1
|
Yadav S, Preethi V, Dadi S, Seth CS, G K, Chandrashekar BK, Vemanna RS. Small chemical molecules regulating the phytohormone signalling alter the plant's physiological processes to improve stress adaptation, growth and productivity. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1593-1610. [PMID: 39506995 PMCID: PMC11535105 DOI: 10.1007/s12298-024-01514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024]
Abstract
Small chemical molecules are attractive agents for improving the plant processes associated with plant growth and stress tolerance. Recent advances in chemical biology and structure-assisted drug discovery approaches have opened up new avenues in plant biology to discover new drug-like molecules to improve plant processes for sustained food production. Several compounds targeting phytohormone biosynthesis or signalling cascades were designed to alter plant physiological mechanisms. Altering Abscisic acid synthesis and its signalling process can improve drought tolerance, and the processes targeted are reversible. Molecules targeting cytokinin, Auxin, and gibberellic acid regulate plant physiological processes and can potentially improve plant growth, biomass and productivity. The potential of molecules may be exploited as agrochemicals to enhance agricultural productivity. The discovery of small molecules provides new avenues to improve crop production in changing climatic conditions and the nutritional quality of foods. We present the rational combinations of small molecules with inhibitory and co-stimulatory effects and discuss future opportunities in this field.
Collapse
Affiliation(s)
- Shobhna Yadav
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121 001 India
| | | | - Sujitha Dadi
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, 560065 India
| | | | - Keshavareddy G
- Department of Entomology, University of Agricultural Sciences, GKVK, Bengaluru, 560065 India
| | - Babitha Kodaikallu Chandrashekar
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121 001 India
| | - Ramu Shettykothanur Vemanna
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121 001 India
| |
Collapse
|
2
|
Ninck S, Halder V, Krahn JH, Beisser D, Resch S, Dodds I, Scholtysik R, Bormann J, Sewald L, Gupta MD, Heilmann G, Bhandari DD, Morimoto K, Buscaill P, Hause B, van der Hoorn RAL, Kaschani F, Kaiser M. Chemoproteomics Reveals the Pan-HER Kinase Inhibitor Neratinib To Target an Arabidopsis Epoxide Hydrolase Related to Phytohormone Signaling. ACS Chem Biol 2023; 18:1076-1088. [PMID: 37115018 DOI: 10.1021/acschembio.2c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Plant phytohormone pathways are regulated by an intricate network of signaling components and modulators, many of which still remain unknown. Here, we report a forward chemical genetics approach for the identification of functional SA agonists in Arabidopsis thaliana that revealed Neratinib (Ner), a covalent pan-HER kinase inhibitor drug in humans, as a modulator of SA signaling. Instead of a protein kinase, chemoproteomics unveiled that Ner covalently modifies a surface-exposed cysteine residue of Arabidopsis epoxide hydrolase isoform 7 (AtEH7), thereby triggering its allosteric inhibition. Physiologically, the Ner application induces jasmonate metabolism in an AtEH7-dependent manner as an early response. In addition, it modulates PATHOGENESIS RELATED 1 (PR1) expression as a hallmark of SA signaling activation as a later effect. AtEH7, however, is not the exclusive target for this physiological readout induced by Ner. Although the underlying molecular mechanisms of AtEH7-dependent modulation of jasmonate signaling and Ner-induced PR1-dependent activation of SA signaling and thus defense response regulation remain unknown, our present work illustrates the powerful combination of forward chemical genetics and chemical proteomics for identifying novel phytohormone signaling modulatory factors. It also suggests that marginally explored metabolic enzymes such as epoxide hydrolases may have further physiological roles in modulating signaling.
Collapse
Affiliation(s)
- Sabrina Ninck
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Vivek Halder
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
- Chemical Biology Laboratory, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Jan H Krahn
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Daniela Beisser
- Department of Biodiversity, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, 45117 Essen, Germany
| | - Sarah Resch
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Isobel Dodds
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - René Scholtysik
- Genomics and Transcriptomics Facility, Institute for Cell Biology (Tumour Research), University of Duisburg-Essen, Virchowstr. 173, 45122 Essen, Germany
| | - Jenny Bormann
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Leonard Sewald
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Mainak D Gupta
- Department of Molecular Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Geronimo Heilmann
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Deepak D Bhandari
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
| | - Kyoko Morimoto
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - Pierre Buscaill
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - Bettina Hause
- Department of Metabolic and Cell Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - Farnusch Kaschani
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Markus Kaiser
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| |
Collapse
|
3
|
Lepri A, Longo C, Messore A, Kazmi H, Madia VN, Di Santo R, Costi R, Vittorioso P. Plants and Small Molecules: An Up-and-Coming Synergy. PLANTS (BASEL, SWITZERLAND) 2023; 12:1729. [PMID: 37111951 PMCID: PMC10145415 DOI: 10.3390/plants12081729] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
The emergence of Arabidopsis thaliana as a model system has led to a rapid and wide improvement in molecular genetics techniques for studying gene function and regulation. However, there are still several drawbacks that cannot be easily solved with molecular genetic approaches, such as the study of unfriendly species, which are of increasing agronomic interest but are not easily transformed, thus are not prone to many molecular techniques. Chemical genetics represents a methodology able to fill this gap. Chemical genetics lies between chemistry and biology and relies on small molecules to phenocopy genetic mutations addressing specific targets. Advances in recent decades have greatly improved both target specificity and activity, expanding the application of this approach to any biological process. As for classical genetics, chemical genetics also proceeds with a forward or reverse approach depending on the nature of the study. In this review, we addressed this topic in the study of plant photomorphogenesis, stress responses and epigenetic processes. We have dealt with some cases of repurposing compounds whose activity has been previously proven in human cells and, conversely, studies where plants have been a tool for the characterization of small molecules. In addition, we delved into the chemical synthesis and improvement of some of the compounds described.
