1
|
Chantapakul B, Sabaratnam S, Wang S. Isolation and characterization of bacteriophages for controlling Rhizobium radiobacter - causing stem and crown gall of highbush blueberry. Front Microbiol 2024; 15:1437536. [PMID: 39155984 PMCID: PMC11328917 DOI: 10.3389/fmicb.2024.1437536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/27/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Stem and crown gall disease caused by the plant pathogen Rhizobium radiobacter has a significant impact on highbush blueberry (Vaccinium corymbosum) production. Current methods for controlling the bacterium are limited. Lytic phages, which can specifically target host bacteria, have been widely gained interest in agriculture. Methods In this study, 76 bacteriophages were recovered from sewage influent and screened for their inhibitory effect against Rhizobium spp. The phages were genetically characterized through whole-genome sequencing, and their lytic cycle was confirmed. Results Five potential candidate phages (isolates IC12, IG49, AN01, LG08, and LG11) with the ability to lyse a broad range of hosts were chosen and assessed for their morphology, environmental stability, latent period, and burst size. The morphology of these selected phages revealed a long contractile tail under transmission electron microscopy. Single-step growth curves displayed that these phages had a latent period of 80-110 min and a burst size ranging from 8 to 33 phages per infected cell. None of these phages contained any antimicrobial resistance or virulence genes in their genomes. Subsequently, a combination of two-, three- and four-phage cocktails were formulated and tested for their efficacy in a broth system. A three-phage cocktail composed of the isolates IC12, IG49 and LG08 showed promising results in controlling a large number of R. radiobacter strains in vitro. In a soil/peat-based model, the three-phage cocktail was tested against R. radiobacter PL17, resulting in a significant reduction (p < 0.05) of 2.9 and 1.3 log10 CFU/g after 24 and 48 h of incubation, respectively. Discussion These findings suggest that the three-phage cocktail (IC12, IG49 and LG08) has the potential to serve as a proactive antimicrobial solution for controlling R. radiobacter on blueberry.
Collapse
Affiliation(s)
| | - Siva Sabaratnam
- Abbotsford Agriculture Centre, Ministry of Agriculture and Food, Abbotsford, BC, Canada
| | - Siyun Wang
- Food, Nutrition and Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Krishnappa S, Karthik Y, Pratap GK, Shantaram M, Umarajashekhar A, Soumya J, Bhatt B, Sayed SM, Alhelaify SS, Aharthy OM, Mushtaq M. Exploration of bioactive compounds from Olea dioica in Western Ghats of Karnataka using GC-MS. 3 Biotech 2024; 14:63. [PMID: 38344286 PMCID: PMC10853147 DOI: 10.1007/s13205-023-03888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 12/06/2023] [Indexed: 03/10/2024] Open
Abstract
Bioactive compounds in plants are essential for the formation of novel chemotherapeutic drugs, which have been used in Ayurveda to treat a variety of illnesses. Indian medicinal herbs have been used for thousands of years to treat a variety of illnesses, such as fever, cancer, snake bites, rheumatism, skin problems, and neurodegenerative diseases. GC-MS was used to locate and categorize bioactive components in Olea dioica leaves. The results showed that presence of octanoic acid, methyl ester, decanoic acid, methyl ester, desulphosinigrin, l-gala-l-ido-octose, methyl tetradecanoate, Tetradecanoic acid, 6-benzoxazolesulfonamide, N-(2-hydroxyethyl)-2-methyl-, 10-chloro-5-methoxy-5H-dibenzo[a,d][7]annulene, pentadecanoic acid, oleic acid, n-hexadecanoic acid, hexanedioic acid, dioctyl ester, and squalene. The methanol extract of Olea dioica was effective against a wide spectrum of pathogenic bacteria at four different concentrations, with the highest activity against Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Xanthomonas campestris, and Salmonella typhimurium. It also showed moderate activity against Agrobacterium tumefaciens, Pseudomonas aeruginosa, Streptomyces pneumonia, and Pseudomonas syringae. The pharmacological properties of O. dioica, as well as their variety and comprehensive phytochemistry, could be exploited as a potent antimicrobial agent for future therapeutics.
Collapse
Affiliation(s)
- Srinivasa Krishnappa
- Department of Studies and Research in Biochemistry, Mangalore University, Jnana Kaveri, Chikka Aluvara, Kodagu, Karnataka India
| | - Yalpi Karthik
- Department of Studies and Research in Microbiology, Mangalore University, Jnana Kaveri, Chikka Aluvara, Kodagu, Karnataka India
| | - G. K. Pratap
- Department of Studies and Research in Biochemistry, Mangalore University, Jnana Kaveri, Chikka Aluvara, Kodagu, Karnataka India
| | - Manjula Shantaram
- Department of Studies and Research in Biochemistry, Mangalore University, Jnana Kaveri, Chikka Aluvara, Kodagu, Karnataka India
| | - Alavala Umarajashekhar
- Department of Agricultural Microbiology and Bio-Energy Agricultural College JilleleSircilla, Professor Jayashankar Telangana State Agriculture University, Rajendranagar, Hyderabad, India
| | - J. Soumya
- Department of Microbiology, Government Degree College, Bodhan, Kakatiya University, Warangal, India
| | - Bhagyashree Bhatt
- MS Swaminathan School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229 India
| | - Samy M. Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, B.O. Box 11099, 21944 Taif, Saudi Arabia
| | - Seham Sater Alhelaify
- Department of Biotechnology, Faculty of Science, Taif University, P.O. Box 11099, 21944 Taif, Saudi Arabia
| | - Ohud Muslat Aharthy
- Department of Biotechnology, Faculty of Science, Taif University, P.O. Box 11099, 21944 Taif, Saudi Arabia
| | - Muntazir Mushtaq
- MS Swaminathan School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229 India
| |
Collapse
|
3
|
Mohaimin AZ, Krishnamoorthy S, Shivanand P. A critical review on bioaerosols-dispersal of crop pathogenic microorganisms and their impact on crop yield. Braz J Microbiol 2024; 55:587-628. [PMID: 38001398 PMCID: PMC10920616 DOI: 10.1007/s42770-023-01179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Bioaerosols are potential sources of pathogenic microorganisms that can cause devastating outbreaks of global crop diseases. Various microorganisms, insects and viroids are known to cause severe crop diseases impeding global agro-economy. Such losses threaten global food security, as it is estimated that almost 821 million people are underfed due to global crisis in food production. It is estimated that global population would reach 10 billion by 2050. Hence, it is imperative to substantially increase global food production to about 60% more than the existing levels. To meet the increasing demand, it is essential to control crop diseases and increase yield. Better understanding of the dispersive nature of bioaerosols, seasonal variations, regional diversity and load would enable in formulating improved strategies to control disease severity, onset and spread. Further, insights on regional and global bioaerosol composition and dissemination would help in predicting and preventing endemic and epidemic outbreaks of crop diseases. Advanced knowledge of the factors influencing disease onset and progress, mechanism of pathogen attachment and penetration, dispersal of pathogens, life cycle and the mode of infection, aid the development and implementation of species-specific and region-specific preventive strategies to control crop diseases. Intriguingly, development of R gene-mediated resistant varieties has shown promising results in controlling crop diseases. Forthcoming studies on the development of an appropriately stacked R gene with a wide range of resistance to crop diseases would enable proper management and yield. The article reviews various aspects of pathogenic bioaerosols, pathogen invasion and infestation, crop diseases and yield.
Collapse
Affiliation(s)
- Abdul Zul'Adly Mohaimin
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Sarayu Krishnamoorthy
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Pooja Shivanand
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| |
Collapse
|
4
|
Etminani F, Harighi B, Bahramnejad B, Mozafari AA. Antivirulence effects of cell-free culture supernatant of endophytic bacteria against grapevine crown gall agent, Agrobacterium tumefaciens, and induction of defense responses in plantlets via intact bacterial cells. BMC PLANT BIOLOGY 2024; 24:104. [PMID: 38336608 PMCID: PMC11297725 DOI: 10.1186/s12870-024-04779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Crown gall disease caused by Agrobacterium tumefaciens is a very destructive affliction that affects grapevines. Endophytic bacteria have been discovered to control plant diseases via the use of several mechanisms. This research examined the potential for controlling crown gall by three endophytic bacteria that were previously isolated from healthy cultivated and wild grapevines including Pseudomonas kilonensis Ba35, Pseudomonas chlororaphis Ba47, and Serratia liquefaciens Ou55. RESULT At various degrees, three endophytic bacteria suppressed the populations of A. tumefaciens Gh1 and greatly decreased the symptoms of crown gall. Furthermore, biofilm production and motility behaviors of A. tumefaciens Gh1were greatly inhibited by the Cell-free Culture Supernatant (CFCS) of endophytic bacteria. According to our findings, CFCS may reduce the adhesion of A. tumefaciens Gh1 cells to grapevine cv. Rashe root tissues as well as their chemotaxis motility toward the extract of the roots. When compared to the untreated control, statistical analysis showed that CFCS significantly reduced the swimming, twitching, and swarming motility of A. tumefaciens Gh1. The findings demonstrated that the endophytic bacteria effectively stimulated the production of plant defensive enzymes including superoxide dismutase (SOD), polyphenol oxidase (PPO), peroxidase (POD), phenylalanine ammonia lyase (PAL), and total soluble phenols at different time intervals in grapevine inoculated with A. tumefaciens Gh1. The Ba47 strain markedly increased the expression levels of defense genes associated with plant resistance. The up-regulation of PR1, PR2, VvACO1, and GAD1 genes in grapevine leaves indicates the activation of SA and JA pathways, which play a role in enhancing resistance to pathogen invasion. The results showed that treating grapevine with Ba47 increased antioxidant defense activities and defense-related gene expression, which reduced oxidative damage caused by A. tumefaciens and decreased the incidence of crown gall disease. CONCLUSION This is the first study on how A. tumefaciens, the grapevine crown gall agent, is affected by CFCS generated by endophytic bacteria in terms of growth and virulence features. To create safer plant disease management techniques, knowledge of the biocontrol processes mediated by CFCS during microbial interactions is crucial.
Collapse
Affiliation(s)
- Faegheh Etminani
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Behrouz Harighi
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| | - Bahman Bahramnejad
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Ali Akbar Mozafari
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
5
|
Huang Z, Zou J, Guo M, Zhang G, Gao J, Zhao H, Yan F, Niu Y, Wang GL. An aerotaxis receptor influences invasion of Agrobacterium tumefaciens into its host. PeerJ 2024; 12:e16898. [PMID: 38332807 PMCID: PMC10851874 DOI: 10.7717/peerj.16898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
Agrobacterium tumefaciens is a soil-borne pathogenic bacterium that causes crown gall disease in many plants. Chemotaxis offers A. tumefaciens the ability to find its host and establish infection. Being an aerobic bacterium, A. tumefaciens possesses one chemotaxis system with multiple potential chemoreceptors. Chemoreceptors play an important role in perceiving and responding to environmental signals. However, the studies of chemoreceptors in A. tumefaciens remain relatively restricted. Here, we characterized a cytoplasmic chemoreceptor of A. tumefaciens C58 that contains an N-terminal globin domain. The chemoreceptor was designated as Atu1027. The deletion of Atu1027 not only eliminated the aerotactic response of A. tumefaciens to atmospheric air but also resulted in a weakened chemotactic response to multiple carbon sources. Subsequent site-directed mutagenesis and phenotypic analysis showed that the conserved residue His100 in Atu1027 is essential for the globin domain's function in both chemotaxis and aerotaxis. Furthermore, deleting Atu1027 impaired the biofilm formation and pathogenicity of A. tumefaciens. Collectively, our findings demonstrated that Atu1027 functions as an aerotaxis receptor that affects agrobacterial chemotaxis and the invasion of A. tumefaciens into its host.
