriate and well defined experimental procedures is thus crucial for the generation of solid evidence and indispensable for successful plant research. Non-invasive and high throughput (HT) phenotyping technologies offer the opportunity to monitor and quantify performance dynamics of several hundreds of plants at a time. Compared to small scale plant cultivations, HT systems have much higher demands, from a conceptual and a logistic point of view, on experimental design, as well as the actual plant cultivation conditions, and the image analysis and statistical methods for data evaluation. Furthermore, cultivation conditions need to be designed that elicit plant performance characteristics corresponding to those under natural conditions. This manuscript describes critical steps in the optimization of procedures for HT plant phenotyping systems. Starting with the model plant Arabidopsis, HT-compatible methods were tested, and optimized with regard to growth substrate, soil coverage, watering regime, experimental design (considering environmental inhomogeneities) in automated plant cultivation and imaging systems. As revealed by metabolite profiling, plant movement did not affect the plants' physiological status. Based on these results, procedures for maize HT cultivation and monitoring were established. Variation of maize vegetative growth in the HT phenotyping system did match well with that observed in the field. The presented results outline important issues to be considered in the design of HT phenotyping experiments for model and crop plants. It thereby provides guidelines for the setup of HT experimental procedures, which are required for the generation of reliable and reproducible data of phenotypic variation for a broad range of applications.
Collapse
Affiliation(s)
- Astrid Junker
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt Seeland, Germany
| | - Moses M. Muraya
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt Seeland, Germany
| | - Kathleen Weigelt-Fischer
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt Seeland, Germany
| | - Fernando Arana-Ceballos
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt Seeland, Germany
| | - Christian Klukas
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt Seeland, Germany
| | - Albrecht E. Melchinger
- Seed Science and Population Genetics, Institute of Plant Breeding, University of HohenheimStuttgart, Germany
| | - Rhonda C. Meyer
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt Seeland, Germany
| | - David Riewe
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt Seeland, Germany
| | - Thomas Altmann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt Seeland, Germany
| |
Collapse
|
8
|
Hou HJM, Allakhverdiev SI, Najafpour MM, Govindjee. Current challenges in photosynthesis: from natural to artificial. FRONTIERS IN PLANT SCIENCE 2014; 5:232. [PMID: 24904626 PMCID: PMC4035565 DOI: 10.3389/fpls.2014.00232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/09/2014] [Indexed: 12/01/2023]
Affiliation(s)
- Harvey J. M. Hou
- Department of Physical Sciences, Alabama State UniversityAlabama, AL, USA
| | - Suleyman I. Allakhverdiev
- Institute of Plant Physiology, Russian Academy of SciencesMoscow, Russia
- Institute of Basic Biological Problems, Russian Academy of SciencesMoscow, Russia
| | - Mohammad M. Najafpour
- Department of Chemistry, Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic SciencesZanjan, Iran
| | - Govindjee
- Departments of Biochemistry and Plant Biology, Center of Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| |
Collapse
|