Collapse
Affiliation(s)
- A. Lepri
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| | - C. Longo
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| | - A. Messore
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - H. Kazmi
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| | - V. N. Madia
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - R. Di Santo
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - R. Costi
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - P. Vittorioso
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| |
Collapse
|
4
|
Ma Q, Chang M, Drakakaki G, Russinova E. Selective chemical probes can untangle the complexity of the plant cell endomembrane system. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102223. [PMID: 35567926 DOI: 10.1016/j.pbi.2022.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/18/2022] [Indexed: 06/15/2023]
Abstract
The endomembrane system is critical for plant growth and development and understanding its function and regulation is of great interest for plant biology research. Small-molecule targeting distinctive endomembrane components have proven powerful tools to dissect membrane trafficking in plant cells. However, unambiguous elucidation of the complex and dynamic trafficking processes requires chemical probes with enhanced precision. Determination of the mechanism of action of a compound, which is facilitated by various chemoproteomic approaches, opens new avenues for the improvement of its specificity. Moreover, rational molecule design and reverse chemical genetics with the aid of virtual screening and artificial intelligence will enable us to discover highly precise chemical probes more efficiently. The next decade will witness the emergence of more such accurate tools, which together with advanced live quantitative imaging techniques of subcellular phenotypes, will deepen our insights into the plant endomembrane system.
Collapse
Affiliation(s)
- Qian Ma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Mingqin Chang
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA.
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium.
| |
Collapse
|
5
|
Identification of stomatal-regulating molecules from de novo arylamine collection through aromatic C-H amination. Sci Rep 2022; 12:949. [PMID: 35042960 PMCID: PMC8766585 DOI: 10.1038/s41598-022-04947-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022] Open
Abstract
Stomata—small pores generally found on the leaves of plants—control gas exchange between plant and the atmosphere. Elucidating the mechanism that underlies such control through the regulation of stomatal opening/closing is important to understand how plants regulate photosynthesis and tolerate against drought. However, up-to-date, molecular components and their function involved in stomatal regulation are not fully understood. We challenged such problem through a chemical genetic approach by isolating and characterizing synthetic molecules that influence stomatal movement. Here, we describe that a small chemical collection, prepared during the development of C–H amination reactions, lead to the discovery of a Stomata Influencing Molecule (SIM); namely, a sulfonimidated oxazole that inhibits stomatal opening. The starting molecule SIM1 was initially isolated from screening of compounds that inhibit light induced opening of dayflower stomata. A range of SIM molecules were rapidly accessed using our state-of-the-art C–H amination technologies. This enabled an efficient structure–activity relationship (SAR) study, culminating in the discovery of a sulfonamidated oxazole derivative (SIM*) having higher activity and enhanced specificity against stomatal regulation. Biological assay results have shed some light on the mode of action of SIM molecules within the cell, which may ultimately lead to drought tolerance-conferring agrochemicals through the control of stomatal movement.
Collapse
|
6
|
Dzobo K. The Role of Natural Products as Sources of Therapeutic Agents for Innovative Drug Discovery. COMPREHENSIVE PHARMACOLOGY 2022. [PMCID: PMC8016209 DOI: 10.1016/b978-0-12-820472-6.00041-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Emerging threats to human health require a concerted effort in search of both preventive and treatment strategies, placing natural products at the center of efforts to obtain new therapies and reduce disease spread and associated mortality. The therapeutic value of compounds found in plants has been known for ages, resulting in their utilization in homes and in clinics for the treatment of many ailments ranging from common headache to serious conditions such as wounds. Despite the advancement observed in the world, plant based medicines are still being used to treat many pathological conditions or are used as alternatives to modern medicines. In most cases, these natural products or plant-based medicines are used in an un-purified state as extracts. A lot of research is underway to identify and purify the active compounds responsible for the healing process. Some of the current drugs used in clinics have their origins as natural products or came from plant extracts. In addition, several synthetic analogues are natural product-based or plant-based. With the emergence of novel infectious agents such as the SARS-CoV-2 in addition to already burdensome diseases such as diabetes, cancer, tuberculosis and HIV/AIDS, there is need to come up with new drugs that can cure these conditions. Natural products offer an opportunity to discover new compounds that can be converted into drugs given their chemical structure diversity. Advances in analytical processes make drug discovery a multi-dimensional process involving computational designing and testing and eventual laboratory screening of potential drug candidates. Lead compounds will then be evaluated for safety, pharmacokinetics and efficacy. New technologies including Artificial Intelligence, better organ and tissue models such as organoids allow virtual screening, automation and high-throughput screening to be part of drug discovery. The use of bioinformatics and computation means that drug discovery can be a fast and efficient process and enable the use of natural products structures to obtain novel drugs. The removal of potential bottlenecks resulting in minimal false positive leads in drug development has enabled an efficient system of drug discovery. This review describes the biosynthesis and screening of natural products during drug discovery as well as methods used in studying natural products.