Collapse
Affiliation(s)
- Zhiwei Huang
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Junnan Zou
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Minliang Guo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Guoliang Zhang
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Jun Gao
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Hongliang Zhao
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Feiyu Yan
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Yuan Niu
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Guang-Long Wang
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| |
Collapse
|
6
|
Faist H, Ankenbrand MJ, Sickel W, Hentschel U, Keller A, Deeken R. Opportunistic Bacteria of Grapevine Crown Galls Are Equipped with the Genomic Repertoire for Opine Utilization. Genome Biol Evol 2023; 15:evad228. [PMID: 38085065 PMCID: PMC10745273 DOI: 10.1093/gbe/evad228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Young grapevines (Vitis vinifera) suffer and eventually can die from the crown gall disease caused by the plant pathogen Allorhizobium vitis (Rhizobiaceae). Virulent members of A. vitis harbor a tumor-inducing plasmid and induce formation of crown galls due to the oncogenes encoded on the transfer DNA. The expression of oncogenes in transformed host cells induces unregulated cell proliferation and metabolic and physiological changes. The crown gall produces opines uncommon to plants, which provide an important nutrient source for A. vitis harboring opine catabolism enzymes. Crown galls host a distinct bacterial community, and the mechanisms establishing a crown gall-specific bacterial community are currently unknown. Thus, we were interested in whether genes homologous to those of the tumor-inducing plasmid coexist in the genomes of the microbial species coexisting in crown galls. We isolated 8 bacterial strains from grapevine crown galls, sequenced their genomes, and tested their virulence and opine utilization ability in bioassays. In addition, the 8 genome sequences were compared with 34 published bacterial genomes, including closely related plant-associated bacteria not from crown galls. Homologous genes for virulence and opine anabolism were only present in the virulent Rhizobiaceae. In contrast, homologs of the opine catabolism genes were present in all strains including the nonvirulent members of the Rhizobiaceae and non-Rhizobiaceae. Gene neighborhood and sequence identity of the opine degradation cluster of virulent and nonvirulent strains together with the results of the opine utilization assay support the important role of opine utilization for cocolonization in crown galls, thereby shaping the crown gall community.
Collapse
Affiliation(s)
- Hanna Faist
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Tulln 3430, Austria
- Julius-von-Sachs Institute for Biological Sciences, Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg 97082, Germany
| | - Markus J Ankenbrand
- Faculty of Biology, Center for Computational and Theoretical Biology, University of Würzburg, Würzburg 97074, Germany
| | - Wiebke Sickel
- Institute of Biodiversity, Thuenen-Institute of Biodiversity, Braunschweig 38116, Germany
| | - Ute Hentschel
- RD3 Marine Ecology, RU Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24105, Germany
- Sektion Biologie, Christian-Albrechts University of Kiel, Kiel 24105, Germany
| | - Alexander Keller
- Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Rosalia Deeken
- Julius-von-Sachs Institute for Biological Sciences, Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg 97082, Germany
| |
Collapse
|
7
|
Zhang Y, Ru Y, Shi Z, Wang H, Zhang J, Wu J, Pang H, Feng H. Effects of different light conditions on transient expression and biomass in Nicotiana benthamiana leaves. Open Life Sci 2023; 18:20220732. [PMID: 37854318 PMCID: PMC10579877 DOI: 10.1515/biol-2022-0732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/02/2023] [Accepted: 08/27/2023] [Indexed: 10/20/2023] Open
Abstract
In the process of the production of recombinant proteins by using an Agrobacterium-mediated transient gene expression system, the effectiveness of the control of light conditions pre- and post-agroinfiltration on efficiency of transient expression is worth being evaluated. In this study, Nicotiana benthamiana plants were used as a bioreactor to investigate the effects of different light conditions pre- and post-agroinfiltration on the transient expression of green fluorescent protein (GFP). The results showed that the plants grown under light condition for 5 weeks had the highest level of transient expression among those grown for 4-8 weeks. In the pre-agroinfiltration, the level of transient expression of GFP was obviously decreased by the increase in light intensity or by the shortening of the photoperiod. Although the shortening of the photoperiod post-agroinfiltration also decreased the level of transient expression, moderate light intensity post-agroinfiltration was needed for higher level of transient expression efficiency. However, there was no strong correlation between the transient expression efficiency and plant growth. The results suggested that light condition was an important factor affecting the level of transient expression in plants. Hence, light conditions should be optimized to obtain higher productivity of recombinant protein from transient expression systems.
Collapse
Affiliation(s)
- Yuejing Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Yi Ru
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou730046, Gansu, China
| | - Zhenzhen Shi
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Hanqi Wang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
- New Rural Development Research Institute, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Jianping Wu
- New Rural Development Research Institute, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Hailong Pang
- New Rural Development Research Institute, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Hanqing Feng
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
- New Rural Development Research Institute, Northwest Normal University, Lanzhou, 730070, Gansu, China
| |
Collapse
|
8
|
Newberger DR, Minas IS, Manter DK, Vivanco JM. Shifts of the soil microbiome composition induced by plant-plant interactions under increasing cover crop densities and diversities. Sci Rep 2023; 13:17150. [PMID: 37816810 PMCID: PMC10564930 DOI: 10.1038/s41598-023-44104-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023] Open
Abstract
Interspecific and intraspecific competition and facilitation have been a focus of study in plant-plant interactions, but their influence on plant recruitment of soil microbes is unknown. In this greenhouse microcosm experiment, three cover crops (alfalfa, brassica, and fescue) were grown alone, in paired mixtures, and all together under different densities. For all monoculture trials, total pot biomass increased as density increased. Monoculture plantings of brassica were associated with the bacteria Azospirillum spp., fescue with Ensifer adhaerens, and alfalfa with both bacterial taxa. In the polycultures of cover crops, for all plant mixtures, total above-ground alfalfa biomass increased with density, and total above ground brassica biomass remained unchanged. For each plant mixture, differential abundances highlighted bacterial taxa which had not been previously identified in monocultures. For instance, mixtures of all three plants showed an increase in abundance of Planctomyces sp. SH-PL14 and Sandaracinus amylolyticus which were not represented in the monocultures. Facilitation was best supported for the alfalfa-fescue interaction as the total above ground biomass was the highest of any mixture. Additionally, the bulk soil microbiome that correlated with increasing plant densities showed increases in plant growth-promoting rhizobacteria such as Achromobacter xylosoxidans, Stentotrophomonas spp., and Azospirillum sp. In contrast, Agrobacterium tumefaciens, a previously known generalist phytopathogen, also increased with alfalfa-fescue plant densities. This could suggest a strategy by which, after facilitation, a plant neighbor could culture a pathogen that could be more detrimental to the other.
Collapse
Affiliation(s)
- Derek R Newberger
- Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ioannis S Minas
- Department of Horticulture and Landscape Architecture and Pomology Research, Colorado State University, Fort Collins, CO, 80523, USA
| | - Daniel K Manter
- USDA, Agricultural Research Services, Soil Management and Sugar Beet Research Unit, Fort Collins, CO, 80526, USA
| | - Jorge M Vivanco
- Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
9
|
Platani M, Sokefun O, Bassil E, Apidianakis Y. Genetic engineering and genome editing in plants, animals and humans: Facts and myths. Gene 2023; 856:147141. [PMID: 36574935 DOI: 10.1016/j.gene.2022.147141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Human history is inextricably linked to the introduction of desirable heritable traits in plants and animals. Selective breeding (SB) predates our historical period and has been practiced since the advent of agriculture and farming more than ten thousand years ago. Since the 1970s, methods of direct plant and animal genome manipulation are constantly being developed. These are collectively described as "genetic engineering" (GE). Plant GE aims to improve nutritional value, insect resistance and weed control. Animal GE has focused on livestock improvement and disease control. GE applications also involve medical improvements intended to treat human disease. The scientific consensus built around marketed products of GE organisms (GEOs) is usually well established, noting significant benefits and low risks. GEOs are exhaustively scrutinized in the EU and many non-EU countries for their effects on human health and the environment, but scrutiny should be equally applied to all previously untested organisms derived directly from nature or through selective breeding. In fact, there is no evidence to suggest that natural or selectively bred plants and animals are in principle safer to humans than GEOs. Natural and selectively bred strains evolve over time via genetic mutations that can be as risky to humans and the environment as the mutations found in GEOs. Thus, previously untested plant and animal strains aimed for marketing should be proven useful or harmful to humans only upon comparative testing, regardless of their origin. Highlighting the scientific consensus declaring significant benefits and rather manageable risks provided by equitably accessed GEOs, can mitigate negative predispositions by policy makers and the public. Accordingly, we provide an overview of the underlying technologies and the scientific consensus to help resolve popular myths about the safety and usefulness of GEOs.
Collapse
Affiliation(s)
- Maria Platani
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Owolabi Sokefun
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Elias Bassil
- Horticultural Sciences Department, University of Florida, Gainesville, USA
| | | |
Collapse
|
10
|
Mahmood MA, Naqvi RZ, Rahman SU, Amin I, Mansoor S. Plant Virus-Derived Vectors for Plant Genome Engineering. Viruses 2023; 15:v15020531. [PMID: 36851743 PMCID: PMC9958682 DOI: 10.3390/v15020531] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Advances in genome engineering (GE) tools based on sequence-specific programmable nucleases have revolutionized precise genome editing in plants. However, only the traditional approaches are used to deliver these GE reagents, which mostly rely on Agrobacterium-mediated transformation or particle bombardment. These techniques have been successfully used for the past decades for the genetic engineering of plants with some limitations relating to lengthy time-taking protocols and transgenes integration-related regulatory concerns. Nevertheless, in the era of climate change, we require certain faster protocols for developing climate-smart resilient crops through GE to deal with global food security. Therefore, some alternative approaches are needed to robustly deliver the GE reagents. In this case, the plant viral vectors could be an excellent option for the delivery of GE reagents because they are efficient, effective, and precise. Additionally, these are autonomously replicating and considered as natural specialists for transient delivery. In the present review, we have discussed the potential use of these plant viral vectors for the efficient delivery of GE reagents. We have further described the different plant viral vectors, such as DNA and RNA viruses, which have been used as efficient gene targeting systems in model plants, and in other important crops including potato, tomato, wheat, and rice. The achievements gained so far in the use of viral vectors as a carrier for GE reagent delivery are depicted along with the benefits and limitations of each viral vector. Moreover, recent advances have been explored in employing viral vectors for GE and adapting this technology for future research.
Collapse
Affiliation(s)
- Muhammad Arslan Mahmood
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
- Department of Biological Sciences, University of Sialkot, Sialkot 51310, Pakistan
| | - Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
| | - Saleem Ur Rahman
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi 74000, Pakistan
- Correspondence:
| |
Collapse
|
11
|
Cao Y, He K, Li Q, Chen X, Mo H, Li Z, Ji Q, Li G, Du G, Yang H. Transcriptome analysis of Armillaria gallica 012 m in response to auxin. J Basic Microbiol 2023; 63:17-25. [PMID: 36449692 DOI: 10.1002/jobm.202200463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 12/02/2022]
Abstract
Gastrodia elata is an achlorophyllous and fully mycoheterotrophic orchid which obtains carbon and other nutrients from Armillaria species in its life cycle. Many researchers suggested that plant hormones, as signing molecules, play a central role in the plant-fungi interaction. In the process of Armillaria gallica 012 m cultivation, both exogenous indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) distinctly stimulated the growth of mycelia in solid media. The differential expression genes (DEGs) of A. gallica 012 m with IAA versus blank control (BK) and IBA versus BK were investigated. The results showed that more than 80% of DEGs of the IAA group were coincident with the DEGs of the IBA group, and more than half of upregulated DEGs and most of the downregulated DEGs of the IAA group coincided with those DEGs of the IBA group. Above research implied that A. gallica 012 m could perceive IAA and IBA, and possess similar responses and signaling pathways to IAA and IBA. The overlapping differential genes of the IAA group and IBA group were analyzed by GO term, and the results showed that several DEGs identified were related to biological processes including positive regulation of the biological process and biological process. The downregulated NmrA-like and FKBP_C genes might be benefit to the growth of mycelia. Those results can explain that exiguous IAA and IBA improved the growth of A. gallica to some extent. We speculate that IAA and IBA are signaling molecules, and regulate the expression of growth-related genes of A. gallica 012 m by the same signaling pathway.
