1
|
Yang M, Zhou C, Kuang R, Wu X, Liu C, He H, Wei Y. Transcription factor CpWRKY50 enhances anthracnose resistance by promoting jasmonic acid signaling in papaya. PLANT PHYSIOLOGY 2024; 196:2856-2870. [PMID: 39250752 DOI: 10.1093/plphys/kiae479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 09/11/2024]
Abstract
Colletotrichum brevisporum is an important fungal pathogen that causes anthracnose and has led to serious postharvest losses of papaya (Carica papaya L.) fruit in recent years. WRKY transcription factors (TFs) play vital roles in regulating plant resistance to pathogens, but their functions in papaya anthracnose resistance need further exploration. In this study, we identified a WRKY TF, CpWRKY50, which belongs to the WRKY IIc subfamily. During infection with C. brevisporum, expression of CpWRKY50 in anthracnose-resistant papaya cultivars was significantly higher than that in susceptible cultivars. CpWRKY50 was induced by methyl jasmonate, and CpWRKY50 localized in the nucleus. In yeast, full-length CpWRKY50 had transactivation activity, but CpWRKY50 variants truncated at the N or C termini did not. CpWRKY50 positively regulated papaya resistance to C. brevisporum, as demonstrated by transient overexpression of CpWRKY50 in papaya and heterologous expression of CpWRKY50 in tomato. Moreover, endogenous jasmonic acid (JA) and JA-isoleucine levels in the fruits of transgenic tomato OE lines were higher than in wild type both before and after inoculation with C. brevisporum, indicating that increased CpWRKY50 expression promotes JA accumulation. Furthermore, our results revealed CpWRKY50 directly binds to W-box motifs (TTGACC) in the promoters of two JA signaling-related genes, CpMYC2 and pathogenesis-related 4 CpPR4, thereby activating their expression. Our data support that CpWRKY50 positively regulates anthracnose resistance in papaya by promoting JA signaling. These results broaden our understanding of papaya disease resistance mechanisms and will facilitate the genetic improvement of papaya through molecular breeding.
Collapse
Affiliation(s)
- Min Yang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou 510640, China
| | - Chenping Zhou
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou 510640, China
| | - Ruibin Kuang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou 510640, China
| | - Xiaming Wu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou 510640, China
| | - Chuanhe Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou 510640, China
| | - Han He
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou 510640, China
| | - Yuerong Wei
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou 510640, China
| |
Collapse
|
2
|
Chen P, Zhang X, Li X, Sun B, Yu H, Liu Q, Jiang L, Mao X, Zhang J, Lv S, Fan Z, Liu W, Chen W, Li C. Transcriptome Analysis of Rice Near-Isogenic Lines Inoculated with Two Strains of Xanthomonas oryzae pv. oryzae, AH28 and PXO99 A. PLANTS (BASEL, SWITZERLAND) 2024; 13:3129. [PMID: 39599338 PMCID: PMC11597379 DOI: 10.3390/plants13223129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Rice bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), is a major threat to rice production and food security. Exploring new resistance genes and developing varieties with broad-spectrum and high resistance has been a key focus in rice disease resistance research. In a preliminary study, rice cultivar Fan3, exhibiting high resistance to PXO99A and susceptibility to AH28, was developed by enhancing the resistance of Yuehesimiao (YHSM) to BB. This study performed a transcriptome analysis on the leaves of Fan3 and YHSM following inoculation with Xoo strains AH28 and PXO99A. The analysis revealed significant differential expression of 14,084 genes. Among the transcription factor (TF) families identified, bHLH, WRKY, and ERF were prominent, with notable differences in the expression of OsWRKY62, OsWRKY76, and OsbHLH6 across samples. Over 100 genes were directly linked to disease resistance, including nearly 30 NBS-LRR family genes. Additionally, 11 SWEET family protein genes, over 750 protein kinase genes, 63 peroxidase genes, and eight phenylalanine aminolysase genes were detected. Gene ontology (GO) analysis showed significant enrichment in pathways related to defense response to bacteria and oxidative stress response. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that differentially expressed genes (DEGs) were enriched in phenylpropanoid biosynthesis and diterpenoid biosynthesis pathways. Gene expression results from qRT-PCR were consistent with those from RNA-Seq, underscoring the reliability of the findings. Candidate genes identified in this study that may be resistant to BB, such as NBS-LRR family genes LOC_Os11g11960 and LOC_Os11g12350, SWEET family genes LOC_Os01g50460 and LOC_Os01g12130, and protein kinase-expressing genes LOC_Os01g66860 and LOC_Os02g57700, will provide a theoretical basis for further experiments. These results suggest that the immune response of rice to the two strains may be more concentrated in the early stage, and there are more up-regulated genes in the immune response of the high-resistant to PXO99A and medium-resistant to AH28, respectively, compared with the highly susceptible rice. This study offers a foundation for further research on resistance genes and the molecular mechanisms in Fan3 and YHSM.
Collapse
Affiliation(s)
- Pingli Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Xing Zhang
- Hanzhong Agricultural Technology Promotion and Training Center, Hanzhong 723000, China
| | - Xiaogang Li
- Hanzhong Agricultural Technology Promotion and Training Center, Hanzhong 723000, China
| | - Bingrui Sun
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Hang Yu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Qing Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Liqun Jiang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Xingxue Mao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Jing Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Shuwei Lv
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Zhilan Fan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Wei Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Wenfeng Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Chen Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| |
Collapse
|
3
|
Song Y, Wang Y, Zhang H, Saddique MAB, Luo X, Ren M. The TOR signalling pathway in fungal phytopathogens: A target for plant disease control. MOLECULAR PLANT PATHOLOGY 2024; 25:e70024. [PMID: 39508186 PMCID: PMC11541241 DOI: 10.1111/mpp.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024]
Abstract
Plant diseases caused by fungal phytopathogens have led to significant economic losses in agriculture worldwide. The management of fungal diseases is mainly dependent on the application of fungicides, which are not suitable for sustainable agriculture, human health, and environmental safety. Thus, it is necessary to develop novel targets and green strategies to mitigate the losses caused by these pathogens. The target of rapamycin (TOR) complexes and key components of the TOR signalling pathway are evolutionally conserved in pathogens and closely related to the vegetative growth and pathogenicity. As indicated in recent systems, chemical, genetic, and genomic studies on the TOR signalling pathway, phytopathogens with TOR dysfunctions show severe growth defects and nonpathogenicity, which makes the TOR signalling pathway to be developed into an ideal candidate target for controlling plant disease. In this review, we comprehensively discuss the current knowledge on components of the TOR signalling pathway in microorganisms and the diverse roles of various plant TOR in response to plant pathogens. Furthermore, we analyse a range of disease management strategies that rely on the TOR signalling pathway, including genetic modification technologies and chemical controls. In the future, disease control strategies based on the TOR signalling network are expected to become a highly effective weapon for crop protection.
Collapse
Affiliation(s)
- Yun Song
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Yaru Wang
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Huafang Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| | - Muhammad Abu Bakar Saddique
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| | - Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| |
Collapse
|
4
|
Yang H, Wei X, Lei W, Su H, Zhao Y, Yuan Y, Zhang X, Li X. Genome-Wide Identification, Expression, and Protein Analysis of CKX and IPT Gene Families in Radish ( Raphanus sativus L.) Reveal Their Involvement in Clubroot Resistance. Int J Mol Sci 2024; 25:8974. [PMID: 39201660 PMCID: PMC11354997 DOI: 10.3390/ijms25168974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Cytokinins (CKs) are a group of phytohormones that are involved in plant growth, development, and disease resistance. The isopentenyl transferase (IPT) and cytokinin oxidase/dehydrogenase (CKX) families comprise key enzymes controlling CK biosynthesis and degradation. However, an integrated analysis of these two gene families in radish has not yet been explored. In this study, 13 RsIPT and 12 RsCKX genes were identified and characterized, most of which had four copies in Brassica napus and two copies in radish and other diploid Brassica species. Promoter analysis indicated that the genes contained at least one phytohormone or defense and stress responsiveness cis-acting element. RsIPTs and RsCKXs were expanded through segmental duplication. Moreover, strong purifying selection drove the evolution of the two gene families. The expression of the RsIPT and RsCKX genes distinctly showed diversity in different tissues and developmental stages of the root. Expression profiling showed that RsCKX1-1/1-2/1-3 was significantly upregulated in club-resistant materials during primary infection, suggesting their vital function in clubroot resistance. The interaction network of CKX proteins with similar 3D structures also reflected the important role of RsCKX genes in disease resistance. This study provides a foundation for further functional study on the IPT and CKX genes for clubroot resistance improvement in Raphanus.
Collapse
Affiliation(s)
- Haohui Yang
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (H.Y.); (X.W.); (H.S.); (Y.Z.); (Y.Y.)
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaochun Wei
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (H.Y.); (X.W.); (H.S.); (Y.Z.); (Y.Y.)
| | - Weiwei Lei
- Station for Popularizing Agricultural Technique of Changping District, Beijing 102200, China
| | - Henan Su
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (H.Y.); (X.W.); (H.S.); (Y.Z.); (Y.Y.)
| | - Yanyan Zhao
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (H.Y.); (X.W.); (H.S.); (Y.Z.); (Y.Y.)
| | - Yuxiang Yuan
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (H.Y.); (X.W.); (H.S.); (Y.Z.); (Y.Y.)
| | - Xiaowei Zhang
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (H.Y.); (X.W.); (H.S.); (Y.Z.); (Y.Y.)
| | - Xixiang Li
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
5
|
Zhao Y, Zhu X, Shi CM, Xu G, Zuo S, Shi Y, Cao W, Kang H, Liu W, Wang R, Ning Y, Wang GL, Wang X. OsEIL2 balances rice immune responses against (hemi)biotrophic and necrotrophic pathogens via the salicylic acid and jasmonic acid synergism. THE NEW PHYTOLOGIST 2024; 243:362-380. [PMID: 38730437 DOI: 10.1111/nph.19809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
Plants typically activate distinct defense pathways against various pathogens. Heightened resistance to one pathogen often coincides with increased susceptibility to another pathogen. However, the underlying molecular basis of this antagonistic response remains unclear. Here, we demonstrate that mutants defective in the transcription factor ETHYLENE-INSENSITIVE 3-LIKE 2 (OsEIL2) exhibited enhanced resistance to the biotrophic bacterial pathogen Xanthomonas oryzae pv oryzae and to the hemibiotrophic fungal pathogen Magnaporthe oryzae, but enhanced susceptibility to the necrotrophic fungal pathogen Rhizoctonia solani. Furthermore, necrotroph-induced OsEIL2 binds to the promoter of OsWRKY67 with high affinity, leading to the upregulation of salicylic acid (SA)/jasmonic acid (JA) pathway genes and increased SA/JA levels, ultimately resulting in enhanced resistance. However, biotroph- and hemibiotroph-induced OsEIL2 targets OsERF083, resulting in the inhibition of SA/JA pathway genes and decreased SA/JA levels, ultimately leading to reduced resistance. Our findings unveil a previously uncharacterized defense mechanism wherein two distinct transcriptional regulatory modules differentially mediate immunity against pathogens with different lifestyles through the transcriptional reprogramming of phytohormone pathway genes.
Collapse
Affiliation(s)
- Yudan Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoying Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Cheng-Min Shi
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China
| | - Guojuan Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Yanlong Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenlei Cao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Xuli Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
6
|
Castell-Miller CV, Kono TJ, Ranjan A, Schlatter DC, Samac DA, Kimball JA. Interactive transcriptome analyses of Northern Wild Rice ( Zizania palustris L.) and Bipolaris oryzae show convoluted communications during the early stages of fungal brown spot development. FRONTIERS IN PLANT SCIENCE 2024; 15:1350281. [PMID: 38736448 PMCID: PMC11086184 DOI: 10.3389/fpls.2024.1350281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Fungal diseases, caused mainly by Bipolaris spp., are past and current threats to Northern Wild Rice (NWR) grain production and germplasm preservation in both natural and cultivated settings. Genetic resistance against the pathogen is scarce. Toward expanding our understanding of the global gene communications of NWR and Bipolaris oryzae interaction, we designed an RNA sequencing study encompassing the first 12 h and 48 h of their encounter. NWR activated numerous plant recognition receptors after pathogen infection, followed by active transcriptional reprogramming of signaling mechanisms driven by Ca2+ and its sensors, mitogen-activated protein kinase cascades, activation of an oxidative burst, and phytohormone signaling-bound mechanisms. Several transcription factors associated with plant defense were found to be expressed. Importantly, evidence of diterpenoid phytoalexins, especially phytocassane biosynthesis, among expression of other defense genes was found. In B. oryzae, predicted genes associated with pathogenicity including secreted effectors that could target plant defense mechanisms were expressed. This study uncovered the early molecular communication between the NWR-B. oryzae pathosystem, which could guide selection for allele-specific genes to boost NWR defenses, and overall aid in the development of more efficient selection methods in NWR breeding through the use of the most virulent fungal isolates.