Collapse
|
7
|
Berenguer E, Carneros E, Pérez-Pérez Y, Gil C, Martínez A, Testillano PS. Small molecule inhibitors of mammalian GSK-3β promote in vitro plant cell reprogramming and somatic embryogenesis in crop and forest species. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7808-7825. [PMID: 34338766 PMCID: PMC8664590 DOI: 10.1093/jxb/erab365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/30/2021] [Indexed: 05/10/2023]
Abstract
Plant in vitro regeneration systems, such as somatic embryogenesis, are essential in breeding; they permit propagation of elite genotypes, production of doubled-haploids, and regeneration of whole plants from gene editing or transformation events. However, in many crop and forest species, somatic embryogenesis is highly inefficient. We report a new strategy to improve in vitro embryogenesis using synthetic small molecule inhibitors of mammalian glycogen synthase kinase 3β (GSK-3β), never used in plants. These inhibitors increased in vitro embryo production in three different systems and species, microspore embryogenesis of Brassica napus and Hordeum vulgare, and somatic embryogenesis of Quercus suber. TDZD-8, a representative compound of the molecules tested, inhibited GSK-3 activity in microspore cultures, and increased expression of embryogenesis genes FUS3, LEC2, and AGL15. Plant GSK-3 kinase BIN2 is a master regulator of brassinosteroid (BR) signalling. During microspore embryogenesis, BR biosynthesis and signalling genes CPD, GSK-3-BIN2, BES1, and BZR1 were up-regulated and the BAS1 catabolic gene was repressed, indicating activation of the BR pathway. TDZD-8 increased expression of BR signalling elements, mimicking BR effects. The findings support that the small molecule inhibitors promoted somatic embryogenesis by activating the BR pathway, opening up the way for new strategies using GSK-3β inhibitors that could be extended to other species.
Collapse
Affiliation(s)
- Eduardo Berenguer
- Pollen Biotechnology of Crop Plants group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Elena Carneros
- Pollen Biotechnology of Crop Plants group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Yolanda Pérez-Pérez
- Pollen Biotechnology of Crop Plants group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carmen Gil
- Translational Medicinal and Biological Chemistry group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martínez
- Translational Medicinal and Biological Chemistry group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Pilar S Testillano
- Pollen Biotechnology of Crop Plants group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
8
|
Zaman GS, Kamli H, Radhakrishnan S, Ahmad I, Otifi H, Alshahrani MY, Rajagopalan P. Structure activity evaluation and computational analysis identify potent, novel 3-benzylidene chroman-4-one analogs with anti-fungal, anti-oxidant, and anti-cancer activities. Drug Dev Ind Pharm 2021; 47:1459-1468. [PMID: 34726982 DOI: 10.1080/03639045.2021.2001489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
SIGNIFICANCE 3-Benzylidene chroman-4-ones share close homology with naturally occurring bioactive compounds. OBJECTIVES This study evaluated the antifungal, antioxidant, and anticancer activities of novel 3-benzylidene chromanone analogs with respect to their structure-activity relationships. METHODS Compounds 45e-64e were synthesized inhouse. Aspergillus niger (MTCC 1344) Aspergillus flavus and Botrytis cinerea were the fungal strains tested. Computational docking analysis was carried out for vanin-1, estrogen receptor (ER), and Akt proteins using Auto-dock vina. Free radical scavenging and total antioxidant capacity was analyzed using spectrophotometric methods. MCF-7 (breast cancer) cell line was used for anticancer assays. Flow cytometry was used to detect cell cycle and apoptosis. RESULTS Out of the twenty compounds screened, compounds 47e, 50e, 52e, 57e, and 61e that possessed either methoxy and ethoxy/methyl/isopropyl group exhibited very good activity against all fungi. Compounds possessing methoxy group alone showed moderate activity and compounds devoid of methoxy, and ethoxy groups did not show any activity. When computationally analyzed against target proteins for antioxidant properties, the compounds exhibited excellent binging efficacy to vanin-1 and ERs. These predictions were translated in the in vitro free-radical scavenging and antioxidant assays. The compounds exhibited anti-proliferative efficacy in breast cancer cell line, increased the sub-G0/G1 cell cycle populations and total apoptosis in MCF-7 cells. Additionally, the compounds also depicted excelling binging energy when computationally analyzed for Akt enzyme binding. CONCLUSION In summary, our study identified potential analogs of 3-benzylidene chroman-4-one molecules with excellent anti-fungal, anti-oxidant, and anticancer activities which demand further research for drug developments.
Collapse
Affiliation(s)
- Gaffar Sarwar Zaman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Suresh Radhakrishnan
- Post Graduate and Research Department of Chemistry, Presidency College, Chennai, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Hassan Otifi
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohamad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
9
|
García-Maquilón I, Rodriguez PL, Vaidya AS, Lozano-Juste J. A Luciferase Reporter Assay to Identify Chemical Activators of ABA Signaling. Methods Mol Biol 2021; 2213:113-121. [PMID: 33270197 DOI: 10.1007/978-1-0716-0954-5_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Plant stress tolerance relies on intricate signaling networks that are not fully understood. Several plant hormones are involved in the adaptation to different environmental conditions. Abscisic acid (ABA) has an essential role in stress tolerance, especially in the adaptation to drought. During the last years, chemical genomics has gained attention as an alternative approach to decipher complex traits. Additionally, chemical-based strategies have been very useful to untangle genetic redundancy, which is hard to address by other approaches such as classical genetics. Here, we describe the use of an ABA-inducible luciferase (LUC) reporter line for the high-throughput identification of chemical activators of the ABA signaling pathway. In this assay, seven-day-old pMAPKKK18-LUC+ seedlings are grown on 96-well plates and treated with test compounds. Next, the activity of the LUC reporter is quantified semiautomatically by image analysis. Candidate compounds able to activate the reporter are thus identified and subjected to a secondary screen by analyzing their effect on ABA-related phenotypes (e.g., inhibition of seed germination). This assay is fast, high-throughput, nondestructive, semiquantitative and can be applied to any other luciferase reporter lines, making it ideal for forward chemical genetic screenings.