Collapse
Affiliation(s)
- Yapu Cao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Kaixiang He
- Department of Chemistry, School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Qingqing Li
- Life Science College, Southwest Forestry University, Kunming, China.,Kunming Xianghao Technology Co. Ltd., Kunming, China
| | - Xin Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Haiying Mo
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Zhihao Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Qiaolin Ji
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Gang Du
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Haiying Yang
- Department of Chemistry, School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| |
Collapse
|
12
|
Pan H, Xiao Y, Xie A, Li Z, Ding H, Yuan X, Sun R, Peng Q. The antibacterial mechanism of phenylacetic acid isolated from Bacillus megaterium L2 against Agrobacterium tumefaciens. PeerJ 2022; 10:e14304. [PMID: 36389424 PMCID: PMC9651047 DOI: 10.7717/peerj.14304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Agrobacterium tumefaciens T-37 can infect grapes and other fruit trees and cause root cancer. Given the pollution and damage of chemical agents to the environment, the use of biological control has become an important area of focus. Bacillus megaterium L2 is a beneficial biocontrol strain isolated and identified in the laboratory, which has a good antibacterial effect on a variety of plant pathogens. The antibacterial metabolites of L2 were separated and purified to obtain a bioactive compound phenylacetic acid (PAA). Methods The potential antibacterial mechanism of PAA against A. tumefaciens T-37 strain was determined by relative conductivity, leakage of nucleic acids, proteins, and soluble total sugars, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and reactive oxygen species (ROS). Results PAA showed good antibacterial activity against strain A. tumefaciens T-37 with IC50 of 0.8038 mg/mL. Our data suggested that after treatment with PAA, the relative conductivity, nucleic acid, protein, and total soluble sugar of T-37 were increased significantly compared with the chloramphenicol treatment group and the negative treatment group. The total protein synthesis of T-37 cells was inhibited, the consumption of phosphorus decreased with the increase of incubation time, and the content of ROS was significantly higher than that in the negative treatment group. Meanwhile, the activity of two key enzymes (MDH and SDH) involved in the tricarboxylic acid cycle (TCA cycle) decreased. In addition, T-37 cells were found to be damaged by scanning electron microscopy observation. Our results showed that PAA can destroy cell membrane integrity, damage cell structures, affect cell metabolism, and inhibit protein synthesis to exert an antibacterial effect. Conclusions We concluded that the mechanism of action of the PAA against strain T-37 might be described as PAA exerting antibacterial activity by affecting cell metabolism, inhibiting protein synthesis, and destroying cell membrane integrity and cell ultrastructure. Therefore, PAA has a promising application prospect in the prevention and treatment of root cancer disease caused by A. tumefaciens.
Collapse
Affiliation(s)
- Hang Pan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Yang Xiao
- Institution of Supervision and Inspection Product Quality of Guizhou Province, Guiyang, China
| | - Ailin Xie
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Zhu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China,Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Haixia Ding
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - XiaoJu Yuan
- Development Center of Planting, Huishui County of Qiannan Prefecture, Guizhou Province, China
| | - Ran Sun
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Qiuju Peng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| |
Collapse
|
13
|
Paschoal D, Costa JL, da Silva EM, da Silva FB, Capelin D, Ometto V, Aricetti JA, Carvalho GG, Pimpinato RF, de Oliveira RF, Carrera E, López-Díaz I, Rossi ML, Tornisielo V, Caldana C, Riano-Pachon DM, Cesarino I, Teixeira PJPL, Figueira A. Infection by Moniliophthora perniciosa reprograms tomato Micro-Tom physiology, establishes a sink, and increases secondary cell wall synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3651-3670. [PMID: 35176760 DOI: 10.1093/jxb/erac057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Witches' broom disease of cacao is caused by the pathogenic fungus Moniliophthora perniciosa. By using tomato (Solanum lycopersicum) cultivar Micro-Tom (MT) as a model system, we investigated the physiological and metabolic consequences of M. perniciosa infection to determine whether symptoms result from sink establishment during infection. Infection of MT by M. perniciosa caused reductions in root biomass and fruit yield, a decrease in leaf gas exchange, and down-regulation of photosynthesis-related genes. The total leaf area and water potential decreased, while ABA levels, water conductance/conductivity, and ABA-related gene expression increased. Genes related to sugar metabolism and those involved in secondary cell wall deposition were up-regulated upon infection, and the concentrations of sugars, fumarate, and amino acids increased. 14C-glucose was mobilized towards infected MT stems, but not in inoculated stems of the MT line overexpressing CYTOKININ OXIDASE-2 (35S::AtCKX2), suggesting a role for cytokinin in establishing a sugar sink. The up-regulation of genes involved in cell wall deposition and phenylpropanoid metabolism in infected MT, but not in 35S::AtCKX2 plants, suggests establishment of a cytokinin-mediated sink that promotes tissue overgrowth with an increase in lignin. Possibly, M. perniciosa could benefit from the accumulation of secondary cell walls during its saprotrophic phase of infection.
Collapse
Affiliation(s)
- Daniele Paschoal
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Juliana L Costa
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Eder M da Silva
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Fábia B da Silva
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Diogo Capelin
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Vitor Ometto
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Juliana A Aricetti
- Laboratório Nacional de Biorrenováveis, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, 13083-100, Brazil
| | - Gabriel G Carvalho
- Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Rodrigo F Pimpinato
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Ricardo F de Oliveira
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Esther Carrera
- Universitat Politècnica de València (UPV), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Isabel López-Díaz
- Universitat Politècnica de València (UPV), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Mônica L Rossi
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Valdemar Tornisielo
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Camila Caldana
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Diego M Riano-Pachon
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Igor Cesarino
- Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Paulo J P L Teixeira
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| |
Collapse
|
14
|
Ahmed B, Jailani A, Lee JH, Lee J. Effect of halogenated indoles on biofilm formation, virulence, and root surface colonization by Agrobacterium tumefaciens. CHEMOSPHERE 2022; 293:133603. [PMID: 35032513 DOI: 10.1016/j.chemosphere.2022.133603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Agrobacterium tumefaciens is a plant pathogen that causes crown gall disease in several plant species by transferring its T-DNA to the host genome. Its chemotactic response to a range of chemical compounds released by hosts facilitates its colonization to host surfaces, and thus, novel anti-agrobacterium compounds are needed to prevent its biofilm formation. Here, we investigated 83 indole derivatives against A. tumefaciens, and based on the screening, 4-chloroindole, 6-iodoindole, and 5-chloro-2-methyl indole were selected as candidates that at 50 μg mL-1 significantly inhibited the adherence and biofilm formation of A. tumefaciens to abiotic (nitrocellulose and polystyrene) and biotic (roots of Brassica juncea) surfaces. Furthermore, they reduced bacterial growth in a time and concentration-dependent manner and significantly reduced log CFU mL-1 and survival (%). Changes in biofilm morphologies and biomasses, thicknesses, and substratum coverages were determined, and 2-D and 3-D analyses were performed using a crystal violet assay and bright field, CLSM, and SEM microscopies. Virulence factors such as swimming motility, exopolysaccharide, and exo-protease production, and cell surface hydrophobicity were markedly inhibited by the three compounds. Transcriptional analysis showed multi-fold downregulation of biofilm, virulence, motility, and stress-related genes; however, the degrees of these downregulations were variably affected. B. juncea seed germination was only severely affected by 4-chloroindole. This study demonstrates the promising antibiofilm and antivirulence activities of the three indole derivatives tested and their potentials for targeting and curbing A. tumefaciens infections.
Collapse
Affiliation(s)
- Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Afreen Jailani
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea.
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
15
|
Zhou JW, Ji PC, Jiang H, Tan XJ, Jia AQ. Quorum Sensing Inhibition and Metabolic Intervention of 4-Hydroxycinnamic Acid Against Agrobacterium tumefaciens. Front Microbiol 2022; 13:830632. [PMID: 35330766 PMCID: PMC8940537 DOI: 10.3389/fmicb.2022.830632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The natural product 4-hydroxycinnamic acid (HA) was firstly isolated from the metabolites of Phomopsis liquidambari, one endophytic fungus from Punica granatum leaves. The anti-QS potential of HA was evaluated by β-galactosidase assay and acylated homoserine lactones (AHL) analysis. The MIC of HA was > 1.20 mM. Exposure to HA at sub-MIC concentrations (0.30-0.60 mM) remarkably reduced the β-galactosidase activity and AHL secretion. Transcriptional analysis by qRT-PCR and docking simulation indicated that HA functions as an anti-QS agent by inhibiting the transcriptional levels of traI and traR rather than signal mimicry. The blocked QS lead to suppressed biofilm formation, motilities, and flagella formation after exposure to HA at concentrations ranging from 0.30 to 0.80 mM. The dysfunctional QS also resulted in repressed antioxidant enzymes and intensified oxidative stress. The intensified oxidative stress destroyed membrane integrity, induced energy supply deficiency, resulted in disorder of protein and nuclear acid metabolism, and ultimately weakened pathogenicity of A. tumefaciens. HA may have promising potential for controlling A. tumefaciens.
Collapse
Affiliation(s)
- Jin-Wei Zhou
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Peng-Cheng Ji
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Huan Jiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China.,School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Xiao-Juan Tan
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, China
| | - Ai-Qun Jia
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| |
Collapse
|
16
|
|
17
|
Tomasiak A, Zhou M, Betekhtin A. Buckwheat in Tissue Culture Research: Current Status and Future Perspectives. Int J Mol Sci 2022; 23:2298. [PMID: 35216414 PMCID: PMC8876565 DOI: 10.3390/ijms23042298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Buckwheat is a member of a genus of 23 species, where the two most common species are Fagopyrum esculentum (common buckwheat) and Fagopyrum tataricum (Tartary buckwheat). This pseudocereal is a source of micro and macro nutrients, such as gluten-free proteins and amino acids, fatty acids, bioactive compounds, dietary fibre, fagopyrins, vitamins and minerals. It is gaining increasing attention due to its health-promoting properties. Buckwheat is widely susceptible to in vitro conditions which are used to study plantlet regeneration, callus induction, organogenesis, somatic embryogenesis, and the synthesis of phenolic compounds. This review summarises the development of buckwheat in in vitro culture and describes protocols for the regeneration of plantlets from various explants and differing concentrations of plant growth regulators. It also describes callus induction protocols as well as the role of calli in plantlet regeneration. Protocols for establishing hairy root cultures with the use of Agrobacterium rhizogens are useful in the synthesis of secondary metabolites, as well as protocols used for transgenic plants. The review also focuses on the future prospects of buckwheat in tissue culture and the challenges researchers are addressing.
