1
|
Sun W, Yuan M, Yin L, Ke X, Zuo Y. A natriuretic peptide molecule from Vigna angularis, VaEG45, confers rust resistance by inhibiting fungal development. PLANT CELL REPORTS 2023; 42:409-420. [PMID: 36576553 DOI: 10.1007/s00299-022-02967-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Novel function and mechanism of a PNP molecule VaEG45 from adzuki bean involved in plant immunity. Plant natriuretic peptides (PNPs) can affect a broad spectrum of physiological responses in plants acting as peptidic signaling molecules. However, PNPs may play additional roles in plant immunity. Our previous transcriptome data of adzuki bean (Vigna angularis) in response to Uromyces vignae infection revealed association of PNP-encoding gene VaEG45 with U. vignae resistance. To determine the function of VaEG45 in disease resistance, we cloned the 589 bp nucleotide sequence of VaEG45 containing 2 introns, encoding a putative 13.68 kDa protein that is 131 amino acids in length. We analyzed expression in different resistant cultivars of V. angularis and found significant induction of VaEG45 expression after U. vignae infection. Transient expression of VaEG45 improved tobacco resistance against Botrytis cinerea. We next analyzed the mechanism by which VaEG45 protects plants from fungal infection by determination of the biological activity of the prokaryotic expressed VaEG45. The results showed that the fusion protein VaEG45 can significantly inhibit urediospores germination of U. vignae, mycelial growth, and the infection of tobacco by B. cinerea. Further analysis revealed that VaEG45 exhibits β-1, 3-glucanase activity. These findings uncover the function of a novel PNP molecule VaEG45 and provide new evidence about the mechanism of PNPs in plant immunity.
Collapse
Affiliation(s)
- Weina Sun
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, National Coarse Cereals Engineering Research Center, Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mengqi Yuan
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, National Coarse Cereals Engineering Research Center, Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Lihua Yin
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, National Coarse Cereals Engineering Research Center, Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xiwang Ke
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, National Coarse Cereals Engineering Research Center, Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Yuhu Zuo
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, National Coarse Cereals Engineering Research Center, Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
2
|
Patané JSL, Moreira LM, de Melo Teixeira M, Martins J, Setubal JC, Varani AM. New insights into plant natriuretic peptide evolution: From the lysogenic conversion in Xanthomonas to the lateral transfer to the whitefly Bemisia tabaci. Gene 2022; 821:146326. [PMID: 35181506 DOI: 10.1016/j.gene.2022.146326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/18/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
Abstract
Plant natriuretic peptide-like (PNP) are signaling molecules related to adaptive responses to stress. The Arabidopsis thaliana PNP (AtPNP-A) is capable of modulating catalase 2 (CAT2) and rubisco activase (RCA) activity in some circumstances. Interestingly, many plant-pathogens co-opted PNP-like molecules to their benefit. For instance, the citrus pathogen Xanthomonas citri carries a PNP-like (XacPNP) that can mimic and regulate plant homeostasis, and many phytopathogenic fungi carry effectors (e.g., Ave1 and AvrLm6) that are indeed PNP-like homologs. This work investigates the PNP-like evolution across the tree of life, revealing many parallel gains and duplications in plant and fungi kingdoms. All PNP-like proteins in the final dataset are structurally similar, containing the AtPNP-A active domains modulating CAT2 activity and RCA interaction. Comparative genomics evinced that XacPNP is a lysogenic conversion factor associated with a Myoviridae-like prophage identified in many Xanthomonas species. Surprisingly, a PNP-like homolog was identified in Bemisia tabaci, an important agricultural pest, being to date the second example of lateral gene transfer (LGT) from plant to the whitefly. Moreover, the Bemisia PNP-like homolog can also be considered a potential new effector of this phloem-feeding insect. Noteworthy, the whiteflies infest many plants carrying PNP-like copies and interact with some of their bacterial and fungal pathogens, strongly suggesting complex recipient/donor traits of PNP by LGT and bringing new insights into the evolution of host-pathogen arms race across the tree of life.
