1
|
Adhikari B, Gayral M, Herath V, Bedsole CO, Kumar S, Ball H, Atallah O, Shaw B, Pajerowska-Mukhtar KM, Verchot J. bZIP60 and Bax inhibitor 1 contribute IRE1-dependent and independent roles to potexvirus infection. THE NEW PHYTOLOGIST 2024; 243:1172-1189. [PMID: 38853429 DOI: 10.1111/nph.19882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/14/2024] [Indexed: 06/11/2024]
Abstract
IRE1, BI-1, and bZIP60 monitor compatible plant-potexvirus interactions though recognition of the viral TGB3 protein. This study was undertaken to elucidate the roles of three IRE1 isoforms, the bZIP60U and bZIP60S, and BI-1 roles in genetic reprogramming of cells during potexvirus infection. Experiments were performed using Arabidopsis thaliana knockout lines and Plantago asiatica mosaic virus infectious clone tagged with the green fluorescent protein gene (PlAMV-GFP). There were more PlAMV-GFP infection foci in ire1a/b, ire1c, bzip60, and bi-1 knockout than wild-type (WT) plants. Cell-to-cell movement and systemic RNA levels were greater bzip60 and bi-1 than in WT plants. Overall, these data indicate an increased susceptibility to virus infection. Transgenic overexpression of AtIRE1b or StbZIP60 in ire1a/b or bzip60 mutant background reduced virus infection foci, while StbZIP60 expression influences virus movement. Transgenic overexpression of StbZIP60 also confers endoplasmic reticulum (ER) stress resistance following tunicamycin treatment. We also show bZIP60U and TGB3 interact at the ER. This is the first demonstration of a potato bZIP transcription factor complementing genetic defects in Arabidopsis. Evidence indicates that the three IRE1 isoforms regulate the initial stages of virus replication and gene expression, while bZIP60 and BI-1 contribute separately to virus cell-to-cell and systemic movement.
Collapse
Affiliation(s)
- Binita Adhikari
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | - Mathieu Gayral
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
- Agroécologie, INRAE, Institut Agro Dijon, Université de Bourgogne, 26, bd Docteur Petitjean-BP 87999, Dijon, Cedex, 21079, France
| | - Venura Herath
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Caleb Oliver Bedsole
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | - Sandeep Kumar
- Department of Plant Pathology, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, 751003, India
| | - Haden Ball
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | - Osama Atallah
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | - Brian Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | | | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| |
Collapse
|
2
|
Cheng X, Wan M, Song Y, Liu Q, Hu X, Chen X, Zhang X, Zhang Y, Wu R, Lu Q, Huang Y, Lv J, Cai W, Guan D, Yang S, He S. CaSTH2 disables CaWRKY40 from activating pepper thermotolerance and immunity against Ralstonia solanacearum via physical interaction. HORTICULTURE RESEARCH 2024; 11:uhae066. [PMID: 38725461 PMCID: PMC11079491 DOI: 10.1093/hr/uhae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/21/2024] [Indexed: 05/12/2024]
Abstract
CaWRKY40 coordinately activates pepper immunity against Ralstonia solanacearum infection (RSI) and high temperature stress (HTS), forms positive feedback loops with other positive regulators and is promoted by CaWRKY27b/CaWRKY28 through physical interactions; however, whether and how it is regulated by negative regulators to function appropriately remain unclear. Herein, we provide evidence that CaWRKY40 is repressed by a SALT TOLERANCE HOMOLOG2 in pepper (CaSTH2). Our data from gene silencing and transient overexpression in pepper and epoptic overexpression in Nicotiana benthamiana plants showed that CaSTH2 acted as negative regulator in immunity against RSI and thermotolerance. Our data from BiFC, CoIP, pull down, and MST indicate that CaSTH2 interacted with CaWRKY40, by which CaWRKY40 was prevented from activating immunity or thermotolerance-related genes. It was also found that CaSTH2 repressed CaWRKY40 at least partially through blocking interaction of CaWRKY40 with CaWRKY27b/CaWRKY28, but not through directly repressing binding of CaWRKY40 to its target genes. The results of study provide new insight into the mechanisms underlying the coordination of pepper immunity and thermotolerance.
Collapse
Affiliation(s)
- Xingge Cheng
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Meiyun Wan
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuqiu Song
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qian Liu
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaohui Hu
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiufang Chen
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xujing Zhang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yapeng Zhang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ruijie Wu
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qiaoling Lu
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yu Huang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jingang Lv
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - WeiWei Cai
- College of of Horticultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, 350002, China
| | - Deyi Guan
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Sheng Yang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shuilin He
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
3
|
Thibault E, Brandizzi F. Post-translational modifications: emerging directors of cell-fate decisions during endoplasmic reticulum stress in Arabidopsis thaliana. Biochem Soc Trans 2024; 52:831-848. [PMID: 38600022 PMCID: PMC11088923 DOI: 10.1042/bst20231025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Homeostasis of the endoplasmic reticulum (ER) is critical for growth, development, and stress responses. Perturbations causing an imbalance in ER proteostasis lead to a potentially lethal condition known as ER stress. In ER stress situations, cell-fate decisions either activate pro-life pathways that reestablish homeostasis or initiate pro-death pathways to prevent further damage to the organism. Understanding the mechanisms underpinning cell-fate decisions in ER stress is critical for crop development and has the potential to enable translation of conserved components to ER stress-related diseases in metazoans. Post-translational modifications (PTMs) of proteins are emerging as key players in cell-fate decisions in situations of imbalanced ER proteostasis. In this review, we address PTMs orchestrating cell-fate decisions in ER stress in plants and provide evidence-based perspectives for where future studies may focus to identify additional PTMs involved in ER stress management.
Collapse
Affiliation(s)
- Ethan Thibault
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Department of Plant Biology, Michigan State University, East Lansing, MI, U.S.A
| | - Federica Brandizzi
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Department of Plant Biology, Michigan State University, East Lansing, MI, U.S.A
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
4
|
Ayaz A, Jalal A, Zhang X, Khan KA, Hu C, Li Y, Hou X. In-Depth Characterization of bZIP Genes in the Context of Endoplasmic Reticulum (ER) Stress in Brassica campestris ssp. chinensis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1160. [PMID: 38674568 PMCID: PMC11053814 DOI: 10.3390/plants13081160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Numerous studies have been conducted to investigate the genomic characterization of bZIP genes and their involvement in the cellular response to endoplasmic reticulum (ER) stress. These studies have provided valuable insights into the coordinated cellular response to ER stress, which is mediated by bZIP transcription factors (TFs). However, a comprehensive and systematic investigations regarding the role of bZIP genes and their involvement in ER stress response in pak choi is currently lacking in the existing literature. To address this knowledge gap, the current study was initiated to elucidate the genomic characteristics of bZIP genes, gain insight into their expression patterns during ER stress in pak choi, and investigate the protein-to-protein interaction of bZIP genes with the ER chaperone BiP. In total, 112 members of the BcbZIP genes were identified through a comprehensive genome-wide analysis. Based on an analysis of sequence similarity, gene structure, conserved domains, and responsive motifs, the identified BcbZIP genes were categorized into 10 distinct subfamilies through phylogenetic analysis. Chromosomal location and duplication events provided insight into their genomic context and evolutionary history. Divergence analysis estimated their evolutionary history with a predicted divergence time ranging from 0.73 to 80.71 million years ago (MYA). Promoter regions of the BcbZIP genes were discovered to exhibit a wide variety of cis-elements, including light, hormone, and stress-responsive elements. GO enrichment analysis further confirmed their roles in the ER unfolded protein response (UPR), while co-expression network analysis showed a strong relationship of BcbZIP genes with ER-stress-responsive genes. Moreover, gene expression profiles and protein-protein interaction with ER chaperone BiP further confirmed their roles and capacity to respond to ER stress in pak choi.
Collapse
Affiliation(s)
- Aliya Ayaz
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Abdul Jalal
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and Its Products (CBRP), Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Chunmei Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Liu W, Wang M, Zhong M, Luo C, Shi S, Qian Y, Kang Y, Jiang B. Genome-wide identification of bZIP gene family and expression analysis of BhbZIP58 under heat stress in wax gourd. BMC PLANT BIOLOGY 2023; 23:598. [PMID: 38017380 PMCID: PMC10685590 DOI: 10.1186/s12870-023-04580-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND The basic leucine zipper (bZIP) transcription factor family is one of the most abundant and evolutionarily conserved gene families in plants. It assumes crucial functions in the life cycle of plants, including pathogen defense, secondary metabolism, stress response, seed maturation, and flower development. Although the genome of wax gourd has been published, little is known about the functions, evolutionary background, and gene expression patterns of the bZIP gene family, which limits its utilization. RESULTS A total of 61 bZIP genes (BhbZIPs) were identified from wax gourd (Benincasa hispida) genome and divided into 12 subgroups. Whole-genome duplication (WGD) and dispersed duplication (DSD) were the main driving forces of bZIP gene family expansion in wax gourd, and this family may have undergone intense purifying selection pressure during the evolutionary process. We selected BhbZIP58, only one in the member of subgroup B, to study its expression patterns under different stresses, including heat, salt, drought, cold stress, and ABA treatment. Surprisingly, BhbZIP58 had a dramatic response under heat stress. BhbZIP58 showed the highest expression level in the root compared with leaves, stem, stamen, pistil, and ovary. In addition, BhbZIP58 protein was located in the nucleus and had transcriptional activation activity. Overexpression of BhbZIP58 in Arabidopsis enhanced their heat tolerance. CONCLUSIONS In this study, bZIP gene family is systematically bioinformatically in wax gourd for the first time. Particularly, BhbZIP58 may have an important role in heat stress. It will facilitate further research on the bZIP gene family regarding their evolutionary history and biological functions.
Collapse
Affiliation(s)
- Wei Liu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Min Wang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, Guangdong, China
| | - Min Zhong
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Chen Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, Guangdong, China
| | - Shaoqi Shi
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, Guangdong, China
| | - Yulei Qian
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, Guangdong, China
| | - Yunyan Kang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Biao Jiang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
6
|
Wang J, Chen C, Wu C, Meng Q, Zhuang K, Ma N. SlMYB41 positively regulates tomato thermotolerance by activating the expression of SlHSP90.3. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108106. [PMID: 37879127 DOI: 10.1016/j.plaphy.2023.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
High-temperature stress has become a major abiotic factor that dramatically limits plant growth and crop yield. Plants have evolved complex mechanisms to cope with high-temperature stress, but the factors that regulate plant thermotolerance remain to be discovered. Here, a high temperature-induced MYB transcription factor SlMYB41 was cloned from tomato (Solanum lycopersicum). Two individual SlMYB41-RNA interference (RNAi) lines (MR) and one CRISPR/Cas9 mediated myb41 mutant (MC) were obtained to investigate the function of SlMYB41 in tomato thermotolerance. Under high-temperature stress, we found that the MR and MC lines showed more wilting than the wild type (WT), with more ion leakage, more MDA accumulation, lower contents of osmotic adjustment substances, and more accumulation of reactive oxygen species (ROS) which was resulted from lower antioxidative enzyme activities. In addition, the photosynthetic capacity and complex of MR and MC lines were damaged more seriously than WT plants under high-temperature stress, mainly manifested in lower photosynthetic rate and Fv/Fm. Moreover, heat stress-related genes, such as SlHSP17.6, SlHSP17.7, and SlHSP90.3 were downregulated in MR and MC lines. Importantly, Y1H and LUC analysis indicated that SlMYB41 can directly activate the transcription of SlHSP90.3. Together, our study suggest that SlMYB41 positively regulates tomato thermotolerance by activating the expression of SlHSP90.3.
