1
|
Identifying protein subcellular localisation in scientific literature using bidirectional deep recurrent neural network. Sci Rep 2021; 11:1696. [PMID: 33462256 PMCID: PMC7813825 DOI: 10.1038/s41598-020-80441-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022] Open
Abstract
The increased diversity and scale of published biological data has to led to a growing appreciation for the applications of machine learning and statistical methodologies to gain new insights. Key to achieving this aim is solving the Relationship Extraction problem which specifies the semantic interaction between two or more biological entities in a published study. Here, we employed two deep neural network natural language processing (NLP) methods, namely: the continuous bag of words (CBOW), and the bi-directional long short-term memory (bi-LSTM). These methods were employed to predict relations between entities that describe protein subcellular localisation in plants. We applied our system to 1700 published Arabidopsis protein subcellular studies from the SUBA manually curated dataset. The system combines pre-processing of full-text articles in a machine-readable format with relevant sentence extraction for downstream NLP analysis. Using the SUBA corpus, the neural network classifier predicted interactions between protein name, subcellular localisation and experimental methodology with an average precision, recall rate, accuracy and F1 scores of 95.1%, 82.8%, 89.3% and 88.4% respectively (n = 30). Comparable scoring metrics were obtained using the CropPAL database as an independent testing dataset that stores protein subcellular localisation in crop species, demonstrating wide applicability of prediction model. We provide a framework for extracting protein functional features from unstructured text in the literature with high accuracy, improving data dissemination and unlocking the potential of big data text analytics for generating new hypotheses.
Collapse
|
2
|
Huber CV, Jakobs BD, Mishra LS, Niedermaier S, Stift M, Winter G, Adamska I, Funk C, Huesgen PF, Funck D. DEG10 contributes to mitochondrial proteostasis, root growth, and seed yield in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5423-5436. [PMID: 31225599 PMCID: PMC6793672 DOI: 10.1093/jxb/erz294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 06/11/2019] [Indexed: 05/04/2023]
Abstract
Maintaining mitochondrial proteome integrity is especially important under stress conditions to ensure a continued ATP supply for protection and adaptation responses in plants. Deg/HtrA proteases are important factors in the cellular protein quality control system, but little is known about their function in mitochondria. Here we analyzed the expression pattern and physiological function of Arabidopsis thaliana DEG10, which has homologs in all photosynthetic eukaryotes. Both expression of DEG10:GFP fusion proteins and immunoblotting after cell fractionation showed an unambiguous subcellular localization exclusively in mitochondria. DEG10 promoter:GUS fusion constructs showed that DEG10 is expressed in trichomes but also in the vascular tissue of roots and aboveground organs. DEG10 loss-of-function mutants were impaired in root elongation, especially at elevated temperature. Quantitative proteome analysis revealed concomitant changes in the abundance of mitochondrial respiratory chain components and assembly factors, which partially appeared to depend on altered mitochondrial retrograde signaling. Under field conditions, lack of DEG10 caused a decrease in seed production. Taken together, our findings demonstrate that DEG10 affects mitochondrial proteostasis, is required for optimal root development and seed set under challenging environmental conditions, and thus contributes to stress tolerance of plants.