Collapse
Affiliation(s)
- Alicja Tomasiak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St., 40-032 Katowice, Poland;
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Room 405, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China;
| | - Alexander Betekhtin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St., 40-032 Katowice, Poland;
| |
Collapse
|
18
|
Kawaguchi A, Sone T, Ochi S, Matsushita Y, Noutoshi Y, Nita M. Origin of Pathogens of Grapevine Crown Gall Disease in Hokkaido in Japan as Characterized by Molecular Epidemiology of Allorhizobium vitis Strains. Life (Basel) 2021; 11:life11111265. [PMID: 34833141 PMCID: PMC8620909 DOI: 10.3390/life11111265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
Crown gall is a globally distributed and economically important disease of grapevine and other important crop plants. The causal agent of grapevine crown gall is tumorigenic Allorhizobium vitis (Ti) strains that harbor a tumor-inducing plasmid (pTi). The epidemic of grapevine crown gall has not been widely elucidated. In this study, we investigated the genetic diversity of 89 strains of Ti and nonpathogenic A. vitis to clarify their molecular epidemiology. Multi-locus sequence analysis (MLSA) of the partial nucleotide sequences of pyrG, recA, and rpoD was performed for molecular typing of A. vitis strains isolated from grapevines with crown gall symptoms grown in 30 different vineyards, five different countries, mainly in Japan, and seven genomic groups A to F were obtained. The results of MLSA and logistic regression indicated that the population of genetic group A was significantly related to a range of prefectures and that the epidemic of group A strains originated mainly in Hokkaido in Japan through soil infection. Moreover, group E strains could have been transported by infected nursery stocks. In conclusion, this study indicates that both soil infection and transporting of infected nursery stocks are working as infection source in Hokkaido.
Collapse
Affiliation(s)
- Akira Kawaguchi
- Western Region Agricultural Research Center (WARC) (Kinki, Chugoku, and Shikoku Regions), National Agriculture and Food Research Organization (NARO), 6-12-1 Nishifukatsu-cho, Fukuyama, Hiroshima 721-8514, Japan
- Correspondence: ; Tel.: +81-84-923-5336
| | - Teruo Sone
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo 060-8589, Japan;
| | - Sunao Ochi
- Institute of Plant Protection, National Agriculture and Food Research Organization (NIPP), 2-1-18 Kannondai, Tsukuba, Ibaraki 721-8514, Japan; (S.O.); (Y.M.)
| | - Yosuke Matsushita
- Institute of Plant Protection, National Agriculture and Food Research Organization (NIPP), 2-1-18 Kannondai, Tsukuba, Ibaraki 721-8514, Japan; (S.O.); (Y.M.)
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan;
| | - Mizuho Nita
- Alson H. Smith, Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Winchester, VA 22602, USA;
| |
Collapse
|
19
|
Boutry J, Tissot S, Ujvari B, Capp JP, Giraudeau M, Nedelcu AM, Thomas F. The evolution and ecology of benign tumors. Biochim Biophys Acta Rev Cancer 2021; 1877:188643. [PMID: 34715267 DOI: 10.1016/j.bbcan.2021.188643] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/12/2022]
Abstract
Tumors are usually classified into two main categories - benign or malignant, with much more attention being devoted to the second category given that they are usually associated with more severe health issues (i.e., metastatic cancers). Here, we argue that the mechanistic distinction between benign and malignant tumors has narrowed our understanding of neoplastic processes. This review provides the first comprehensive discussion of benign tumors in the context of their evolution and ecology as well as interactions with their hosts. We compare the genetic and epigenetic profiles, cellular activities, and the involvement of viruses in benign and malignant tumors. We also address the impact of intra-tumoral cell composition and its relationship with the tumoral microenvironment. Lastly, we explore the differences in the distribution of benign and malignant neoplasia across the tree of life and provide examples on how benign tumors can also affect individual fitness and consequently the evolutionary trajectories of populations and species. Overall, our goal is to bring attention to the non-cancerous manifestations of tumors, at different scales, and to stimulate research on the evolutionary ecology of host-tumor interactions on a broader scale. Ultimately, we suggest that a better appreciation of the differences and similarities between benign and malignant tumors is fundamental to our understanding of malignancy both at mechanistic and evolutionary levels.
Collapse
Affiliation(s)
- Justine Boutry
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Sophie Tissot
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin, University, Vic., Australia
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute, University of Toulouse, INSA, CNRS, INRAE, Toulouse, France
| | - Mathieu Giraudeau
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France; LIENSs, UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Frédéric Thomas
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France.
| |
Collapse
|
20
|
Gorshkov V, Tsers I. Plant susceptible responses: the underestimated side of plant-pathogen interactions. Biol Rev Camb Philos Soc 2021; 97:45-66. [PMID: 34435443 PMCID: PMC9291929 DOI: 10.1111/brv.12789] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022]
Abstract
Plant susceptibility to pathogens is usually considered from the perspective of the loss of resistance. However, susceptibility cannot be equated with plant passivity since active host cooperation may be required for the pathogen to propagate and cause disease. This cooperation consists of the induction of reactions called susceptible responses that transform a plant from an autonomous biological unit into a component of a pathosystem. Induced susceptibility is scarcely discussed in the literature (at least compared to induced resistance) although this phenomenon has a fundamental impact on plant-pathogen interactions and disease progression. This review aims to summarize current knowledge on plant susceptible responses and their regulation. We highlight two main categories of susceptible responses according to their consequences and indicate the relevance of susceptible response-related studies to agricultural practice. We hope that this review will generate interest in this underestimated aspect of plant-pathogen interactions.
Collapse
Affiliation(s)
- Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, 420111, Russia.,Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, 420111, Russia
| | - Ivan Tsers
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, 420111, Russia
| |
Collapse
|
21
|
McIntyre KE, Bush DR, Argueso CT. Cytokinin Regulation of Source-Sink Relationships in Plant-Pathogen Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:677585. [PMID: 34504504 PMCID: PMC8421792 DOI: 10.3389/fpls.2021.677585] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/12/2021] [Indexed: 06/01/2023]
Abstract
Cytokinins are plant hormones known for their role in mediating plant growth. First discovered for their ability to promote cell division, this class of hormones is now associated with many other cellular and physiological functions. One of these functions is the regulation of source-sink relationships, a tightly controlled process that is essential for proper plant growth and development. As discovered more recently, cytokinins are also important for the interaction of plants with pathogens, beneficial microbes and insects. Here, we review the importance of cytokinins in source-sink relationships in plants, with relation to both carbohydrates and amino acids, and highlight a possible function for this regulation in the context of plant biotic interactions.
Collapse
Affiliation(s)
- Kathryn E. McIntyre
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Daniel R. Bush
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Cristiana T. Argueso
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
22
|
Drapal M, Enfissi EMA, Fraser PD. Metabolic effects of agro-infiltration on N. benthamiana accessions. Transgenic Res 2021; 30:303-315. [PMID: 33909228 PMCID: PMC8080481 DOI: 10.1007/s11248-021-00256-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/10/2021] [Indexed: 02/07/2023]
Abstract
Over the recent years, Nicotiana benthamiana has gained great importance as a chassis for the production of high value, low volume pharmaceuticals and/or active pharmaceutical ingredients (APIs). The process involving infiltration of the N. benthamiana leaves with Agrobacterium spp, harbouring vectors with the gene of interest, facilitates transient expression. To date, little information is available on the effect of the agro-infiltration process on the metabolome of N. benthamiana, which is necessary to improve the process for large-scale, renewable manufacturing of high value compounds and medical products. Hence, the objective of the present study was to assess metabolic adaptation of N. benthamiana as a response to the presence of Agrobacterium. The present study elucidated changes of the steady-state metabolism in the agroinfiltrated leaf area, the area around the infection and the rest of the plant. Furthermore, the study discusses the phenotypic advantages of the N. benthamiana lab strain, optimised for agro-infiltration, compared to three other wild accessions. Results showed that the lab strain has a different metabolic composition and showed less alterations of the phenylpropanoid pathway and cell wall remodelling in the agroinfiltrated leaf areas, for example chlorogenic acid, cadaverine and C18:0-2-glycerol ester. In conclusion, both of these alterations present potential candidates to improve the phenotype of the N. benthamiana lab strain for a more efficient transient expression process.
Collapse
Affiliation(s)
- Margit Drapal
- Biochemistry, Royal Holloway University of London, Egham, UK
| | | | - Paul D Fraser
- Biochemistry, Royal Holloway University of London, Egham, UK.
| |
Collapse
|
23
|
Hu Y, Lacroix B, Citovsky V. Modulation of plant DNA damage response gene expression during Agrobacterium infection. Biochem Biophys Res Commun 2021; 554:7-12. [PMID: 33774281 PMCID: PMC8086903 DOI: 10.1016/j.bbrc.2021.03.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/26/2022]
Abstract
Agrobacterium T-DNA (transfer DNA) integration into the plant genome relies mostly on host proteins involved in the DNA damage repair pathways. However, conflicting results have been obtained using plants with mutated or down-regulated genes involved in these pathways. Here, we chose a different approach by following the expression of a series of genes, encoding proteins involved in the DNA damage response, during early stages of Agrobacterium infection in tobacco. First, we identified tobacco homologs of Arabidopsis genes induced upon DNA damage and demonstrated that their expression was activated by bleomycin, a DNA-break causing agent. Then, we showed that Agrobacterium infection induces the expression of several of these genes markers of the host DNA damage response, with different patterns of transcriptional response. This induction largely depends on Agrobacterium virulence factors, but not on the T-DNA, suggesting that the DNA damage response activation may rely on Agrobacterium-encoded virulence proteins. Our results suggest that Agrobacterium modulates the plant DNA damage response machinery, which might facilitate the integration of the bacterial T-DNA into the DNA breaks in the host genome.
Collapse
Affiliation(s)
- Yufei Hu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, USA; College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Benoît Lacroix
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, USA.
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, USA
| |
Collapse
|
24
|
Chen L, Ma Q, Liu H, Bian L, Wang X, Liu Y. Reduced Root Secretion of Valine in Rosa-Microbe Interaction Contributes to the Decreased Colonization of Pathogenic Agrobacterium tumefaciens. PLANT DISEASE 2021; 105:599-606. [PMID: 32840433 DOI: 10.1094/pdis-06-20-1179-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Root exudates play a critical role in root-microbe interactions. Agrobacterium tumefaciens causes crown gall disease in multiple plant species, but rose root exudate-mediated inhibition of Agrobacterium in the rhizosphere is poorly understood. In this study, the influence of preinoculation with beneficial bacteria or pathogens on root exudates and subsequent colonization by A. tumefaciens was investigated in a split-root system. We found that preinoculation of rose plants in a split-root system with Bacillus velezensis CLA178 or A. tumefaciens C58 inhibited subsequent colonization by C58. Root secretion of valine had positive effects on the chemotaxis, biofilm formation, colonization of C58, and crown gall disease severity, but valine secretion decreased significantly when Rosa multiflora plants were preinoculated with CLA178 or C58. These results indicated that rose plants reduced root secretion of valine in response to microbial colonization, thereby reducing the colonization of Agrobacterium colonization and disease severity. This study provides new insights into the root exudate-mediated interactions of rose plants, B. velezensis, and A. tumefaciens and proposes a potential way to control crown gall disease.
Collapse
Affiliation(s)
- Lin Chen
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, People's Republic of China
| | - Qinghua Ma
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, People's Republic of China
| | - Huihui Liu
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, People's Republic of China
| | - Lusen Bian
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, People's Republic of China
| | - Xinghong Wang
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, People's Republic of China
| | - Yunpeng Liu
- Key Laboratory of Agricultural Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| |
Collapse
|
25
|
Taylor SKB, Minhas MH, Tong J, Selvaganapathy PR, Mishra RK, Gupta BP. C. elegans electrotaxis behavior is modulated by heat shock response and unfolded protein response signaling pathways. Sci Rep 2021; 11:3115. [PMID: 33542359 PMCID: PMC7862228 DOI: 10.1038/s41598-021-82466-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/18/2021] [Indexed: 01/30/2023] Open
Abstract
The nematode C. elegans is a leading model to investigate the mechanisms of stress-induced behavioral changes coupled with biochemical mechanisms. Our group has previously characterized C. elegans behavior using a microfluidic-based electrotaxis device, and showed that worms display directional motion in the presence of a mild electric field. In this study, we describe the effects of various forms of genetic and environmental stress on the electrotactic movement of animals. Using exposure to chemicals, such as paraquat and tunicamycin, as well as mitochondrial and endoplasmic reticulum (ER) unfolded protein response (UPR) mutants, we demonstrate that chronic stress causes abnormal movement. Additionally, we report that pqe-1 (human RNA exonuclease 1 homolog) is necessary for the maintenance of multiple stress response signaling and electrotaxis behavior of animals. Further, exposure of C. elegans to several environmental stress-inducing conditions revealed that while chronic heat and dietary restriction caused electrotaxis speed deficits due to prolonged stress, daily exercise had a beneficial effect on the animals, likely due to improved muscle health and transient activation of UPR. Overall, these data demonstrate that the electrotaxis behavior of worms is susceptible to cytosolic, mitochondrial, and ER stress, and that multiple stress response pathways contribute to its preservation in the face of stressful stimuli.