Collapse
Affiliation(s)
- Jieyu Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chong Chen
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, 274015, China
| | - Chuanzhao Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Kunyang Zhuang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Nana Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
7
|
Vu BN, Vu TV, Yoo JY, Nguyen NT, Ko KS, Kim JY, Lee KO. CRISPR-Cas-mediated unfolded protein response control for enhancing plant stress resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1271368. [PMID: 37908833 PMCID: PMC10613997 DOI: 10.3389/fpls.2023.1271368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Plants consistently encounter environmental stresses that negatively affect their growth and development. To mitigate these challenges, plants have developed a range of adaptive strategies, including the unfolded protein response (UPR), which enables them to manage endoplasmic reticulum (ER) stress resulting from various adverse conditions. The CRISPR-Cas system has emerged as a powerful tool for plant biotechnology, with the potential to improve plant tolerance and resistance to biotic and abiotic stresses, as well as enhance crop productivity and quality by targeting specific genes, including those related to the UPR. This review highlights recent advancements in UPR signaling pathways and CRISPR-Cas technology, with a particular focus on the use of CRISPR-Cas in studying plant UPR. We also explore prospective applications of CRISPR-Cas in engineering UPR-related genes for crop improvement. The integration of CRISPR-Cas technology into plant biotechnology holds the promise to revolutionize agriculture by producing crops with enhanced resistance to environmental stresses, increased productivity, and improved quality traits.
Collapse
Affiliation(s)
- Bich Ngoc Vu
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea
| | - Tien Van Vu
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae Yong Yoo
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Ngan Thi Nguyen
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea
| | - Ki Seong Ko
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea
- Nulla Bio Inc., Jinju, Republic of Korea
| | - Kyun Oh Lee
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
8
|
Chen Y, Yu X. Endoplasmic reticulum stress-responsive microRNAs are involved in the regulation of abiotic stresses in wheat. PLANT CELL REPORTS 2023; 42:1433-1452. [PMID: 37341828 DOI: 10.1007/s00299-023-03040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
KEY MESSAGE ER stress-responsive miRNAs, tae-miR164, tae-miR2916, and tae-miR396e-5p, are essential in response to abiotic stress. Investigating ER stress-responsive miRNAs is necessary to improve plant tolerance to environmental stress. MicroRNAs (miRNAs) play vital regulatory roles in plant responses to environmental stress. Recently, the endoplasmic reticulum (ER) stress pathway, an essential signalling pathway in plants in response to adverse conditions, has been widely studied in model plants. However, miRNAs associated with ER stress response remain largely unknown. Using high-throughput sequencing, three ER stress-responsive miRNAs, tae-miR164, tae-miR2916, and tae-miR396e-5p were identified, and their target genes were confirmed. These three miRNAs and their target genes actively responded to dithiothreitol, polyethylene glycol, salt, heat, and cold stresses. Furthermore, in some instances, the expression patterns of the miRNAs and their corresponding target genes were contrasting. Knockdown of tae-miR164, tae-miR2916, or tae-miR396e-5p using a barley stripe mosaic virus-based miRNA silencing system substantially enhanced the tolerance of wheat plants to drought, salt, and heat stress. Under conditions involving these stresses, inhibiting the miR164 function by using the short tandem target mimic approach in Arabidopsis thaliana resulted in phenotypes consistent with those of miR164-silenced wheat plants. Correspondingly, overexpression of tae-miR164 in Arabidopsis resulted in a decreased tolerance to drought stress and, to some extent, a decrease in tolerance to salt and high temperature. These results revealed that tae-miR164 plays a negative regulatory role in wheat/Arabidopsis in response to drought, salt, and heat stress. Taken together, our study provides new insights into the regulatory role of ER stress-responsive miRNAs in abiotic stress responses.
Collapse
Affiliation(s)
- Yong Chen
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xing Yu
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, 450003, China.
- Research Center on Rural Water Environment Improvement of Henan Province, Zhengzhou, 450003, China.
| |
Collapse
|
9
|
Hickey K, Nazarov T, Smertenko A. Organellomic gradients in the fourth dimension. PLANT PHYSIOLOGY 2023; 193:98-111. [PMID: 37243543 DOI: 10.1093/plphys/kiad310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
Organelles function as hubs of cellular metabolism and elements of cellular architecture. In addition to 3 spatial dimensions that describe the morphology and localization of each organelle, the time dimension describes complexity of the organelle life cycle, comprising formation, maturation, functioning, decay, and degradation. Thus, structurally identical organelles could be biochemically different. All organelles present in a biological system at a given moment of time constitute the organellome. The homeostasis of the organellome is maintained by complex feedback and feedforward interactions between cellular chemical reactions and by the energy demands. Synchronized changes of organelle structure, activity, and abundance in response to environmental cues generate the fourth dimension of plant polarity. Temporal variability of the organellome highlights the importance of organellomic parameters for understanding plant phenotypic plasticity and environmental resiliency. Organellomics involves experimental approaches for characterizing structural diversity and quantifying the abundance of organelles in individual cells, tissues, or organs. Expanding the arsenal of appropriate organellomics tools and determining parameters of the organellome complexity would complement existing -omics approaches in comprehending the phenomenon of plant polarity. To highlight the importance of the fourth dimension, this review provides examples of organellome plasticity during different developmental or environmental situations.
Collapse
Affiliation(s)
- Kathleen Hickey
- Institute of Biological Chemistry, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, 99164 WA, USA
| | - Taras Nazarov
- Institute of Biological Chemistry, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, 99164 WA, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, 99164 WA, USA
| |
Collapse
|
10
|
Liu Y, Xu G, Fu H, Li P, Li D, Deng K, Gao W, Shang Y, Wu M. Membrane-bound transcription factor LRRC4 inhibits glioblastoma cell motility. Int J Biol Macromol 2023; 246:125590. [PMID: 37385320 DOI: 10.1016/j.ijbiomac.2023.125590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Membrane-bound transcription factors (MTFs) have been observed in many types of organisms, such as plants, animals and microorganisms. However, the routes of MTF nuclear translocation are not well understood. Here, we reported that LRRC4 is a novel MTF that translocates to the nucleus as a full-length protein via endoplasmic reticulum-Golgi transport, which is different from the previously described nuclear entry mechanism. A ChIP-seq assay showed that LRRC4 target genes were mainly involved in cell motility. We confirmed that LRRC4 bound to the enhancer element of the RAP1GAP gene to activate its transcription and inhibited glioblastoma cell movement by affecting cell contraction and polarization. Furthermore, atomic force microscopy (AFM) confirmed that LRRC4 or RAP1GAP altered cellular biophysical properties, such as the surface morphology, adhesion force and cell stiffness. Thus, we propose that LRRC4 is an MTF with a novel route of nuclear translocation. Our observations demonstrate that LRRC4-null glioblastoma led to disordered RAP1GAP gene expression, which increased cellular movement. Re-expression of LRRC4 enabled it to suppress tumors, and this is a potential for targeted treatment in glioblastoma.
Collapse
Affiliation(s)
- Yang Liu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Gang Xu
- Diagnostics Department, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Haijuan Fu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Peiyao Li
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Danyang Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Kun Deng
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Wei Gao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Yujie Shang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Minghua Wu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
11
|
Liu H, Tang X, Zhang N, Li S, Si H. Role of bZIP Transcription Factors in Plant Salt Stress. Int J Mol Sci 2023; 24:ijms24097893. [PMID: 37175598 PMCID: PMC10177800 DOI: 10.3390/ijms24097893] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Soil salinity has become an increasingly serious problem worldwide, greatly limiting crop development and yield, and posing a major challenge to plant breeding. Basic leucine zipper (bZIP) transcription factors are the most widely distributed and conserved transcription factors and are the main regulators controlling various plant response processes against external stimuli. The bZIP protein contains two domains: a highly conserved, DNA-binding alkaline region, and a diverse leucine zipper, which is one of the largest transcription factor families in plants. Plant bZIP is involved in many biological processes, such as flower development, seed maturation, dormancy, and senescence, and plays an important role in abiotic stresses such as salt damage, drought, cold damage, osmotic stress, mechanical damage, and ABA signal response. In addition, bZIP is involved in the regulation of plant response to biological stresses such as insect pests and pathogen infection through salicylic acid, jasmonic acid, and ABA signal transduction pathways. This review summarizes and discusses the structural characteristics and functional characterization of the bZIP transcription factor group, the bZIP transcription factor complex and its molecular regulation mechanisms related to salt stress resistance, and the regulation of transcription factors in plant salt stress resistance. This review provides a theoretical basis and research ideas for further exploration of the salt stress-related functions of bZIP transcription factors. It also provides a theoretical basis for crop genetic improvement and green production in agriculture.
Collapse
Affiliation(s)
- Haotian Liu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xun Tang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Shigui Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Huaijun Si
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
12
|
Transcriptomic Analysis Provides Novel Insights into the Heat Stress-Induced Response in Codonopsis tangshen. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010168. [PMID: 36676120 PMCID: PMC9867074 DOI: 10.3390/life13010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
Codonopsis tangshen Oliv (C. tangshen) is a valuable traditional Chinese medicinal herb with tremendous health benefits. However, the growth and development of C. tangshen are seriously affected by high temperatures. Therefore, understanding the molecular responses of C. tangshen to high-temperature stress is imperative to improve its thermotolerance. Here, RNA-Seq analysis was performed to investigate the genome-wide transcriptional changes in C. tangshen in response to short-term heat stress. Heat stress significantly damages membrane stability and chlorophyll biosynthesis in C. tangshen, as evidenced by pronounced malonaldehyde (MDA), electrolyte leakage (EL), and reduced chlorophyll content. Transcriptome analysis showed that 2691 differentially expressed genes (DEGs) were identified, including 1809 upregulated and 882 downregulated. Functional annotations revealed that the DEGs were mainly related to heat shock proteins (HSPs), ROS-scavenging enzymes, calcium-dependent protein kinases (CDPK), HSP-HSP network, hormone signaling transduction pathway, and transcription factors such as bHLHs, bZIPs, MYBs, WRKYs, and NACs. These heat-responsive candidate genes and TFs could significantly regulate heat stress tolerance in C. tangshen. Overall, this study could provide new insights for understanding the underlying molecular mechanisms of thermotolerance in C. tangshen.
Collapse
|
13
|
Herath V, Verchot J. Comprehensive Transcriptome Analysis Reveals Genome-Wide Changes Associated with Endoplasmic Reticulum (ER) Stress in Potato ( Solanum tuberosum L.). Int J Mol Sci 2022; 23:ijms232213795. [PMID: 36430273 PMCID: PMC9696714 DOI: 10.3390/ijms232213795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
We treated potato (Solanum tuberosum L.) plantlets with TM and performed gene expression studies to identify genome-wide changes associated with endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). An extensive network of responses was identified, including chromatin remodeling, transcriptional reprogramming, as well as changes in the structural components of the endomembrane network system. Limited genome-wide changes in alternative RNA splicing patterns of protein-coding transcripts were also discovered. Significant changes in RNA metabolism, components of the translation machinery, as well as factors involved in protein folding and maturation occurred, which included a broader set of genes than expected based on Arabidopsis research. Antioxidant defenses and oxygen metabolic enzymes are differentially regulated, which is expected of cells that may be experiencing oxidative stress or adapting to protect proteins from oxidation. Surges in protein kinase expression indicated early signal transduction events. This study shows early genomic responses including an array of differentially expressed genes that have not been reported in Arabidopsis. These data describe novel ER stress responses in a solanaceous host.