Collapse
Affiliation(s)
- José S L Patané
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Leandro M Moreira
- Departamento de Ciências Biológicas e Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | | | - Joaquim Martins
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - João C Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alessandro M Varani
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, SP, Brazil.
| |
Collapse
|
3
|
Marondedze C, Elia G, Thomas L, Wong A, Gehring C. Citrullination of Proteins as a Specific Response Mechanism in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:638392. [PMID: 33897727 PMCID: PMC8060559 DOI: 10.3389/fpls.2021.638392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/17/2021] [Indexed: 05/19/2023]
Abstract
Arginine deimination, also referred to as citrullination of proteins by L-arginine deiminases, is a post-translational modification affecting histone modifications, epigenetic transcriptional regulation, and proteolysis in animals but has not been reported in higher plants. Here we report, firstly, that Arabidopsis thaliana proteome contains proteins with a specific citrullination signature and that many of the citrullinated proteins have nucleotide-binding regulatory functions. Secondly, we show that changes in the citrullinome occur in response to cold stress, and thirdly, we identify an A. thaliana protein with peptidyl arginine deiminase activity that was shown to be calcium-dependent for many peptide substrates. Taken together, these findings establish this post-translational modification as a hitherto neglected component of cellular reprogramming during stress responses.
Collapse
Affiliation(s)
- Claudius Marondedze
- Division of Biological and Chemical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Rijk Zwaan, De Lier, Netherlands
- Department of Biochemistry, Faculty of Medicine, Midlands State University, Gweru, Zimbabwe
- Claudius Marondedze,
| | - Giuliano Elia
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Ludivine Thomas
- Division of Biological and Chemical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center of Wenzhou-Kean University, Wenzhou, China
| | - Chris Gehring
- Division of Biological and Chemical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
- *Correspondence: Chris Gehring,
| |
Collapse
|
4
|
Shabrangy A, Ghatak A, Zhang S, Priller A, Chaturvedi P, Weckwerth W. Magnetic Field Induced Changes in the Shoot and Root Proteome of Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2021; 12:622795. [PMID: 33708230 PMCID: PMC7940674 DOI: 10.3389/fpls.2021.622795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/13/2021] [Indexed: 05/04/2023]
Abstract
The geomagnetic field (GMF) has been present since the beginning of plant evolution. Recently, some researchers have focused their efforts on employing magnetic fields (MFs) higher than GMF to improve the seed germination, growth, and harvest of agriculturally important crop plants, as the use of MFs is an inexpensive and environment-friendly technique. In this study, we have employed different treatments of MF at 7 mT (milliTesla) at different time points of exposure, including 1, 3, and 6 h. The extended exposure was followed by five consecutive days at 6 h per day in barley seeds. The results showed a positive impact of MF on growth characteristics for 5-day-old seedlings, including seed germination rate, root and shoot length, and biomass weight. Furthermore, ~5 days of delay of flowering in pre-treated plants was also observed. We used a shotgun proteomics approach to identify changes in the protein signatures of root and shoot tissues under MF effects. In total, we have identified 2,896 proteins. Thirty-eight proteins in the shoot and 15 proteins in the root showed significant changes under the MF effect. Proteins involved in primary metabolic pathways were increased in contrast to proteins with a metal ion binding function, proteins that contain iron ions in their structure, and proteins involved in electron transfer chain, which were all decreased significantly in the treated tissues. The upregulated proteins' overall biological processes included carbohydrate metabolic process, oxidation-reduction process, and cell redox homeostasis, while down-regulated processes included translation and protein refolding. In general, shoot response was more affected by MF effect than root tissue, leading to the identification of 41 shoot specific proteins. This study provides an initial insight into the proteome regulation response to MF during barley's seedling stage.