Collapse
Affiliation(s)
- Shane K. B. Taylor
- grid.25073.330000 0004 1936 8227Department of Biology, McMaster University, Hamilton, ON Canada
| | - Muhammad H. Minhas
- grid.25073.330000 0004 1936 8227Department of Biology, McMaster University, Hamilton, ON Canada
| | - Justin Tong
- grid.25073.330000 0004 1936 8227Department of Biology, McMaster University, Hamilton, ON Canada
| | - P. Ravi Selvaganapathy
- grid.25073.330000 0004 1936 8227Department of Mechanical Engineering, McMaster University, Hamilton, ON Canada
| | - Ram K. Mishra
- grid.25073.330000 0004 1936 8227Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON Canada
| | - Bhagwati P. Gupta
- grid.25073.330000 0004 1936 8227Department of Biology, McMaster University, Hamilton, ON Canada
| |
Collapse
|
26
|
Fouad AS, Hafez RM. Effects of cobalt ions and cobalt nanoparticles on transient expression of gus gene in catharanthus roseus suspension cultures. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2021. [DOI: 10.1080/16878507.2020.1847386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ahmed Sayed Fouad
- Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Rehab Mahmoud Hafez
- Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
27
|
Eichmann R, Richards L, Schäfer P. Hormones as go-betweens in plant microbiome assembly. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:518-541. [PMID: 33332645 PMCID: PMC8629125 DOI: 10.1111/tpj.15135] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 05/04/2023]
Abstract
The interaction of plants with complex microbial communities is the result of co-evolution over millions of years and contributed to plant transition and adaptation to land. The ability of plants to be an essential part of complex and highly dynamic ecosystems is dependent on their interaction with diverse microbial communities. Plant microbiota can support, and even enable, the diverse functions of plants and are crucial in sustaining plant fitness under often rapidly changing environments. The composition and diversity of microbiota differs between plant and soil compartments. It indicates that microbial communities in these compartments are not static but are adjusted by the environment as well as inter-microbial and plant-microbe communication. Hormones take a crucial role in contributing to the assembly of plant microbiomes, and plants and microbes often employ the same hormones with completely different intentions. Here, the function of hormones as go-betweens between plants and microbes to influence the shape of plant microbial communities is discussed. The versatility of plant and microbe-derived hormones essentially contributes to the creation of habitats that are the origin of diversity and, thus, multifunctionality of plants, their microbiota and ultimately ecosystems.
Collapse
Affiliation(s)
- Ruth Eichmann
- Institute of Molecular BotanyUlm UniversityUlm89069Germany
| | - Luke Richards
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| | - Patrick Schäfer
- Institute of Molecular BotanyUlm UniversityUlm89069Germany
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
28
|
Zhou JW, Jia AQ, Tan XJ, Chen H, Sun B, Huang TZ, He Y, Li PL, Liu EQ. 1-(4-Amino-2-Hydroxyphenyl)Ethenone Suppresses Agrobacterium tumefaciens Virulence and Metabolism. Front Microbiol 2020; 11:584767. [PMID: 33281779 PMCID: PMC7688917 DOI: 10.3389/fmicb.2020.584767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
The impact of 1-(4-amino-2-hydroxyphenyl)ethanone (AHPE) from the metabolites of endophytic fungus Phomopsis liquidambari on quorum sensing (QS) of Agrobacterium tumefaciens was evaluated for the first time in this study. Exposure to AHPE at concentrations ranging from 12.5 to 50 μg/mL, the β-galactosidase activity, acyl-homoserine lactone level, swimming motility, chemotaxis, and flagella formation were significantly inhibited. qRT-PCR quantification combined with the docking analysis demonstrated that AHPE affected the QS system of A. tumefaciens by repressing the transcriptional levels of traI and traR rather than signal mimicry. 1H NMR-based metabolic analysis indicated that the metabolism of A. tumefaciens was notably disturbed with AHPE treatment. AHPE treatment also resulted in the enhanced oxidative stress in A. tumefaciens. The enhanced oxidative stress lead to the disorder of energy supply, protein synthesis, and nucleotide metabolism, and ultimately attenuated the pathogenicity of A. tumefaciens. Our study indicated that AHPE can serve as a potential pesticide to defend against A. tumefaciens.
Collapse
Affiliation(s)
- Jin-Wei Zhou
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Ai-Qun Jia
- School of Life and Pharmaceutical Sciences, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Xiao-Juan Tan
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Bing Sun
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Tian-Zi Huang
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Yu He
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Pei-Li Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - En-Qi Liu
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, China
| |
Collapse
|
29
|
De Saeger J, Park J, Chung HS, Hernalsteens JP, Van Lijsebettens M, Inzé D, Van Montagu M, Depuydt S. Agrobacterium strains and strain improvement: Present and outlook. Biotechnol Adv 2020; 53:107677. [PMID: 33290822 DOI: 10.1016/j.biotechadv.2020.107677] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/03/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022]
Abstract
Almost 40 years ago the first transgenic plant was generated through Agrobacterium tumefaciens-mediated transformation, which, until now, remains the method of choice for gene delivery into plants. Ever since, optimized Agrobacterium strains have been developed with additional (genetic) modifications that were mostly aimed at enhancing the transformation efficiency, although an optimized strain also exists that reduces unwanted plasmid recombination. As a result, a collection of very useful strains has been created to transform a wide variety of plant species, but has also led to a confusing Agrobacterium strain nomenclature. The latter is often misleading for choosing the best-suited strain for one's transformation purposes. To overcome this issue, we provide a complete overview of the strain classification. We also indicate different strain modifications and their purposes, as well as the obtained results with regard to the transformation process sensu largo. Furthermore, we propose additional improvements of the Agrobacterium-mediated transformation process and consider several worthwhile modifications, for instance, by circumventing a defense response in planta. In this regard, we will discuss pattern-triggered immunity, pathogen-associated molecular pattern detection, hormone homeostasis and signaling, and reactive oxygen species in relationship to Agrobacterium transformation. We will also explore alterations that increase agrobacterial transformation efficiency, reduce plasmid recombination, and improve biocontainment. Finally, we recommend the use of a modular system to best utilize the available knowledge for successful plant transformation.
Collapse
Affiliation(s)
- Jonas De Saeger
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jihae Park
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Marine Sciences, Incheon National University, Incheon 406-840, South Korea
| | - Hoo Sun Chung
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | | | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Marc Van Montagu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Stephen Depuydt
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| |
Collapse
|
30
|
Dolzblasz A, Banasiak A, Vereecke D. A sustained CYCLINB1;1 and STM expression in the neoplastic tissues induced by Rhodococcus fascians on Arabidopsis underlies the persistence of the leafy gall structure. PLANT SIGNALING & BEHAVIOR 2020; 15:1816320. [PMID: 32897774 PMCID: PMC7676816 DOI: 10.1080/15592324.2020.1816320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
is a gram-positive phytopathogen that infects a wide range of plant species. The actinomycete induces the formation of neoplastic growths, termed leafy galls, that consist of a gall body covered by small shoots of which the outgrowth is arrested due to an extreme form of apical dominance. In our previous work, we demonstrated that in the developing gall, auxin drives the transdifferentiation of parenchyma cells into vascular elements. In this work, with the use of transgenic Arabidopsis thaliana plants carrying molecular reporters for cell division (pCYCB1;1:GUS) and meristematic activity (pSTM:GUS), we analyzed the fate of cells within the leafy gall. Our results indicate that the size of the gall body is determined by ongoing mitotic cell divisions as illustrated by strong CYCB1;1 expression combined with the de novo formation of new meristematic areas triggered by STM expression. The shoot meristems that develop in the peripheral parts of the gall are originating from high ectopic STM expression. Altogether the presented data provide further insight into the cellular events that accompany the development of leafy galls in response to R. fascians infection.
Collapse
Affiliation(s)
- Alicja Dolzblasz
- Department of Plant Developmental Biology, Faculty of Biological Sciences, Institute of Experimental Biology, University of Wroclaw, Wrocław, Poland
| | - Alicja Banasiak
- Department of Plant Developmental Biology, Faculty of Biological Sciences, Institute of Experimental Biology, University of Wroclaw, Wrocław, Poland
| | - Danny Vereecke
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Department of Entomology, Plant Pathology, and Weed Sciences, New Mexico State University, NM, USA
| |
Collapse
|
31
|
Liang C, Wan T, Wu R, Zhao M, Zhao Y, Cai Y. Resistance analysis of cherry rootstock 'CDR-1' (Prunus mahaleb) to crown gall disease. BMC PLANT BIOLOGY 2020; 20:516. [PMID: 33183241 PMCID: PMC7661173 DOI: 10.1186/s12870-020-02673-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Crown gall disease, caused by the pathogenic bacterium Agrobacterium tumefaciens, is responsible for extensive economic losses in orchards. Cherry rootstock 'CDR-1' (Prunus mahaleb) shows high resistance but the mechanism remains unclear. Here, we examined the morphology of pathogen-infected root neck surface, determined the activity of 10 defense-related enzymes and the content of salicylic acid (SA) and jasmonic acid (JA), and also applied transcriptome analysis, transient expression and transgenic verification to explore the crown gall resistance genes in 'CDR-1' plants. RESULTS In our study, peroxidase increased in the first 10 days, while phenylalanine ammonialyase and lipoxygenase increased in the first 15 days post-infection. Four key enzymes in the AsA-GSH cycle also responded, to a certain extent; although JA content increased significantly after the treatment, the SA content did not. In a follow-up transcriptome analysis, the differentially expressed genes Pm4CL2, PmCYP450, PmHCT1, PmHCT2, and PmCAD were up-regulated. Based on the above results, we focused on the lignin biosynthetic pathway, and further measured lignin content, and found it increased significantly. The Pm4CL2 gene was used to conduct transient expression and transgenic experiments to verify its function in crown gall disease resistance. It showed the relative expression of the treatment group was almost 14-fold that of the control group at 12 h post-treatment. After the infection treatment, clear signs of resistance were found in the transgenic lines; this indicated that under the higher expression level and earlier activation of Pm4CL2, plant resistance was enhanced. CONCLUSIONS The crown gall resistance of 'CDR-1' is likely related to the lignin biosynthetic pathway, in which Pm4CL2 functions crucially during the plant defense response to the pathogen A. tumefaciens. The results thus offer novel insights into the defense responses and resistance mechanism of cherry rootstock 'CDR-1' against crown gall disease.