Collapse
Affiliation(s)
| | - Thomas J.Y. Kono
- Minnesota Supercomputing Institute, University of Minnesota, Saint Paul, MN, United States
| | - Ashish Ranjan
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| | - Daniel C. Schlatter
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
- United States Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Saint Paul, MN, United States
| | - Deborah A. Samac
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
- United States Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Saint Paul, MN, United States
| | - Jennifer A. Kimball
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
7
|
Das Laha S, Kundu A, Podder S. Impact of biotic stresses on the Brassicaceae family and opportunities for crop improvement by exploiting genotyping traits. PLANTA 2024; 259:97. [PMID: 38520529 DOI: 10.1007/s00425-024-04379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
MAIN CONCLUSION Utilizing RNAi, miRNA, siRNA, lncRNA and exploiting genotyping traits can help safeguard the food supply from illnesses and pest damage to Brassicas, as well as reduce yield losses caused by plant pathogens and insect pests. In the natural environment, plants face significant challenges in the form of biotic stress, due to various living organisms, leading to biological stress and a sharp decline in crop yields. To cope with these effects, plants have evolved specialized mechanisms to mitigate these challenges. Plant stress tolerance and resistance are influenced by genes associated with stress-responsive pathogens that interact with various stress-related signaling pathway components. Plants employ diverse strategies and mechanisms to combat biological stress, involving a complex network of transcription factors that interact with specific cis-elements to regulate gene expression. Understanding both plant developmental and pathogenic disease resistance mechanisms can allow us to develop stress-tolerant and -resistant crops. Brassica genus includes commercially important crops, e.g., broccoli, cabbage, cauliflower, kale, and rapeseed, cultivated worldwide, with several applications, e.g., oil production, consumption, condiments, fodder, as well as medicinal ones. Indeed, in 2020, global production of vegetable Brassica reached 96.4 million tones, a 10.6% rise from the previous decade. Taking into account their commercial importance, coupled to the impact that pathogens can have in Brassica productivity, yield losses up to 60%, this work complies the major diseases caused due to fungal, bacterial, viral, and insects in Brassica species. The review is structured into three parts. In the first part, an overview is provided of the various pathogens affecting Brassica species, including fungi, bacteria, viruses, and insects. The second part delves into the exploration of defense mechanisms that Brassica plants encounter against these pathogens including secondary metabolites, duplicated genes, RNA interference (RNAi), miRNA (micro-RNA), siRNA (small interfering RNA), and lncRNA (long non-coding RNA). The final part comprehensively outlines the current applications of CRISPR/Cas9 technology aimed at enhancing crop quality. Taken collectively, this review will contribute to our enhanced understanding of these mechanisms and their role in the development of resistance in Brassica plants, thus supporting strategies to protect this crucial crop.
Collapse
Affiliation(s)
- Shayani Das Laha
- Computational and Systems Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, West Bengal, India
- Department of Genetics and Plant Breeding, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal, India
| | - Avijit Kundu
- Department of Genetics and Plant Breeding, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal, India
| | - Soumita Podder
- Computational and Systems Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, West Bengal, India.
| |
Collapse
|
8
|
Cheng HY, Wang W, Wang W, Yang MY, Zhou YY. Interkingdom Hormonal Regulations between Plants and Animals Provide New Insight into Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4-26. [PMID: 38156955 DOI: 10.1021/acs.jafc.3c04712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Food safety has become an attractive topic among consumers. Raw material production for food is also a focus of social attention. As hormones are widely used in agriculture and human disease control, consumers' concerns about the safety of hormone agents have never disappeared. The present review focuses on the interkingdom regulations of exogenous animal hormones in plants and phytohormones in animals, including physiology and stress resistance. We summarize these interactions to give the public, researchers, and policymakers some guidance and suggestions. Accumulated evidence demonstrates comprehensive hormonal regulation across plants and animals. Animal hormones, interacting with phytohormones, help regulate plant development and enhance environmental resistance. Correspondingly, phytohormones may also cause damage to the reproductive and urinary systems of animals. Notably, the disease-resistant role of phytohormones is revealed against neurodegenerative diseases, cardiovascular disease, cancer, and diabetes. These resistances derive from the control for abnormal cell cycle, energy balance, and activity of enzymes. Further exploration of these cross-kingdom mechanisms would surely be of greater benefit to human health and agriculture development.
Collapse
Affiliation(s)
- Hang-Yuan Cheng
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Wang
- Human Development Family Studies, Iowa State University, 2330 Palmer Building, Ames, Iowa 50010, United States
| | - Wei Wang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Mu-Yu Yang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Yu-Yi Zhou
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| |
Collapse
|
9
|
Singh N, Ravi B, Saini LK, Pandey GK. Voltage-dependent anion channel 3 (VDAC3) mediates P. syringae induced ABA-SA signaling crosstalk in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108237. [PMID: 38109831 DOI: 10.1016/j.plaphy.2023.108237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/04/2023] [Accepted: 11/23/2023] [Indexed: 12/20/2023]
Abstract
Pathogen severely affects plant mitochondrial processes including respiration, however, the roles and mechanism of mitochondrial protein during the immune response remain largely unexplored. The interplay of plant hormone signaling during defense is an outcome of plant pathogen interaction. We recently discovered that the Arabidopsis calcineurin B-like interacting protein kinase 9 (AtCIPK9) interacts with the voltage-dependent anion channel 3 (AtVDAC3) and inhibits MV-induced oxidative damage. Here we report the characterization of AtVDAC3 in an antagonistic interaction pathway between abscisic acid (ABA) and salicylic acid (SA) signaling in Pseudomonas syringae -Arabidopsis interaction. In this study, we observed that mutants of AtVDAC3 were highly susceptible to Pseudomonas syringae infection as compared to the wild type (WT) Arabidopsis plants. Transcripts of VDAC3 and CIPK9 were inducible upon ABA application. Following pathogen exposure, expression analyses of ABA and SA biosynthesis genes indicated that the function of VDAC3 is required for isochorisimate synthase 1 (ICS1) expression but not for Nine-cis-epoxycaotenoid dioxygenase 3 (NCED3) expression. Despite the fact that vdac3 mutants had increased NCED3 expression in response to pathogen challenge, transcripts of ABA sensitive genes such as AtRD22 and AtRAB18 were downregulated even after exogenous ABA application. VDAC3 is required for ABA responsive genes expression upon exogenous ABA application. We also found that Pseudomonas syringae-induced SA signaling is downregulated in vdac3 mutants since overexpression of VDAC3 resulted in hyperaccumulation of Pathogenesis related gene1 (PR1) transcript. Interestingly, ABA application prior to P. syringae inoculation resulted in the upregulation of ABA responsive genes like Responsive to ABA18 (RAB18) and Responsive to dehydration 22 (RD22). Intriguingly, in the absence of AtVDAC3, Pst challenge can dramatically increase ABA-induced RD22 and RAB18 expression. Altogether our results reveal a novel Pathogen-SA-ABA interaction pathway in plants. Our findings show that ABA plays a significant role in modifying plant-pathogen interactions, owing to cross-talk with the biotic stress signaling pathways of ABA and SA.
Collapse
Affiliation(s)
- Nidhi Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Barkha Ravi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Lokesh K Saini
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India.
| |
Collapse
|
10
|
Gutiérrez-Sánchez A, Plasencia J, Monribot-Villanueva JL, Rodríguez-Haas B, Ruíz-May E, Guerrero-Analco JA, Sánchez-Rangel D. Virulence factors of the genus Fusarium with targets in plants. Microbiol Res 2023; 277:127506. [PMID: 37783182 DOI: 10.1016/j.micres.2023.127506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Fusarium spp. comprise various species of filamentous fungi that cause severe diseases in plant crops of both agricultural and forestry interest. These plant pathogens produce a wide range of molecules with diverse chemical structures and biological activities. Genetic functional analyses of some of these compounds have shown their role as virulence factors (VF). However, their mode of action and contributions to the infection process for many of these molecules are still unknown. This review aims to analyze the state of the art in Fusarium VF, emphasizing their biological targets on the plant hosts. It also addresses the current experimental approaches to improve our understanding of their role in virulence and suggests relevant research questions that remain to be answered with a greater focus on species of agroeconomic importance. In this review, a total of 37 confirmed VF are described, including 22 proteinaceous and 15 non-proteinaceous molecules, mainly from Fusarium oxysporum and Fusarium graminearum and, to a lesser extent, in Fusarium verticillioides and Fusarium solani.
Collapse
Affiliation(s)
- Angélica Gutiérrez-Sánchez
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Javier Plasencia
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan L Monribot-Villanueva
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Benjamín Rodríguez-Haas
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Eliel Ruíz-May
- Laboratorio de Proteómica, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - José A Guerrero-Analco
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico.
| | - Diana Sánchez-Rangel
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Investigador por México - CONAHCyT en la Red de Estudios Moleculares Avanzados del Instituto de Ecología, A. C. (INECOL), Carretera antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91073, Mexico.
| |
Collapse
|
11
|
Desmedt W, Ameye M, Filipe O, De Waele E, Van Nieuwerburgh F, Deforce D, Van Meulebroek L, Vanhaecke L, Kyndt T, Höfte M, Audenaert K. Molecular analysis of broad-spectrum induced resistance in rice by the green leaf volatile Z-3-hexenyl acetate. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6804-6819. [PMID: 37624920 DOI: 10.1093/jxb/erad338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
Green leaf volatiles (GLVs), volatile organic compounds released by plants upon tissue damage, are key signaling molecules in plant immunity. The ability of exogenous GLV application to trigger an induced resistance (IR) phenotype against arthropod pests has been widely reported, but its effectiveness against plant pathogens is less well understood. In this study, we combined mRNA sequencing-based transcriptomics and phytohormone measurements with multispectral imaging-based precision phenotyping to gain insights into the molecular basis of Z-3-hexenyl acetate-induced resistance (Z-3-HAC-IR) in rice. Furthermore, we evaluated the efficacy of Z-3-HAC-IR against a panel of economically significant rice pathogens: Pyricularia oryzae, Rhizoctonia solani, Xanthomonas oryzae pv. oryzae, Cochliobolus miyabeanus, and Meloidogyne graminicola. Our data revealed rapid induction of jasmonate metabolism and systemic induction of plant immune responses upon Z-3-HAC exposure, as well as a transient allocation cost due to accelerated chlorophyll degradation and nutrient remobilization. Z-3-HAC-IR proved effective against all tested pathogens except for C. miyabeanus, including against the (hemi)biotrophs M. graminicola, X. oryzae pv. oryzae, and P. oryzae. The Z-3-HAC-IR phenotype was lost in the jasmonate (JA)-deficient hebiba mutant, which confirms the causal role of JA in Z-3-HAC-IR. Together, our results show that GLV exposure in rice induces broad-spectrum, JA-mediated disease resistance with limited allocation costs, and may thus be a promising alternative crop protection approach.
Collapse
Affiliation(s)
- Willem Desmedt
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | | | - Osvaldo Filipe
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Evelien De Waele
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemse Steenweg 460, 9000 Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemse Steenweg 460, 9000 Ghent, Belgium
| | - Lieven Van Meulebroek
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Lynn Vanhaecke
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Tina Kyndt
- Epigenetics and Defence Research Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| |
Collapse
|
12
|
Leibman-Markus M, Schneider A, Gupta R, Marash I, Rav-David D, Carmeli-Weissberg M, Elad Y, Bar M. Immunity priming uncouples the growth-defense trade-off in tomato. Development 2023; 150:dev201158. [PMID: 37882831 DOI: 10.1242/dev.201158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Plants have developed an array of mechanisms to protect themselves against pathogen invasion. The deployment of defense mechanisms is imperative for plant survival, but can come at the expense of plant growth, leading to the 'growth-defense trade-off' phenomenon. Following pathogen exposure, plants can develop resistance to further attack. This is known as induced resistance, or priming. Here, we investigated the growth-defense trade-off, examining how defense priming via systemic acquired resistance (SAR), or induced systemic resistance (ISR), affects tomato development and growth. We found that defense priming can promote, rather than inhibit, plant development, and that defense priming and growth trade-offs can be uncoupled. Cytokinin response was activated during induced resistance, and found to be required for the observed growth and disease resistance resulting from ISR activation. ISR was found to have a stronger effect than SAR on plant development. Our results suggest that growth promotion and induced resistance can be co-dependent, and that, in certain cases, defense priming can drive developmental processes and promote plant yield.