Collapse
Affiliation(s)
- Azita Shabrangy
- Molecular Systems Biology Lab, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Azita Shabrangy
| | - Arindam Ghatak
- Molecular Systems Biology Lab, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Shuang Zhang
- Molecular Systems Biology Lab, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Alfred Priller
- VERA Laboratory, Isotope Physics, Faculty of Physics, University of Vienna, Vienna, Austria
| | - Palak Chaturvedi
- Molecular Systems Biology Lab, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
- *Correspondence: Wolfram Weckwerth
| |
Collapse
|
5
|
Turek I, Gehring C, Irving H. Arabidopsis Plant Natriuretic Peptide Is a Novel Interactor of Rubisco Activase. Life (Basel) 2020; 11:life11010021. [PMID: 33396438 PMCID: PMC7823470 DOI: 10.3390/life11010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022] Open
Abstract
Plant natriuretic peptides (PNPs) are a group of systemically acting peptidic hormones affecting solute and solvent homeostasis and responses to biotrophic pathogens. Although an increasing body of evidence suggests PNPs modulate plant responses to biotic and abiotic stress, which could lead to their potential biotechnological application by conferring increased stress tolerance to plants, the exact mode of PNPs action is still elusive. In order to gain insight into PNP-dependent signalling, we set out to identify interactors of PNP present in the model plant Arabidopsis thaliana, termed AtPNP-A. Here, we report identification of rubisco activase (RCA), a central regulator of photosynthesis converting Rubisco catalytic sites from a closed to an open conformation, as an interactor of AtPNP-A through affinity isolation followed by mass spectrometric identification. Surface plasmon resonance (SPR) analyses reveals that the full-length recombinant AtPNP-A and the biologically active fragment of AtPNP-A bind specifically to RCA, whereas a biologically inactive scrambled peptide fails to bind. These results are considered in the light of known functions of PNPs, PNP-like proteins, and RCA in biotic and abiotic stress responses.
Collapse
Affiliation(s)
- Ilona Turek
- Biomolecular Laboratory, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3552, Australia
| | - Chris Gehring
- Biomolecular Laboratory, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06121 Perugia, Italy
| | - Helen Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3552, Australia
| |
Collapse
|
6
|
A natriuretic peptide from Arabidopsis thaliana (AtPNP-A) can modulate catalase 2 activity. Sci Rep 2020; 10:19632. [PMID: 33184368 PMCID: PMC7665192 DOI: 10.1038/s41598-020-76676-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Analogues of vertebrate natriuretic peptides (NPs) present in plants, termed plant natriuretic peptides (PNPs), comprise a novel class of hormones that systemically affect salt and water balance and responses to plant pathogens. Several lines of evidence indicate that Arabidopsis thaliana PNP (AtPNP-A) affects cellular redox homeostasis, which is also typical for the signaling of its vertebrate analogues, but the molecular mechanism(s) of this effect remains elusive. Here we report identification of catalase 2 (CAT2), an antioxidant enzyme, as an interactor of AtPNP-A. The full-length AtPNP-A recombinant protein and the biologically active fragment of AtPNP-A bind specifically to CAT2 in surface plasmon resonance (SPR) analyses, while a biologically inactive scrambled peptide does not. In vivo bimolecular fluorescence complementation (BiFC) showed that CAT2 interacts with AtPNP-A in chloroplasts. Furthermore, CAT2 activity is lower in homozygous atpnp-a knockdown compared with wild type plants, and atpnp-a knockdown plants phenocopy CAT2-deficient plants in their sensitivity to elevated H2O2, which is consistent with a direct modulatory effect of the PNP on the activity of CAT2 and hence H2O2 homeostasis. Our work underlines the critical role of AtPNP-A in modulating the activity of CAT2 and highlights a mechanism of fine-tuning plant responses to adverse conditions by PNPs.