Collapse
Affiliation(s)
- Irene García-Maquilón
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia (IBMCP-CSIC-UPV), Valencia, Spain
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia (IBMCP-CSIC-UPV), Valencia, Spain
| | - Aditya S Vaidya
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Jorge Lozano-Juste
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia (IBMCP-CSIC-UPV), Valencia, Spain.
| |
Collapse
|
10
|
Dauphinee AN, Cardoso C, Dalman K, Ohlsson JA, Fick SB, Robert S, Hicks GR, Bozhkov PV, Minina EA. Chemical Screening Pipeline for Identification of Specific Plant Autophagy Modulators. PLANT PHYSIOLOGY 2019; 181:855-866. [PMID: 31488572 PMCID: PMC6836817 DOI: 10.1104/pp.19.00647] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/14/2019] [Indexed: 05/18/2023]
Abstract
Autophagy is a major catabolic process in eukaryotes with a key role in homeostasis, programmed cell death, and aging. In plants, autophagy is also known to regulate agronomically important traits such as stress resistance, longevity, vegetative biomass, and seed yield. Despite its significance, there is still a shortage of reliable tools modulating plant autophagy. Here, we describe the first robust pipeline for identification of specific plant autophagy-modulating compounds. Our screening protocol comprises four phases: (1) high-throughput screening of chemical compounds in cell cultures of tobacco (Nicotiana tabacum); (2) confirmation of the identified hits in planta using Arabidopsis (Arabidopsis thaliana); (3) further characterization of the effect using conventional molecular biology methods; and (4) verification of chemical specificity on autophagy in planta. The methods detailed here streamline the identification of specific plant autophagy modulators and aid in unraveling the molecular mechanisms of plant autophagy.
Collapse
Affiliation(s)
- Adrian N Dauphinee
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-750 07, Sweden
| | - Catarina Cardoso
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-750 07, Sweden
- Plant Genetics, School of Life Science Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Kerstin Dalman
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-750 07, Sweden
| | - Jonas A Ohlsson
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-750 07, Sweden
| | | | - Stéphanie Robert
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden
| | - Glenn R Hicks
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, California, 92521
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-750 07, Sweden
| | - Elena A Minina
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-750 07, Sweden
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
|
12
|
Vanholme B, El Houari I, Boerjan W. Bioactivity: phenylpropanoids’ best kept secret. Curr Opin Biotechnol 2019; 56:156-162. [DOI: 10.1016/j.copbio.2018.11.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 11/24/2022]
|
13
|
Gudiño ME, Blanco-Touriñán N, Arbona V, Gómez-Cadenas A, Blázquez MA, Navarro-García F. β-Lactam Antibiotics Modify Root Architecture and Indole Glucosinolate Metabolism in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2018; 59:2086-2098. [PMID: 29986082 DOI: 10.1093/pcp/pcy128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
The presence of antibiotics in soils could be due to natural production by soil microorganisms or to the effect of anthropogenic activities. However, the impact of these compounds on plant physiology has not been thoroughly investigated. To evaluate the effect of β-lactam antibiotics (carbenicillin and penicillin) on the growth and development of Arabidopsis thaliana roots, plants were grown in the presence of different amounts and we found a reduction in root size, an increase in the size of root hairs as well as an abnormal position closer to the tip of the roots. Those phenomena were dependent on the accumulation of both antibiotics inside root tissues and also correlated with a decrease in size of the root apical meristem not related to an alteration in cell division but to a decrease in cell expansion. Using an RNA sequencing analysis, we detected an increase in the expression of genes related to the response to oxidative stress, which would explain the increase in the levels of endogenous reactive oxygen species found in the presence of those antibiotics. Moreover, some auxin-responsive genes were misregulated, especially an induction of CYP79B3, possibly explaining the increase in auxin levels in the presence of carbenicillin and the decrease in the amount of indole glucosinolates, involved in the control of fungal infections. Accordingly, penicillin-treated plants were hypersensitive to the endophyte fungus Colletotrichum tofieldiae. These results underscore the risks for plant growth of β-lactam antibiotics in agricultural soils, and suggest a possible function for these compounds as fungus-produced signaling molecules to modify plant behavior.