Collapse
Affiliation(s)
- Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Anat Schneider
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
- Department of Plant Pathology and Microbiology, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Iftah Marash
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
- School of Plant Science and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Dalia Rav-David
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Mira Carmeli-Weissberg
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| |
Collapse
|
13
|
Warburton ML, Woolfolk SW, Smith JS, Hawkins LK, Castano-Duque L, Lebar MD, Williams WP. Genes and genetic mechanisms contributing to fall armyworm resistance in maize. THE PLANT GENOME 2023; 16:e20311. [PMID: 36866429 DOI: 10.1002/tpg2.20311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/18/2023] [Indexed: 06/20/2023]
Abstract
Maize (Zea mays L.) is a crop of major economic and food security importance globally. The fall armyworm (FAW), Spodoptera frugiperda, can devastate entire maize crops, especially in countries or markets that do not allow the use of transgenic crops. Host-plant insect resistance is an economical and environmentally benign way to control FAW, and this study sought to identify maize lines, genes, and pathways that contribute to resistance to FAW. Of the 289 maize lines phenotyped for FAW damage in artificially infested, replicated field trials over 3 years, 31 were identified with good levels of resistance that could donate FAW resistance into elite but susceptible hybrid parents. The 289 lines were genotyped by sequencing to provide single nucleotide polymorphism (SNP) markers for a genome-wide association study (GWAS), followed by a metabolic pathway analysis using the Pathway Association Study Tool (PAST). GWAS identified 15 SNPs linked to 7 genes, and PAST identified multiple pathways, associated with FAW damage. Top pathways, and thus useful resistance mechanisms for further study, include hormone signaling pathways and the biosynthesis of carotenoids (particularly zeaxanthin), chlorophyll compounds, cuticular wax, known antibiosis agents, and 1,4-dihydroxy-2-naphthoate. Targeted metabolite analysis confirmed that maize genotypes with lower levels of FAW damage tend to have higher levels of chlorophyll a than genotypes with high FAW damage, which tend to have lower levels of pheophytin, lutein, chlorophyll b and β-carotene. The list of resistant genotypes, and the results from the genetic, pathway, and metabolic study, can all contribute to efficient creation of FAW resistant cultivars.
Collapse
Affiliation(s)
- Marilyn L Warburton
- USDA ARS Plant Germplasm Introduction and Testing Research Unit, Pullman, WA, USA
| | - Sandra W Woolfolk
- USDA ARS Corn Host Plant Resistance Research Unit, Mississippi State, MS, USA
| | - J Spencer Smith
- USDA ARS Corn Host Plant Resistance Research Unit, Mississippi State, MS, USA
| | - Leigh K Hawkins
- USDA ARS Corn Host Plant Resistance Research Unit, Mississippi State, MS, USA
| | | | - Matthew D Lebar
- USDA ARS Food and Feed Safety Research Unit, New Orleans, LA, USA
| | - W Paul Williams
- USDA ARS Corn Host Plant Resistance Research Unit, Mississippi State, MS, USA
| |
Collapse
|
14
|
Ma L, Ma S, Chen G, Lu X, Wei R, Xu L, Feng X, Yang X, Chai Q, Zhang X, Li S. New insights into the occurrence of continuous cropping obstacles in pea (Pisum sativum L.) from soil bacterial communities, root metabolism and gene transcription. BMC PLANT BIOLOGY 2023; 23:226. [PMID: 37106450 PMCID: PMC10141910 DOI: 10.1186/s12870-023-04225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Continuous cropping is a significant obstacle to sustainable development in the pea (Pisum sativum L.) industry, but the underlying mechanisms of this remain unclear. In this study, we used 16 S rDNA sequencing, transcriptomics, and metabolomics to analyze the response mechanism of roots and soil bacteria to continuous cropping and the relationship between soil bacteria and root phenotypes of different pea genotypes (Ding wan 10 and Yun wan 8). RESULTS Continuous cropping inhibited pea growth, with a greater effect on Ding wan 10 than Yun wan 8. Metabolomics showed that the number of differentially accumulated metabolites (DAMs) in pea roots increased with the number of continuous cropping, and more metabolic pathways were involved. Transcriptomics revealed that the number of differentially expressed genes (DEGs) increased with the number of continuous cropping. Continuous cropping altered the expression of genes involved in plant-pathogen interaction, MAPK signal transduction, and lignin synthesis pathways in pea roots, with more DEGs in Ding wan 10 than in Yun wan 8. The up-regulated expression of genes in the ethylene signal transduction pathway was evident in Ding wan 10. Soil bacterial diversity did not change, but the relative abundance of bacteria significantly responded to continuous cropping. Integrative analysis showed that the bacteria with significant relative abundance in the soil were strongly associated with the antioxidant synthesis and linoleic acid metabolism pathway of pea roots under continuous cropping once. Under continuous cropping twice, the bacteria with significant relative abundance changes were strongly associated with cysteine and methionine metabolism, fatty acid metabolism, phenylpropanoid biosynthesis, terpenoid backbone biosynthesis, linoleic acid, and amino sugar and nucleotide sugar metabolism. CONCLUSION Ding wan 10 was more sensitive to continuous cropping than Yun wan 8. Continuous cropping times and pea genotypes determined the differences in root metabolic pathways. There were common metabolic pathways in the two pea genotypes in response to continuous cropping, and the DEGs and DAMs in these metabolic pathways were strongly associated with the bacteria with significant changes in relative abundance in the soil. This study provides new insights into obstacles to continuous cropping in peas.
Collapse
Affiliation(s)
- Lei Ma
- State Key Laboratory of Arid land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Shaoying Ma
- Basic Experimental Teaching Center, Gansu Agricultural University, Lanzhou, 730070 China
| | - Guiping Chen
- State Key Laboratory of Arid land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xu Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Ruonan Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - Ling Xu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - Xiaojie Feng
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - Xiaoming Yang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070 China
| | - Qiang Chai
- State Key Laboratory of Arid land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xucheng Zhang
- Dryland Agricultural Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070 China
| | - Sheng Li
- State Key Laboratory of Arid land Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| |
Collapse
|
15
|
Bin Y, Zhang Q, Su Y, Wang C, Jiang Q, Song Z, Zhou C. Transcriptome analysis of Citrus limon infected with Citrus yellow vein clearing virus. BMC Genomics 2023; 24:65. [PMID: 36750773 PMCID: PMC9903606 DOI: 10.1186/s12864-023-09151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Citrus yellow vein clearing virus (CYVCV) is the causative agent of citrus yellow vein clearing disease, and poses a serious threat to the lemon industry in Asia. The common symptoms of CYVCV-infected lemon plants are leaf crinkling, leaf chlorotic mottling, and yellow vein clearing. However, the molecular mechanisms underlying CYVCV-citrus interaction that responsible for symptom occurrence is still unclarified. In this study, RNA-seq was performed to analyze the gene expression patterns of 'Eureka' lemon (Citrus limon Burm. f.) plants in response to CYVCV infection. RESULTS There were 3691 differentially expressed genes (DEGs) identified by comparison between mock and CYVCV-infected lemon plants through RNA-seq. Bioinformatics analyses revealed that these DEGs were components of different pathways involved in phenylpropanoid biosynthesis, brassinosteroid biosynthesis, flavonoid biosynthesis and photosynthesis. Among these, the DEGs related to phytohormone metabolism and photosynthesis pathways were further enriched and analyzed. This study showed that different phytohormone-related genes had different responses toward CYVCV infection, however almost all of the photosynthesis-related DEGs were down-regulated in the CYVCV-infected lemon plants. The obtained RNA-seq data were validated by RT-qPCR using 12 randomly chosen genes, and the results of mRNA expression analysis were consistent with those of RNA-seq. CONCLUSIONS The phytohormone biosynthesis, signaling and photosynthesis-related genes of lemon plants were probably involved in systemic infection and symptom occurrence of CYVCV. Notably, CYVCV infection had regulatory effects on the biosynthesis and signaling of phytohormone, which likely improve systemic infection of CYVCV. Additionally, CYVCV infection could cause structural changes in chloroplast and inhibition of photosynthesis pathway, which probably contribute to the appearance of leaf chlorotic mottling and yellow vein clearing in CYVCV-infected lemon plants. This study illustrates the dynamic nature of the citrus-CYVCV interaction at the transcriptome level and provides new insights into the molecular mechanism underlying the pathogenesis of CYVCV in lemon plants.
Collapse
Affiliation(s)
- Yu Bin
- grid.263906.80000 0001 0362 4044Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712 China
| | - Qi Zhang
- grid.263906.80000 0001 0362 4044Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712 China
| | - Yue Su
- grid.263906.80000 0001 0362 4044Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712 China
| | - Chunqing Wang
- grid.263906.80000 0001 0362 4044Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712 China
| | - Qiqi Jiang
- grid.263906.80000 0001 0362 4044Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712 China
| | - Zhen Song
- Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712, China.
| | - Changyong Zhou
- Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712, China.
| |
Collapse
|
16
|
Shekhawat K, Fröhlich K, García-Ramírez GX, Trapp MA, Hirt H. Ethylene: A Master Regulator of Plant-Microbe Interactions under Abiotic Stresses. Cells 2022; 12:cells12010031. [PMID: 36611825 PMCID: PMC9818225 DOI: 10.3390/cells12010031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The plant phytohormone ethylene regulates numerous physiological processes and contributes to plant-microbe interactions. Plants induce ethylene production to ward off pathogens after recognition of conserved microbe-associated molecular patterns (MAMPs). However, plant immune responses against pathogens are essentially not different from those triggered by neutral and beneficial microbes. Recent studies indicate that ethylene is an important factor for beneficial plant-microbial association under abiotic stress such as salt and heat stress. The association of beneficial microbes with plants under abiotic stresses modulates ethylene levels which control the expression of ethylene-responsive genes (ERF), and ERFs further regulate the plant transcriptome, epi-transcriptome, Na+/K+ homeostasis and antioxidant defense mechanisms against reactive oxygen species (ROS). Understanding ethylene-dependent plant-microbe interactions is crucial for the development of new strategies aimed at enhancing plant tolerance to harsh environmental conditions. In this review, we underline the importance of ethylene in beneficial plant-microbe interaction under abiotic stresses.
Collapse
|
17
|
Ma J, Morel JB, Riemann M, Nick P. Jasmonic acid contributes to rice resistance against Magnaporthe oryzae. BMC PLANT BIOLOGY 2022; 22:601. [PMID: 36539712 PMCID: PMC9764487 DOI: 10.1186/s12870-022-03948-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The annual yield losses caused by the Rice Blast Fungus, Magnaporthe oryzae, range to the equivalent for feeding 60 million people. To ward off infection by this fungus, rice has evolved a generic basal immunity (so called compatible interaction), which acts in concert with strain-specific defence (so-called incompatible interaction). The plant-defence hormone jasmonic acid (JA) promotes the resistance to M. oryzae, but the underlying mechanisms remain elusive. To get more insight into this open question, we employ the JA-deficient mutants, cpm2 and hebiba, and dissect the JA-dependent defence signalling in rice for both, compatible and incompatible interactions. RESULTS We observe that both JA-deficient mutants are more susceptible to M. oryzae as compared to their wild-type background, which holds true for both types of interactions as verified by cytological staining. Secondly, we observe that transcripts for JA biosynthesis (OsAOS2 and OsOPR7), JA signalling (OsJAZ8, OsJAZ9, OsJAZ11 and OsJAZ13), JA-dependent phytoalexin synthesis (OsNOMT), and JA-regulated defence-related genes, such as OsBBTI2 and OsPR1a, accumulate after fungal infection in a pattern that correlates with the amplitude of resistance. Thirdly, induction of defence transcripts is weaker during compatible interaction. CONCLUSION The study demonstrates the pivotal role of JA in basal immunity of rice in the resistance to M. oryzae in both, compatible and incompatible interactions.
Collapse
Affiliation(s)
- Junning Ma
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jean-Benoît Morel
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Michael Riemann
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Peter Nick
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
18
|
The Role of Exogenous Gibberellic Acid and Methyl Jasmonate against White-Backed Planthopper ( Sogatella furcifera) Stress in Rice ( Oryza sativa L.). Int J Mol Sci 2022; 23:ijms232314737. [PMID: 36499068 PMCID: PMC9739488 DOI: 10.3390/ijms232314737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022] Open
Abstract
Rice (Oryza sativa L.) is one of the essential staple foods for more than half of the world's population, and its production is affected by different environmental abiotic and biotic stress conditions. The white-backed planthopper (WBPH, Sogatella furcifera) causes significant damage to rice plants, leading to substantial economic losses due to reduced production. In this experiment, we applied exogenous hormones (gibberellic acid and methyl jasmonate) to WBPH-infested rice plants and examined the relative expression of related genes, antioxidant accumulation, the recovery rate of affected plants, endogenous hormones, the accumulation of H2O2, and the rate of cell death using DAB and trypan staining, respectively. The expression of the transcriptional regulator (OsGAI) and gibberellic-acid-mediated signaling regulator (OsGID2) was upregulated significantly in GA 50 µM + WBPH after 36 h. OsGAI was upregulated in the control, GA 50 µM + WBPH, GA 100 µM + WBPH, and MeJA 100 µM + WBPH. However, after 48 h, the OsGID2 was significantly highly expressed in all groups of plants. The glutathione (GSH) values were significantly enhanced by GA 100 µM and MeJA 50 µM treatment. Unlike glutathione (GSH), the catalase (CAT) and peroxidase (POD) values were significantly reduced in control + WBPH plants. However, a slight increase in CAT and POD values was observed in GA 50 + WBPH plants and a reduction in the POD value was observed in GA 100 µM + WBPH and MeJA 50 µM + WBPH plants. GA highly recovered the WBPH-affected rice plants, while no recovery was seen in MeJA-treated plants. MeJA was highly accumulated in control + WBPH, MeJA 50 µM + WBPH, and GA 100 µM + WBPH plants. The H2O2 accumulation was highly decreased in GA-treated plants, while extensive cell death was observed in MeJA-treated plants compared with GA-treated plants. From this study, we can conclude that the exogenous application of GA can overcome the effects of the WBPH and enhance resistance in rice.