Collapse
Affiliation(s)
- Venura Herath
- Department of Agriculture Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77802, USA
- Correspondence: ; Tel.: +1-979-568-6369
| |
Collapse
|
14
|
Yadav R, Saini R, Adhikary A, Kumar S. Unravelling cross priming induced heat stress, combinatorial heat and drought stress response in contrasting chickpea varieties. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 180:91-105. [PMID: 35398655 DOI: 10.1016/j.plaphy.2022.03.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/10/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Drought and high temperature stress affect chickpea growth and productivity. Often these stresses occur simultaneously in the field and lead to a wide range of molecular and metabolic adaptations. Two chickpea varieties; GPF2 (heat sensitive) and PDG4 variety (heat tolerant) were exposed to 35 °C for 24 h individually and along with drought stress. Five heat responsive signalling genes and 11 structural genes were analyzed using qPCR along with untargeted metabolites analysis using GC MS. Expression of antioxidant genes (CaSOD and CaGPX, CaAPX and CaCAT), transcription factors (CaHSFB2, CaHSFB2A, CaHSFB2B, CaHSP17.5 and CaHSP22.7) and signalling genes (CaCAM, CaGAD, and CaMAPK) were upregulated in GPF2 as compared to PDG4 variety. Principal component analysis (PCA), partial least-square discriminant analysis (PLS-DA), and heat map analysis were applied to the metabolomics data to identify the differential response of metabolites in two chickpea varieties. GC-MS analysis identified 107 and 83 metabolites in PDG4 and GPF2 varieties respectively. PDG4 variety accumulated more sugars, amino acids, sugar alcohols, TCA cycle intermediates which provided heat resistance. Additionally, the differential metabolic pathways involved in heat tolerance were alanine, aspartate, and glutamate metabolism, pantothenate CoA biosynthesis, fructose and mannose metabolism and pentose phosphate pathway in PDG4 variety. There was less accumulation of metabolites in the primed plants of both varieties as compared to the non-primed plants indicating less damage due to heat stress. The present study gives an overview of the molecular changes occurring in response to heat stress in sensitive and tolerant chickpea.
Collapse
Affiliation(s)
- Renu Yadav
- Centre for Biosciences, School of Basic and Applied Science, Central University of Punjab, Bathinda, 151401, India.
| | - Rashmi Saini
- Centre for Biosciences, School of Basic and Applied Science, Central University of Punjab, Bathinda, 151401, India.
| | - Arindam Adhikary
- Centre for Biosciences, School of Basic and Applied Science, Central University of Punjab, Bathinda, 151401, India.
| | - Sanjeev Kumar
- Centre for Biosciences, School of Basic and Applied Science, Central University of Punjab, Bathinda, 151401, India; Department of Botany, School of Basic Science, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
15
|
Zhang Y, Lu Y, El Sayyed H, Bian J, Lin J, Li X. Transcription factor dynamics in plants: Insights and technologies for in vivo imaging. PLANT PHYSIOLOGY 2022; 189:23-36. [PMID: 35134239 PMCID: PMC9070795 DOI: 10.1093/plphys/kiac042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Biochemical and genetic approaches have been extensively used to study transcription factor (TF) functions, but their dynamic behaviors and the complex ways in which they regulate transcription in plant cells remain unexplored, particularly behaviors such as translocation and binding to DNA. Recent developments in labeling and imaging techniques provide the necessary sensitivity and resolution to study these behaviors in living cells. In this review, we present an up-to-date portrait of the dynamics and regulation of TFs under physiologically relevant conditions and then summarize recent advances in fluorescent labeling strategies and imaging techniques. We then discuss future prospects and challenges associated with the application of these techniques to examine TFs' intricate dance in living plants.
Collapse
Affiliation(s)
- Yuan Zhang
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Yuqing Lu
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Hafez El Sayyed
- Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Jiahui Bian
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | | |
Collapse
|
16
|
Haider S, Iqbal J, Naseer S, Shaukat M, Abbasi BA, Yaseen T, Zahra SA, Mahmood T. Unfolding molecular switches in plant heat stress resistance: A comprehensive review. PLANT CELL REPORTS 2022; 41:775-798. [PMID: 34401950 DOI: 10.1007/s00299-021-02754-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Plant heat stress response is a multi-factorial trait that is precisely regulated by the complex web of transcription factors from various families that modulate heat stress responsive gene expression. Global warming due to climate change affects plant growth and development throughout its life cycle. Adds to this, the frequent occurrence of heat waves is drastically reducing the global crop yield. Molecular plant scientists can help crop breeders by providing genetic markers associated with stress resistance. Plant heat stress response (HSR), however, is a multi-factorial trait and using a single stress resistance trait might not be ideal to develop thermotolerant crops. Transcription factors participate in regulation of plant biological processes and environmental stress responses. Recent studies have revealed that plant HSR is precisely regulated by the complex web of transcription factors from various families. These transcription factors enhance plant heat stress tolerance by regulating the expression level of several stress-responsive genes independently or in cross talk with different other transcription factors. This review explores how signaling pathways triggered by heat stress are regulated by multiple transcription factor families. To our knowledge, we for the first time analyze the role of major transcription factor families in plant HSR along with their regulatory mechanisms. In the end, we will also discuss the potential of emerging technologies to improve thermotolerance in plants.
Collapse
Affiliation(s)
- Saqlain Haider
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Javed Iqbal
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan.
| | - Sana Naseer
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muzzafar Shaukat
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Banzeer Ahsan Abbasi
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Syeda Anber Zahra
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Tariq Mahmood
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Pakistan Academy of Sciences, Islamabad, Pakistan.
| |
Collapse
|
17
|
Yang S, Cai W, Shen L, Cao J, Liu C, Hu J, Guan D, He S. A CaCDPK29-CaWRKY27b module promotes CaWRKY40-mediated thermotolerance and immunity to Ralstonia solanacearum in pepper. THE NEW PHYTOLOGIST 2022; 233:1843-1863. [PMID: 34854082 DOI: 10.1111/nph.17891] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
CaWRKY40 in pepper (Capsicum annuum) promotes immune responses to Ralstonia solanacearum infection (RSI) and to high-temperature, high-humidity (HTHH) stress, but how it interacts with upstream signalling components remains poorly understood. Here, using approaches of reverse genetics, biochemical and molecular biology we functionally characterised the relationships among the WRKYGMK-containing WRKY protein CaWRKY27b, the calcium-dependent protein kinase CaCDPK29, and CaWRKY40 during pepper response to RSI or HTHH. Our data indicate that CaWRKY27b is upregulated and translocated from the cytoplasm to the nucleus upon phosphorylation of Ser137 in the nuclear localisation signal by CaCDPK29. Using electrophoretic mobility shift assays and microscale thermophoresis, we observed that, due to the replacement of Q by M in the conserved WRKYGQK, CaWRKY27b in the nucleus failed to bind to W-boxes in the promoters of immunity- and thermotolerance-related marker genes. Instead, CaWRKY27b interacted with CaWRKY40 and promoted its binding and positive regulation of the tested marker genes including CaNPR1, CaDEF1 and CaHSP24. Notably, mutation of the WRKYGMK motif in CaWRKY27b to WRKYGQK restored the W-box binding ability. Our data therefore suggest that CaWRKY27b is phosphorylated by CaCDPK29 and acts as a transcriptional activator of CaWRKY40 during the pepper response to RSI and HTHH.
Collapse
Affiliation(s)
- Sheng Yang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Weiwei Cai
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Lei Shen
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jianshen Cao
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Cailing Liu
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350002, China
| | - Jiong Hu
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Deyi Guan
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Shuilin He
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| |
Collapse
|
18
|
Endoplasmic Reticulum Stress and Unfolded Protein Response Signaling in Plants. Int J Mol Sci 2022; 23:ijms23020828. [PMID: 35055014 PMCID: PMC8775474 DOI: 10.3390/ijms23020828] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
Plants are sensitive to a variety of stresses that cause various diseases throughout their life cycle. However, they have the ability to cope with these stresses using different defense mechanisms. The endoplasmic reticulum (ER) is an important subcellular organelle, primarily recognized as a checkpoint for protein folding. It plays an essential role in ensuring the proper folding and maturation of newly secreted and transmembrane proteins. Different processes are activated when around one-third of newly synthesized proteins enter the ER in the eukaryote cells, such as glycosylation, folding, and/or the assembling of these proteins into protein complexes. However, protein folding in the ER is an error-prone process whereby various stresses easily interfere, leading to the accumulation of unfolded/misfolded proteins and causing ER stress. The unfolded protein response (UPR) is a process that involves sensing ER stress. Many strategies have been developed to reduce ER stress, such as UPR, ER-associated degradation (ERAD), and autophagy. Here, we discuss the ER, ER stress, UPR signaling and various strategies for reducing ER stress in plants. In addition, the UPR signaling in plant development and different stresses have been discussed.
Collapse
|
19
|
Haider S, Iqbal J, Naseer S, Yaseen T, Shaukat M, Bibi H, Ahmad Y, Daud H, Abbasi NL, Mahmood T. Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives. PLANT CELL REPORTS 2021; 40:2247-2271. [PMID: 33890138 DOI: 10.1007/s00299-021-02696-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
We summarize recent studies focusing on the molecular basis of plant heat stress response (HSR), how HSR leads to thermotolerance, and promote plant adaptation to recurring heat stress events. The global crop productivity is facing unprecedented threats due to climate change as high temperature negatively influences plant growth and metabolism. Owing to their sessile nature, plants have developed complex signaling networks which enable them to perceive changes in ambient temperature. This in turn activates a suite of molecular changes that promote plant survival and reproduction under adverse conditions. Deciphering these mechanisms is an important task, as this could facilitate development of molecular markers, which could be ultimately used to breed thermotolerant crop cultivars. In current article, we summarize mechanisms involve in plant heat stress acclimation with special emphasis on advances related to heat stress perception, heat-induced signaling, heat stress-responsive gene expression and thermomemory that promote plant adaptation to short- and long-term-recurring heat-stress events. In the end, we will discuss impact of emerging technologies that could facilitate the development of heat stress-tolerant crop cultivars.
Collapse
Affiliation(s)
- Saqlain Haider
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Javed Iqbal
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- Center for Plant Sciences and Biodiversity, University of Swat, Kanju, 19201, Pakistan.
| | - Sana Naseer
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Muzaffar Shaukat
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Haleema Bibi
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Yumna Ahmad
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Hina Daud
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nayyab Laiba Abbasi
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tariq Mahmood
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
20
|
Deshpande S, Purkar V, Mitra S. β-Cyclocitral, a Master Regulator of Multiple Stress-Responsive Genes in Solanum lycopersicum L. Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112465. [PMID: 34834828 PMCID: PMC8618229 DOI: 10.3390/plants10112465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/06/2023]
Abstract
β-cyclocitral (βCC), a major apocarotenoid of β-carotene, enhances plants' defense against environmental stresses. However, the knowledge of βCC's involvement in the complex stress-signaling network is limited. Here we demonstrate how βCC reprograms the transcriptional responses that enable Solanum lycopersicum L. (tomato) plants to endure a plethora of environmental stresses. Comparative transcriptome analysis of control and βCC-treated tomato plants was done by generating RNA sequences in the BGISEQ-500 platform. The trimmed sequences were mapped on the tomato reference genome that identifies 211 protein-coding differentially expressed genes. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis and their enrichment uncovered that only upregulated genes are attributed to the stress response. Moreover, 80% of the upregulated genes are functionally related to abiotic and biotic stresses. Co-functional analysis of stress-responsive genes revealed a network of 18 genes that code for heat shock proteins, transcription factors (TFs), and calcium-binding proteins. The upregulation of jasmonic acid (JA)-dependent TFs (MYC2, MYB44, ERFs) but not the JA biosynthetic genes is surprising. However, the upregulation of DREB3, an abscisic acid (ABA)-independent TF, validates the unaltered expression of ABA biosynthetic genes. We conclude that βCC treatment upregulates multiple stress-responsive genes without eliciting JA and ABA biosynthesis.