Collapse
Affiliation(s)
- Catharina V Huber
- Department of Biology, University of Konstanz, Universitätsstraße, Konstanz, Germany
| | - Barbara D Jakobs
- Department of Biology, University of Konstanz, Universitätsstraße, Konstanz, Germany
| | - Laxmi S Mishra
- Department of Chemistry, Umeå University, Linnaeus väg, Umeå, Sweden
| | - Stefan Niedermaier
- Central Institute for Engineering, Electronics and Analytics, ZEA-3 Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
| | - Marc Stift
- Department of Biology, University of Konstanz, Universitätsstraße, Konstanz, Germany
| | - Gudrun Winter
- Department of Biology, University of Konstanz, Universitätsstraße, Konstanz, Germany
| | - Iwona Adamska
- Department of Biology, University of Konstanz, Universitätsstraße, Konstanz, Germany
| | - Christiane Funk
- Department of Chemistry, Umeå University, Linnaeus väg, Umeå, Sweden
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3 Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
- Medical Faculty and University Hospital, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Dietmar Funck
- Department of Biology, University of Konstanz, Universitätsstraße, Konstanz, Germany
| |
Collapse
|
3
|
Butenko Y, Lin A, Naveh L, Kupervaser M, Levin Y, Reich Z, Adam Z. Differential Roles of the Thylakoid Lumenal Deg Protease Homologs in Chloroplast Proteostasis. PLANT PHYSIOLOGY 2018; 178:1065-1080. [PMID: 30237207 PMCID: PMC6236614 DOI: 10.1104/pp.18.00912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/12/2018] [Indexed: 05/18/2023]
Abstract
Deg proteases are involved in protein quality control in prokaryotes. Of the three Arabidopsis (Arabidopsis thaliana) homologs, Deg1, Deg5, and Deg8, located in the thylakoid lumen, Deg1 forms a homohexamer, whereas Deg5 and Deg8 form a heterocomplex. Both Deg1 and Deg5-Deg8 were shown separately to degrade photosynthetic proteins during photoinhibition. To investigate whether Deg1 and Deg5-Deg8 are redundant, a full set of Arabidopsis Deg knockout mutants were generated and their phenotypes were compared. Under all conditions tested, deg1 mutants were affected more than the wild type and deg5 and deg8 mutants. Moreover, overexpression of Deg5-Deg8 could only partially compensate for the loss of Deg1. Comparative proteomics of deg1 mutants revealed moderate up-regulation of thylakoid proteins involved in photoprotection, assembly, repair, and housekeeping and down-regulation of those that form photosynthetic complexes. Quantification of protein levels in the wild type revealed that Deg1 was 2-fold more abundant than Deg5-Deg8. Moreover, recombinant Deg1 displayed higher in vitro proteolytic activity. Affinity enrichment assays revealed that Deg1 was precipitated with very few interacting proteins, whereas Deg5-Deg8 was associated with a number of thylakoid proteins, including D1, OECs, LHCBs, Cyt b 6 f, and NDH subunits, thus implying that Deg5-Deg8 is capable of binding substrates but is unable to degrade them efficiently. This work suggests that differences in protein abundance and proteolytic activity underlie the differential importance of Deg1 and Deg5-Deg8 protease complexes observed in vivo.
Collapse
Affiliation(s)
- Yana Butenko
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot 76100, Israel
| | - Albina Lin
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot 76100, Israel
| | - Leah Naveh
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot 76100, Israel
| | - Meital Kupervaser
- de Botton Institute for Protein Profiling, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yishai Levin
- de Botton Institute for Protein Profiling, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ziv Reich
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zach Adam
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot 76100, Israel
| |
Collapse
|
4
|
Majsec K, Bhuiyan NH, Sun Q, Kumari S, Kumar V, Ware D, van Wijk KJ. The Plastid and Mitochondrial Peptidase Network in Arabidopsis thaliana: A Foundation for Testing Genetic Interactions and Functions in Organellar Proteostasis. THE PLANT CELL 2017; 29:2687-2710. [PMID: 28947489 PMCID: PMC5728138 DOI: 10.1105/tpc.17.00481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/29/2017] [Accepted: 09/21/2017] [Indexed: 05/17/2023]
Abstract
Plant plastids and mitochondria have dynamic proteomes. Protein homeostasis in these organelles is maintained by a proteostasis network containing protein chaperones, peptidases, and their substrate recognition factors. However, many peptidases, as well as their functional connections and substrates, are poorly characterized. This review provides a systematic insight into the organellar peptidase network in Arabidopsis thaliana We present a compendium of known and putative Arabidopsis peptidases and inhibitors, and compare the distribution of plastid and mitochondrial peptidases to the total peptidase complement. This comparison shows striking biases, such as the (near) absence of cysteine and aspartic peptidases and peptidase inhibitors, whereas other peptidase families were exclusively organellar; reasons for such biases are discussed. A genome-wide mRNA-based coexpression data set was generated based on quality controlled and normalized public data, and used to infer additional plastid peptidases and to generate a coexpression network for 97 organellar peptidase baits (1742 genes, making 2544 edges). The graphical network includes 10 modules with specialized/enriched functions, such as mitochondrial protein maturation, thermotolerance, senescence, or enriched subcellular locations such as the thylakoid lumen or chloroplast envelope. The peptidase compendium, including the autophagy and proteosomal systems, and the annotation based on the MEROPS nomenclature of peptidase clans and families, is incorporated into the Plant Proteome Database.