Collapse
Affiliation(s)
- Chenglin Liang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi Province China
| | - Tian Wan
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi Province China
| | - Rendun Wu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi Province China
| | - Mei Zhao
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi Province China
| | - Yue Zhao
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi Province China
| | - Yuliang Cai
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi Province China
| |
Collapse
|
32
|
Chen L, Wang X, Ma Q, Bian L, Liu X, Xu Y, Zhang H, Shao J, Liu Y. Bacillus velezensis CLA178-Induced Systemic Resistance of Rosa multiflora Against Crown Gall Disease. Front Microbiol 2020; 11:587667. [PMID: 33193244 PMCID: PMC7642876 DOI: 10.3389/fmicb.2020.587667] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 01/07/2023] Open
Abstract
Plant growth-promoting rhizobacteria (PGPRs) are able to activate induced systemic resistance (ISR) of the plants against phytopathogens. However, whether and how ISR can be activated by PGPRs in plants of the Rosa genus is unclear. The effects of PGPR Bacillus velezensis CLA178 and the pathogen Agrobacterium tumefaciens C58 on the growth, plant defense-related genes, hormones, and reactive oxygen species (ROS) in the rose plants were compared. Pretreatment with CLA178 significantly reduced crown gall tumor biomass and relieved the negative effects of the C58 pathogen on plant biomass, chlorophyll content, and photosynthesis of roses. Pretreatment of the roots with CLA178 activated ISR and significantly reduced disease severity. Pretreatment with CLA178 enhanced plant defense response to C58, including the accumulation of ROS, antioxidants, and plant hormones. Moreover, pretreatment with CLA178 enhanced C58-dependent induction of the expression of the genes related to the salicylic acid (SA) or ethylene (ET) signaling pathways. This result suggested that SA- and ET-signaling may participate in CLA178-mediated ISR in roses. Additional experiments in the Arabidopsis mutants showed that CLA178 triggered ISR against C58 in the pad4 and jar1 mutants and not in the etr1 and npr1 mutants. The ISR phenotypes of the Arabidopsis mutants indicated that CLA178-mediated ISR is dependent on the ET-signaling pathway in an NPR1-dependent manner. Overall, this study provides useful information to expand the application of PGPRs to protect the plants of the Rosa genus from phytopathogens.
Collapse
Affiliation(s)
- Lin Chen
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, China
| | - Xinghong Wang
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, China
| | - Qinghua Ma
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, China
| | - Lusen Bian
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, China
| | - Xue Liu
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, China
| | - Yan Xu
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, China
| | - Huihui Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yunpeng Liu
- Key Laboratory of Agricultural Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
33
|
Hou W, Singh RK, Zhao P, Martins V, Aguilar E, Canto T, Tenllado F, Franklin G, Dias ACP. Overexpression of polygalacturonase-inhibiting protein (PGIP) gene from Hypericum perforatum alters expression of multiple defense-related genes and modulates recalcitrance to Agrobacterium tumefaciens in tobacco. JOURNAL OF PLANT PHYSIOLOGY 2020; 253:153268. [PMID: 32947246 DOI: 10.1016/j.jplph.2020.153268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 05/07/2023]
Abstract
Hypericum perforatum L is a remarkable source of high-value secondary metabolites with increasing applications in pharmaceutical industry. However, improvement in the production of secondary metabolites through genetic engineering is a demanding task, as H. perforatum is not amenable to Agrobacterium tumefaciens-mediated transformation. In this study, we identified a Polygalacturonase-inhibiting protein (PGIP) gene from a subtractive cDNA library of A. tumefaciens-treated H. perforatum suspension cells. The role of HpPGIP in defense against A. tumefaciens was analyzed in transgenic Nicotiana tabacum overexpressing HpPGIP alone or fused at the N-terminus to Phenolic oxidative coupling protein (Hyp-1), a gene that positively modulates resistance to A. tumefaciens. Furthermore, virus-induced gene silencing was employed to knock down the expression of the PGIP homologous in N. benthamiana. Results showed that Agrobacterium-mediated expression efficiency greatly decreased in both HpPGIP and Hyp-1-PGIP transgenic plants, as assessed by GUS staining assays. However, silencing of PGIP in N. benthamiana increased the resistance to A. tumefaciens rather than susceptibility, which correlated with induction of pathogenesis-related proteins (PRs). The expression of core genes involved in several defense pathways was also analyzed in transgenic tobacco plants. Overexpression of HpPGIP led to up-regulation of key genes involved in hormone signaling, microRNA-based gene silencing, homeostasis of reactive oxygen species, and the phenylpropanoid pathway. Overexpression of Hyp-1-PGIP seemed to enhance the effect of PGIP on the expression of most genes analyzed. Moreover, HpPGIP was detected in the cytoplasm, nucleus and the plasma membrane or cell wall by confocal microscopy. Overall, our findings suggest HpPGIP modulates recalcitrance to A. tumefaciens-mediated transformation in H. perforatum.
Collapse
Affiliation(s)
- Weina Hou
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology, University of Minho, 4710-057, Braga, Portugal
| | - Rupesh Kumar Singh
- Centre of chemistry of Vila Real (CQ-VR), UTAD, 5000-801, Vila Real, Portugal
| | - Pan Zhao
- National Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Viviana Martins
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal
| | - Emmanuel Aguilar
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, 28040, Spain
| | - Tomás Canto
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, 28040, Spain
| | - Francisco Tenllado
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, 28040, Spain.
| | - Gregory Franklin
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology, University of Minho, 4710-057, Braga, Portugal
| | - Alberto Carlos Pires Dias
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology, University of Minho, 4710-057, Braga, Portugal; Center of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
34
|
Sedaghati B, Haddad R, Bandehpour M. Transient expression of human serum albumin (HSA) in tobacco leaves. Mol Biol Rep 2020; 47:7169-7177. [PMID: 32642917 DOI: 10.1007/s11033-020-05640-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
Today, recombinant human proteins make up a considerable part of FDA-approved biotechnological drugs. The selection of proper expression platform for manufacturing recombinant protein is a vital factor in achieving the optimal yield and quality of a biopharmaceutical in a timely fashion. This experiment was aimed to compare the transient expression level of human serum albumin gene in different tobacco genotype. For this, the Agrobacterium tumefaciens strains LB4404 and GV3101 harboring pBI121-HSA binary vector were infiltered in leaves of three tobacco genotypes, including Nicotiana benthamiana and N. tabacum cv Xanthi and Samsun. The qRT-PCR, SDS-PAGE, western blotting and ELISA analysis were performed to evaluate the expression of HSA gene in transgenic plantlets. Our results illustrated that the expression level of rHSA in tobacco leaves was highly dependent on Agrobacterium strains, plant genotypes and harvesting time. The highest production of recombinant HSA protein was obtained in Samsun leaves infected with A. tumefaciens strain GV3101 after 3 days of infiltration.
Collapse
Affiliation(s)
- Behnam Sedaghati
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Raheem Haddad
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran.
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Prudhomme N, Pastora R, Muselius B, McLean MD, Cossar D, Geddes-McAlister J. Exposure of Agrobacterium tumefaciens to agroinfiltration medium demonstrates cellular remodelling and may promote enhanced adaptability for molecular pharming. Can J Microbiol 2020; 67:85-97. [PMID: 32721220 DOI: 10.1139/cjm-2020-0239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Agroinfiltration is used to treat plants with modified strains of Agrobacterium tumefaciens for the purpose of transient in planta expression of genes transferred from the bacterium. These genes encode valuable recombinant proteins for therapeutic or industrial applications. Treatment of large quantities of plants for industrial-scale protein production exposes bacteria (harboring genes of interest) to agroinfiltration medium that is devoid of nutrients and carbon sources for prolonged periods of time (possibly upwards of 24 h). Such conditions may negatively influence bacterial viability, infectivity of plant cells, and target protein production. Here, we explored the role of timing in bacterial culture preparation for agroinfiltration using mass spectrometry-based proteomics to define changes in cellular processes. We observed distinct profiles associated with bacterial treatment conditions and exposure timing, including significant changes in proteins involved in pathogenesis, motility, and nutrient acquisition systems as the bacteria adapt to the new environment. These data suggest a progression towards increased cellular remodelling over time. In addition, we described changes in growth- and environment-specific processes over time, underscoring the interconnectivity of pathogenesis and chemotaxis-associated proteins with transport and metabolism. Overall, our results have important implications for the production of transiently expressed target protein products, as prolonged exposure to agroinfiltration medium suggests remodelling of the bacterial proteins towards enhanced infection of plant cells.
Collapse
Affiliation(s)
- N Prudhomme
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - R Pastora
- PlantForm Corporation Canada, Toronto, ON M4S 3E2, Canada
| | - B Muselius
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - M D McLean
- PlantForm Corporation Canada, Toronto, ON M4S 3E2, Canada
| | - D Cossar
- PlantForm Corporation Canada, Toronto, ON M4S 3E2, Canada
| | - J Geddes-McAlister
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
36
|
Abd-Aziz N, Tan BC, Rejab NA, Othman RY, Khalid N. A New Plant Expression System for Producing Pharmaceutical Proteins. Mol Biotechnol 2020; 62:240-251. [PMID: 32108286 DOI: 10.1007/s12033-020-00242-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the past decade, interest in the production of recombinant pharmaceutical proteins in plants has tremendously progressed because plants do not harbor mammalian viruses, are economically competitive, easily scalable, and capable of carrying out complex post-translational modifications required for recombinant pharmaceutical proteins. Mucuna bracteata is an essential perennial cover crop species widely planted as an underground cover in oil palm and rubber plantations. As a legume, they have high biomass, thrive in its habitat, and can fix nitrogen. Thus, M. bracteata is a cost-efficient crop that shows ideal characteristics as a platform for mass production of recombinant protein. In this study, we established a new platform for the transient production of a recombinant protein in M. bracteata via vacuum-assisted agro-infiltration. Five-week-old M. bracteata plants were vacuum infiltrated with Agrobacterium tumefaciens harboring a plasmid that encodes for an anti-toxoplasma immunoglobulin (IgG) under different parameters, including trifoliate leaf positional effects, days to harvest post-infiltration, and the Agrobacterium strain used. Our results showed that vacuum infiltration of M. bracteata plant with A. tumefaciens strain GV3101 produced the highest concentration of heterologous protein in its bottom trifoliate leaf at 2 days post-infiltration. The purified anti-toxoplasma IgG was then analyzed using Western blot and ELISA. It was demonstrated that, while structural heterogeneity existed in the purified anti-toxoplasma IgG from M. bracteata, its transient expression level was two-fold higher than the model platform, Nicotiana benthamiana. This study has laid the foundation towards establishing M. bracteata as a potential platform for the production of recombinant pharmaceutical protein.
Collapse
Affiliation(s)
- Nazrin Abd-Aziz
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nur Ardiyana Rejab
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rofina Yasmin Othman
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Norzulaani Khalid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
37
|
Orman-Ligeza B, Harwood W, Hedley PE, Hinchcliffe A, Macaulay M, Uauy C, Trafford K. TRA1: A Locus Responsible for Controlling Agrobacterium-Mediated Transformability in Barley. FRONTIERS IN PLANT SCIENCE 2020; 11:355. [PMID: 32373138 PMCID: PMC7176908 DOI: 10.3389/fpls.2020.00355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/10/2020] [Indexed: 05/18/2023]
Abstract
In barley (Hordeum vulgare L.), Agrobacterium-mediated transformation efficiency is highly dependent on genotype with very few cultivars being amenable to transformation. Golden Promise is the cultivar most widely used for barley transformation and developing embryos are the most common donor tissue. We tested whether barley mutants with abnormally large embryos were more or less amenable to transformation and discovered that mutant M1460 had a transformation efficiency similar to that of Golden Promise. The large-embryo phenotype of M1460 is due to mutation at the LYS3 locus. There are three other barley lines with independent mutations at the same LYS3 locus, and one of these, Risø1508 has an identical missense mutation to that in M1460. However, none of the lys3 mutants except M1460 were transformable showing that the locus responsible for transformation efficiency, TRA1, was not LYS3 but another locus unique to M1460. To identify TRA1, we generated a segregating population by crossing M1460 to the cultivar Optic, which is recalcitrant to transformation. After four rounds of backcrossing to Optic, plants were genotyped and their progeny were tested for transformability. Some of the progeny lines were transformable at high efficiencies similar to those seen for the parent M1460 and some were not transformable, like Optic. A region on chromosome 2H inherited from M1460 is present in transformable lines only. We propose that one of the 225 genes in this region is TRA1.