Collapse
|
21
|
Cai W, Yang S, Wu R, Cao J, Shen L, Guan D, Shuilin H. Pepper NAC-type transcription factor NAC2c balances the trade-off between growth and defense responses. PLANT PHYSIOLOGY 2021; 186:2169-2189. [PMID: 33905518 PMCID: PMC8331138 DOI: 10.1093/plphys/kiab190] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/10/2021] [Indexed: 05/27/2023]
Abstract
Plant responses to pathogen attacks and high-temperature stress (HTS) are distinct in nature but generally share several signaling components. How plants produce specific responses through these common signaling intermediates remains elusive. With the help of reverse-genetics approaches, we describe here the mechanism underlying trade-offs in pepper (Capsicum annuum) between growth, immunity, and thermotolerance. The NAC-type transcription factor CaNAC2c was induced by HTS and Ralstonia solanacearum infection (RSI). CaNAC2c-inhibited pepper growth, promoted immunity against RSI by activating jasmonate-mediated immunity and H2O2 accumulation, and promoted HTS responses by activating Heat shock factor A5 (CaHSFA5) transcription and blocking H2O2 accumulation. We show that CaNAC2c physically interacts with CaHSP70 and CaNAC029 in a context-specific manner. Upon HTS, CaNAC2c-CaHSP70 interaction in the nucleus protected CaNAC2c from degradation and resulted in the activation of thermotolerance by increasing CaNAC2c binding and transcriptional activation of its target promoters. CaNAC2c did not induce immunity-related genes under HTS, likely due to the degradation of CaNAC029 by the 26S proteasome. Upon RSI, CaNAC2c interacted with CaNAC029 in the nucleus and activated jasmonate-mediated immunity but was prevented from activating thermotolerance-related genes. In non-stressed plants, CaNAC2c was tethered outside the nucleus by interaction with CaHSP70, and thus was unable to activate either immunity or thermotolerance. Our results indicate that pepper growth, immunity, and thermotolerance are coordinately and tightly regulated by CaNAC2c via its inducible expression and differential interaction with CaHSP70 and CaNAC029.
Collapse
Affiliation(s)
- Weiwei Cai
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ruijie Wu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jianshen Cao
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lei Shen
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Deyi Guan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - He Shuilin
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
22
|
Zhou Y, Yang K, Cheng M, Cheng Y, Li Y, Ai G, Bai T, Xu R, Duan W, Peng H, Li X, Xia A, Wang Y, Jing M, Dou D, Dickman MB. Double-faced role of Bcl-2-associated athanogene 7 in plant-Phytophthora interaction. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5751-5765. [PMID: 34195821 DOI: 10.1093/jxb/erab252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Due to their sessile nature, plants must respond to various environmental assaults in a coordinated manner. The endoplasmic reticulum is a central hub for plant responses to various stresses. We previously showed that Phytophthora utilizes effector PsAvh262-mediated binding immunoglobulin protein (BiP) accumulation for suppressing endoplasmic reticulum stress-triggered cell death. As a BiP binding partner, Bcl-2-associated athanogene 7 (BAG7) plays a crucial role in the maintenance of the unfolded protein response, but little is known about its role in plant immunity. In this work, we reveal a double-faced role of BAG7 in Arabidopsis-Phytophthora interaction in which it regulates endoplasmic reticulum stress-mediated immunity oppositely in different cellular compartments. In detail, it acts as a susceptibility factor in the endoplasmic reticulum, but plays a resistance role in the nucleus against Phytophthora. Phytophthora infection triggers the endoplasmic reticulum-to-nucleus translocation of BAG7, the same as abiotic heat stress; however, this process can be prevented by PsAvh262-mediated BiP accumulation. Moreover, the immunoglobulin/albumin-binding domain in PsAvh262 is essential for both pathogen virulence and BiP accumulation. Taken together, our study uncovers a double-faced role of BAG7; Phytophthora advances its colonization in planta by utilizing an effector to detain BAG7 in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Yang Zhou
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kun Yang
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Cheng
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Cheng
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yurong Li
- Corteva Agriscience, Johnston, IA 50131, USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Gan Ai
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tian Bai
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruofei Xu
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiwei Duan
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Peng
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | - Xiaobo Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangdong, Guangzhou 510640, China
| | - Ai Xia
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Maofeng Jing
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Daolong Dou
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Marty B Dickman
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
23
|
Herath V, Gayral M, Miller RK, Verchot J. BIP and the unfolded protein response are important for potyvirus and potexvirus infection. PLANT SIGNALING & BEHAVIOR 2020; 15:1807723. [PMID: 32799639 PMCID: PMC7598082 DOI: 10.1080/15592324.2020.1807723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 05/08/2023]
Abstract
Plant potexvirus and potyvirus infection can trigger endoplasmic reticulum (ER) stress. ER stress signaling increases the expression of cytoprotective ER-chaperones, especially the BiP chaperones which contribute to pro-survival functions when plants are subjected to infection. The inositol requiring enzyme (IRE1) is one ER stress sensor that is activated to splice the bZIP60 mRNA which produces a truncated transcription factor that activates gene expression in the nucleus. The IRE1/bZIP60 pathway is associated with restricting potyvirus and potexvirus infection. Recent data also identified the IRE1-independent UPR pathways led by bZIP28 and bZIP17 contribute to potexvirus and potyvirus infection. These three bZIP pathways recognize cis-regulatory elements in the BiP promoters to enhance gene expression. BiP is part of a negative feedback loop that regulates the activities of the ER stress transducers IRE1, bZIP28, and bZIP17 to block their activation. We discuss a model in which bZIP60 and bZIP17 synergistically induce BiP and other genes restricting Plantago asiatica mosaic virus (PlAMV; a potexvirus) infection while bZIP60 and bZIP28 independently induce genes supporting PlAMV infection. Regarding Turnip mosiac virus (TuMV, a potyvirus) infection, bZIP60 and bZIP28 serve to repress local and systemic infection. Finally, tauroursodeoxycholic acid treatments were used to demonstrate that the protein folding capacity significantly influences PlAMV accumulation.
Collapse
Affiliation(s)
- Venura Herath
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Kandy, Sri Lanka
| | | | - Rita K. Miller
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
24
|
Balyan S, Rao S, Jha S, Bansal C, Das JR, Mathur S. Characterization of novel regulators for heat stress tolerance in tomato from Indian sub-continent. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2118-2132. [PMID: 32163647 PMCID: PMC7540533 DOI: 10.1111/pbi.13371] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 05/03/2023]
Abstract
The footprint of tomato cultivation, a cool region crop that exhibits heat stress (HS) sensitivity, is increasing in the tropics/sub-tropics. Knowledge of novel regulatory hot spots from varieties growing in the Indian sub-continent climatic zones could be vital for developing HS-resilient crops. Comparative transcriptome-wide signatures of a tolerant (CLN1621L) and sensitive (CA4) cultivar pair shortlisted from a pool of varieties exhibiting variable thermo-sensitivity using physiological-, survival- and yield-related traits revealed redundant to cultivar-specific HS regulation. The antagonistically expressing genes encode enzymes and proteins that have roles in plant defence and abiotic stresses. Functional characterization of three antagonistic genes by overexpression and silencing established Solyc09g014280 (Acylsugar acyltransferase) and Solyc07g056570 (Notabilis) that are up-regulated in tolerant cultivar, as positive regulators of HS tolerance and Solyc03g020030 (Pin-II proteinase inhibitor), that are down-regulated in CLN1621L, as negative regulator of thermotolerance. Transcriptional assessment of promoters of these genes by SNPs in stress-responsive cis-elements and promoter swapping experiments in opposite cultivar background showed inherent cultivar-specific orchestration of transcription factors in regulating transcription. Moreover, overexpression of three ethylene response transcription factors (ERF.C1/F4/F5) also improved HS tolerance in tomato. This study identifies several novel HS tolerance genes and provides proof of their utility in tomato thermotolerance.
Collapse
Affiliation(s)
- Sonia Balyan
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Sombir Rao
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Sarita Jha
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Chandni Bansal
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | - Saloni Mathur
- National Institute of Plant Genome ResearchNew DelhiIndia
| |
Collapse
|
25
|
Ma G, Zhang M, Xu J, Zhou W, Cao L. Transcriptomic analysis of short-term heat stress response in Pinellia ternata provided novel insights into the improved thermotolerance by spermidine and melatonin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110877. [PMID: 32574862 DOI: 10.1016/j.ecoenv.2020.110877] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 05/10/2023]
Abstract
Heat stress has been a major environmental factor limiting the growth and development of Pinellia ternata which is an important Chinese traditional medicine. It has been reported that spermidine (SPD) and melatonin (MLT) play pivotal roles in modulating heat stress response (HSR). However, the roles of SPD and MLT in HSR of P. ternata, and the potential mechanism is still unknown. Here, exogenous SPD and MLT treatments alleviated heat-induced damages in P. ternata, which was supported by the increased chlorophyll content, OJIP curve, and relative water content, and the decreased malondialdehyde and electrolyte leakage. Then, RNA sequencing between CK (control) and Heat (1 h of heat treatment) was conducted to analyze how genes were in response to short-term heat stress in P. ternata. A total of 14,243 (7870 up- and 6373 down-regulated) unigenes were differentially expressed after 1 h of heat treatment. Bioinformatics analysis revealed heat-responsive genes mainly included heat shock proteins (HSPs), ribosomal proteins, ROS-scavenging enzymes, genes involved in calcium signaling, hormone signaling transduction, photosynthesis, pathogen resistance, and transcription factors such as heat stress transcription factors (HSFs), NACs, WRKYs, and bZIPs. Among them, PtABI5, PtNAC042, PtZIP17, PtSOD1, PtHSF30, PtHSFB2b, PtERF095, PtWRKY75, PtGST1, PtHSP23.2, PtHSP70, and PtLHC1 were significantly regulated by SPD or MLT treatment with same or different trends under heat stress condition, indicating that exogenous application of MLT and SPD might enhance heat tolerance in P. ternata through regulating these genes but may with different regulatory patterns. These findings contributed to the identification of potential genes involved in short-term HSR and the improved thermotolerance by MLT and SPD in P. ternata, which provided important clues for improving thermotolerance of P. ternata.