Collapse
|
19
|
Pradhan M, Requena N. Distinguishing friends from foes: Can smRNAs modulate plant interactions with beneficial and pathogenic organisms? CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102259. [PMID: 35841651 DOI: 10.1016/j.pbi.2022.102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/25/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
In their agro-ecological habitats, plants are constantly challenged by fungal interactions that might be pathogenic or beneficial in nature, and thus, plants need to exhibit appropriate responses to discriminate between them. Such interactions involve sophisticated molecular mechanism of signal exchange, signal transduction and regulation of gene expression. Small RNAs (smRNAs), including the microRNAs (miRNAs), form an essential layer of regulation in plant developmental processes as well as in plant adaptation to environmental stresses, being key for the outcome during plant-microbial interactions. Further, smRNAs are mobile signals that can go across kingdoms from one interacting partner to the other and hence can be used as communication as well as regulatory tools not only by the host plant but also by the colonising fungus. Here, largely with a focus on plant-fungal interactions and miRNAs, we will discuss the role of smRNAs, and how they might help plants to discriminate between friends and foes.
Collapse
Affiliation(s)
- Maitree Pradhan
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Natalia Requena
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany.
| |
Collapse
|
20
|
Unveiling the Secretome of the Fungal Plant Pathogen Neofusicoccum parvum Induced by In Vitro Host Mimicry. J Fungi (Basel) 2022; 8:jof8090971. [PMID: 36135697 PMCID: PMC9505667 DOI: 10.3390/jof8090971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Neofusicoccum parvum is a fungal plant pathogen of a wide range of hosts but knowledge about the virulence factors of N. parvum and host-pathogen interactions is rather limited. The molecules involved in the interaction between N. parvum and Eucalyptus are mostly unknown, so we used a multi-omics approach to understand pathogen-host interactions. We present the first comprehensive characterization of the in vitro secretome of N. parvum and a prediction of protein-protein interactions using a dry-lab non-targeted interactomics strategy. We used LC-MS to identify N. parvum protein profiles, resulting in the identification of over 400 proteins, from which 117 had a different abundance in the presence of the Eucalyptus stem. Most of the more abundant proteins under host mimicry are involved in plant cell wall degradation (targeting pectin and hemicellulose) consistent with pathogen growth on a plant host. Other proteins identified are involved in adhesion to host tissues, penetration, pathogenesis, or reactive oxygen species generation, involving ribonuclease/ribotoxin domains, putative ricin B lectins, and necrosis elicitors. The overexpression of chitosan synthesis proteins during interaction with the Eucalyptus stem reinforces the hypothesis of an infection strategy involving pathogen masking to avoid host defenses. Neofusicoccum parvum has the molecular apparatus to colonize the host but also actively feed on its living cells and induce necrosis suggesting that this species has a hemibiotrophic lifestyle.
Collapse
|
21
|
Stroud EA, Jayaraman J, Templeton MD, Rikkerink EHA. Comparison of the pathway structures influencing the temporal response of salicylate and jasmonate defence hormones in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:952301. [PMID: 36160984 PMCID: PMC9504473 DOI: 10.3389/fpls.2022.952301] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/01/2022] [Indexed: 06/16/2023]
Abstract
Defence phytohormone pathways evolved to recognize and counter multiple stressors within the environment. Salicylic acid responsive pathways regulate the defence response to biotrophic pathogens whilst responses to necrotrophic pathogens, herbivory, and wounding are regulated via jasmonic acid pathways. Despite their contrasting roles in planta, the salicylic acid and jasmonic acid defence networks share a common architecture, progressing from stages of biosynthesis, to modification, regulation, and response. The unique structure, components, and regulation of each stage of the defence networks likely contributes, in part, to the speed, establishment, and longevity of the salicylic acid and jasmonic acid signaling pathways in response to hormone treatment and various biotic stressors. Recent advancements in the understanding of the Arabidopsis thaliana salicylic acid and jasmonic acid signaling pathways are reviewed here, with a focus on how the structure of the pathways may be influencing the temporal regulation of the defence responses, and how biotic stressors and the many roles of salicylic acid and jasmonic acid in planta may have shaped the evolution of the signaling networks.
Collapse
Affiliation(s)
- Erin A. Stroud
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jay Jayaraman
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Bioprotection Aotearoa, Lincoln, New Zealand
| | - Matthew D. Templeton
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Bioprotection Aotearoa, Lincoln, New Zealand
| | - Erik H. A. Rikkerink
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
22
|
Chavan SN, De Kesel J, Desmedt W, Degroote E, Singh RR, Nguyen GT, Demeestere K, De Meyer T, Kyndt T. Dehydroascorbate induces plant resistance in rice against root-knot nematode Meloidogyne graminicola. MOLECULAR PLANT PATHOLOGY 2022; 23:1303-1319. [PMID: 35587614 PMCID: PMC9366072 DOI: 10.1111/mpp.13230] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 06/01/2023]
Abstract
Ascorbic acid (AsA) is an important antioxidant in plants and regulates various physiological processes. In this study, we show that exogenous treatments with the oxidized form of AsA, that is, dehydroascorbate (DHA), activates induced systemic resistance in rice against the root-knot nematode Meloidogyne graminicola, and investigate the molecular and biochemical mechanisms underlying this phenotype. Detailed transcriptome analysis on roots of rice plants showed an early and robust transcriptional response on foliar DHA treatment, with induction of several genes related to plant stress responses, immunity, antioxidant activity, and secondary metabolism already at 1 day after treatment. Quantitative and qualitative evaluation of H2 O2 levels confirmed the appearance of a reactive oxygen species (ROS) burst on DHA treatment, both at the site of treatment and systemically. Experiments using chemical ROS inhibitors or scavengers confirmed that H2 O2 accumulation contributes to DHA-based induced resistance. Furthermore, hormone measurements in DHA-treated plants showed a significant systemic accumulation of the defence hormone salicylic acid (SA). The role of the SA pathway in DHA-based induced resistance was confirmed by nematode infection experiments using an SA-signalling deficient WRKY45-RNAi line and reverse transcription-quantitative PCR on SA marker genes. Our results collectively reveal that DHA activates induced systemic resistance in rice against the root-knot nematode M. graminicola, mediated through the production of ROS and activation of the SA pathway.
Collapse
Affiliation(s)
- Satish Namdeo Chavan
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
- ICAR – Indian Institute of Rice ResearchHyderabadIndia
| | - Jonas De Kesel
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Willem Desmedt
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Eva Degroote
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Richard Raj Singh
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
- Department Plants and Crops, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Giang Thu Nguyen
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Kristof Demeestere
- Department of Green Chemistry and Technology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Tim De Meyer
- Department of Data Analysis and Mathematical ModellingGhent UniversityGhentBelgium
| | - Tina Kyndt
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| |
Collapse
|
23
|
Liu L, Li K, Zhou X, Fang C. Integrative Analysis of Metabolome and Transcriptome Reveals the Role of Strigolactones in Wounding-Induced Rice Metabolic Re-Programming. Metabolites 2022; 12:789. [PMID: 36144193 PMCID: PMC9501228 DOI: 10.3390/metabo12090789] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Plants have evolved mechanisms to adapt to wounding, a threat occurring separately or concomitantly with other stresses. During the last decades, many efforts have been made to elucidate the wounding signaling transduction. However, we know little about the metabolic re-programming under wounding, let alone whether and how strigolactones (SLs) participate in this progress. Here, we reported a metabolomic and transcriptomic analysis of SLs synthetic and signal mutants in rice before and after wounding. A series of metabolites differentially responded to wounding in the SLs mutants and wild-type rice, among which flavones were enriched. Besides, the SLs mutants accumulated more jasmonic acid (JA) and jasmonyl isoleucine (JA-lle) than the wild-type rice after wounding, suggesting an interplay of SLs and JAs during responding to wounding. Further transcriptome data showed that cell wall, ethylene, and flavones pathways might be affected by wounding and SLs. In addition, we identified candidate genes regulated by SLs and responding to wounding. In conclusion, our work provides new insights into wounding-induced metabolic re-programming and the SLs' function.
Collapse
Affiliation(s)
- Ling Liu
- Sanya Nanfan Research Institute of Hainan University Hainan, Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Kang Li
- Sanya Nanfan Research Institute of Hainan University Hainan, Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Xiujuan Zhou
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Chuanying Fang
- Sanya Nanfan Research Institute of Hainan University Hainan, Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570288, China
| |
Collapse
|
24
|
Wang Y, Luo H, Wang H, Xiang Z, Wei S, Zheng W. Comparative transcriptome analysis of rice cultivars resistant and susceptible to Rhizoctonia solani AG1-IA. BMC Genomics 2022; 23:606. [PMID: 35986248 PMCID: PMC9392349 DOI: 10.1186/s12864-022-08816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rice sheath blight, which is caused by Rhizoctonia solani, is the most destructive disease affecting rice production, but the resistance mechanism to this pathogen has not been fully elucidated. RESULTS In this study, we selected two rice cultivars based on their resistance to the pathogen and analyzed and compared the transcriptomic profiles of two cultivars, the moderately resistant variety Gangyuan8 and the highly susceptible variety Yanfeng47, at different time points after inoculation. The comparative transcriptome profiling showed that the expression of related genes gradually increased after pathogen inoculation. The number of differentially expressed genes (DEGs) in Yanfeng47 was higher than that in Gangyuan8, and this result revealed that Yanfeng47 was more susceptible to fungal attack. At the early stage (24 and 48 h), the accumulation of resistance genes and a resistance metabolism occurred earlier in Ganguan8 than in Yanfeng47, and the resistance enrichment entries were more abundant in Ganguan8 than in Yanfeng47. CONCLUSIONS Based on the GO and KEGG enrichment analyses at five infection stages, we concluded that phenylalanine metabolism and the jasmonic acid pathway play a crucial role in the resistance of rice to sheath blight. Through a comparative transcriptome analysis, we preliminarily analyzed the molecular mechanism responsible for resistance to sheath blight in rice, and the results lay the foundation for the development of gene mining and functional research on rice resistance to sheath blight.
Collapse
Affiliation(s)
- Yan Wang
- College of Plant Protection, Department of Plant Pathology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Hang Luo
- College of Plant Protection, Department of Plant Pathology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Haining Wang
- College of Plant Protection, Department of Plant Pathology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Zongjing Xiang
- College of Plant Protection, Department of Plant Pathology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Songhong Wei
- College of Plant Protection, Department of Plant Pathology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| | - Wenjing Zheng
- Liaoning Rice Research Institute, Shenyang, 110101, Liaoning, China
| |
Collapse
|
25
|
Zhou J, Huang PW, Li X, Vaistij FE, Dai CC. Generalist endophyte Phomopsis liquidambaris colonization of Oryza sativa L. promotes plant growth under nitrogen starvation. PLANT MOLECULAR BIOLOGY 2022; 109:703-715. [PMID: 35522401 DOI: 10.1007/s11103-022-01268-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Fungal endophytes establish symbiotic relationships with host plants, which results in a mutual growth benefit. However, little is known about the plant genetic response underpinning endophyte colonization. Phomopsis liquidambaris usually lives as an endophyte in a wide range of asymptomatic hosts and promotes biotic and abiotic stress resistance. In this study, we show that under low nitrogen conditions P. liquidambaris promotes rice growth in a hydroponic system, which is free of other microorganisms. In order to gain insights into the mechanisms of plant colonization by P. liquidambaris under low nitrogen conditions, we compared root and shoot transcriptome profiles of root-inoculated rice at different colonization stages. We determined that genes related to plant growth promotion, such as gibberellin and auxin related genes, were up-regulated at all developmental stages both locally and systemically. The largest group of up-regulated genes (in both roots and shoots) were related to flavonoid biosynthesis, which is involved in plant growth as well as antimicrobial compounds. Furthermore, genes encoding plant defense-related endopeptidase inhibitors were strongly up-regulated at the early stage of colonization. Together, these results provide new insights into the molecular mechanisms of plant-microbe mutualism and the promotion of plant growth by a fungal endophyte under nitrogen-deficient conditions.