Collapse
Affiliation(s)
- Beata Orman-Ligeza
- National Institute of Agricultural Botany (NIAB), Cambridge, United Kingdom
| | - Wendy Harwood
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Pete E. Hedley
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | | | | | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Kay Trafford
- National Institute of Agricultural Botany (NIAB), Cambridge, United Kingdom
| |
Collapse
|
38
|
Dodueva IE, Lebedeva MA, Kuznetsova KA, Gancheva MS, Paponova SS, Lutova LL. Plant tumors: a hundred years of study. PLANTA 2020; 251:82. [PMID: 32189080 DOI: 10.1007/s00425-020-03375-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/11/2020] [Indexed: 05/21/2023]
Abstract
The review provides information on the mechanisms underlying the development of spontaneous and pathogen-induced tumors in higher plants. The activation of meristem-specific regulators in plant tumors of various origins suggests the meristem-like nature of abnormal plant hyperplasia. Plant tumor formation has more than a century of research history. The study of this phenomenon has led to a number of important discoveries, including the development of the Agrobacterium-mediated transformation technique and the discovery of horizontal gene transfer from bacteria to plants. There are two main groups of plant tumors: pathogen-induced tumors (e.g., tumors induced by bacteria, viruses, fungi, insects, etc.), and spontaneous ones, which are formed in the absence of any pathogen in plants with certain genotypes (e.g., interspecific hybrids, inbred lines, and mutants). The causes of the transition of plant cells to tumor growth are different from those in animals, and they include the disturbance of phytohormonal balance and the acquisition of meristematic characteristics by differentiated cells. The aim of this review is to discuss the mechanisms underlying the development of most known examples of plant tumors.
Collapse
Affiliation(s)
- Irina E Dodueva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia.
| | - Maria A Lebedeva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Kseniya A Kuznetsova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Maria S Gancheva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Svetlana S Paponova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Ludmila L Lutova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
39
|
Harris MO, Pitzschke A. Plants make galls to accommodate foreigners: some are friends, most are foes. THE NEW PHYTOLOGIST 2020; 225:1852-1872. [PMID: 31774564 DOI: 10.1111/nph.16340] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
At the colonization site of a foreign entity, plant cells alter their trajectory of growth and development. The resulting structure - a plant gall - accommodates various needs of the foreigner, which are phylogenetically diverse: viruses, bacteria, protozoa, oomycetes, true fungi, parasitic plants, and many types of animals, including rotifers, nematodes, insects, and mites. The plant species that make galls also are diverse. We assume gall production costs the plant. All is well if the foreigner provides a gift that makes up for the cost. Nitrogen-fixing nodule-inducing bacteria provide nutritional services. Gall wasps pollinate fig trees. Unfortunately for plants, most galls are made for foes, some of which are deeply studied pathogens and pests: Agrobacterium tumefaciens, Rhodococcus fascians, Xanthomonas citri, Pseudomonas savastanoi, Pantoea agglomerans, 'Candidatus' phytoplasma, rust fungi, Ustilago smuts, root knot and cyst nematodes, and gall midges. Galls are an understudied phenomenon in plant developmental biology. We propose gall inception for discovering unifying features of the galls that plants make for friends and foes, talk about molecules that plants and gall-inducers use to get what they want from each other, raise the question of whether plants colonized by arbuscular mycorrhizal fungi respond in a gall-like manner, and present a research agenda.
Collapse
Affiliation(s)
- Marion O Harris
- Department of Entomology, North Dakota State University, Fargo, ND, 58014, USA
| | - Andrea Pitzschke
- Department of Biosciences, Salzburg University, Hellbrunner Strasse 34, A-5020, Salzburg, Austria
| |
Collapse
|
40
|
Kullapanich C, Dubbs JM, Mongkolsuk S. Inactivation of the Agrobacterium tumefaciens ActSR system affects resistance to multiple stresses with increased H 2O 2 sensitivity due to reduced expression of hemH. MICROBIOLOGY-SGM 2020; 165:1117-1134. [PMID: 31339484 DOI: 10.1099/mic.0.000838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Agrobacterium tumefaciens ActSR two-component regulatory system is a member of a homologous group of global redox-responsive regulatory systems that adjust the expression of energy-consuming and energy-supplying metabolic pathways in order to maintain cellular redox balance. In this study, the transcriptional organization of the hrpB-actSR locus was determined and the effect of actSR system inactivation on stress resistance was investigated. It was found that hrpB is transcribed as a monocistronic mRNA and actS is transcribed along with actR as a bicistronic mRNA, while actR is also transcribed as a monocistronic message. Each message is initiated from a separate promoter. Inactivation of actR resulted in decreased resistance to membrane stress (sodium dodecyl sulfate), acid stress (pH 5.5), iron starvation (bipyridyl) and iron excess (FeCl3), and antibiotic stress (tetracycline and ciprofloxacin). Resistance to oxidative stress in the form of organic peroxide (cumene hydroperoxide) increased, while resistance to inorganic peroxide (H2O2) decreased. An actR insertion mutant displayed reduced catalase activity, even though transcription of katA and catE remained unchanged. Complementation of the actR inactivation mutant with plasmid-encoded actR or overexpression of hemH, encoding ferrochelatase, restored wild-type catalase activity and H2O2 resistance levels. Gel mobility shift and hemH promoter-lacZ fusion results indicated that ActR is a positive regulator of hemH that binds directly to the hemH promoter region. Thus, inactivation of the A. tumefaciens ActSR system affects resistance to multiple stresses, including reduced resistance to H2O2 resulting from a reduction in catalase activity due to reduced expression of hemH.
Collapse
Affiliation(s)
- Chitrasak Kullapanich
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - James M Dubbs
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Center of Excellence on Environmental Health and Toxicology, EHT Ministry of Education, Bangkok, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
41
|
Kaur A, Guleria S, Reddy MS, Kumar A. A robust genetic transformation protocol to obtain transgenic shoots of Solanum tuberosum L. cultivar 'Kufri Chipsona 1'. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:367-377. [PMID: 32158141 PMCID: PMC7036391 DOI: 10.1007/s12298-019-00747-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
The genetic transformation of plants is an important biotechnological tool used for crop improvement for many decades. The present study was focussed to investigate various factors affecting genetic transformation of potato cultivar 'Kufri Chipsona 1'. It was observed that explants pre-cultured for 2 days on MS2 medium (MS medium containing 10 µM silver nitrate, 10 µM BA, 15 µM GA3), injured with a surgical blade and co-cultivated with Agrobacterium tumefaciens strain EHA105 [O.D600 (0.6)] for 2 days results in maximum transient β-glucuronidase (GUS) expression. The addition of 100 µM acetosyringone in MS2 medium also increased rate of transient GUS expression in both the explants. Clumps of putative transgenic shoots were regenerated using the optimised culture conditions from leaf and internodal explants. The stable integration of T-DNA was established using histochemical staining for GUS and amplification of DNA fragment specific to nptII and uidA genes. Within the clumps, around 67.85% of shoots showed uniform GUS expression in all the tissues and about 32.15% shoots show intermittent GUS expression establishing chimeric nature. Uniform GUS staining of the tissue was used as initial marker of non-chimeric transgenic shoots. Quantitative expression of nptII transgene was found to be directly proportional to uniformity of GUS staining in transgenic shoots. The present investigation indicated that manipulation of culture conditions and the medium composition may help to get transgenic shoots with uniform expression of transgene in all the tissues of potato cultivar 'Kufri Chipsona 1'.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, 147001 India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, 147001 India
| | - M. Sudhakara Reddy
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, 147001 India
| | - Anil Kumar
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, 147001 India
| |
Collapse
|
42
|
Ashraf MA. Phytochemicals as Potential Anticancer Drugs: Time to Ponder Nature's Bounty. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8602879. [PMID: 32076618 PMCID: PMC7013350 DOI: 10.1155/2020/8602879] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/13/2020] [Indexed: 01/09/2023]
Abstract
Medicinal plants have been used from the beginning of human civilization, which is mostly evident from the ancient script and traditional herbal medicine recipe. Despite the historically enriched demonstration about the use of plant as therapeutics, the pharmaceutical industries lack interest on phytochemical research compared with synthetic drug. Mostly, the absence of information about plant-based medicinal therapeutics is responsible to draw the attention of researchers to think about natural products as potential drug for detrimental diseases, such as cancer. This review will cover about clinically successful plant-based anticancer drugs and underappreciated, but potential, drugs to bridge the information gap between plant biologists and clinical researchers. Additionally, unprecedented advancement of synthetic chemistry, omics study to pin point the target genes/proteins, and efficient drug delivery system have made it easier for researchers to develop a phytochemical as an efficient anticancer drug.
Collapse
|
43
|
Lacroix B, Citovsky V. Biolistic Approach for Transient Gene Expression Studies in Plants. Methods Mol Biol 2020; 2124:125-139. [PMID: 32277451 DOI: 10.1007/978-1-0716-0356-7_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since its inception in the late 1980s, the delivery of exogenous nucleic acids into living cells via high-velocity microprojectiles (biolistic, or microparticle bombardment) has been an invaluable tool for both agricultural and fundamental plant research. Here, we review the technical aspects and the major applications of the biolistic method for studies involving transient gene expression in plant cells. These studies cover multiple areas of plant research, including gene expression, protein subcellular localization and cell-to-cell movement, plant virology, silencing, and the more recently developed targeted genome editing via transient expression of customized endonucleases.
Collapse
Affiliation(s)
- Benoît Lacroix
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA.
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA
| |
Collapse
|
44
|
Hou W, Singh RK, Zhao P, Martins V, Aguilar E, Canto T, Tenllado F, Dias ACP. Transgenic expression of Hyp-1 gene from Hypericum perforatum L. alters expression of defense-related genes and modulates recalcitrance to Agrobacterium tumefaciens. PLANTA 2019; 251:13. [PMID: 31776675 DOI: 10.1007/s00425-019-03310-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/02/2019] [Indexed: 05/23/2023]
Abstract
MAIN CONCLUSION Phenolic oxidative coupling protein (Hyp-1) isolated from Hypericum perforatum L. was characterized as a defense gene involved in H. perforatum recalcitrance to Agrobacterium tumefaciens-mediated transformation Hypericum perforatum L. is a reservoir of high-value secondary metabolites of increasing interest to researchers and to the pharmaceutical industry. However, improving their production via genetic manipulation is a challenging task, as H. perforatum is recalcitrant to Agrobacterium tumefaciens-mediated transformation. Here, phenolic oxidative coupling protein (Hyp-1), a pathogenesis-related (PR) class 10 family gene, was selected from a subtractive cDNA library from A. tumefaciens-treated H. perforatum suspension cells. The role of Hyp-1 in defense against A. tumefaciens was analyzed in transgenic Nicotiana tabacum and Lactuca sativa overexpressing Hyp-1, and in Catharanthus roseus silenced for its homologous Hyp-1 gene, CrIPR. Results showed that Agrobacterium-mediated expression efficiency greatly decreased in Hyp-1 transgenic plants. However, silencing of CrIPR induced CrPR-5 expression and decreased expression efficiency of Agrobacterium. The expression of core genes involved in several defense pathways was also analyzed in Hyp-1 transgenic tobacco plants. Overexpression of Hyp-1 led to an ample down-regulation of key genes involved in auxin signaling, microRNA-based gene silencing, detoxification of reactive oxygen species, phenylpropanoid pathway and PRs. Moreover, Hyp-1 was detected in the nucleus, plasma membrane and the cytoplasm of epidermal cells by confocal microscopy. Overall, our findings suggest Hyp-1 modulates recalcitrance to A. tumefaciens-mediated transformation in H. perforatum.
Collapse
Affiliation(s)
- Weina Hou
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology, University of Minho, 4710-057, Braga, Portugal
| | - Rupesh Kumar Singh
- Centro de Química de Vila Real (CQ-VR), UTAD, 5000-801, Vila Real, Portugal
| | - Pan Zhao
- National Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Viviana Martins
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal
| | - Emmanuel Aguilar
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Tomás Canto
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Francisco Tenllado
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain.
| | - Alberto Carlos Pires Dias
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology, University of Minho, 4710-057, Braga, Portugal.