Collapse
Affiliation(s)
- Guangjing Ma
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China; CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Meide Zhang
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China.
| | - Jilei Xu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Wuxian Zhou
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China.
| | - Liwen Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
26
|
Transcriptomic Analysis Revealed the Common and Divergent Responses of Maize Seedling Leaves to Cold and Heat Stresses. Genes (Basel) 2020; 11:genes11080881. [PMID: 32756433 PMCID: PMC7464670 DOI: 10.3390/genes11080881] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022] Open
Abstract
Temperature stresses (TS), including cold and heat stress, adversely affect the growth, development, and yield of maize (Zea mays L.). To clarify the molecular mechanisms of the tolerance of maize seedling leaves to TS, we applied transcriptomic sequencing of an inbred maize line, B73, with seedlings exposed to various temperature conditions, including normal temperature (NT, 25 °C), cold (4, 10, and 16 °C), and heat (37, 42, and 48 °C) stresses. Differentially expressed genes (DEGs) were detected in different comparison between the NT sample and each temperature-stressed sample, with 5358, 5485, 5312, 1095, 2006, and 4760 DEGs responding to TS of 4, 10, 16, 37, 42, and 48 °C, respectively. For cold and heat stresses, 189 DEGs enriched in the hydrogen peroxidase metabolic process, cellular modified amino acid metabolic process, and sulfur compound metabolic process were common. The DEGs encoding calcium signaling and reactive oxygen species scavenging enzymes demonstrated similar expression characterizations, whereas the DEGs encoding transcription factors, such as ERF, ARF, and HSF, hormone signaling, and heat shock proteins, displayed divergent expression models, implying both common and divergent responses to cold and heat stresses in maize seedling leaves. Co-expression network analysis showed that functional DEGs associated with the core regulators in response to cold and heat stresses were significantly correlated with TS, indicating their vital roles in cold and heat adaptation, respectively. Our investigation focused on the response to gradient TS, and the results presented a relatively comprehensive category of genes involved in differential TS responses. These will contribute a better understanding of the molecular mechanisms of maize seedling leaf responses to TS and provide valuable genetic resources for breeding TS tolerant varieties of maize.
Collapse
|
27
|
Czékus Z, Csíkos O, Ördög A, Tari I, Poór P. Effects of Jasmonic Acid in ER Stress and Unfolded Protein Response in Tomato Plants. Biomolecules 2020; 10:biom10071031. [PMID: 32664460 PMCID: PMC7407312 DOI: 10.3390/biom10071031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
Endoplasmic reticulum (ER) stress elicits a protective mechanism called unfolded protein response (UPR) to maintain cellular homeostasis, which can be regulated by defence hormones. In this study, the physiological role of jasmonic acid (JA) in ER stress and UPR signalling has been investigated in intact leaves of tomato plants. Exogenous JA treatments not only induced the transcript accumulation of UPR marker gene SlBiP but also elevated transcript levels of SlIRE1 and SlbZIP60. By the application of JA signalling mutant jai1 plants, the role of JA in ER stress sensing and signalling was further investigated. Treatment with tunicamycin (Tm), the inhibitor of N-glycosylation of secreted glycoproteins, increased the transcript levels of SlBiP. Interestingly, SlIRE1a and SlIRE1b were significantly lower in jai1. In contrast, the transcript accumulation of Bax Inhibitor-1 (SlBI1) and SlbZIP60 was higher in jai1. To evaluate how a chemical chaperone modulates Tm-induced ER stress, plants were treated with sodium 4-phenylbutyrate, which also decreased the Tm-induced increase in SlBiP, SlIRE1a, and SlBI1 transcripts. In addition, it was found that changes in hydrogen peroxide content, proteasomal activity, and lipid peroxidation induced by Tm is regulated by JA, while nitric oxide was not involved in ER stress and UPR signalling in leaves of tomato.
Collapse
Affiliation(s)
- Zalán Czékus
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (Z.C.); (O.C.); (A.Ö.); (I.T.)
- Doctoral School of Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Orsolya Csíkos
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (Z.C.); (O.C.); (A.Ö.); (I.T.)
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (Z.C.); (O.C.); (A.Ö.); (I.T.)
| | - Irma Tari
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (Z.C.); (O.C.); (A.Ö.); (I.T.)
| | - Péter Poór
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (Z.C.); (O.C.); (A.Ö.); (I.T.)
- Correspondence:
| |
Collapse
|
28
|
Afrin T, Diwan D, Sahawneh K, Pajerowska-Mukhtar K. Multilevel regulation of endoplasmic reticulum stress responses in plants: where old roads and new paths meet. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1659-1667. [PMID: 31679034 DOI: 10.1093/jxb/erz487] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/21/2019] [Indexed: 05/20/2023]
Abstract
The sessile lifestyle of plants requires them to cope with a multitude of stresses in situ. In response to diverse environmental and intracellular cues, plant cells respond by massive reprogramming of transcription and translation of stress response regulators, many of which rely on endoplasmic reticulum (ER) processing. This increased protein synthesis could exceed the capacity of precise protein quality control, leading to the accumulation of unfolded and/or misfolded proteins that triggers the unfolded protein response (UPR). Such cellular stress responses are multilayered and executed in different cellular compartments. Here, we will discuss the three main branches of UPR signaling in diverse eukaryotic systems, and describe various levels of ER stress response regulation that encompass transcriptional gene regulation by master transcription factors, post-transcriptional activities including cytoplasmic splicing, translational control, and multiple post-translational events such as peptide modifications and cleavage. In addition, we will discuss the roles of plant ER stress sensors in abiotic and biotic stress responses and speculate on the future prospects of engineering these signaling events for heightened stress tolerance.
Collapse
Affiliation(s)
- Taiaba Afrin
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Danish Diwan
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Katrina Sahawneh
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | | |
Collapse
|
29
|
Wang L, Ma KB, Lu ZG, Ren SX, Jiang HR, Cui JW, Chen G, Teng NJ, Lam HM, Jin B. Differential physiological, transcriptomic and metabolomic responses of Arabidopsis leaves under prolonged warming and heat shock. BMC PLANT BIOLOGY 2020; 20:86. [PMID: 32087683 PMCID: PMC7036190 DOI: 10.1186/s12870-020-2292-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 02/14/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Elevated temperature as a result of global climate warming, either in form of sudden heatwave (heat shock) or prolonged warming, has profound effects on the growth and development of plants. However, how plants differentially respond to these two forms of elevated temperatures is largely unknown. Here we have therefore performed a comprehensive comparison of multi-level responses of Arabidopsis leaves to heat shock and prolonged warming. RESULTS The plant responded to prolonged warming through decreased stomatal conductance, and to heat shock by increased transpiration. In carbon metabolism, the glycolysis pathway was enhanced while the tricarboxylic acid (TCA) cycle was inhibited under prolonged warming, and heat shock significantly limited the conversion of pyruvate into acetyl coenzyme A. The cellular concentration of hydrogen peroxide (H2O2) and the activities of antioxidant enzymes were increased under both conditions but exhibited a higher induction under heat shock. Interestingly, the transcription factors, class A1 heat shock factors (HSFA1s) and dehydration responsive element-binding proteins (DREBs), were up-regulated under heat shock, whereas with prolonged warming, other abiotic stress response pathways, especially basic leucine zipper factors (bZIPs) were up-regulated instead. CONCLUSIONS Our findings reveal that Arabidopsis exhibits different response patterns under heat shock versus prolonged warming, and plants employ distinctly different response strategies to combat these two types of thermal stress.
Collapse
Affiliation(s)
- Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Kai-Biao Ma
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Zhao-Geng Lu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Shi-Xiong Ren
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Hui-Ru Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Jia-Wen Cui
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Gang Chen
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Nian-Jun Teng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
30
|
The Multifaceted Roles of Plant Hormone Salicylic Acid in Endoplasmic Reticulum Stress and Unfolded Protein Response. Int J Mol Sci 2019; 20:ijms20235842. [PMID: 31766401 PMCID: PMC6928836 DOI: 10.3390/ijms20235842] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022] Open
Abstract
Different abiotic and biotic stresses lead to the accumulation of unfolded and misfolded proteins in the endoplasmic reticulum (ER), resulting in ER stress. In response to ER stress, cells activate various cytoprotective responses, enhancing chaperon synthesis, protein folding capacity, and degradation of misfolded proteins. These responses of plants are called the unfolded protein response (UPR). ER stress signaling and UPR can be regulated by salicylic acid (SA), but the mode of its action is not known in full detail. In this review, the current knowledge on the multifaceted role of SA in ER stress and UPR is summarized in model plants and crops to gain a better understanding of SA-regulated processes at the physiological, biochemical, and molecular levels.
Collapse
|
31
|
Functional Diversification of ER Stress Responses in Arabidopsis. Trends Biochem Sci 2019; 45:123-136. [PMID: 31753702 DOI: 10.1016/j.tibs.2019.10.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/04/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
Abstract
The endoplasmic reticulum (ER) is responsible for the synthesis of one-third of the cellular proteome and is constantly challenged by physiological and environmental situations that can perturb its homeostasis and lead to the accumulation of misfolded secretory proteins, a condition referred to as ER stress. In response, the ER evokes a set of intracellular signaling processes, collectively known as the unfolded protein response (UPR), which are designed to restore biosynthetic capacity of the ER. As single-cell organisms evolved into multicellular life, the UPR complexity has increased to suit their growth and development. In this review, we discuss recent advances in the understanding of the UPR, emphasizing conserved UPR elements between plants and metazoans and highlighting unique plant-specific features.
Collapse
|
32
|
Yu X, Wang T, Zhu M, Zhang L, Zhang F, Jing E, Ren Y, Wang Z, Xin Z, Lin T. Transcriptome and physiological analyses for revealing genes involved in wheat response to endoplasmic reticulum stress. BMC PLANT BIOLOGY 2019; 19:193. [PMID: 31072347 PMCID: PMC6509841 DOI: 10.1186/s12870-019-1798-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/25/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Wheat production is largely restricted by adverse environmental stresses. Under many undesirable conditions, endoplasmic reticulum (ER) stress can be induced. However, the physiological and molecular responses of wheat to ER stress remain poorly understood. We used dithiothreitol (DTT) and tauroursodeoxycholic acid (TUDCA) to induce or suppress ER stress in wheat cells, respectively, with the aim to reveal the molecular background of ER stress responses using a combined approach of transcriptional profiling and morpho-physiological characterization. METHODS To understand the mechanism of wheat response to ER stress, three wheat cultivars were used in our pre-experiments. Among them, the cultivar with a moderate stress tolerance, Yunong211 was used in the following experiments. We used DTT (7.5 mM) to induce ER stress and TUDCA (25 μg·mL- 1) to suppress the stress. Under three treatment groups (Control, DTT and DTT + TUDCA), we firstly monitored the morphological, physiological and cytological changes of wheat seedlings. Then we collected leaf samples from each group for RNA extraction, library construction and RNA sequencing on an Illumina Hiseq platform. The sequencing data was then validated by qRT-PCR. RESULTS Morpho-physiological results showed DTT significantly reduced plant height and biomass, decreased contents of chlorophyll and water, increased electrolyte leakage rate and antioxidant enzymes activity, and accelerated the cell death ratio, whereas these changes were all remarkably alleviated after TUDCA co-treatment. Therefore, RNA sequencing was performed to determine the genes involved in regulating wheat response to stress. Transcriptomic analysis revealed that 8204 genes were differentially expressed in three treatment groups. Among these genes, 158 photosynthesis-related genes, 42 antioxidant enzyme genes, 318 plant hormone-related genes and 457 transcription factors (TFs) may play vital roles in regulating wheat response to ER stress. Based on the comprehensive analysis, we propose a hypothetical model to elucidate possible mechanisms of how plants adapt to environmental stresses. CONCLUSIONS We identified several important genes that may play vital roles in wheat responding to ER stress. This work should lay the foundations of future studies in plant response to environmental stresses.