Collapse
Affiliation(s)
- Jun Zhou
- Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
- Centre for Novel Agricultural Products, Department of Biology, University of York, YO10 5DD, York, United Kingdom
| | - Peng-Wei Huang
- Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Xin Li
- Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Fabián E Vaistij
- Centre for Novel Agricultural Products, Department of Biology, University of York, YO10 5DD, York, United Kingdom
| | - Chuan-Chao Dai
- Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China.
| |
Collapse
|
26
|
Samaradivakara SP, Chen H, Lu Y, Li P, Kim Y, Tsuda K, Mine A, Day B. Overexpression of NDR1 leads to pathogen resistance at elevated temperatures. THE NEW PHYTOLOGIST 2022; 235:1146-1162. [PMID: 35488494 PMCID: PMC9321970 DOI: 10.1111/nph.18190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/19/2022] [Indexed: 05/19/2023]
Abstract
Abiotic and biotic environments influence a myriad of plant-related processes, including growth, development, and the establishment and maintenance of interaction(s) with microbes. In the case of the latter, elevated temperature has been shown to be a key factor that underpins host resistance and pathogen virulence. In this study, we elucidate a role for Arabidopsis NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1) by exploiting effector-triggered immunity to define the regulation of plant host immunity in response to both pathogen infection and elevated temperature. We generated time-series RNA sequencing data of WT Col-0, an NDR1 overexpression line, and ndr1 and ics1-2 mutant plants under elevated temperature. Not surprisingly, the NDR1-overexpression line showed genotype-specific gene expression changes related to defense response and immune system function. The results described herein support a role for NDR1 in maintaining cell signaling during simultaneous exposure to elevated temperature and avirulent pathogen stressors.
Collapse
Affiliation(s)
- Saroopa P. Samaradivakara
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMI48824USA
- Plant Resilience InstituteMichigan State UniversityEast LansingMI48824USA
| | - Huan Chen
- Graduate Program in Genetics and Genome SciencesMichigan State UniversityEast LansingMI48824USA
- Graduate Program in Molecular Plant SciencesMichigan State UniversityEast LansingMI48824USA
| | - Yi‐Ju Lu
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMI48824USA
- Institute of BiochemistryNational Chung Hsing UniversityTaichung402Taiwan
| | - Pai Li
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMI48824USA
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
| | - Yongsig Kim
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMI48824USA
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural MicrobiologyHubei Hongshan LaboratoryHubei Key Lab of Plant PathologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- Shenzhen BranchGuangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518120China
| | - Akira Mine
- Laboratory of Plant PathologyGraduate School of AgricultureKyoto UniversityKyoto606‐8502Japan
| | - Brad Day
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMI48824USA
- Plant Resilience InstituteMichigan State UniversityEast LansingMI48824USA
- Graduate Program in Genetics and Genome SciencesMichigan State UniversityEast LansingMI48824USA
- Graduate Program in Molecular Plant SciencesMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
27
|
Tiwari RK, Lal MK, Kumar R, Mangal V, Altaf MA, Sharma S, Singh B, Kumar M. Insight into melatonin-mediated response and signaling in the regulation of plant defense under biotic stress. PLANT MOLECULAR BIOLOGY 2022; 109:385-399. [PMID: 34783977 DOI: 10.1007/s11103-021-01202-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/24/2021] [Indexed: 05/11/2023]
Abstract
Melatonin plays a crucial role in the mitigation of plant biotic stress through induced defense responses and pathogen attenuation. Utilizing the current knowledge of signaling and associated mechanism of this phytoprotectant will be invaluable in sustainable plant disease management. Biotic stress in plants involves complex regulatory networks of various sensory and signaling molecules. In this context, the polyfunctional, ubiquitous-signaling molecule melatonin has shown a regulatory role in biotic stress mitigation in plants. The present review conceptualized the current knowledge concerning the melatonin-mediated activation of the defense signaling network that leads to the resistant or tolerant phenotype of the infected plants. Fundamentals of signaling networks involved in melatonin-induced reactive oxygen species (ROS) or reactive nitrogen species (RNS) scavenging through enzymatic and non-enzymatic antioxidants have also been discussed. Increasing evidence has suggested that melatonin acts upstream of mitogen-activated proteinase kinases in activation of defense-related genes and heat shock proteins that provide immunity against pathogen attack. Besides, the direct application of melatonin on virulent fungi and bacteria showed disrupted spore morphology, destabilization of cell ultrastructure, reduced biofilm formation, and enhanced mortality that led to attenuate disease symptoms on melatonin-treated plants. The transcriptome analysis has revealed the down-regulation of pathogenicity genes, metabolism-related genes, and up-regulation of fungicide susceptibility genes in melatonin-treated pathogens. The activation of melatonin-mediated systemic acquired resistance (SAR) through cross-talk with salicylic acid (SA), jasmonic acid (JA) has been essential for viral disease management. The high endogenous melatonin concentration has also been correlated with the up-regulation of genes involved in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI). The present review highlights the versatile functions of melatonin towards direct inhibition of pathogen propagule along with active participation in mediating oxidative burst and simulating PTI, ETI and SAR responses. The hormonal cross-talk involving melatonin mediated biotic stress tolerance through defense signaling network suggests its suitability in a sustainable plant protection system.
Collapse
Affiliation(s)
- Rahul Kumar Tiwari
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Milan Kumar Lal
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
| | - Vikas Mangal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | | | - Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Manoj Kumar
- ICAR-Central Potato Research Institute, Regional Station, Modipuram, UP, 250 110, India
| |
Collapse
|
28
|
Salicylic acid and jasmonic acid crosstalk in plant immunity. Essays Biochem 2022; 66:647-656. [PMID: 35698792 DOI: 10.1042/ebc20210090] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 12/25/2022]
Abstract
The phytohormones salicylic acid (SA) and jasmonic acid (JA) are major players in plant immunity. Numerous studies have provided evidence that SA- and JA-mediated signaling interact with each other (SA-JA crosstalk) to orchestrate plant immune responses against pathogens. At the same time, SA-JA crosstalk is often exploited by pathogens to promote their virulence. In this review, we summarize our current knowledge of molecular mechanisms for and modulations of SA-JA crosstalk during pathogen infection.
Collapse
|
29
|
Nguyen HT, Mantelin S, Ha CV, Lorieux M, Jones JT, Mai CD, Bellafiore S. Insights Into the Genetics of the Zhonghua 11 Resistance to Meloidogyne graminicola and Its Molecular Determinism in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:854961. [PMID: 35599898 PMCID: PMC9116194 DOI: 10.3389/fpls.2022.854961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Meloidogyne graminicola is a widely spread nematode pest of rice that reduces crop yield up to 20% on average in Asia, with devastating consequences for local and global rice production. Due to the ban on many chemical nematicides and the recent changes in water management practices in rice agriculture, an even greater impact of M. graminicola can be expected in the future, stressing the demand for the development of new sustainable nematode management solutions. Recently, a source of resistance to M. graminicola was identified in the Oryza sativa japonica rice variety Zhonghua 11 (Zh11). In the present study, we examine the genetics of the Zh11 resistance to M. graminicola and provide new insights into its cellular and molecular mechanisms. The segregation of the resistance in F2 hybrid populations indicated that two dominant genes may be contributing to the resistance. The incompatible interaction of M. graminicola in Zh11 was distinguished by a lack of swelling of the root tips normally observed in compatible interactions. At the cellular level, the incompatible interaction was characterised by a rapid accumulation of reactive oxygen species in the vicinity of the nematodes, accompanied by extensive necrosis of neighbouring cells. The expression profiles of several genes involved in plant immunity were analysed at the early stages of infection during compatible (susceptible plant) and incompatible (resistant plant) interactions. Notably, the expression of OsAtg4 and OsAtg7, significantly increased in roots of resistant plants in parallel with the cell death response, suggesting that autophagy is activated and may contribute to the resistance-mediated hypersensitive response. Similarly, transcriptional regulation of genes involved in hormonal pathways in Zh11 indicated that salicylate signalling may be important in the resistance response towards M. graminicola. Finally, the nature of the resistance to M. graminicola and the potential exploitation of the Zh11 resistance for breeding are discussed.
Collapse
Affiliation(s)
- Hue Thi Nguyen
- LMI RICE-2, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
- Department of Life Sciences, University of Science and Technology of Hanoi (USTH), Hanoi, Vietnam
| | - Sophie Mantelin
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) UMR 1355 Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Cuong Viet Ha
- Research Center of Tropical Plant Disease, Vietnam National University of Agriculture (VNUA), Hanoi, Vietnam
| | - Mathias Lorieux
- DIADE, University of Montpellier, IRD, CIRAD, Montpellier, France
| | - John T. Jones
- The James Hutton Institute, Dundee, United Kingdom
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Chung Duc Mai
- LMI RICE-2, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Stéphane Bellafiore
- PHIM Plant Health Institute, University of Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
30
|
Boba A, Kostyn K, Kochneva Y, Wojtasik W, Mierziak J, Prescha A, Augustyniak B, Grajzer M, Szopa J, Kulma A. Abscisic Acid-Defensive Player in Flax Response to Fusarium culmorum Infection. Molecules 2022; 27:molecules27092833. [PMID: 35566184 PMCID: PMC9105474 DOI: 10.3390/molecules27092833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium culmorum is a ubiquitous soil pathogen with a wide host range. In flax (Linum ussitatissimum), it causes foot and root rot and accumulation of mycotoxins in flax products. Fungal infections lead to huge losses in the flax industry. Moreover, due to mycotoxin accumulation, flax products constitute a potential threat to the consumers. We discovered that the defense against this pathogen in flax is based on early oxidative burst among others. In flax plants infected with F. culmorum, the most affected genes are connected with ROS production and processing, callose synthesis and ABA production. We hypothesize that ABA triggers defense mechanism in flax and is a significant player in a successful response to infection.
Collapse
Affiliation(s)
- Aleksandra Boba
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (Y.K.); (W.W.); (J.M.); (B.A.); (J.S.)
- Correspondence: (A.B.); (A.K.)
| | - Kamil Kostyn
- Department of Genetics, Plant Breeding & Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24A, 50-363 Wroclaw, Poland;
| | - Yelyzaveta Kochneva
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (Y.K.); (W.W.); (J.M.); (B.A.); (J.S.)
| | - Wioleta Wojtasik
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (Y.K.); (W.W.); (J.M.); (B.A.); (J.S.)
| | - Justyna Mierziak
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (Y.K.); (W.W.); (J.M.); (B.A.); (J.S.)
| | - Anna Prescha
- Department of Food Science and Dietetics, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland; (A.P.); (M.G.)
| | - Beata Augustyniak
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (Y.K.); (W.W.); (J.M.); (B.A.); (J.S.)
| | - Magdalena Grajzer
- Department of Food Science and Dietetics, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland; (A.P.); (M.G.)
| | - Jan Szopa
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (Y.K.); (W.W.); (J.M.); (B.A.); (J.S.)
| | - Anna Kulma
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (Y.K.); (W.W.); (J.M.); (B.A.); (J.S.)
- Correspondence: (A.B.); (A.K.)
| |
Collapse
|
31
|
Marwein R, Singh S, Maharana J, Kumar S, Arunkumar KP, Velmurugan N, Chikkaputtaiah C. Transcriptome-wide analysis of North-East Indian rice cultivars in response to Bipolaris oryzae infection revealed the importance of early response to the pathogen in suppressing the disease progression. Gene 2022; 809:146049. [PMID: 34743920 DOI: 10.1016/j.gene.2021.146049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022]
Abstract
Brown spot disease (BSD) of rice (Oryza sativa L.) caused by Bipolaris oryzae is one of the major and neglected fungal diseases worldwide affecting rice production. Despite its significance, very limited knowledge on genetics and genomics of rice in response to B. oryzae available. Our study firstly identified moderately resistant (Gitesh) and susceptible (Shahsarang) North-East Indian rice cultivars in response to a native Bipolaris oryzae isolate BO1. Secondly, a systematic comparative RNA seq was performed for both cultivars at four different time points viz. 12, 24, 48, and 72 hours post infestation (hpi). Differential gene expression analysis revealed the importance of early response to the pathogen in suppressing disease progression. The pathogen negatively regulates the expression of photosynthetic-related genes at early stages in both cultivars. Of the cell wall modification enzymes, cellulose synthase and callose synthase are important for signal transduction and defense. Cell wall receptors OsLYP6, OsWAK80 might positively and OsWAK25 negatively regulate disease resistance. Jasmonic acid and/or abscisic acid signaling pathways are presumably involved in disease resistance, whereas salicylic acid pathway, and an ethylene response gene OsEBP-89 in promoting disease. Surprisingly, pathogenesis-related proteins showed no antimicrobial impact on the pathogen. Additionally, transcription factors OsWRKY62 and OsWRKY45 together might negatively regulate resistance to the pathogen. Taken together, our study has identified and provide key regulatory genes involved in response to B. oryzae which serve as potential resources for functional genetic analysis to develop genetic tolerance to BSD of rice.