Collapse
Affiliation(s)
- Marco E Gudiño
- Instituto de Biología Molecular y Celular de Plantas 'Primo Yúfera', CSIC-Universidad Politécnica de Valencia, Valencia, Spain
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Noel Blanco-Touriñán
- Instituto de Biología Molecular y Celular de Plantas 'Primo Yúfera', CSIC-Universidad Politécnica de Valencia, Valencia, Spain
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló, Spain
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló, Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas 'Primo Yúfera', CSIC-Universidad Politécnica de Valencia, Valencia, Spain
| | - Federico Navarro-García
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
14
|
Wase N, Black P, DiRusso C. Innovations in improving lipid production: Algal chemical genetics. Prog Lipid Res 2018; 71:101-123. [DOI: 10.1016/j.plipres.2018.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/25/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
|
15
|
Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. Int J Mol Sci 2018; 19:E1578. [PMID: 29799486 PMCID: PMC6032166 DOI: 10.3390/ijms19061578] [Citation(s) in RCA: 566] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022] Open
Abstract
The therapeutic properties of plants have been recognised since time immemorial. Many pathological conditions have been treated using plant-derived medicines. These medicines are used as concoctions or concentrated plant extracts without isolation of active compounds. Modern medicine however, requires the isolation and purification of one or two active compounds. There are however a lot of global health challenges with diseases such as cancer, degenerative diseases, HIV/AIDS and diabetes, of which modern medicine is struggling to provide cures. Many times the isolation of "active compound" has made the compound ineffective. Drug discovery is a multidimensional problem requiring several parameters of both natural and synthetic compounds such as safety, pharmacokinetics and efficacy to be evaluated during drug candidate selection. The advent of latest technologies that enhance drug design hypotheses such as Artificial Intelligence, the use of 'organ-on chip' and microfluidics technologies, means that automation has become part of drug discovery. This has resulted in increased speed in drug discovery and evaluation of the safety, pharmacokinetics and efficacy of candidate compounds whilst allowing novel ways of drug design and synthesis based on natural compounds. Recent advances in analytical and computational techniques have opened new avenues to process complex natural products and to use their structures to derive new and innovative drugs. Indeed, we are in the era of computational molecular design, as applied to natural products. Predictive computational softwares have contributed to the discovery of molecular targets of natural products and their derivatives. In future the use of quantum computing, computational softwares and databases in modelling molecular interactions and predicting features and parameters needed for drug development, such as pharmacokinetic and pharmacodynamics, will result in few false positive leads in drug development. This review discusses plant-based natural product drug discovery and how innovative technologies play a role in next-generation drug discovery.
Collapse
Affiliation(s)
- Nicholas Ekow Thomford
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
- School of Medical Sciences, University of Cape Coast, PMB, Cape Coast, Ghana.
| | - Dimakatso Alice Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Arielle Rowe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Daniella Munro
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Palesa Seele
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Private Bag, Alice X1314, South Africa.
| | - Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| |
Collapse
|
16
|
Dejonghe W, Russinova E. Plant Chemical Genetics: From Phenotype-Based Screens to Synthetic Biology. PLANT PHYSIOLOGY 2017; 174:5-20. [PMID: 28275150 PMCID: PMC5411137 DOI: 10.1104/pp.16.01805] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/20/2017] [Indexed: 05/21/2023]
Abstract
The treatment of a biological system with small molecules to specifically perturb cellular functions is commonly referred to as chemical biology. Small molecules are used commercially as drugs, herbicides, and fungicides in different systems, but in recent years they are increasingly exploited as tools for basic research. For instance, chemical genetics involves the discovery of small-molecule effectors of various cellular functions through screens of compound libraries. Whereas the drug discovery field has largely been driven by target-based screening approaches followed by drug optimization, chemical genetics in plant systems tends to be fueled by more general phenotype-based screens, opening the possibility to identify a wide range of small molecules that are not necessarily directly linked to the process of interest. Here, we provide an overview of the current progress in chemical genetics in plants, with a focus on the discoveries regarding small molecules identified in screens designed with a basic biology perspective. We reflect on the possibilities that lie ahead and discuss some of the potential pitfalls that might be encountered upon adopting a given chemical genetics approach.
Collapse
Affiliation(s)
- Wim Dejonghe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (W.D., E.R); and
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium (W.D., E.R.)
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (W.D., E.R); and
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium (W.D., E.R.)
| |
Collapse
|
17
|
Abstract
The plant endomembrane system is an extensively connected functional unit for exchanging material between compartments. Secretory and endocytic pathways allow dynamic trafficking of proteins, lipids, and other molecules, regulating a myriad of biological processes. Chemical genetics-the use of compounds to perturb biological processes in a fast, tunable, and transient manner-provides elegant tools for investigating this system. Here, we review how chemical genetics has helped to elucidate different aspects of membrane trafficking. We discuss different strategies for uncovering the modes of action of such compounds and their use in unraveling membrane trafficking regulators. We also discuss how the bioactive chemicals that are currently used as probes to interrogate endomembrane trafficking were discovered and analyze the results regarding membrane trafficking and pathway crosstalk. The integration of different expertises and the rational implementation of chemical genetic strategies will improve the identification of molecular mechanisms that drive intracellular trafficking and our understanding of how trafficking interfaces with plant physiology and development.