Collapse
Affiliation(s)
- Xing Yu
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Tanchun Wang
- Department of Basic Biomedical Sciences, Touro College of Osteopathic Medicine – Middletown, NY, USA
| | - Meichen Zhu
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Liting Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Fengzhi Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Enen Jing
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Yongzhe Ren
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Zhiqiang Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Zeyu Xin
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Tongbao Lin
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| |
Collapse
|
33
|
SES1 positively regulates heat stress resistance in Arabidopsis. Biochem Biophys Res Commun 2019; 513:582-588. [PMID: 30981503 DOI: 10.1016/j.bbrc.2019.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 01/23/2023]
Abstract
Heat stress significantly disturbs the protein folding and processing capability in plants. Molecular chaperones are vital players in unfolded/misfolded protein assembly and abiotic stress tolerance. Here, we reported SES1, which encodes an endoplasmic reticulum (ER) localized molecular chaperone, is required for Arabidopsis heat tolerance. SES1 is obviously induced by heat treatment and ses1 mutants are hypersensitive to heat stress. The unfolded protein response genes were up-regulated, while cytosolic protein response genes were down-regulated in ses1 after heat stress. Furthermore, ER stress sensor basic leucine zipper 28 (bZIP28) acts as the upstream transcriptional activator of SES1 by binding to its promoter region. These results provide new insights into heat stress responses and ER stress, and shed lights on the mechanism of SES1 in modulating heat resistance.
Collapse
|
34
|
Park CJ, Park JM. Endoplasmic Reticulum Plays a Critical Role in Integrating Signals Generated by Both Biotic and Abiotic Stress in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:399. [PMID: 31019523 PMCID: PMC6458287 DOI: 10.3389/fpls.2019.00399] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/15/2019] [Indexed: 05/19/2023]
Abstract
Most studies of environmental adaptations in plants have focused on either biotic or abiotic stress factors in an attempt to understand the defense mechanisms of plants against individual stresses. However, in the natural ecosystem, plants are simultaneously exposed to multiple stresses. Stress-tolerant crops developed in translational studies based on a single stress often fail to exhibit the expected traits in the field. To adapt to abiotic stress, recent studies have identified the need for interactions of plants with various microorganisms. These findings highlight the need to understand the multifaceted interactions of plants with biotic and abiotic stress factors. The endoplasmic reticulum (ER) is an organelle that links various stress responses. To gain insight into the molecular integration of biotic and abiotic stress responses in the ER, we focused on the interactions of plants with RNA viruses. This interaction points toward the relevance of ER in viral pathogenicity as well as plant responses. In this mini review, we explore the molecular crosstalk between biotic and abiotic stress signaling through the ER by elaborating ER-mediated signaling in response to RNA viruses and abiotic stresses. Additionally, we summarize the results of a recent study on phytohormones that induce ER-mediated stress response. These studies will facilitate the development of multi-stress-tolerant transgenic crops in the future.
Collapse
Affiliation(s)
- Chang-Jin Park
- Department of Bioresources Engineering, Sejong University, Seoul, South Korea
- Plant Engineering Research Institute, Sejong University, Seoul, South Korea
- *Correspondence: Chang-Jin Park,
| | - Jeong Mee Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Biosystems and Bioengineering, University of Science and Technology (UST), Daejeon, South Korea
- Jeong Mee Park,
| |
Collapse
|
35
|
Guan D, Yang F, Xia X, Shi Y, Yang S, Cheng W, He S. CaHSL1 Acts as a Positive Regulator of Pepper Thermotolerance Under High Humidity and Is Transcriptionally Modulated by CaWRKY40. FRONTIERS IN PLANT SCIENCE 2018; 9:1802. [PMID: 30581449 PMCID: PMC6292930 DOI: 10.3389/fpls.2018.01802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/20/2018] [Indexed: 05/27/2023]
Abstract
Pepper (Capsicum annuum) is an economically important vegetable and heat stress can severely impair pepper growth, development, and productivity. The molecular mechanisms underlying pepper thermotolerance are therefore important to understand but remain elusive. In the present study, we characterized the function of CaHSL1, encoding a HAESA-LIKE (HSL) receptor-like protein kinase (RLK), during the response of pepper to high temperature and high humidity (HTHH). CaHSL1 exhibits the typical structural features of an arginine-aspartate RLK. Transient overexpression of CaHSL1 in the mesophyll cells of Nicotiana benthamiana showed that CaHSL1 localizes throughout the cell, including the plasma membrane, cytoplasm, and the nucleus. CaHSL1 was significantly upregulated by HTHH or the exogenous application of abscisic acid but not by R. solanacearum inoculation. However, CaHSL1 was downregulated by exogenously applied salicylic acid, methyl jasmonate, or ethephon. Silencing of CaHSL1 by virus-induced gene silencing significantly was reduced tolerance to HTHH and downregulated transcript levels of an associated gene CaHSP24. In contrast, transient overexpression of CaHSL1 enhanced the transcript abundance of CaHSP24 and increased tolerance to HTHH, as manifested by enhanced optimal/maximal photochemical efficiency of photosystem II in the dark (Fv/Fm) and actual photochemical efficiency of photosystem II in the light. In addition, CaWRKY40 targeted the promoter of CaHSL1 and induced transcription during HTHH but not in response to R. solanacearum. All of these results suggest that CaHSL1 is directly modulated at the transcriptional level by CaWRKY40 and functions as a positive regulator in the response of pepper to HTHH.
Collapse
Affiliation(s)
- Deyi Guan
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Yang
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoqin Xia
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Shi
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng Yang
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Cheng
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuilin He
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
36
|
Dang F, Lin J, Xue B, Chen Y, Guan D, Wang Y, He S. CaWRKY27 Negatively Regulates H 2O 2-Mediated Thermotolerance in Pepper ( Capsicum annuum). FRONTIERS IN PLANT SCIENCE 2018; 9:1633. [PMID: 30510557 PMCID: PMC6252359 DOI: 10.3389/fpls.2018.01633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 10/19/2018] [Indexed: 05/08/2023]
Abstract
Heat stress, an important and damaging abiotic stress, regulates numerous WRKY transcription factors, but their roles in heat stress responses remain largely unexplored. Here, we show that pepper (Capsicum annuum) CaWRKY27 negatively regulates basal thermotolerance mediated by H2O2 signaling. CaWRKY27 expression increased during heat stress and persisted during recovery. CaWRKY27 overexpression impaired basal thermotolerance in tobacco (Nicotiana tabacum) and Arabidopsis thaliana, CaWRKY27-overexpressing plants had a lower survival rate under heat stress, accompanied by decreased expression of multiple thermotolerance-associated genes. Accordingly, silencing of CaWRKY27 increased basal thermotolerance in pepper plants. Exogenously applied H2O2 induced CaWRKY27 expression, and CaWRKY27 overexpression repressed the scavenging of H2O2 in Arabidopsis, indicating a positive feedback loop between H2O2 accumulation and CaWRKY27 expression. Consistent with this, CaWRKY27 expression was repressed under heat stress in the presence H2O2 scavengers and CaWRKY27 silencing decreased H2O2 accumulation in pepper leaves. These changes may result from changes in levels of reactive oxygen species (ROS)-scavenging enzymes, since the heat stress-challenged CaWRKY27-silenced pepper plants had significantly higher expression of multiple genes encoding ROS-scavenging enzymes, such as CaCAT1, CaAPX1, CaAPX2, CaCSD2, and CaSOD1. Therefore, CaWRKY27 acts as a downstream negative regulator of H2O2-mediated heat stress responses, preventing inappropriate responses during heat stress and recovery.
Collapse
Affiliation(s)
- Fengfeng Dang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinhui Lin
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fuzhou, China
| | - Baoping Xue
- College of Life Science, Yan’an University, Yan’an, China
| | - Yongping Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Deyi Guan
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fuzhou, China
| | - Yanfeng Wang
- College of Life Science, Yan’an University, Yan’an, China
| | - Shuilin He
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fuzhou, China
| |
Collapse
|
37
|
Guan P, Wang J, Li H, Xie C, Zhang S, Wu C, Yang G, Yan K, Huang J, Zheng C. SENSITIVE TO SALT1, An Endoplasmic Reticulum-Localized Chaperone, Positively Regulates Salt Resistance. PLANT PHYSIOLOGY 2018; 178:1390-1405. [PMID: 30287478 PMCID: PMC6236605 DOI: 10.1104/pp.18.00840] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/24/2018] [Indexed: 05/18/2023]
Abstract
Salt stress seriously affects plant growth and development. Through genetic screening, we identified and characterized an Arabidopsis (Arabidopsis thaliana) sensitive to salt1 (ses1) mutant. SES1 was ubiquitously expressed and induced by salt treatment. The salt-sensitive phenotype of ses1 was due neither to the overaccumulation of Na+ nor to the suppression of salt tolerance-associated genes. SES1 encoded an uncharacterized endoplasmic reticulum (ER)-localized protein. Coinciding with its subcellular distribution, ses1 exhibited overactivation of unfolded protein response genes and was largely influenced by severe ER stress. Biochemical evidence revealed that SES1 functions as an important molecular chaperone to alleviate salt-induced ER stress. Furthermore, the ER stress sensor basic leucine zipper factor17 transactivated SES1 by binding directly to its promoter region. These results provide insights into salt stress responses and ER homeostasis and shed light on the mechanism by which SES1 modulates salt resistance.
Collapse
Affiliation(s)
- Peiyan Guan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hui Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Chen Xie
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Changai Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Guodong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Kang Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
38
|
Wani SH, Tripathi P, Zaid A, Challa GS, Kumar A, Kumar V, Upadhyay J, Joshi R, Bhatt M. Transcriptional regulation of osmotic stress tolerance in wheat (Triticum aestivum L.). PLANT MOLECULAR BIOLOGY 2018; 97:469-487. [PMID: 30109563 DOI: 10.1007/s11103-018-0761-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/31/2018] [Indexed: 05/24/2023]
Abstract
The current review provides an updated, new insights into the regulation of transcription mediated underlying mechanisms of wheat plants to osmotic stress perturbations. Osmotic stress tolerance mechanisms being complex are governed by multiple factors at physiological, biochemical and at the molecular level, hence approaches like "OMICS" that can underpin mechanisms behind osmotic tolerance in wheat is of paramount importance. The transcription factors (TFs) are a class of molecular proteins, which are involved in regulation, modulation and orchestrating the responses of plants to a variety of environmental stresses. Recent reports have provided novel insights on the role of TFs in osmotic stress tolerance via direct molecular links. However, our knowledge on the regulatory role TFs during osmotic stress tolerance in wheat remains limited. The present review in its first part sheds light on the importance of studying the role of osmotic stress tolerance in wheat plants and second aims to decipher molecular mechanisms of TFs belonging to several classes, including DREB, NAC, MYB, WRKY and bHLH, which have been reported to engage in osmotic stress mediated gene expression in wheat and third part covers the systems biology approaches to understand the transcriptional regulation of osmotic stress and the role of long non-coding RNAs in response to osmotic stress with special emphasis on wheat. The current concept may lead to an understanding in molecular regulation and signalling interaction of TFs under osmotic stress to clarify challenges and problems for devising potential strategies to improve complex regulatory events involved in plant tolerance to osmotic stress adaptive pathways in wheat.