Collapse
|
7
|
H. D. Sagawa C, de A. B. Assis R, Zaini PA, Wilmarth PA, Phinney BS, Moreira LM, Dandekar AM. Proteome Analysis of Walnut Bacterial Blight Disease. Int J Mol Sci 2020; 21:E7453. [PMID: 33050347 PMCID: PMC7593943 DOI: 10.3390/ijms21207453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/21/2022] Open
Abstract
The interaction between the plant host, walnut (Juglans regia; Jr), and a deadly pathogen (Xanthomonas arboricola pv. juglandis 417; Xaj) can lead to walnut bacterial blight (WB), which depletes walnut productivity by degrading the nut quality. Here, we dissect this pathosystem using tandem mass tag quantitative proteomics. Walnut hull tissues inoculated with Xaj were compared to mock-inoculated tissues, and 3972 proteins were identified, of which 3296 are from Jr and 676 from Xaj. Proteins with differential abundance include oxidoreductases, proteases, and enzymes involved in energy metabolism and amino acid interconversion pathways. Defense responses and plant hormone biosynthesis were also increased. Xaj proteins detected in infected tissues demonstrate its ability to adapt to the host microenvironment, limiting iron availability, coping with copper toxicity, and maintaining energy and intermediary metabolism. Secreted proteases and extracellular secretion apparatus such as type IV pilus for twitching motility and type III secretion effectors indicate putative factors recognized by the host. Taken together, these results suggest intense degradation processes, oxidative stress, and general arrest of the biosynthetic metabolism in infected nuts. Our results provide insights into molecular mechanisms and highlight potential molecular tools for early detection and disease control strategies.
Collapse
Affiliation(s)
- Cíntia H. D. Sagawa
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (C.H.D.S.); (R.d.A.B.A.); (P.A.Z.)
| | - Renata de A. B. Assis
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (C.H.D.S.); (R.d.A.B.A.); (P.A.Z.)
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil;
| | - Paulo A. Zaini
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (C.H.D.S.); (R.d.A.B.A.); (P.A.Z.)
| | - Phillip A. Wilmarth
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Brett S. Phinney
- Proteomics Core Facility, University of California, Davis, CA 95616, USA;
| | - Leandro M. Moreira
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil;
| | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (C.H.D.S.); (R.d.A.B.A.); (P.A.Z.)
| |
Collapse
|
8
|
Liu X, Guan H, Wang T, Meng D, Yang Y, Dai J, Fan N, Guo B, Fu Y, He W, Wei Y. ScPNP-A, a plant natriuretic peptide from Stellera chamaejasme, confers multiple stress tolerances in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:132-143. [PMID: 32062590 DOI: 10.1016/j.plaphy.2020.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
As a class of peptide hormone, plant natriuretic peptides (PNPs) play an important role in maintaining water and salt balance in plants, as well as in the physiological processes of biotic stress and pathogen resistance. However, in plants, except for some PNPs, such as the Arabidopsis thaliana PNP-A (AtPNP-A), of which the function has not yet been thoroughly revealed, few PNPs in other plants have been reported. In this study, a PNP-A (ScPNP-A) has been identified and characterized in Stellera chamaejasme for the first time. ScPNP-A is a double-psi beta-barrel (DPBB) fold containing protein and is localized in the extracellular (secreted) space. In S. chamaejasme, the expression of ScPNP-A was significantly up-regulated by salt, drought and cold stress. Changes at the physiological and biochemical levels and the expression of resistance-related genes indicated that overexpression of ScPNP-A can significantly improve salt, drought and freezing tolerance in Arabidopsis. ScPNP-A could stimulate the opening, not the closing of stomata, and its expression was not enhanced by external application of ABA. Furthermore, overexpression of ScPNP-A resulted in the elevated expression of genes in the ABA biosynthesis and reception pathway. These suggested that there may be some cross-talk between ScPNP-A and the ABA-dependent signaling pathways to regulate water related stress, however further experimentation is required to understand this relationship. In addition, overexpression of ScPNP-A can enhance the resistance to pathogens by enhancing SAR in Arabidopsis. These results indicate that ScPNP-A could function as a positive regulator in plant response to biotic stress and abiotic stress.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education & College of Life Sciences, Northwest University, No. 229, North Taibai Road, Xi'an, 710069, Shaanxi, China.
| | - Huirui Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education & College of Life Sciences, Northwest University, No. 229, North Taibai Road, Xi'an, 710069, Shaanxi, China.
| | - Tianshu Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education & College of Life Sciences, Northwest University, No. 229, North Taibai Road, Xi'an, 710069, Shaanxi, China.