Collapse
Affiliation(s)
- Riwandahun Marwein
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sanjay Singh
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India
| | - Jitendra Maharana
- Distributed Information Centre (DIC), Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India; Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Sanjeev Kumar
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kallare P Arunkumar
- Central Muga Eri Research and Training Institute (CMER&TI), Lahdoigarh, Jorhat 785700, Assam, India
| | - Natarajan Velmurugan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India; Biological Sciences Division, Branch Laboratory-Itanagar, CSIR-NEIST, Naharlagun 791110, Arunachal Pradesh, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
32
|
Qi SS, Manoharan B, Dhandapani V, Jegadeesan S, Rutherford S, Wan JSH, Huang P, Dai ZC, Du DL. Pathogen resistance in Sphagneticola trilobata (Singapore daisy): molecular associations and differentially expressed genes in response to disease from a widespread fungus. Genetica 2022; 150:13-26. [PMID: 35031940 DOI: 10.1007/s10709-021-00147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
Understanding the molecular associations underlying pathogen resistance in invasive plant species is likely to provide useful insights into the effective control of alien plants, thereby facilitating the conservation of native biodiversity. In the current study, we investigated pathogen resistance in an invasive clonal plant, Sphagneticola trilobata, at the molecular level. Sphagneticola trilobata (i.e., Singapore daisy) is a noxious weed that affects both terrestrial and aquatic ecosystems, and is less affected by pathogens in the wild than co-occurring native species. We used Illumina sequencing to investigate the transcriptome of S. trilobata following infection by a globally distributed generalist pathogen (Rhizoctonia solani). RNA was extracted from leaves of inoculated and un-inoculated control plants, and a draft transcriptome of S. trilobata was generated to examine the molecular response of this species following infection. We obtained a total of 49,961,014 (94.3%) clean reads for control (un-inoculated plants) and 54,182,844 (94.5%) for the infected treatment (inoculated with R. solani). Our analyses facilitated the discovery of 117,768 de novo assembled contigs and 78,916 unigenes. Of these, we identified 3506 differentially expressed genes and 60 hormones associated with pathogen resistance. Numerous genes, including candidate genes, were associated with plant-pathogen interactions and stress response in S. trilobata. Many recognitions, signaling, and defense genes were differentially regulated between treatments, which were confirmed by qRT-PCR. Overall, our findings improve our understanding of the genes and molecular associations involved in plant defense of a rapidly spreading invasive clonal weed, and serve as a valuable resource for further work on mechanism of disease resistance and managing invasive plants.
Collapse
Affiliation(s)
- Shan-Shan Qi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Bharani Manoharan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Vignesh Dhandapani
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sridharan Jegadeesan
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Susan Rutherford
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Justin S H Wan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Ping Huang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Zhi-Cong Dai
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China. .,Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Jiangsu Province, Suzhou, 215009, People's Republic of China.
| | - Dao-Lin Du
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
33
|
Yang Y, Xiang Y, Niu Y. An Overview of the Molecular Mechanisms and Functions of Autophagic Pathways in Plants. PLANT SIGNALING & BEHAVIOR 2021; 16:1977527. [PMID: 34617497 PMCID: PMC9208794 DOI: 10.1080/15592324.2021.1977527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Autophagy is an evolutionarily conserved pathway for the degradation of damaged or toxic components. Under normal conditions, autophagy maintains cellular homeostasis. It can be triggered by senescence and various stresses. In the process of autophagy, autophagy-related (ATG) proteins not only function as central signal regulators but also participate in the development of complex survival mechanisms when plants suffer from adverse environments. Therefore, ATGs play significant roles in metabolism, development and stress tolerance. In the past decade, both the molecular mechanisms of autophagy and a large number of components involved in the assembly of autophagic vesicles have been identified. In recent studies, an increasing number of components, mechanisms, and receptors have appeared in the autophagy pathway. In this paper, we mainly review the recent progress of research on the molecular mechanisms of plant autophagy, as well as its function under biotic stress and abiotic stress.
Collapse
Affiliation(s)
- Yang Yang
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| | - Yun Xiang
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| | - Yue Niu
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| |
Collapse
|
34
|
Tang B, Liu C, Li Z, Zhang X, Zhou S, Wang G, Chen X, Liu W. Multilayer regulatory landscape during pattern-triggered immunity in rice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2629-2645. [PMID: 34437761 PMCID: PMC8633500 DOI: 10.1111/pbi.13688] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 05/03/2023]
Abstract
Upon fungal and bacterial pathogen attack, plants launch pattern-triggered immunity (PTI) by recognizing pathogen-associated molecular patterns (PAMPs) to defend against pathogens. Although PTI-mediated response has been widely studied, a systematic understanding of the reprogrammed cellular processes during PTI by multi-omics analysis is lacking. In this study, we generated metabolome, transcriptome, proteome, ubiquitome and acetylome data to investigate rice (Oryza sativa) PTI responses to two PAMPs, the fungi-derived chitin and the bacteria-derived flg22. Integrative multi-omics analysis uncovered convergence and divergence of rice responses to these PAMPs at multiple regulatory layers. Rice responded to chitin and flg22 in a similar manner at the transcriptome and proteome levels, but distinct at the metabolome level. We found that this was probably due to post-translational regulation including ubiquitination and acetylation, which reshaped gene expression by modulating enzymatic activities, and possibly led to distinct metabolite profiles. We constructed regulatory atlas of metabolic pathways, including the defence-related phenylpropanoid and flavonoid biosynthesis and linoleic acid derivative metabolism. The multi-level regulatory network generated in this study sets the foundation for in-depth mechanistic dissection of PTI in rice and potentially in other related poaceous crop species.
Collapse
Affiliation(s)
- Bozeng Tang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Caiyun Liu
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant PathologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Xixi Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Shaoqun Zhou
- Shenzhen BranchGuangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Guo‐Liang Wang
- Department of Plant PathologyThe Ohio State UniversityColumbusOHUSA
| | - Xiao‐Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant PathologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
35
|
Giovannoni M, Lironi D, Marti L, Paparella C, Vecchi V, Gust AA, De Lorenzo G, Nürnberger T, Ferrari S. The Arabidopsis thaliana LysM-containing Receptor-Like Kinase 2 is required for elicitor-induced resistance to pathogens. PLANT, CELL & ENVIRONMENT 2021; 44:3545-3562. [PMID: 34558681 PMCID: PMC9293440 DOI: 10.1111/pce.14192] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/02/2021] [Accepted: 09/13/2021] [Indexed: 05/12/2023]
Abstract
In Arabidopsis thaliana, perception of chitin from fungal cell walls is mediated by three LysM-containing Receptor-Like Kinases (LYKs): CERK1, which is absolutely required for chitin perception, and LYK4 and LYK5, which act redundantly. The role in plant innate immunity of a fourth LYK protein, LYK2, is currently not known. Here we show that CERK1, LYK2 and LYK5 are dispensable for basal susceptibility to B. cinerea but are necessary for chitin-induced resistance to this pathogen. LYK2 is dispensable for chitin perception and early signalling events, though it contributes to callose deposition induced by this elicitor. Notably, LYK2 is also necessary for enhanced resistance to B. cinerea and Pseudomonas syringae induced by flagellin and for elicitor-induced priming of defence gene expression during fungal infection. Consistently, overexpression of LYK2 enhances resistance to B. cinerea and P. syringae and results in increased expression of defence-related genes during fungal infection. LYK2 appears to be required to establish a primed state in plants exposed to biotic elicitors, ensuring a robust resistance to subsequent pathogen infections.
Collapse
Affiliation(s)
- Moira Giovannoni
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”Sapienza Università di RomaRomeItaly
| | - Damiano Lironi
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”Sapienza Università di RomaRomeItaly
| | - Lucia Marti
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”Sapienza Università di RomaRomeItaly
| | - Chiara Paparella
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”Sapienza Università di RomaRomeItaly
| | - Valeria Vecchi
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”Sapienza Università di RomaRomeItaly
| | - Andrea A. Gust
- Department of Plant BiochemistryUniversity of Tübingen, Center for Plant Molecular BiologyTübingenGermany
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”Sapienza Università di RomaRomeItaly
| | - Thorsten Nürnberger
- Department of Plant BiochemistryUniversity of Tübingen, Center for Plant Molecular BiologyTübingenGermany
| | - Simone Ferrari
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”Sapienza Università di RomaRomeItaly
| |
Collapse
|
36
|
Pélissier R, Buendia L, Brousse A, Temple C, Ballini E, Fort F, Violle C, Morel JB. Plant neighbour-modulated susceptibility to pathogens in intraspecific mixtures. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6570-6580. [PMID: 34125197 PMCID: PMC8483782 DOI: 10.1093/jxb/erab277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/11/2021] [Indexed: 05/18/2023]
Abstract
As part of a trend towards diversifying cultivated areas, varietal mixtures are subject to renewed interest as a means to manage diseases. Besides the epidemiological effects of varietal mixtures on pathogen propagation, little is known about the effect of intraspecific plant-plant interactions and their impact on responses to disease. In this study, genotypes of rice (Oryza sativa) or durum wheat (Triticum turgidum) were grown with different conspecific neighbours and manually inoculated under conditions preventing pathogen propagation. Disease susceptibility was measured together with the expression of basal immunity genes as part of the response to intra-specific neighbours. The results showed that in many cases for both rice and wheat susceptibility to pathogens and immunity was modified by the presence of intraspecific neighbours. This phenomenon, which we term 'neighbour-modulated susceptibility' (NMS), could be caused by the production of below-ground signals and does not require the neighbours to be infected. Our results suggest that the mechanisms responsible for reducing disease in varietal mixtures in the field need to be re-examined.
Collapse
Affiliation(s)
- Rémi Pélissier
- PHIM Plant Health Institute, Université de Montpellier, Institut Agro, CIRAD, INRAE, IRD, Montpellier, France
| | - Luis Buendia
- PHIM Plant Health Institute, Université de Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Andy Brousse
- PHIM Plant Health Institute, Université de Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Coline Temple
- PHIM Plant Health Institute, Université de Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Elsa Ballini
- PHIM Plant Health Institute, Université de Montpellier, Institut Agro, CIRAD, INRAE, IRD, Montpellier, France
| | - Florian Fort
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Institut Agro, Montpellier, France
| | - Cyrille Violle
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jean-Benoit Morel
- PHIM Plant Health Institute, Université de Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- Correspondence:
| |
Collapse
|
37
|
Ma Z, Qin G, Zhang Y, Liu C, Wei M, Cen Z, Yan Y, Luo T, Li Z, Liang H, Huang D, Deng G. Bacterial leaf streak 1 encoding a mitogen-activated protein kinase confers resistance to bacterial leaf streak in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1084-1101. [PMID: 34101285 DOI: 10.1111/tpj.15368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 05/25/2023]
Abstract
Bacterial leaf streak (BLS) is a major bacterial disease of rice. Utilization of host genetic resistance has become one of the most important strategies for controlling BLS. However, only a few resistance genes have been characterized. Previously, a recessive BLS resistance gene bls1 was roughly mapped on chromosome 6. Here, we further delineated bls1 to a 21 kb region spanning four genes. Genetic analysis confirmed that the gene encoding a mitogen-activated protein kinase (OsMAPK6) is the target of the allelic genes BLS1 and bls1. Overexpression of BLS1 weakened resistance to the specific Xanthomonas oryzae pv. oryzicola (Xoc) strain JZ-8, while low expression of bls1 increased resistance. However, both overexpression of BLS1 and low expression of bls1 could increase no-race-specific broad-spectrum resistance. These results indicate that BLS1 and bls1 negatively regulate race-specific resistance to Xoc strain JZ-8 but positively and negatively control broad-spectrum resistance, respectively. Subcellular localization demonstrated that OsMAPK6 was localized in the nucleus. RGA4, which is known to mediate resistance to Xoc, is the potential target of OsMAPK6. Overexpression of BLS1 and low expression of bls1 showed increase in salicylic acid and induced expression of defense-related genes, simultaneously increasing broad-spectrum resistance. Moreover, low expression of bls1 showed increase an in jasmonic acid and abscisic acid, in company with an increase in resistance to Xoc strain JZ-8. Collectively, our study provides new insights into the understanding of BLS resistance and facilitates the development of rice host-resistant cultivars.
Collapse
Affiliation(s)
- Zengfeng Ma
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Gang Qin
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yuexiong Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Chi Liu
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Minyi Wei
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhenlu Cen
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yong Yan
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Tongping Luo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhenjing Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Haifu Liang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Dahui Huang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Guofu Deng
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| |
Collapse
|
38
|
Castiglione AM, Mannino G, Contartese V, Bertea CM, Ertani A. Microbial Biostimulants as Response to Modern Agriculture Needs: Composition, Role and Application of These Innovative Products. PLANTS 2021; 10:plants10081533. [PMID: 34451578 PMCID: PMC8400793 DOI: 10.3390/plants10081533] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 01/09/2023]
Abstract
An increasing need for a more sustainable agriculturally-productive system is required in order to preserve soil fertility and reduce soil biodiversity loss. Microbial biostimulants are innovative technologies able to ensure agricultural yield with high nutritional values, overcoming the negative effects derived from environmental changes. The aim of this review was to provide an overview on the research related to plant growth promoting microorganisms (PGPMs) used alone, in consortium, or in combination with organic matrices such as plant biostimulants (PBs). Moreover, the effectiveness and the role of microbial biostimulants as a biological tool to improve fruit quality and limit soil degradation is discussed. Finally, the increased use of these products requires the achievement of an accurate selection of beneficial microorganisms and consortia, and the ability to prepare for future agriculture challenges. Hence, the implementation of the microorganism positive list provided by EU (2019/1009), is desirable.