Collapse
Affiliation(s)
- Shabir H Wani
- Mountain Research Centre for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K, 192101, India.
| | - Prateek Tripathi
- Department of Cell & Molecular Biology, The Scripps Research Institute, Jolla, CA, 92037, USA
| | - Abbu Zaid
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Ghana S Challa
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Anuj Kumar
- Advance Centre for Computational and Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Dehradun, Uttarakhand, 248007, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule, Pune University, Pune, India
| | - Jyoti Upadhyay
- Department of Pharmaceutical Sciences, Kumaun University, Campus Bhimtal, Bhimtal, Uttarakhand, 293136, India
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manoj Bhatt
- Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
39
|
Liu Y, Li P, Fan L, Wu M. The nuclear transportation routes of membrane-bound transcription factors. Cell Commun Signal 2018; 16:12. [PMID: 29615051 PMCID: PMC5883603 DOI: 10.1186/s12964-018-0224-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Membrane-bound transcription factors (MTFs) are transcription factors (TFs) that are anchored in membranes in a dormant state. Activated by external or internal stimuli, MTFs are released from parent membranes and are transported to the nucleus. Existing research indicates that some plasma membrane (PM)-bound proteins and some endoplasmic reticulum (ER) membrane-bound proteins have the ability to enter the nucleus. Upon specific signal recognition cues, some PM-bound TFs undergo proteolytic cleavage to liberate the intracellular fragments that enter the nucleus to control gene transcription. However, lipid-anchored PM-bound proteins enter the nucleus in their full length for depalmitoylation. In addition, some PM-bound TFs exist as full-length proteins in cell nucleus via trafficking to the Golgi and the ER, where membrane-releasing mechanisms rely on endocytosis. In contrast, the ER membrane-bound TFs relocate to the nucleus directly or by trafficking to the Golgi. In both of these pathways, only the fragments of the ER membrane-bound TFs transit to the nucleus. Several different nuclear trafficking modes of MTFs are summarized in this review, providing an effective supplement to the mechanisms of signal transduction and gene regulation. Moreover, targeting intracellular movement pathways of disease-associated MTFs may significantly improve the survival of patients.
Collapse
Affiliation(s)
- Yang Liu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
| | - Peiyao Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
| | - Li Fan
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China. .,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
40
|
Sita K, Sehgal A, HanumanthaRao B, Nair RM, Vara Prasad PV, Kumar S, Gaur PM, Farooq M, Siddique KHM, Varshney RK, Nayyar H. Food Legumes and Rising Temperatures: Effects, Adaptive Functional Mechanisms Specific to Reproductive Growth Stage and Strategies to Improve Heat Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:1658. [PMID: 29123532 PMCID: PMC5662899 DOI: 10.3389/fpls.2017.01658] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/08/2017] [Indexed: 05/20/2023]
Abstract
Ambient temperatures are predicted to rise in the future owing to several reasons associated with global climate changes. These temperature increases can result in heat stress- a severe threat to crop production in most countries. Legumes are well-known for their impact on agricultural sustainability as well as their nutritional and health benefits. Heat stress imposes challenges for legume crops and has deleterious effects on the morphology, physiology, and reproductive growth of plants. High-temperature stress at the time of the reproductive stage is becoming a severe limitation for production of grain legumes as their cultivation expands to warmer environments and temperature variability increases due to climate change. The reproductive period is vital in the life cycle of all plants and is susceptible to high-temperature stress as various metabolic processes are adversely impacted during this phase, which reduces crop yield. Food legumes exposed to high-temperature stress during reproduction show flower abortion, pollen and ovule infertility, impaired fertilization, and reduced seed filling, leading to smaller seeds and poor yields. Through various breeding techniques, heat tolerance in major legumes can be enhanced to improve performance in the field. Omics approaches unravel different mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward high-temperature stress.
Collapse
Affiliation(s)
- Kumari Sita
- Department of Botany, Panjab University, Chandigarh, India
| | | | | | | | - P. V. Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS, United States
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| | - Pooran M. Gaur
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Muhammad Farooq
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| |
Collapse
|
41
|
Covarrubias AA, Cuevas-Velazquez CL, Romero-Pérez PS, Rendón-Luna DF, Chater CCC. Structural disorder in plant proteins: where plasticity meets sessility. Cell Mol Life Sci 2017; 74:3119-3147. [PMID: 28643166 PMCID: PMC11107788 DOI: 10.1007/s00018-017-2557-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 01/08/2023]
Abstract
Plants are sessile organisms. This intriguing nature provokes the question of how they survive despite the continual perturbations caused by their constantly changing environment. The large amount of knowledge accumulated to date demonstrates the fascinating dynamic and plastic mechanisms, which underpin the diverse strategies selected in plants in response to the fluctuating environment. This phenotypic plasticity requires an efficient integration of external cues to their growth and developmental programs that can only be achieved through the dynamic and interactive coordination of various signaling networks. Given the versatility of intrinsic structural disorder within proteins, this feature appears as one of the leading characters of such complex functional circuits, critical for plant adaptation and survival in their wild habitats. In this review, we present information of those intrinsically disordered proteins (IDPs) from plants for which their high level of predicted structural disorder has been correlated with a particular function, or where there is experimental evidence linking this structural feature with its protein function. Using examples of plant IDPs involved in the control of cell cycle, metabolism, hormonal signaling and regulation of gene expression, development and responses to stress, we demonstrate the critical importance of IDPs throughout the life of the plant.
Collapse
Affiliation(s)
- Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62250, Cuernavaca, Mexico.
| | - Cesar L Cuevas-Velazquez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62250, Cuernavaca, Mexico
| | - Paulette S Romero-Pérez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62250, Cuernavaca, Mexico
| | - David F Rendón-Luna
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62250, Cuernavaca, Mexico
| | - Caspar C C Chater
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62250, Cuernavaca, Mexico
| |
Collapse
|
42
|
Iwata Y, Ashida M, Hasegawa C, Tabara K, Mishiba KI, Koizumi N. Activation of the Arabidopsis membrane-bound transcription factor bZIP28 is mediated by site-2 protease, but not site-1 protease. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:408-415. [PMID: 28407373 DOI: 10.1111/tpj.13572] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 03/30/2017] [Accepted: 04/10/2017] [Indexed: 05/03/2023]
Abstract
The unfolded protein response (UPR) is a homeostatic cellular response conserved in eukaryotic cells to alleviate the accumulation of unfolded proteins in the endoplasmic reticulum (ER). Arabidopsis bZIP28 is a membrane-bound transcription factor activated by proteolytic cleavage in response to ER stress, thereby releasing its cytosolic portion containing the bZIP domain from the membrane to translocate into the nucleus where it induces the transcription of genes encoding ER-resident molecular chaperones and folding enzymes. It has been widely recognized that the proteolytic activation of bZIP28 is mediated by the sequential cleavage of site-1 protease (S1P) and site-2 protease (S2P). In the present study we provide evidence that bZIP28 protein is cleaved by S2P, but not by S1P. We demonstrated that wild-type and s1p mutant plants produce the active, nuclear form of bZIP28 in response to the ER stress inducer tunicamycin. In contrast, tunicamycin-treated s2p mutants do not accumulate the active, nuclear form of bZIP28. Consistent with these observations, s2p mutants, but not s1p mutants, exhibited a defective transcriptional response of ER stress-responsive genes and significantly higher sensitivity to tunicamycin. Interestingly, s2p mutants accumulate two membrane-bound bZIP28 fragments with a shorter ER lumen-facing C-terminal domain. Importantly, the predicted cleavage sites are located far from the canonical S1P recognition motif previously described. We propose that ER stress-induced proteolytic activation of bZIP28 is mediated by the sequential actions of as-yet-unidentified protease(s) and S2P, and does not require S1P.
Collapse
Affiliation(s)
- Yuji Iwata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Makoto Ashida
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Chisa Hasegawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Kazuki Tabara
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Kei-Ichiro Mishiba
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Nozomu Koizumi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
43
|
Zhang L, Xin Z, Yu X, Ma C, Liang W, Zhu M, Cheng Q, Li Z, Niu Y, Ren Y, Wang Z, Lin T. Osmotic Stress Induced Cell Death in Wheat Is Alleviated by Tauroursodeoxycholic Acid and Involves Endoplasmic Reticulum Stress-Related Gene Expression. FRONTIERS IN PLANT SCIENCE 2017; 8:667. [PMID: 28515732 PMCID: PMC5413500 DOI: 10.3389/fpls.2017.00667] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 04/11/2017] [Indexed: 05/23/2023]
Abstract
Although, tauroursodeoxycholic acid (TUDCA) has been widely studied in mammalian cells because of its role in inhibiting apoptosis, its effects on plants remain almost unknown, especially in the case of crops such as wheat. In this study, we conducted a series of experiments to explore the effects and mechanisms of action of TUDCA on wheat growth and cell death induced by osmotic stress. Our results show that TUDCA: (1) ameliorates the impact of osmotic stress on wheat height, fresh weight, and water content; (2) alleviates the decrease in chlorophyll content as well as membrane damage caused by osmotic stress; (3) decreases the accumulation of reactive oxygen species (ROS) by increasing the activity of antioxidant enzymes under osmotic stress; and (4) to some extent alleviates osmotic stress-induced cell death probably by regulating endoplasmic reticulum (ER) stress-related gene expression, for example expression of the basic leucine zipper genes bZIP60B and bZIP60D, the binding proteins BiP1 and BiP2, the protein disulfide isomerase PDIL8-1, and the glucose-regulated protein GRP94. We also propose a model that illustrates how TUDCA alleviates osmotic stress-related wheat cell death, which provides an important theoretical basis for improving plant stress adaptation and elucidates the mechanisms of ER stress-related plant osmotic stress resistance.
Collapse
Affiliation(s)
- Liting Zhang
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
- Collaborative Innovation Center of Henan Grain CropsZhengzhou, China
- National Key Laboratory of Wheat and Maize Crop ScienceZhengzhou, China
| | - Zeyu Xin
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
- Collaborative Innovation Center of Henan Grain CropsZhengzhou, China
- National Key Laboratory of Wheat and Maize Crop ScienceZhengzhou, China
| | - Xing Yu
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
- Collaborative Innovation Center of Henan Grain CropsZhengzhou, China
- National Key Laboratory of Wheat and Maize Crop ScienceZhengzhou, China
| | - Chao Ma
- College of Agronomy, Henan University of Science and TechnologyLuoyang, China
| | - Weiwei Liang
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
- Collaborative Innovation Center of Henan Grain CropsZhengzhou, China
- National Key Laboratory of Wheat and Maize Crop ScienceZhengzhou, China
| | - Meichen Zhu
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
- Collaborative Innovation Center of Henan Grain CropsZhengzhou, China
- National Key Laboratory of Wheat and Maize Crop ScienceZhengzhou, China
| | - Qiwei Cheng
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
- Collaborative Innovation Center of Henan Grain CropsZhengzhou, China
- National Key Laboratory of Wheat and Maize Crop ScienceZhengzhou, China
| | - Zongzhen Li
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
- Collaborative Innovation Center of Henan Grain CropsZhengzhou, China
- National Key Laboratory of Wheat and Maize Crop ScienceZhengzhou, China
| | - Yanan Niu
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
| | - Yongzhe Ren
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
- Collaborative Innovation Center of Henan Grain CropsZhengzhou, China
- National Key Laboratory of Wheat and Maize Crop ScienceZhengzhou, China
| | - Zhiqiang Wang
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
- Collaborative Innovation Center of Henan Grain CropsZhengzhou, China
- National Key Laboratory of Wheat and Maize Crop ScienceZhengzhou, China
| | - Tongbao Lin
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
- Collaborative Innovation Center of Henan Grain CropsZhengzhou, China
- National Key Laboratory of Wheat and Maize Crop ScienceZhengzhou, China
| |
Collapse
|
44
|
Li Y, Williams B, Dickman M. Arabidopsis B-cell lymphoma2 (Bcl-2)-associated athanogene 7 (BAG7)-mediated heat tolerance requires translocation, sumoylation and binding to WRKY29. THE NEW PHYTOLOGIST 2017; 214:695-705. [PMID: 28032645 DOI: 10.1111/nph.14388] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/17/2016] [Indexed: 05/03/2023]
Abstract
To cope with stress and increased accumulation of misfolded proteins, plants and animals use a survival pathway known as the unfolded protein response (UPR) that signals between the endoplasmic reticulum (ER) and the nucleus to maintain cell homeostasis via proper folding of proteins. B-cell lymphoma2 (Bcl-2)-associated athanogene (BAG) proteins are an evolutionarily conserved family of co-chaperones that are linked to disease states in mammals and responses to environmental stimuli (biotic and abiotic) in plants. Molecular and physiological techniques were used to functionally characterize a newly identified branch of the UPR initiated by the ER-localized co-chaperone from Arabidopsis thaliana, AtBAG7. AtBAG7 has functional roles in both the ER and the nucleus. Upon heat stress, AtBAG7 is sumoylated, proteolytically processed and translocated from the ER to the nucleus, where interaction with the WRKY29 transcription factor occurs. Sumoylation and translocation are required for the AtBAG7-WRKY29 interaction and subsequent stress tolerance. In the ER, AtBAG7 interacts with the ER-localized transcription factor, AtbZIP28, and established UPR regulator, the AtBiP2 chaperone. The results indicate that AtBAG7 plays a central regulatory role in the heat-induced UPR pathway.