Collapse
Affiliation(s)
- Lorena Norambuena
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024 Santiago, Chile;
| | - Ricardo Tejos
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024 Santiago, Chile;
- Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, 111093 Iquique, Chile
| |
Collapse
|
18
|
Chuprov–Netochin R, Neskorodov Y, Marusich E, Mishutkina Y, Volynchuk P, Leonov S, Skryabin K, Ivashenko A, Palme K, Touraev A. Novel small molecule modulators of plant growth and development identified by high-content screening with plant pollen. BMC PLANT BIOLOGY 2016; 16:192. [PMID: 27596094 PMCID: PMC5011872 DOI: 10.1186/s12870-016-0875-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 08/16/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Small synthetic molecules provide valuable tools to agricultural biotechnology to circumvent the need for genetic engineering and provide unique benefits to modulate plant growth and development. RESULTS We developed a method to explore molecular mechanisms of plant growth by high-throughput phenotypic screening of haploid populations of pollen cells. These cells rapidly germinate to develop pollen tubes. Compounds acting as growth inhibitors or stimulators of pollen tube growth are identified in a screen lasting not longer than 8 h high-lighting the potential broad applicability of this assay to prioritize chemicals for future mechanism focused investigations in plants. We identified 65 chemical compounds that influenced pollen development. We demonstrated the usefulness of the identified compounds as promotors or inhibitors of tobacco and Arabidopsis thaliana seed growth. When 7 days old seedlings were grown in the presence of these chemicals twenty two of these compounds caused a reduction in Arabidopsis root length in the range from 4.76 to 49.20 % when compared to controls grown in the absence of the chemicals. Two of the chemicals sharing structural homology with thiazolidines stimulated root growth and increased root length by 129.23 and 119.09 %, respectively. The pollen tube growth stimulating compound (S-02) belongs to benzazepin-type chemicals and increased Arabidopsis root length by 126.24 %. CONCLUSIONS In this study we demonstrate the usefulness of plant pollen tube based assay for screening small chemical compound libraries for new biologically active compounds. The pollen tubes represent an ultra-rapid screening tool with which even large compound libraries can be analyzed in very short time intervals. The broadly applicable high-throughput protocol is suitable for automated phenotypic screening of germinating pollen resulting in combination with seed germination assays in identification of plant growth inhibitors and stimulators.
Collapse
Affiliation(s)
- Roman Chuprov–Netochin
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700 Moscow region Russian Federation
| | - Yaroslav Neskorodov
- Research Centerof Biotechnology of the Russian Academy of Science, 117312 Moscow, Russian Federation
| | - Elena Marusich
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700 Moscow region Russian Federation
| | - Yana Mishutkina
- Research Centerof Biotechnology of the Russian Academy of Science, 117312 Moscow, Russian Federation
| | - Polina Volynchuk
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700 Moscow region Russian Federation
| | - Sergey Leonov
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700 Moscow region Russian Federation
| | - Konstantin Skryabin
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700 Moscow region Russian Federation
- Research Centerof Biotechnology of the Russian Academy of Science, 117312 Moscow, Russian Federation
- Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Andrey Ivashenko
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700 Moscow region Russian Federation
| | - Klaus Palme
- Faculty of Biology; BIOSS Centre for Biological Signaling Studies; ZBSA Centre for Biological Systems Analysis, University of Freiburg, Schänzlestr.1, 79104 Freiburg, Germany
| | - Alisher Touraev
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700 Moscow region Russian Federation
- Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| |
Collapse
|
19
|
Van de Wouwer D, Vanholme R, Decou R, Goeminne G, Audenaert D, Nguyen L, Höfer R, Pesquet E, Vanholme B, Boerjan W. Chemical Genetics Uncovers Novel Inhibitors of Lignification, Including p-Iodobenzoic Acid Targeting CINNAMATE-4-HYDROXYLASE. PLANT PHYSIOLOGY 2016; 172:198-220. [PMID: 27485881 PMCID: PMC5074639 DOI: 10.1104/pp.16.00430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 07/28/2016] [Indexed: 05/03/2023]
Abstract
Plant secondary-thickened cell walls are characterized by the presence of lignin, a recalcitrant and hydrophobic polymer that provides mechanical strength and ensures long-distance water transport. Exactly the recalcitrance and hydrophobicity of lignin put a burden on the industrial processing efficiency of lignocellulosic biomass. Both forward and reverse genetic strategies have been used intensively to unravel the molecular mechanism of lignin deposition. As an alternative strategy, we introduce here a forward chemical genetic approach to find candidate inhibitors of lignification. A high-throughput assay to assess lignification in Arabidopsis (Arabidopsis thaliana) seedlings was developed and used to screen a 10-k library of structurally diverse, synthetic molecules. Of the 73 compounds that reduced lignin deposition, 39 that had a major impact were retained and classified into five clusters based on the shift they induced in the phenolic profile of Arabidopsis seedlings. One representative compound of each cluster was selected for further lignin-specific assays, leading to the identification of an aromatic compound that is processed in the plant into two fragments, both having inhibitory activity against lignification. One fragment, p-iodobenzoic acid, was further characterized as a new inhibitor of CINNAMATE 4-HYDROXYLASE, a key enzyme of the phenylpropanoid pathway synthesizing the building blocks of the lignin polymer. As such, we provide proof of concept of this chemical biology approach to screen for inhibitors of lignification and present a broad array of putative inhibitors of lignin deposition for further characterization.
Collapse
Affiliation(s)
- Dorien Van de Wouwer
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (D.V.d.W., R.V., G.G., R.H., B.V., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (D.V.d.W., R.V., G.G., R.H., B.V., W.B.);Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umea, Sweden (R.D., E.P.);Compound Screening Facility, VIB, Ghent University, B-9052 Gent, Belgium (D.A., L.N.); andArrhenius Laboratories, Department of Ecology, Environment, and Plant Sciences, Stockholm University, 160 91 Stockholm, Sweden (E.P.)
| | - Ruben Vanholme
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (D.V.d.W., R.V., G.G., R.H., B.V., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (D.V.d.W., R.V., G.G., R.H., B.V., W.B.);Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umea, Sweden (R.D., E.P.);Compound Screening Facility, VIB, Ghent University, B-9052 Gent, Belgium (D.A., L.N.); andArrhenius Laboratories, Department of Ecology, Environment, and Plant Sciences, Stockholm University, 160 91 Stockholm, Sweden (E.P.)