| | - Dian Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education & College of Life Sciences, Northwest University, No. 229, North Taibai Road, Xi'an, 710069, Shaanxi, China.
| | - Youfeng Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education & College of Life Sciences, Northwest University, No. 229, North Taibai Road, Xi'an, 710069, Shaanxi, China.
| | - Jiakun Dai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education & College of Life Sciences, Northwest University, No. 229, North Taibai Road, Xi'an, 710069, Shaanxi, China; Bio-Agriculture Institute of Shaanxi, Chinese Academy of Science, No. 125, Xianning Middle Road, Xi'an, 710043, Shaanxi, China.
| | - Na Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education & College of Life Sciences, Northwest University, No. 229, North Taibai Road, Xi'an, 710069, Shaanxi, China; College of Healthy Management, Shangluo University, Shangluo, 726000, Shaanxi, China.
| | - Bin Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education & College of Life Sciences, Northwest University, No. 229, North Taibai Road, Xi'an, 710069, Shaanxi, China.
| | - Yanping Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education & College of Life Sciences, Northwest University, No. 229, North Taibai Road, Xi'an, 710069, Shaanxi, China.
| | - Wei He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education & College of Life Sciences, Northwest University, No. 229, North Taibai Road, Xi'an, 710069, Shaanxi, China.
| | - Yahui Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education & College of Life Sciences, Northwest University, No. 229, North Taibai Road, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
9
|
Ficarra FA, Grandellis C, Garavaglia BS, Gottig N, Ottado J. Bacterial and plant natriuretic peptides improve plant defence responses against pathogens. MOLECULAR PLANT PATHOLOGY 2018; 19:801-811. [PMID: 28401640 PMCID: PMC6638127 DOI: 10.1111/mpp.12560] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/08/2017] [Accepted: 04/05/2017] [Indexed: 05/23/2023]
Abstract
Plant natriuretic peptides (PNPs) have been implicated in the regulation of ions and water homeostasis, and their participation in the plant immune response has also been proposed. Xanthomonas citri ssp. citri contains a gene encoding a PNP-like protein (XacPNP) which has no homologues in other bacteria. XacPNP mimics its Arabidopsis thaliana homologue AtPNP-A by modifying host responses to create favourable conditions for pathogen survival. However, the ability of XacPNP to induce plant defence responses has not been investigated. In order to study further the role of XacPNP in vivo, A. thaliana lines over-expressing XacPNP, lines over-expressing AtPNP-A and AtPNP-A-deficient plants were generated. Plants over-expressing XacPNP or AtPNP-A showed larger stomatal aperture and were more resistant to saline or oxidative stress than were PNP-deficient lines. In order to study further the role of PNP in biotic stress responses, A. thaliana leaves were infiltrated with pure recombinant XacPNP, and showed enhanced expression of genes related to the defence response and a higher resistance to pathogen infections. Moreover, AtPNP-A expression increased in A. thaliana on Pseudomonas syringae pv. tomato (Pst) infection. This evidence led us to analyse the responses of the transgenic plants to pathogens. Plants over-expressing XacPNP or AtPNP-A were more resistant to Pst infection than control plants, whereas PNP-deficient plants were more susceptible and showed a stronger hypersensitive response when challenged with non-host bacteria. Therefore, XacPNP, acquired by horizontal gene transfer, is able to mimic PNP functions, even with an increase in plant defence responses.