Collapse
Affiliation(s)
- Yurong Li
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77843, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, PO Box 2434, Brisbane, 4001, Qld, Australia
| | - Martin Dickman
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77843, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
45
|
Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K. Transcriptional Regulatory Network of Plant Heat Stress Response. TRENDS IN PLANT SCIENCE 2017; 22:53-65. [PMID: 27666516 DOI: 10.1016/j.tplants.2016.08.015] [Citation(s) in RCA: 580] [Impact Index Per Article: 82.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 05/19/2023]
Abstract
Heat stress (HS) is becoming an increasingly significant problem for food security as global warming progresses. Recent studies have elucidated the complex transcriptional regulatory networks involved in HS. Here, we provide an overview of current knowledge regarding the transcriptional regulatory network and post-translational regulation of the transcription factors involved in the HS response. Increasing evidence suggests that epigenetic regulation and small RNAs are important in heat-induced transcriptional responses and stress memory. It remains to be elucidated how plants sense and respond to HS. Several recent reports have discussed the heat sensing and signaling that activate transcriptional cascades; thus, we also highlight future directions of promoting crop tolerance to HS using these factors or other strategies for agricultural applications.
Collapse
Affiliation(s)
- Naohiko Ohama
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hikaru Sato
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Ibaraki 305-0074 Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Ibaraki 305-0074 Japan
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
46
|
Sita K, Sehgal A, HanumanthaRao B, Nair RM, Vara Prasad PV, Kumar S, Gaur PM, Farooq M, Siddique KHM, Varshney RK, Nayyar H. Food Legumes and Rising Temperatures: Effects, Adaptive Functional Mechanisms Specific to Reproductive Growth Stage and Strategies to Improve Heat Tolerance. FRONTIERS IN PLANT SCIENCE 2017. [PMID: 29123532 DOI: 10.3389/flps.2017.01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ambient temperatures are predicted to rise in the future owing to several reasons associated with global climate changes. These temperature increases can result in heat stress- a severe threat to crop production in most countries. Legumes are well-known for their impact on agricultural sustainability as well as their nutritional and health benefits. Heat stress imposes challenges for legume crops and has deleterious effects on the morphology, physiology, and reproductive growth of plants. High-temperature stress at the time of the reproductive stage is becoming a severe limitation for production of grain legumes as their cultivation expands to warmer environments and temperature variability increases due to climate change. The reproductive period is vital in the life cycle of all plants and is susceptible to high-temperature stress as various metabolic processes are adversely impacted during this phase, which reduces crop yield. Food legumes exposed to high-temperature stress during reproduction show flower abortion, pollen and ovule infertility, impaired fertilization, and reduced seed filling, leading to smaller seeds and poor yields. Through various breeding techniques, heat tolerance in major legumes can be enhanced to improve performance in the field. Omics approaches unravel different mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward high-temperature stress.
Collapse
Affiliation(s)
- Kumari Sita
- Department of Botany, Panjab University, Chandigarh, India
| | | | | | | | - P V Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS, United States
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| | - Pooran M Gaur
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Muhammad Farooq
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| |
Collapse
|
47
|
Chung KP, Zeng Y, Jiang L. COPII Paralogs in Plants: Functional Redundancy or Diversity? TRENDS IN PLANT SCIENCE 2016; 21:758-769. [PMID: 27317568 DOI: 10.1016/j.tplants.2016.05.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/27/2016] [Accepted: 05/27/2016] [Indexed: 05/04/2023]
Abstract
In eukaryotes, the best-described mechanism of endoplasmic reticulum (ER) export is mediated by coat protein complex II (COPII) vesicles, which comprise five conserved cytosolic components [secretion-associated, Ras-related protein 1 (Sar1), Sec23-24, and Sec13-31]. In higher organisms, multiple paralogs of COPII components are created due to gene duplication. However, the functional diversity of plant COPII subunit isoforms remains largely elusive. Here we summarize and discuss the latest findings derived from studies of various arabidopsis COPII subunit isoforms and their functional diversity. We also put forward testable hypotheses on distinct populations of COPII vesicles performing unique functions in ER export in developmental and stress-related pathways in plants.
Collapse
Affiliation(s)
- Kin Pan Chung
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yonglun Zeng
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Liwen Jiang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
48
|
Reis PAB, Carpinetti PA, Freitas PP, Santos EG, Camargos LF, Oliveira IH, Silva JCF, Carvalho HH, Dal-Bianco M, Soares-Ramos JR, Fontes EPB. Functional and regulatory conservation of the soybean ER stress-induced DCD/NRP-mediated cell death signaling in plants. BMC PLANT BIOLOGY 2016; 16:156. [PMID: 27405371 PMCID: PMC4943007 DOI: 10.1186/s12870-016-0843-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/01/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND The developmental and cell death domain (DCD)-containing asparagine-rich proteins (NRPs) were first identified in soybean (Glycine max) as transducers of a cell death signal derived from prolonged endoplasmic reticulum (ER) stress, osmotic stress, drought or developmentally-programmed leaf senescence via the GmNAC81/GmNAC30/GmVPE signaling module. In spite of the relevance of the DCD/NRP-mediated signaling as a versatile adaptive response to multiple stresses, mechanistic knowledge of the pathway is lacking and the extent to which this pathway may operate in the plant kingdom has not been investigated. RESULTS Here, we demonstrated that the DCD/NRP-mediated signaling also propagates a stress-induced cell death signal in other plant species with features of a programmed cell death (PCD) response. In silico analysis revealed that several plant genomes harbor conserved sequences of the pathway components, which share functional analogy with their soybean counterparts. We showed that GmNRPs, GmNAC81and VPE orthologs from Arabidopsis, designated as AtNRP-1, AtNRP-2, ANAC036 and gVPE, respectively, induced cell death when transiently expressed in N. benthamiana leaves. In addition, loss of AtNRP1 and AtNRP2 function attenuated ER stress-induced cell death in Arabidopsis, which was in marked contrast with the enhanced cell death phenotype displayed by overexpressing lines as compared to Col-0. Furthermore, atnrp-1 knockout mutants displayed enhanced sensitivity to PEG-induced osmotic stress, a phenotype that could be complemented with ectopic expression of either GmNRP-A or GmNRP-B. In addition, AtNRPs, ANAC036 and gVPE were induced by osmotic and ER stress to an extent that was modulated by the ER-resident molecular chaperone binding protein (BiP) similarly as in soybean. Finally, as putative downstream components of the NRP-mediated cell death signaling, the stress induction of AtNRP2, ANAC036 and gVPE was dependent on the AtNRP1 function. BiP overexpression also conferred tolerance to water stress in Arabidopsis, most likely due to modulation of the drought-induced NRP-mediated cell death response. CONCLUSION Our results indicated that the NRP-mediated cell death signaling operates in the plant kingdom with conserved regulatory mechanisms and hence may be target for engineering stress tolerance and adaptation in crops.
Collapse
Affiliation(s)
- Pedro A. B. Reis
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Paola A. Carpinetti
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Paula P.J. Freitas
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Eulálio G.D. Santos
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Luiz F. Camargos
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Igor H.T. Oliveira
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - José Cleydson F. Silva
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Humberto H. Carvalho
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Maximiller Dal-Bianco
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Juliana R.L. Soares-Ramos
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Elizabeth P. B. Fontes
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| |
Collapse
|
49
|
Wan S, Jiang L. Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in plants. PROTOPLASMA 2016; 253:753-764. [PMID: 26060134 DOI: 10.1007/s00709-015-0842-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 05/30/2015] [Indexed: 05/03/2023]
Abstract
Being a major factory for protein synthesis, assembly, and export, the endoplasmic reticulum (ER) has a precise and robust ER quality control (ERQC) system monitoring its product line. However, when organisms are subjected to environmental stress, whether biotic or abiotic, the levels of misfolded proteins may overwhelm the ERQC system, tilting the balance between the capacity of and demand for ER quality control and resulting in a scenario termed ER stress. Intense or prolonged ER stress may cause damage to the ER as well as to other organelles, or even lead to cell death in extreme cases. To avoid such serious consequences, cells activate self-rescue programs to restore protein homeostasis in the ER, either through the enhancement of protein-folding and degradation competence or by alleviating the demands for such reactions. These are collectively called the unfolded protein response (UPR). Long investigated in mammalian cells and yeasts, the UPR is also of great interest to plant scientists. Among the three branches of UPR discovered in mammals, two have been studied in plants with plant homologs existing of the ER-membrane-associated activating transcription factor 6 (ATF6) and inositol-requiring enzyme 1 (IRE1). This review discusses the molecular mechanisms of these two types of UPR in plants, as well as the consequences of insufficient UPR, with a focus on experiments using model plants.
Collapse
Affiliation(s)
- Shucen Wan
- Molecular Biotechnology Program, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Liwen Jiang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
50
|
Wan S, Jiang L. Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in plants. PROTOPLASMA 2016; 253:765. [PMID: 26060134 DOI: 10.1007/s00709-015-0852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Being a major factory for protein synthesis, assembly, and export, the endoplasmic reticulum (ER) has a precise and robust ER quality control (ERQC) system monitoring its product line. However, when organisms are subjected to environmental stress, whether biotic or abiotic, the levels of misfolded proteins may overwhelm the ERQC system, tilting the balance between the capacity of and demand for ER quality control and resulting in a scenario termed ER stress. Intense or prolonged ER stress may cause damage to the ER as well as to other organelles, or even lead to cell death in extreme cases. To avoid such serious consequences, cells activate self-rescue programs to restore protein homeostasis in the ER, either through the enhancement of protein-folding and degradation competence or by alleviating the demands for such reactions. These are collectively called the unfolded protein response (UPR). Long investigated in mammalian cells and yeasts, the UPR is also of great interest to plant scientists. Among the three branches of UPR discovered in mammals, two have been studied in plants with plant homologs existing of the ER-membrane-associated activating transcription factor 6 (ATF6) and inositol-requiring enzyme 1 (IRE1). This review discusses the molecular mechanisms of these two types of UPR in plants, as well as the consequences of insufficient UPR, with a focus on experiments using model plants.
Collapse
Affiliation(s)
- Shucen Wan
- Molecular Biotechnology Program, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Liwen Jiang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|