| | - Raphaël Decou
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (D.V.d.W., R.V., G.G., R.H., B.V., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (D.V.d.W., R.V., G.G., R.H., B.V., W.B.);Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umea, Sweden (R.D., E.P.);Compound Screening Facility, VIB, Ghent University, B-9052 Gent, Belgium (D.A., L.N.); andArrhenius Laboratories, Department of Ecology, Environment, and Plant Sciences, Stockholm University, 160 91 Stockholm, Sweden (E.P.)
| | - Geert Goeminne
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (D.V.d.W., R.V., G.G., R.H., B.V., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (D.V.d.W., R.V., G.G., R.H., B.V., W.B.);Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umea, Sweden (R.D., E.P.);Compound Screening Facility, VIB, Ghent University, B-9052 Gent, Belgium (D.A., L.N.); andArrhenius Laboratories, Department of Ecology, Environment, and Plant Sciences, Stockholm University, 160 91 Stockholm, Sweden (E.P.)
| | - Dominique Audenaert
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (D.V.d.W., R.V., G.G., R.H., B.V., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (D.V.d.W., R.V., G.G., R.H., B.V., W.B.);Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umea, Sweden (R.D., E.P.);Compound Screening Facility, VIB, Ghent University, B-9052 Gent, Belgium (D.A., L.N.); andArrhenius Laboratories, Department of Ecology, Environment, and Plant Sciences, Stockholm University, 160 91 Stockholm, Sweden (E.P.)
| | - Long Nguyen
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (D.V.d.W., R.V., G.G., R.H., B.V., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (D.V.d.W., R.V., G.G., R.H., B.V., W.B.);Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umea, Sweden (R.D., E.P.);Compound Screening Facility, VIB, Ghent University, B-9052 Gent, Belgium (D.A., L.N.); andArrhenius Laboratories, Department of Ecology, Environment, and Plant Sciences, Stockholm University, 160 91 Stockholm, Sweden (E.P.)
| | - René Höfer
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (D.V.d.W., R.V., G.G., R.H., B.V., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (D.V.d.W., R.V., G.G., R.H., B.V., W.B.);Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umea, Sweden (R.D., E.P.);Compound Screening Facility, VIB, Ghent University, B-9052 Gent, Belgium (D.A., L.N.); andArrhenius Laboratories, Department of Ecology, Environment, and Plant Sciences, Stockholm University, 160 91 Stockholm, Sweden (E.P.)
| | - Edouard Pesquet
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (D.V.d.W., R.V., G.G., R.H., B.V., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (D.V.d.W., R.V., G.G., R.H., B.V., W.B.);Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umea, Sweden (R.D., E.P.);Compound Screening Facility, VIB, Ghent University, B-9052 Gent, Belgium (D.A., L.N.); andArrhenius Laboratories, Department of Ecology, Environment, and Plant Sciences, Stockholm University, 160 91 Stockholm, Sweden (E.P.)
| | - Bartel Vanholme
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (D.V.d.W., R.V., G.G., R.H., B.V., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (D.V.d.W., R.V., G.G., R.H., B.V., W.B.);Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umea, Sweden (R.D., E.P.);Compound Screening Facility, VIB, Ghent University, B-9052 Gent, Belgium (D.A., L.N.); andArrhenius Laboratories, Department of Ecology, Environment, and Plant Sciences, Stockholm University, 160 91 Stockholm, Sweden (E.P.)
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (D.V.d.W., R.V., G.G., R.H., B.V., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (D.V.d.W., R.V., G.G., R.H., B.V., W.B.);Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umea, Sweden (R.D., E.P.);Compound Screening Facility, VIB, Ghent University, B-9052 Gent, Belgium (D.A., L.N.); andArrhenius Laboratories, Department of Ecology, Environment, and Plant Sciences, Stockholm University, 160 91 Stockholm, Sweden (E.P.)
| |
Collapse
|
20
|
Functional genomics to uncover drug mechanism of action. Nat Chem Biol 2015; 11:942-8. [PMID: 26575241 DOI: 10.1038/nchembio.1963] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/15/2015] [Indexed: 02/06/2023]
Abstract
The upswing in US Food and Drug Administration and European Medicines Agency drug approvals in 2014 may have marked an end to the dry spell that has troubled the pharmaceutical industry over the past decade. Regardless, the attrition rate of drugs in late clinical phases remains high, and a lack of target validation has been highlighted as an explanation. This has led to a resurgence in appreciation of phenotypic drug screens, as these may be more likely to yield compounds with relevant modes of action. However, cell-based screening approaches do not directly reveal cellular targets, and hence target deconvolution and a detailed understanding of drug action are needed for efficient lead optimization and biomarker development. Here, recently developed functional genomics technologies that address this need are reviewed. The approaches pioneered in model organisms, particularly in yeast, and more recently adapted to mammalian systems are discussed. Finally, areas of particular interest and directions for future tool development are highlighted.