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal.
- Center of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
45
|
Chandrasekaran M, Lee JM, Ye BM, Jung SM, Kim J, Kim JW, Chun SC. Isolation and Characterization of Avirulent and Virulent Strains of Agrobacterium tumefaciens from Rose Crown Gall in Selected Regions of South Korea. PLANTS (BASEL, SWITZERLAND) 2019; 8:E452. [PMID: 31731525 PMCID: PMC6918265 DOI: 10.3390/plants8110452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 01/22/2023]
Abstract
Agrobacterium tumefaciens is a plant pathogen that causes crown gall disease in various hosts across kingdoms. In the present study, five regions (Wonju, Jincheon, Taean, Suncheon, and Kimhae) of South Korea were chosen to isolate A. tumefaciens strains on roses and assess their opine metabolism (agrocinopine, nopaline, and octopine) genes based on PCR amplification. These isolated strains were confirmed as Agrobacterium using morphological, biochemical, and 16S rDNA analyses; and pathogenicity tests, including the growth characteristics of the white colony appearance on ammonium sulfate glucose minimal media, enzyme activities, 16S rDNA sequence alignment, and pathogenicity on tomato (Solanum lycopersicum). Carbon utilization, biofilm formation, tumorigenicity, and motility assays were performed to demarcate opine metabolism genes. Of 87 isolates, 18 pathogenic isolates were affirmative for having opine plasmid genes. Most of these isolates showed the presence of an agrocinopine type of carbon utilization. Two isolates showed nopaline types. However, none of these isolates showed octopine metabolic genes. The objectives of the present study were to isolate and confirm virulent strains from rose crown galls grown in the different regions of Korea and characterize their physiology and opine types. This is the first report to describe the absence of the octopine type inciting the crown gall disease of rose in South Korea.
Collapse
Affiliation(s)
- Murugesan Chandrasekaran
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Korea;
| | - Jong Moon Lee
- Department of Environmental Health Science, Konkuk University, Gwangjin-gu, Seoul-143 701, Korea; (J.M.L.); (B.-M.Y.); (S.M.J.)
| | - Bee-Moon Ye
- Department of Environmental Health Science, Konkuk University, Gwangjin-gu, Seoul-143 701, Korea; (J.M.L.); (B.-M.Y.); (S.M.J.)
| | - So Mang Jung
- Department of Environmental Health Science, Konkuk University, Gwangjin-gu, Seoul-143 701, Korea; (J.M.L.); (B.-M.Y.); (S.M.J.)
| | - Jinwoo Kim
- Institute of Agriculture & Life Science and Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Jin-Won Kim
- Department of Environmental Horticulture, University of Seoul, Seoul 02504, Korea;
| | - Se Chul Chun
- Department of Environmental Health Science, Konkuk University, Gwangjin-gu, Seoul-143 701, Korea; (J.M.L.); (B.-M.Y.); (S.M.J.)
| |
Collapse
|
46
|
Agrobacteria reprogram virulence gene expression by controlled release of host-conjugated signals. Proc Natl Acad Sci U S A 2019; 116:22331-22340. [PMID: 31604827 PMCID: PMC6825286 DOI: 10.1073/pnas.1903695116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is highly intriguing how bacterial pathogens can quickly shut down energy-costly infection machinery once successful infection is established. This study depicts that mutation of repressor SghR increases the expression of hydrolase SghA in Agrobacterium tumefaciens, which releases plant defense signal salicylic acid (SA) from its storage form SA β-glucoside (SAG). Addition of SA substantially reduces gene expression of bacterial virulence. Bacterial vir genes and sghA are differentially transcribed at early and later infection stages, respectively. Plant metabolite sucrose is a signal ligand that inactivates SghR and consequently induces sghA expression. Disruption of sghA leads to increased vir expression in planta and enhances tumor formation whereas mutation of sghR decreases vir expression and tumor formation. These results depict a remarkable mechanism by which A. tumefaciens taps on the reserved pool of plant signal SA to reprogram its virulence upon establishment of infection.
Collapse
|
47
|
Uroz S, Courty PE, Oger P. Plant Symbionts Are Engineers of the Plant-Associated Microbiome. TRENDS IN PLANT SCIENCE 2019; 24:905-916. [PMID: 31288964 DOI: 10.1016/j.tplants.2019.06.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 05/09/2023]
Abstract
Plants interact throughout their lives with environmental microorganisms. These interactions determine plant development, nutrition, and fitness in a dynamic and stressful environment, forming the basis for the holobiont concept in which plants and plant-associated microbes are not considered as independent entities but as a single evolutionary unit. A primary open question concerns whether holobiont structure is shaped by its microbial members or solely by the plant. Current knowledge of plant-microbe interactions argues that the establishment of symbiosis directly and indirectly conditions the plant-associated microbiome. We propose to define the impact of the symbiont on the plant microbiome as the 'symbiosis cascade effect', in which the symbionts and their plant host jointly shape the plant microbiome.
Collapse
Affiliation(s)
- Stephane Uroz
- Institut National de la Recherche Agronomique (INRA) Unité Mixte de Recherche (UMR) 1136, Interactions Arbres-Microorganismes, F-54280, Champenoux, France; Université de Lorraine, UMR 1136, Interactions Arbres-Microorganismes, F-54500 Vandoeuvre-lès-, Nancy, France; INRA Unité de Recherche (UR) 1138, Biogéochimie des Écosystèmes Forestiers, F-54280, Champenoux, France.
| | - Pierre Emmanuel Courty
- Agroécologie, Institut National de la Recherche, Agronomique (INRA), AgroSup Dijon, Centre, National de la Recherche Scientifique (CNRS), Université de Bourgogne, INRA, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Phil Oger
- Université de Lyon, Institut National des Sciences Appliquées (INSA) de Lyon, CNRS UMR, 5240, Villeurbanne, France
| |
Collapse
|
48
|
Meyer T, Thiour-Mauprivez C, Wisniewski-Dyé F, Kerzaon I, Comte G, Vial L, Lavire C. Ecological Conditions and Molecular Determinants Involved in Agrobacterium Lifestyle in Tumors. FRONTIERS IN PLANT SCIENCE 2019; 10:978. [PMID: 31417593 PMCID: PMC6683767 DOI: 10.3389/fpls.2019.00978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/11/2019] [Indexed: 05/07/2023]
Abstract
The study of pathogenic agents in their natural niches allows for a better understanding of disease persistence and dissemination. Bacteria belonging to the Agrobacterium genus are soil-borne and can colonize the rhizosphere. These bacteria are also well known as phytopathogens as they can cause tumors (crown gall disease) by transferring a DNA region (T-DNA) into a wide range of plants. Most reviews on Agrobacterium are focused on virulence determinants, T-DNA integration, bacterial and plant factors influencing the efficiency of genetic transformation. Recent research papers have focused on the plant tumor environment on the one hand, and genetic traits potentially involved in bacterium-plant interactions on the other hand. The present review gathers current knowledge about the special conditions encountered in the tumor environment along with the Agrobacterium genetic determinants putatively involved in bacterial persistence inside a tumor. By integrating recent metabolomic and transcriptomic studies, we describe how tumors develop and how Agrobacterium can maintain itself in this nutrient-rich but stressful and competitive environment.
Collapse
Affiliation(s)
- Thibault Meyer
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Clémence Thiour-Mauprivez
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
- Biocapteurs-Analyses-Environment, Universite de Perpignan Via Domitia, Perpignan, France
- Laboratoire de Biodiversite et Biotechnologies Microbiennes, USR 3579 Sorbonne Universites (UPMC) Paris 6 et CNRS Observatoire Oceanologique, Paris, France
| | | | - Isabelle Kerzaon
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Gilles Comte
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Ludovic Vial
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Céline Lavire
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| |
Collapse
|
49
|
Zuniga-Soto E, Fitzpatrick DA, Doohan FM, Mullins E. Insights into the transcriptomic response of the plant engineering bacterium Ensifer adhaerens OV14 during transformation. Sci Rep 2019; 9:10344. [PMID: 31316079 PMCID: PMC6637203 DOI: 10.1038/s41598-019-44648-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 05/08/2019] [Indexed: 11/08/2022] Open
Abstract
The ability to engineer plant genomes has been primarily driven by the soil bacterium Agrobacterium tumefaciens but recently the potential of alternative rhizobia such as Rhizobium etli and Ensifer adhaerens OV14, the latter of which supports Ensifer Mediated Transformation (EMT) has been reported. Surprisingly, a knowledge deficit exists in regards to understanding the whole genome processes underway in plant transforming bacteria, irrespective of the species. To begin to address the issue, we undertook a temporal RNAseq-based profiling study of E. adhaerens OV14 in the presence/absence of Arabidopsis thaliana tissues. Following co-cultivation with root tissues, 2333 differentially expressed genes (DEGs) were noted. Meta-analysis of the RNAseq data sets identified a clear shift from plasmid-derived gene expression to chromosomal-based transcription within the early stages of bacterium-plant co-cultivation. During this time, the number of differentially expressed prokaryotic genes increased steadily out to 7 days co-cultivation, a time at which optimum rates of transformation were observed. Gene ontology evaluations indicated a role for both chromosomal and plasmid-based gene families linked specifically with quorum sensing, flagellin production and biofilm formation in the process of EMT. Transcriptional evaluation of vir genes, housed on the pCAMBIA 5105 plasmid in E. adhaerens OV14 confirmed the ability of E. adhaerens OV14 to perceive and activate its transcriptome in response to the presence of 200 µM of acetosyringone. Significantly, this is the first study to characterise the whole transcriptomic response of a plant engineering bacterium in the presence of plant tissues and provides a novel insight into prokaryotic genetic processes that support T-DNA transfer.
Collapse
Affiliation(s)
- Evelyn Zuniga-Soto
- Department of Crop Science, Teagasc Crops Research Centre, Oak Park, Carlow, Ireland
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - David A Fitzpatrick
- Department of Biology, National University of Ireland Maynooth, Maynooth, Ireland
| | - Fiona M Doohan
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ewen Mullins
- Department of Crop Science, Teagasc Crops Research Centre, Oak Park, Carlow, Ireland.
| |
Collapse
|
50
|
Carotenuto G, Volpe V, Russo G, Politi M, Sciascia I, de Almeida-Engler J, Genre A. Local endoreduplication as a feature of intracellular fungal accommodation in arbuscular mycorrhizas. THE NEW PHYTOLOGIST 2019; 223:430-446. [PMID: 11386364 DOI: 10.1111/nph.15763] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/22/2019] [Indexed: 05/14/2023]
Abstract
The intracellular accommodation of arbuscular mycorrhizal (AM) fungi is a paradigmatic feature of this plant symbiosis that depends on the activation of a dedicated signaling pathway and the extensive reprogramming of host cells, including striking changes in nuclear size and transcriptional activity. By combining targeted sampling of early root colonization sites, detailed confocal imaging, flow cytometry and gene expression analyses, we demonstrate that local, recursive events of endoreduplication are triggered in the Medicago truncatula root cortex during AM colonization. AM colonization induces an increase in ploidy levels and the activation of endocycle specific markers. This response anticipates the progression of fungal colonization and is limited to arbusculated and neighboring cells in the cortical tissue. Furthermore, endoreduplication is not induced in M. truncatula mutants for symbiotic signaling pathway genes. On this basis, we propose endoreduplication as part of the host cell prepenetration responses that anticipate AM fungal accommodation in the root cortex.
Collapse
Affiliation(s)
- Gennaro Carotenuto
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Veronica Volpe
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Giulia Russo
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Mara Politi
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Ivan Sciascia
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | | | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| |
Collapse
|