Collapse
Affiliation(s)
- Adele M. Castiglione
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, 10135 Turin, Italy; (A.M.C.); (G.M.)
- Green Has Italia S.P.A, 12043 Canale, Italy;
| | - Giuseppe Mannino
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, 10135 Turin, Italy; (A.M.C.); (G.M.)
| | | | - Cinzia M. Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, 10135 Turin, Italy; (A.M.C.); (G.M.)
- Correspondence: ; Tel.: +39-0116706361
| | - Andrea Ertani
- Department of Agricultural Forest and Food Sciences, University of Torino, 10095 Turin, Italy;
| |
Collapse
|
39
|
Sakata N, Ishiga T, Masuo S, Hashimoto Y, Ishiga Y. Coronatine Contributes to Pseudomonas cannabina pv. alisalensis Virulence by Overcoming Both Stomatal and Apoplastic Defenses in Dicot and Monocot Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:746-757. [PMID: 33587000 DOI: 10.1094/mpmi-09-20-0261-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Pseudomonas cannabina pv. alisalensis is a causative agent of bacterial blight of crucifers including cabbage, radish, and broccoli. Importantly, P. cannabina pv. alisalensis can infect not only a wide range of Brassicaceae spp. but, also, green manure crops such as oat. However, P. cannabina pv. alisalensis virulence mechanisms have not been investigated and are not fully understood. We focused on coronatine (COR) function, which is one of the well-known P. syringae pv. tomato DC3000 virulence factors, in P. cannabina pv. alisalensis infection processes on both dicot and monocot plants. Cabbage and oat plants dip-inoculated with a P. cannabina pv. alisalensis KB211 COR mutant (ΔcmaA) exhibited reduced virulence compared with P. cannabina pv. alisalensis wild type (WT). Moreover, ΔcmaA failed to reopen stomata on both cabbage and oat, suggesting that COR facilitates P. cannabina pv. alisalensis entry through stomata into both plants. Furthermore, cabbage and oat plants syringe-infiltrated with ΔcmaA also showed reduced virulence, suggesting that COR is involved in overcoming not only stomatal-based defense but also apoplastic defense. Indeed, defense-related genes, including PR1 and PR2, were highly expressed in plants inoculated with ΔcmaA compared with WT, indicating that COR suppresses defense-related genes of both cabbage and oat. Additionally, salicylic acid accumulation increases after ΔcmaA inoculation compared with WT. Taken together, COR contributes to causing disease by suppressing stomatal-based defense and apoplastic defense in both dicot and monocot plants. Here, we investigated COR functions in the interaction of P. cannabina pv. alisalensis and different host plants (dicot and monocot plants), using genetically and biochemically defined COR deletion mutants.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2021.
Collapse
Affiliation(s)
- Nanami Sakata
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Takako Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Shunsuke Masuo
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoshiteru Hashimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yasuhiro Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
40
|
Wang Y, Duan G, Li C, Ma X, Yang J. Application of jasmonic acid at the stage of visible brown necrotic spots in Magnaporthe oryzae infection as a novel and environment-friendly control strategy for rice blast disease. PROTOPLASMA 2021; 258:743-752. [PMID: 33417037 DOI: 10.1007/s00709-020-01591-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Rice blast disease is one of the most common rice diseases worldwide. It is essential to improve disease resistance through environment-friendly methods, while maintaining yield and quality parameters. In this study, jasmonic acid (JA), a plant hormone with anti-fungal activity, was obtained, at both low (100 μmol/L) and high (400 μmol/L) concentrations in rice leaves, before, during, and after infection, respectively. JA could inhibit germination and appressorium formation of rice blast spores in a dose-dependent manner. A total of 400-μmol/L JA treatment significantly enhanced cell viability and endogenous JA level in rice leaves. Furthermore, rice leaves inoculated with Magnaporthe oryzae and sprayed with JA 72 h post-inoculation showed the maximum symptom relief and the highest endogenous JA production among all treatment approaches. The expressions of defense-related genes, OsPR10a and OsAOS2, were highly up-regulated in response to JA, whereas OsEDS1 was down-regulated. Hence, we revealed that exogenous JA could activate JA signaling to effectively control the symptoms of rice blast.
Collapse
Affiliation(s)
- Yunfeng Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Heilongtan, Northern suburb, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Guihua Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Heilongtan, Northern suburb, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Chunqin Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Heilongtan, Northern suburb, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Xiaoqing Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Heilongtan, Northern suburb, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Jing Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Heilongtan, Northern suburb, Kunming, 650201, Yunnan, People's Republic of China.
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
| |
Collapse
|
41
|
Modesto I, Sterck L, Arbona V, Gómez-Cadenas A, Carrasquinho I, Van de Peer Y, Miguel CM. Insights Into the Mechanisms Implicated in Pinus pinaster Resistance to Pinewood Nematode. FRONTIERS IN PLANT SCIENCE 2021; 12:690857. [PMID: 34178007 PMCID: PMC8222992 DOI: 10.3389/fpls.2021.690857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/17/2021] [Indexed: 05/27/2023]
Abstract
Pine wilt disease (PWD), caused by the plant-parasitic nematode Bursaphelenchus xylophilus, has become a severe environmental problem in the Iberian Peninsula with devastating effects in Pinus pinaster forests. Despite the high levels of this species' susceptibility, previous studies reported heritable resistance in P. pinaster trees. Understanding the basis of this resistance can be of extreme relevance for future programs aiming at reducing the disease impact on P. pinaster forests. In this study, we highlighted the mechanisms possibly involved in P. pinaster resistance to PWD, by comparing the transcriptional changes between resistant and susceptible plants after infection. Our analysis revealed a higher number of differentially expressed genes (DEGs) in resistant plants (1,916) when compared with susceptible plants (1,226). Resistance to PWN is mediated by the induction of the jasmonic acid (JA) defense pathway, secondary metabolism pathways, lignin synthesis, oxidative stress response genes, and resistance genes. Quantification of the acetyl bromide-soluble lignin confirmed a significant increase of cell wall lignification of stem tissues around the inoculation zone in resistant plants. In addition to less lignified cell walls, susceptibility to the pine wood nematode seems associated with the activation of the salicylic acid (SA) defense pathway at 72 hpi, as revealed by the higher SA levels in the tissues of susceptible plants. Cell wall reinforcement and hormone signaling mechanisms seem therefore essential for a resistance response.
Collapse
Affiliation(s)
- Inês Modesto
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia e Tecnologia Experimental, Oeiras, Portugal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, Spain
| | - Isabel Carrasquinho
- Instituto Nacional Investigaciao Agraria e Veterinaria, Oeiras, Portugal
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Célia M. Miguel
- Instituto de Biologia e Tecnologia Experimental, Oeiras, Portugal
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
42
|
Biotechnological Resources to Increase Disease-Resistance by Improving Plant Immunity: A Sustainable Approach to Save Cereal Crop Production. PLANTS 2021; 10:plants10061146. [PMID: 34199861 PMCID: PMC8229257 DOI: 10.3390/plants10061146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/17/2021] [Accepted: 05/29/2021] [Indexed: 12/16/2022]
Abstract
Plant diseases are globally causing substantial losses in staple crop production, undermining the urgent goal of a 60% increase needed to meet the food demand, a task made more challenging by the climate changes. Main consequences concern the reduction of food amount and quality. Crop diseases also compromise food safety due to the presence of pesticides and/or toxins. Nowadays, biotechnology represents our best resource both for protecting crop yield and for a science-based increased sustainability in agriculture. Over the last decades, agricultural biotechnologies have made important progress based on the diffusion of new, fast and efficient technologies, offering a broad spectrum of options for understanding plant molecular mechanisms and breeding. This knowledge is accelerating the identification of key resistance traits to be rapidly and efficiently transferred and applied in crop breeding programs. This review gathers examples of how disease resistance may be implemented in cereals by exploiting a combination of basic research derived knowledge with fast and precise genetic engineering techniques. Priming and/or boosting the immune system in crops represent a sustainable, rapid and effective way to save part of the global harvest currently lost to diseases and to prevent food contamination.
Collapse
|
43
|
SA-Mediated Regulation and Control of Abiotic Stress Tolerance in Rice. Int J Mol Sci 2021; 22:ijms22115591. [PMID: 34070465 PMCID: PMC8197520 DOI: 10.3390/ijms22115591] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
Environmental or abiotic stresses are a common threat that remains a constant and common challenge to all plants. These threats whether singular or in combination can have devastating effects on plants. As a semiaquatic plant, rice succumbs to the same threats. Here we systematically look into the involvement of salicylic acid (SA) in the regulation of abiotic stress in rice. Studies have shown that the level of endogenous salicylic acid (SA) is high in rice compared to any other plant species. The reason behind this elevated level and the contribution of this molecule towards abiotic stress management and other underlying mechanisms remains poorly understood in rice. In this review we will address various abiotic stresses that affect the biochemistry and physiology of rice and the role played by SA in its regulation. Further, this review will elucidate the potential mechanisms that control SA-mediated stress tolerance in rice, leading to future prospects and direction for investigation.
Collapse
|
44
|
Ross BT, Zidack NK, Flenniken ML. Extreme Resistance to Viruses in Potato and Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:658981. [PMID: 33889169 PMCID: PMC8056081 DOI: 10.3389/fpls.2021.658981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 05/31/2023]
Abstract
Plant pathogens, including viruses, negatively impact global crop production. Plants have evolved complex immune responses to pathogens. These responses are often controlled by nucleotide-binding leucine-rich repeat proteins (NLRs), which recognize intracellular, pathogen-derived proteins. Genetic resistance to plant viruses is often phenotypically characterized by programmed cell death at or near the infection site; a reaction termed the hypersensitive response. Although visualization of the hypersensitive response is often used as a hallmark of resistance, the molecular mechanisms leading to the hypersensitive response and associated cell death vary. Plants with extreme resistance to viruses rarely exhibit symptoms and have little to no detectable virus replication or spread beyond the infection site. Both extreme resistance and the hypersensitive response can be activated by the same NLR genes. In many cases, genes that normally provide an extreme resistance phenotype can be stimulated to cause a hypersensitive response by experimentally increasing cellular levels of pathogen-derived elicitor protein(s). The molecular mechanisms of extreme resistance and its relationship to the hypersensitive response are largely uncharacterized. Studies on potato and soybean cultivars that are resistant to strains of Potato virus Y (PVY), Potato virus X (PVX), and Soybean mosaic virus (SMV) indicate that abscisic acid (ABA)-mediated signaling and NLR nuclear translocation are important for the extreme resistance response. Recent research also indicates that some of the same proteins are involved in both extreme resistance and the hypersensitive response. Herein, we review and synthesize published studies on extreme resistance in potato and soybean, and describe studies in additional species, including model plant species, to highlight future research avenues that may bridge the gaps in our knowledge of plant antiviral defense mechanisms.
Collapse
Affiliation(s)
- Brian T. Ross
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Nina K. Zidack
- Montana State Seed Potato Certification Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
- Montana State Seed Potato Certification Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
45
|
Hu Q, Xiao S, Wang X, Ao C, Zhang X, Zhu L. GhWRKY1-like enhances cotton resistance to Verticillium dahliae via an increase in defense-induced lignification and S monolignol content. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110833. [PMID: 33691967 DOI: 10.1016/j.plantsci.2021.110833] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 05/08/2023]
Abstract
Cotton is one of the most important economic crops and is cultivated globally. Verticillium wilt, caused by the soil-borne hemibiotrophic fungus Verticillium dahliae, is the most destructive disease in cotton production for its infection strategies and great genetic plasticity. Recent studies have identified the accumulation of lignin is a general and basal defense reaction in plant immunity and cotton resistance to V. dahliae. However, the functions and regulatory mechanisms of transcription factors in cotton defense-induced lignification and lignin composition alteration were less reported. Here, we identified a WRKY transcription factor GhWRKY1-like from upland cotton (Gossypium hirsutum) as a positive regulator in resistance to V. dahliae via directly manipulating lignin biosynthesis. Further analysis revealed that GhWRKY1-like interacts with the promoters of lignin biosynthesis related genes GhPAL6 and GhCOMT1, and activates the expression of GhPAL6 and GhCOMT1, which led to enhanced total lignin especially S monomers biosynthesis. These results demonstrate that GhWRKY1-like enhances Verticillium wilt resistance via an increase in defense-induced lignification and broaden our knowledge of the roles of lignification and the lignin composition in plant defense responses.