Collapse
Affiliation(s)
- Kristina Majsec
- Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Nazmul H Bhuiyan
- School for Integrative Plant Sciences, Section Plant Biology, Cornell University, Ithaca, New York 14853
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Sunita Kumari
- Cold Spring Harbor laboratory, Cold Spring Harbor, New York 17724
| | - Vivek Kumar
- Cold Spring Harbor laboratory, Cold Spring Harbor, New York 17724
| | - Doreen Ware
- Cold Spring Harbor laboratory, Cold Spring Harbor, New York 17724
| | - Klaas J van Wijk
- School for Integrative Plant Sciences, Section Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
5
|
Geigenberger P, Thormählen I, Daloso DM, Fernie AR. The Unprecedented Versatility of the Plant Thioredoxin System. TRENDS IN PLANT SCIENCE 2017; 22:249-262. [PMID: 28139457 DOI: 10.1016/j.tplants.2016.12.008] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/25/2016] [Accepted: 12/14/2016] [Indexed: 05/18/2023]
Abstract
Thioredoxins are ubiquitous enzymes catalyzing reversible disulfide-bond formation to regulate structure and function of many proteins in diverse organisms. In recent years, reverse genetics and biochemical approaches were used to resolve the functions, specificities, and interactions of the different thioredoxin isoforms and reduction systems in planta and revealed the most versatile thioredoxin system of all organisms. Here we review the emerging roles of the thioredoxin system, namely the integration of thylakoid energy transduction, metabolism, gene expression, growth, and development under fluctuating environmental conditions. We argue that these new developments help us to understand why plants organize such a divergent composition of thiol redox networks and provide insights into the regulatory hierarchy that operates between them.
Collapse
Affiliation(s)
- Peter Geigenberger
- Ludwig-Maximilians-Universität (LMU) München, Department Biology I, 82152 Planegg-Martinsried, Germany.
| | - Ina Thormählen
- Ludwig-Maximilians-Universität (LMU) München, Department Biology I, 82152 Planegg-Martinsried, Germany
| | - Danilo M Daloso
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
6
|
Migdal I, Skibior-Blaszczyk R, Heidorn-Czarna M, Kolodziejczak M, Garbiec A, Janska H. AtOMA1 Affects the OXPHOS System and Plant Growth in Contrast to Other Newly Identified ATP-Independent Proteases in Arabidopsis Mitochondria. FRONTIERS IN PLANT SCIENCE 2017; 8:1543. [PMID: 28936218 PMCID: PMC5594102 DOI: 10.3389/fpls.2017.01543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/23/2017] [Indexed: 05/17/2023]
Abstract
Compared with yeast, our knowledge on members of the ATP-independent plant mitochondrial proteolytic machinery is rather poor. In the present study, using confocal microscopy and immunoblotting, we proved that homologs of yeast Oma1, Atp23, Imp1, Imp2, and Oct1 proteases are localized in Arabidopsis mitochondria. We characterized these components of the ATP-independent proteolytic system as well as the earlier identified protease, AtICP55, with an emphasis on their significance in plant growth and functionality in the OXPHOS system. A functional complementation assay demonstrated that out of all the analyzed proteases, only AtOMA1 and AtICP55 could substitute for a lack of their yeast counterparts. We did not observe any significant developmental or morphological changes in plants lacking the studied proteases, either under optimal growth conditions or after exposure to stress, with the only exception being retarded root growth in oma1-1, thus implying that the absence of a single mitochondrial ATP-independent protease is not critical for Arabidopsis growth and development. We did not find any evidence indicating a clear functional complementation of the missing protease by any other protease at the transcript or protein level. Studies on the impact of the analyzed proteases on mitochondrial bioenergetic function revealed that out of all the studied mutants, only oma1-1 showed differences in activities and amounts of OXPHOS proteins. Among all the OXPHOS disorders found in oma1-1, the complex V deficiency is distinctive because it is mainly associated with decreased catalytic activity and not correlated with complex abundance, which has been observed in the case of supercomplex I + III2 and complex I deficiencies. Altogether, our study indicates that despite the presence of highly conservative homologs, the mitochondrial ATP-independent proteolytic system is not functionally conserved in plants as compared with yeast. Our findings also highlight the importance of AtOMA1 in maintenance of proper function of the OXPHOS system as well as in growth and development of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Iwona Migdal
- Institute of Experimental Biology, Faculty of Biological Sciences, University of WroclawWroclaw, Poland
| | - Renata Skibior-Blaszczyk
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of WroclawWroclaw, Poland
| | - Malgorzata Heidorn-Czarna
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of WroclawWroclaw, Poland