Collapse
|
21
|
Kakei Y, Yamazaki C, Suzuki M, Nakamura A, Sato A, Ishida Y, Kikuchi R, Higashi S, Kokudo Y, Ishii T, Soeno K, Shimada Y. Small-molecule auxin inhibitors that target YUCCA are powerful tools for studying auxin function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:827-37. [PMID: 26402640 DOI: 10.1111/tpj.13032] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 09/07/2015] [Accepted: 09/11/2015] [Indexed: 05/12/2023]
Abstract
Auxin is essential for plant growth and development, this makes it difficult to study the biological function of auxin using auxin-deficient mutants. Chemical genetics have the potential to overcome this difficulty by temporally reducing the auxin function using inhibitors. Recently, the indole-3-pyruvate (IPyA) pathway was suggested to be a major biosynthesis pathway in Arabidopsis thaliana L. for indole-3-acetic acid (IAA), the most common member of the auxin family. In this pathway, YUCCA, a flavin-containing monooxygenase (YUC), catalyzes the last step of conversion from IPyA to IAA. In this study, we screened effective inhibitors, 4-biphenylboronic acid (BBo) and 4-phenoxyphenylboronic acid (PPBo), which target YUC. These compounds inhibited the activity of recombinant YUC in vitro, reduced endogenous IAA content, and inhibited primary root elongation and lateral root formation in wild-type Arabidopsis seedlings. Co-treatment with IAA reduced the inhibitory effects. Kinetic studies of BBo and PPBo showed that they are competitive inhibitors of the substrate IPyA. Inhibition constants (Ki ) of BBo and PPBo were 67 and 56 nm, respectively. In addition, PPBo did not interfere with the auxin response of auxin-marker genes when it was co-treated with IAA, suggesting that PPBo is not an inhibitor of auxin sensing or signaling. We propose that these compounds are a class of auxin biosynthesis inhibitors that target YUC. These small molecules are powerful tools for the chemical genetic analysis of auxin function.
Collapse
Affiliation(s)
- Yusuke Kakei
- Kihara Institute for Biological Research, Yokohama City University, Maiokacho 641-12, Totsuka, Yokohama, Kanagawa, 244-0813, Japan
| | - Chiaki Yamazaki
- Kihara Institute for Biological Research, Yokohama City University, Maiokacho 641-12, Totsuka, Yokohama, Kanagawa, 244-0813, Japan
| | - Masashi Suzuki
- Kihara Institute for Biological Research, Yokohama City University, Maiokacho 641-12, Totsuka, Yokohama, Kanagawa, 244-0813, Japan
| | - Ayako Nakamura
- Kihara Institute for Biological Research, Yokohama City University, Maiokacho 641-12, Totsuka, Yokohama, Kanagawa, 244-0813, Japan
| | - Akiko Sato
- Kihara Institute for Biological Research, Yokohama City University, Maiokacho 641-12, Totsuka, Yokohama, Kanagawa, 244-0813, Japan
| | - Yosuke Ishida
- Kihara Institute for Biological Research, Yokohama City University, Maiokacho 641-12, Totsuka, Yokohama, Kanagawa, 244-0813, Japan
| | - Rie Kikuchi
- Kihara Institute for Biological Research, Yokohama City University, Maiokacho 641-12, Totsuka, Yokohama, Kanagawa, 244-0813, Japan
| | - Shouichi Higashi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Yumiko Kokudo
- National Agriculture and Food Research Organization (NARO), Western Region Agricultural Research Center (WARC), Senyu, Zentsuji, Kagawa, 765-8508, Japan
| | - Takahiro Ishii
- National Agriculture and Food Research Organization (NARO), Western Region Agricultural Research Center (WARC), Senyu, Zentsuji, Kagawa, 765-8508, Japan
| | - Kazuo Soeno
- National Agriculture and Food Research Organization (NARO), Western Region Agricultural Research Center (WARC), Senyu, Zentsuji, Kagawa, 765-8508, Japan
| | - Yukihisa Shimada
- Kihara Institute for Biological Research, Yokohama City University, Maiokacho 641-12, Totsuka, Yokohama, Kanagawa, 244-0813, Japan
| |
Collapse
|
22
|
Serrano M, Kombrink E, Meesters C. Considerations for designing chemical screening strategies in plant biology. FRONTIERS IN PLANT SCIENCE 2015; 6:131. [PMID: 25904921 PMCID: PMC4389374 DOI: 10.3389/fpls.2015.00131] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/18/2015] [Indexed: 05/03/2023]
Abstract
Traditionally, biologists regularly used classical genetic approaches to characterize and dissect plant processes. However, this strategy is often impaired by redundancy, lethality or pleiotropy of gene functions, which prevent the isolation of viable mutants. The chemical genetic approach has been recognized as an alternative experimental strategy, which has the potential to circumvent these problems. It relies on the capacity of small molecules to modify biological processes by specific binding to protein target(s), thereby conditionally modifying protein function(s), which phenotypically resemble mutation(s) of the encoding gene(s). A successful chemical screening campaign comprises three equally important elements: (1) a reliable, robust, and quantitative bioassay, which allows to distinguish between potent and less potent compounds, (2) a rigorous validation process for candidate compounds to establish their selectivity, and (3) an experimental strategy for elucidating a compound's mode of action and molecular target. In this review we will discuss details of this general strategy and additional aspects that deserve consideration in order to take full advantage of the power provided by the chemical approach to plant biology. In addition, we will highlight some success stories of recent chemical screenings in plant systems, which may serve as teaching examples for the implementation of future chemical biology projects.
Collapse
Affiliation(s)
- Mario Serrano
- Plant Biology, Department of Biology, University of FribourgFribourg, Switzerland
| | - Erich Kombrink
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding ResearchKöln, Germany
| | - Christian Meesters
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding ResearchKöln, Germany
- Department of Chemical Biology, Faculty of Biology, Center for Medical Biotechnology, University of Duisburg-EssenEssen, Germany
- *Correspondence: Christian Meesters, Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Köln, Germany
| |
Collapse
|