Collapse
Affiliation(s)
- Qin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Shenghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiaorui Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Chuanwei Ao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
46
|
Paponov M, Arakelyan A, Dobrev PI, Verheul MJ, Paponov IA. Nitrogen Deficiency and Synergism between Continuous Light and Root Ammonium Supply Modulate Distinct but Overlapping Patterns of Phytohormone Composition in Xylem Sap of Tomato Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:573. [PMID: 33803638 PMCID: PMC8003008 DOI: 10.3390/plants10030573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022]
Abstract
Continuous light (CL) or a predominant nitrogen supply as ammonium (NH4+) can induce leaf chlorosis and inhibit plant growth. The similarity in injuries caused by CL and NH4+ suggests involvement of overlapping mechanisms in plant responses to these conditions; however, these mechanisms are poorly understood. We addressed this topic by conducting full factorial experiments with tomato plants to investigate the effects of NO3- or NH4+ supply under diurnal light (DL) or CL. We used plants at ages of 26 and 15 days after sowing to initiate the treatments, and we modulated the intensity of the stress induced by CL and an exclusive NH4+ supply from mild to strong. Under DL, we also studied the effect of nitrogen (N) deficiency and mixed application of NO3- and NH4+. Under strong stress, CL and exclusive NH4+ supply synergistically inhibited plant growth and reduced chlorophyll content. Under mild stress, when no synergetic effect between CL and NH4+ was apparent on plant growth and chlorophyll content, we found a synergetic effect of CL and NH4+ on the accumulation of several plant stress hormones, with an especially strong effect for jasmonic acid (JA) and 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, in xylem sap. This modulation of the hormonal composition suggests a potential role for these plant hormones in plant growth responses to the combined application of CL and NH4+. No synergetic effect was observed between CL and NH4+ for the accumulation of soluble carbohydrates or of mineral ions, indicating that these plant traits are less sensitive than the modulation of hormonal composition in xylem sap to the combined CL and NH4+ application. Under diurnal light, NH4+ did not affect the hormonal composition of xylem sap; however, N deficiency strongly increased the concentrations of phaseic acid (PA), JA, and salicylic acid (SA), indicating that decreased N concentration rather than the presence of NO3- or NH4+ in the nutrient solution drives the hormone composition of the xylem sap. In conclusion, N deficiency or a combined application of CL and NH4+ induced the accumulation of JA in xylem sap. This accumulation, in combination with other plant hormones, defines the specific plant response to stress conditions.
Collapse
Affiliation(s)
- Martina Paponov
- NIBIO, Norwegian Institute of Bioeconomy Research (NIBIO), Division of Food Production and Society, P.O. Box 115, NO 1431 Ås, Norway; (M.P.); (M.J.V.)
| | - Aleksandr Arakelyan
- Department of Agronomy, Armenian National Agrarian University, Yerevan 0009, Armenia;
| | - Petre I. Dobrev
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 16502 Prague, Czech Republic;
| | - Michel J. Verheul
- NIBIO, Norwegian Institute of Bioeconomy Research (NIBIO), Division of Food Production and Society, P.O. Box 115, NO 1431 Ås, Norway; (M.P.); (M.J.V.)
| | - Ivan A. Paponov
- NIBIO, Norwegian Institute of Bioeconomy Research (NIBIO), Division of Food Production and Society, P.O. Box 115, NO 1431 Ås, Norway; (M.P.); (M.J.V.)
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark
| |
Collapse
|
47
|
Iqbal Z, Iqbal MS, Hashem A, Abd_Allah EF, Ansari MI. Plant Defense Responses to Biotic Stress and Its Interplay With Fluctuating Dark/Light Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:631810. [PMID: 33763093 PMCID: PMC7982811 DOI: 10.3389/fpls.2021.631810] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 05/24/2023]
Abstract
Plants are subjected to a plethora of environmental cues that cause extreme losses to crop productivity. Due to fluctuating environmental conditions, plants encounter difficulties in attaining full genetic potential for growth and reproduction. One such environmental condition is the recurrent attack on plants by herbivores and microbial pathogens. To surmount such attacks, plants have developed a complex array of defense mechanisms. The defense mechanism can be either preformed, where toxic secondary metabolites are stored; or can be inducible, where defense is activated upon detection of an attack. Plants sense biotic stress conditions, activate the regulatory or transcriptional machinery, and eventually generate an appropriate response. Plant defense against pathogen attack is well understood, but the interplay and impact of different signals to generate defense responses against biotic stress still remain elusive. The impact of light and dark signals on biotic stress response is one such area to comprehend. Light and dark alterations not only regulate defense mechanisms impacting plant development and biochemistry but also bestow resistance against invading pathogens. The interaction between plant defense and dark/light environment activates a signaling cascade. This signaling cascade acts as a connecting link between perception of biotic stress, dark/light environment, and generation of an appropriate physiological or biochemical response. The present review highlights molecular responses arising from dark/light fluctuations vis-à-vis elicitation of defense mechanisms in plants.
Collapse
Affiliation(s)
- Zahra Iqbal
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
48
|
Darino M, Chia K, Marques J, Aleksza D, Soto‐Jiménez LM, Saado I, Uhse S, Borg M, Betz R, Bindics J, Zienkiewicz K, Feussner I, Petit‐Houdenot Y, Djamei A. Ustilago maydis effector Jsi1 interacts with Topless corepressor, hijacking plant jasmonate/ethylene signaling. THE NEW PHYTOLOGIST 2021; 229:3393-3407. [PMID: 33247447 PMCID: PMC8126959 DOI: 10.1111/nph.17116] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/16/2020] [Indexed: 05/19/2023]
Abstract
Ustilago maydis is the causal agent of maize smut disease. During the colonization process, the fungus secretes effector proteins that suppress immune responses and redirect the host metabolism in favor of the pathogen. As effectors play a critical role during plant colonization, their identification and functional characterization are essential to understanding biotrophy and disease. Using biochemical, molecular, and transcriptomic techniques, we performed a functional characterization of the U. maydis effector Jasmonate/Ethylene signaling inducer 1 (Jsi1). Jsi1 interacts with several members of the plant corepressor family Topless/Topless related (TPL/TPR). Jsi1 expression in Zea mays and Arabidopsis thaliana leads to transcriptional induction of the ethylene response factor (ERF) branch of the jasmonate/ethylene (JA/ET) signaling pathway. In A. thaliana, activation of the ERF branch leads to biotrophic susceptibility. Jsi1 likely activates the ERF branch via an EAR (ET-responsive element binding-factor-associated amphiphilic repression) motif, which resembles EAR motifs from plant ERF transcription factors, that interacts with TPL/TPR proteins. EAR-motif-containing effector candidates were identified from different fungal species, including Magnaporthe oryzae, Sporisorium scitamineum, and Sporisorium reilianum. Interaction between plant TPL proteins and these effector candidates from biotrophic and hemibiotrophic fungi indicates the convergent evolution of effectors modulating the TPL/TPR corepressor hub.
Collapse
Affiliation(s)
- Martin Darino
- Gregor Mendel Institute of Molecular Plant Biology (GMI)Austrian Academy of Sciences (OEAW)Vienna BioCenter (VBC)Vienna1030Austria
| | - Khong‐Sam Chia
- The Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)OT Gatersleben06466Germany
| | - Joana Marques
- Gregor Mendel Institute of Molecular Plant Biology (GMI)Austrian Academy of Sciences (OEAW)Vienna BioCenter (VBC)Vienna1030Austria
| | - David Aleksza
- University of Natural Resources and Life Sciences (BOKU)Vienna1180Austria
| | - Luz Mayela Soto‐Jiménez
- Gregor Mendel Institute of Molecular Plant Biology (GMI)Austrian Academy of Sciences (OEAW)Vienna BioCenter (VBC)Vienna1030Austria
| | - Indira Saado
- The Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)OT Gatersleben06466Germany
| | - Simon Uhse
- Gregor Mendel Institute of Molecular Plant Biology (GMI)Austrian Academy of Sciences (OEAW)Vienna BioCenter (VBC)Vienna1030Austria
| | - Michael Borg
- Gregor Mendel Institute of Molecular Plant Biology (GMI)Austrian Academy of Sciences (OEAW)Vienna BioCenter (VBC)Vienna1030Austria
| | - Ruben Betz
- The Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)OT Gatersleben06466Germany
| | - Janos Bindics
- Gregor Mendel Institute of Molecular Plant Biology (GMI)Austrian Academy of Sciences (OEAW)Vienna BioCenter (VBC)Vienna1030Austria
- Institute of Molecular Biotechnology (IMBA)Vienna BioCenter (VBC)Vienna1030Austria
| | - Krzysztof Zienkiewicz
- Service Unit for Metabolomics and LipidomicsGoettingen Center for Molecular Biosciences (GZMB)University of GoettingenGoettingenD‐37077Germany
- Department of Plant BiochemistryAlbrecht von Haller Institute and Göttingen Center for Molecular Biosciences (GZMB)University of GöttingenGöttingenD‐37077Germany
| | - Ivo Feussner
- Service Unit for Metabolomics and LipidomicsGoettingen Center for Molecular Biosciences (GZMB)University of GoettingenGoettingenD‐37077Germany
- Department of Plant BiochemistryAlbrecht von Haller Institute and Göttingen Center for Molecular Biosciences (GZMB)University of GöttingenGöttingenD‐37077Germany
| | - Yohann Petit‐Houdenot
- UMR BIOGERINRAAgroParisTechUniversité Paris‐SaclayThiverval‐Grignon78850France
- The Sainsbury LaboratoryUniversity of East AngliaNorwich,NR4 7UKUK
| | - Armin Djamei
- Gregor Mendel Institute of Molecular Plant Biology (GMI)Austrian Academy of Sciences (OEAW)Vienna BioCenter (VBC)Vienna1030Austria
- The Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)OT Gatersleben06466Germany
- Present address:
Department of PhytopathologyInstitute of Crop Science and Resource ConservationUniversity of BonnBonn53115Germany
| |
Collapse
|
49
|
Ramu VS, Oh S, Lee HK, Nandety RS, Oh Y, Lee S, Nakashima J, Tang Y, Senthil-Kumar M, Mysore KS. A Novel Role of Salt- and Drought-Induced RING 1 Protein in Modulating Plant Defense Against Hemibiotrophic and Necrotrophic Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:297-308. [PMID: 33231502 DOI: 10.1094/mpmi-09-20-0257-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many plant-encoded E3 ligases are known to be involved in plant defense. Here, we report a novel role of E3 ligase SALT- AND DROUGHT-INDUCED RING FINGER1 (SDIR1) in plant immunity. Even though SDIR1 is reasonably well-characterized, its role in biotic stress response is not known. The silencing of SDIR1 in Nicotiana benthamiana reduced the multiplication of the virulent bacterial pathogen Pseudomonas syringae pv. tabaci. The Arabidopsis sdir1 mutant is resistant to virulent pathogens, whereas SDIR1 overexpression lines are susceptible to both host and nonhost hemibiotrophic bacterial pathogens. However, sdir1 mutant and SDIR1 overexpression lines showed hypersusceptibility and resistance, respectively, against the necrotrophic pathogen Erwinia carotovora. The mutant of SDIR1 target protein, i.e., SDIR-interacting protein 1 (SDIR1P1), also showed resistance to host and nonhost pathogens. In SDIR1 overexpression plants, transcripts of NAC transcription factors were less accumulated and the levels of jasmonic acid (JA) and abscisic acid were increased. In the sdir1 mutant, JA signaling genes JAZ7 and JAZ8 were downregulated. These data suggest that SDIR1 is a susceptibility factor and its activation or overexpression enhances disease caused by P. syringae pv. tomato DC3000 in Arabidopsis. Our results show a novel role of SDIR1 in modulating plant defense gene expression and plant immunity.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Vemanna S Ramu
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- Laboratory of Plant Functional Genomics, Regional Center for Biotechnology, Faridabad, India
| | - Sunhee Oh
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - Hee-Kyung Lee
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | | | - Youngjae Oh
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Wimauma, FL 33598, U.S.A
| | - Seonghee Lee
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Wimauma, FL 33598, U.S.A
| | - Jin Nakashima
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - Yuhong Tang
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | | | | |
Collapse
|
50
|
Transcriptome analysis of yellow passion fruit in response to cucumber mosaic virus infection. PLoS One 2021; 16:e0247127. [PMID: 33626083 PMCID: PMC7904197 DOI: 10.1371/journal.pone.0247127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/02/2021] [Indexed: 01/19/2023] Open
Abstract
The cultivation and production of passion fruit (Passiflora edulis) are severely affected by viral disease. Yet there have been few studies of the molecular response of passion fruit to virus attack. In the present study, RNA-based transcriptional profiling (RNA-seq) was used to identify the gene expression profiles in yellow passion fruit (Passiflora edulis f. flavicarpa) leaves following inoculation with cucumber mosaic virus (CMV). Six RNA-seq libraries were constructed comprising a total of 42.23 Gb clean data. 1,545 differentially expressed genes (DEGs) were obtained (701 upregulated and 884 downregulated). Gene annotation analyses revealed that genes associated with plant hormone signal transduction, transcription factors, protein ubiquitination, detoxification, phenylpropanoid biosynthesis, photosynthesis and chlorophyll metabolism were significantly affected by CMV infection. The represented genes activated by CMV infection corresponded to transcription factors WRKY family, NAC family, protein ubiquitination and peroxidase. Several DEGs encoding protein TIFY, pathogenesis-related proteins, and RNA-dependent RNA polymerases also were upregualted by CMV infection. Overall, the information obtained in this study enriched the resources available for research into the molecular-genetic mechanisms of the passion fruit/CMV interaction, and might provide a theoretical basis for the prevention and management of passion fruit viral disease in the field.
Collapse
|