| | - Marta Kolodziejczak
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of WroclawWroclaw, Poland
| | - Arnold Garbiec
- Institute of Experimental Biology, Faculty of Biological Sciences, University of WroclawWroclaw, Poland
| | - Hanna Janska
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of WroclawWroclaw, Poland
- *Correspondence: Hanna Janska,
| |
Collapse
|
7
|
Zheng K, Zhao J, Lin D, Chen J, Xu J, Zhou H, Teng S, Dong Y. The Rice TCM5 Gene Encoding a Novel Deg Protease Protein is Essential for Chloroplast Development under High Temperatures. RICE (NEW YORK, N.Y.) 2016; 9:13. [PMID: 27000876 PMCID: PMC4801845 DOI: 10.1186/s12284-016-0086-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/08/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND High temperature affects a broad spectrum of cellular components and metabolism in plants. The Deg/HtrA family of ATP-independent serine endopeptidases is present in nearly all organisms. Deg proteases are required for the survival of Escherichia coli at high temperatures. However, it is still unclear whether rice Deg proteases are required for chloroplast development under high temperatures. RESULTS In this study, we reported the first rice deg mutant tcm5 (thermo-sensitive chlorophyll-deficient mutant 5) that has an albino phenotype, defective chloroplasts and could not survive after the 4-5 leaf seedling stage when grown at high temperature (32 °C). However, when grown at low temperatures (20 °C), tcm5 has a normal phenotype. Map-based cloning showed that TCM5 encoding a chloroplast-targeted Deg protease protein. The TCM5 transcripts were highly expressed in all green tissues and undetectable in other tissues, showing the tissue-specific expression. In tcm5 mutants grown at high temperatures, the transcript levels of certain genes associated with chloroplast development especially PSII-associated genes were severely affected, but recovered to normal levels at low temperatures. These results showed important role of TCM5 for chloroplast development under high temperatures. CONCLUSIONS The TCM5 encodes chloroplast-targeted Deg protease protein which is important for chloroplast development and the maintenance of PSII function and its disruption would lead to a defective chloroplast and affected expression levels of genes associated with chloroplast development and photosynthesis at early rice seedling stage under high temperatures.
Collapse
Affiliation(s)
- Kailun Zheng
- />Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Jian Zhao
- />Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
- />Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Dongzhi Lin
- />Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Jiaying Chen
- />Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
- />Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Jianlong Xu
- />Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan Cun Street, Beijing, 100081 China
| | - Hua Zhou
- />Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
- />Present address: Agricultural Faculty, Hokkaido University, Sappro, 060-0817 Japan
| | - Sheng Teng
- />Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Yanjun Dong
- />Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
| |
Collapse
|
8
|
Hooper CM, Castleden IR, Tanz SK, Aryamanesh N, Millar AH. SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Res 2016; 45:D1064-D1074. [PMID: 27899614 PMCID: PMC5210537 DOI: 10.1093/nar/gkw1041] [Citation(s) in RCA: 301] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/20/2016] [Indexed: 12/15/2022] Open
Abstract
The SUBcellular location database for Arabidopsis proteins (SUBA4, http://suba.live) is a comprehensive collection of manually curated published data sets of large-scale subcellular proteomics, fluorescent protein visualization, protein-protein interaction (PPI) as well as subcellular targeting calls from 22 prediction programs. SUBA4 contains an additional 35 568 localizations totalling more than 60 000 experimental protein location claims as well as 37 new suborganellar localization categories. The experimental PPI data has been expanded to 26 327 PPI pairs including 856 PPI localizations from experimental fluorescent visualizations. The new SUBA4 user interface enables users to choose quickly from the filter categories: ‘subcellular location’, ‘protein properties’, ‘protein–protein interaction’ and ‘affiliations’ to build complex queries. This allows substantial expansion of search parameters into 80 annotation types comprising 1 150 204 new annotations to study metadata associated with subcellular localization. The ‘BLAST’ tab contains a sequence alignment tool to enable a sequence fragment from any species to find the closest match in Arabidopsis and retrieve data on subcellular location. Using the location consensus SUBAcon, the SUBA4 toolbox delivers three novel data services allowing interactive analysis of user data to provide relative compartmental protein abundances and proximity relationship analysis of PPI and coexpression partners from a submitted list of Arabidopsis gene identifiers.
Collapse
Affiliation(s)
- Cornelia M Hooper
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA 6009, Australia
| | - Ian R Castleden
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA 6009, Australia
| | - Sandra K Tanz
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA 6009, Australia
| | - Nader Aryamanesh
- Department of Genetics and Physiology, Biocenter Oulu, FIN-90014 University of Oulu, Finland
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
9
|
Cheregi O, Wagner R, Funk C. Insights into the Cyanobacterial Deg/HtrA Proteases. FRONTIERS IN PLANT SCIENCE 2016; 7:694. [PMID: 27252714 PMCID: PMC4877387 DOI: 10.3389/fpls.2016.00694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
Proteins are the main machinery for all living processes in a cell; they provide structural elements, regulate biochemical reactions as enzymes, and are the interface to the outside as receptors and transporters. Like any other machinery proteins have to be assembled correctly and need maintenance after damage, e.g., caused by changes in environmental conditions, genetic mutations, and limitations in the availability of cofactors. Proteases and chaperones help in repair, assembly, and folding of damaged and misfolded protein complexes cost-effective, with low energy investment compared with neo-synthesis. Despite their importance for viability, the specific biological role of most proteases in vivo is largely unknown. Deg/HtrA proteases, a family of serine-type ATP-independent proteases, have been shown in higher plants to be involved in the degradation of the Photosystem II reaction center protein D1. The objective of this review is to highlight the structure and function of their cyanobacterial orthologs. Homology modeling was used to find specific features of the SynDeg/HtrA proteases of Synechocystis sp. PCC 6803. Based on the available data concerning their location and their physiological substrates we conclude that these Deg proteases not only have important housekeeping and chaperone functions within the cell, but also are needed for remodeling the cell exterior.
Collapse
|
10
|
Inactivation of the Deg protease family in the cyanobacterium Synechocystis sp. PCC 6803 has impact on the outer cell layers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:383-94. [DOI: 10.1016/j.jphotobiol.2015.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/12/2015] [Accepted: 05/15/2015] [Indexed: 12/13/2022]
|
11
|
Proteomic approaches to identify substrates of the three Deg/HtrA proteases of the cyanobacterium Synechocystis sp. PCC 6803. Biochem J 2015; 468:373-84. [PMID: 25877158 DOI: 10.1042/bj20150097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/16/2015] [Indexed: 12/21/2022]
Abstract
The family of Deg/HtrA proteases plays an important role in quality control of cellular proteins in a wide range of organisms. In the genome of the cyanobacterium Synechocystis sp. PCC 6803, a model organism for photosynthetic research and renewable energy products, three Deg proteases are encoded, termed HhoA, HhoB and HtrA. In the present study, we compared wild-type (WT) Synechocystis cells with the single insertion mutants ΔhhoA, ΔhhoB and ΔhtrA. Protein expression of the remaining Deg/HtrA proteases was strongly affected in the single insertion mutants. Detailed proteomic studies using DIGE (difference gel electrophoresis) and N-terminal COFRADIC (N-terminal combined fractional diagonal chromatography) revealed that inactivation of a single Deg protease has similar impact on the proteomes of the three mutants; differences to WT were observed in enzymes involved in the major metabolic pathways. Changes in the amount of phosphate permease system Pst-1 were observed only in the insertion mutant ΔhhoB. N-terminal COFRADIC analyses on cell lysates of ΔhhoB confirmed changed amounts of many cell envelope proteins, including the phosphate permease systems, compared with WT. In vitro COFRADIC studies were performed to identify the specificity profiles of the recombinant proteases rHhoA, rHhoB or rHtrA added to the Synechocystis WT proteome. The combined in vivo and in vitro N-terminal COFRADIC datasets propose RbcS as a natural substrate for HhoA, PsbO for HhoB and HtrA and Pbp8 for HtrA. We therefore suggest that each Synechocystis Deg protease protects the cell through different, but connected mechanisms.
Collapse
|