Collapse
Affiliation(s)
- Florencia A. Ficarra
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR‐CONICET) and Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR), Ocampo y Esmeralda2000, RosarioArgentina
| | - Carolina Grandellis
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR‐CONICET) and Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR), Ocampo y Esmeralda2000, RosarioArgentina
| | - Betiana S. Garavaglia
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR‐CONICET) and Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR), Ocampo y Esmeralda2000, RosarioArgentina
| | - Natalia Gottig
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR‐CONICET) and Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR), Ocampo y Esmeralda2000, RosarioArgentina
| | - Jorgelina Ottado
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR‐CONICET) and Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR), Ocampo y Esmeralda2000, RosarioArgentina
| |
Collapse
|
10
|
Nguyen HM, Sako K, Matsui A, Ueda M, Tanaka M, Ito A, Nishino N, Yoshida M, Seki M. Transcriptomic analysis of Arabidopsis thaliana plants treated with the Ky-9 and Ky-72 histone deacetylase inhibitors. PLANT SIGNALING & BEHAVIOR 2018; 13:e1448333. [PMID: 29517946 PMCID: PMC5927655 DOI: 10.1080/15592324.2018.1448333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 05/30/2023]
Abstract
Histone acetylation plays a pivotal role in plant growth and development, and is regulated by the antagonistic relationship between histone acetyltransferase (HAT) and histone deacetylase (HDAC). We previously revealed that some HDAC inhibitors confer high-salinity stress tolerance in plants. In this study, we identified two HDAC inhibitors, namely Ky-9 and Ky-72, which enhanced the high-salinity stress tolerance of Arabidopsis thaliana. Ky-9 and Ky-72 are structurally similar chlamydocin analogs. However, the in vitro inhibitory activity of Ky-9 against mammalian HDAC is greater than that of Ky-72. A western blot indicated that Ky-9 and Ky-72 increased the acetylation levels of histone H3, suggesting they exhibit HDAC inhibitory activities in plants. We conducted a transcriptomic analysis to investigate how Ky-9 and Ky-72 enhance high-salinity stress tolerance. Although Ky-9 upregulated the expression of more genes than Ky-72, similar gene expression patterns were induced by both HDAC inhibitors. Additionally, the expression of high-salinity stress tolerance-related genes, such as anthocyanin-related genes and a small peptide-encoding gene, increased by Ky-9 and Ky-72. These data suggest that slight structural differences in chemical side chain between HDAC inhibitors can alter inhibitory effect on HDAC protein leading to influence gene expression, thereby enhancing high-salinity stress tolerance in different extent.
Collapse
Affiliation(s)
- Huong Mai Nguyen
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Kaori Sako
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, Japan
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Minoru Ueda
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Akihiro Ito
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences 1432-1, Horinouchi, Hachioji, Tokyo, Japan
| | - Norikazu Nishino
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, Japan
| |
Collapse
|
11
|
Isner JC, Maathuis FJM. cGMP signalling in plants: from enigma to main stream. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:93-101. [PMID: 32291024 DOI: 10.1071/fp16337] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/25/2016] [Indexed: 05/05/2023]
Abstract
All living organisms communicate with their environment, and part of this dialogue is mediated by secondary messengers such as cyclic guanosine mono phosphate (cGMP). In plants, most of the specific components that allow production and breakdown of cGMP have now been identified apart from cGMP dependent phosphodiesterases, enzymes responsible for cGMP catabolism. Irrespectively, the role of cGMP in plant signal transductions is now firmly established with involvement of this nucleotide in development, stress response, ion homeostasis and hormone function. Within these areas, several consistent themes where cGMP may be particularly relevant are slowly emerging: these include regulation of cation fluxes, for example via cyclic nucleotide gated channels and in stomatal functioning. Many details of signalling pathways that incorporate cGMP remain to be unveiled. These include downstream targets other than a small number of ion channels, in particular cGMP dependent kinases. Improved genomics tools may help in this respect, especially since many proteins involved in cGMP signalling appear to have multiple and often overlapping functional domains which hampers identification on the basis of simple homology searches. Another open question regards the topographical distribution of cGMP signals are they cell limited? Does long distance cGMP signalling occur and if so, by what mechanisms? The advent of non-disruptive fluorescent reporters with high spatial and temporal resolution will provide a tool to accelerate progress in all these areas. Automation can facilitate large scale screens of mutants or the action of effectors that impact on cGMP signalling.
Collapse
Affiliation(s)
- Jean-Charles Isner
- School of Biological Sciences, Life Sciences Building, University of Bristol, Woodland Road, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | | |
Collapse
|
12
|
Gehring C, Turek IS. Cyclic Nucleotide Monophosphates and Their Cyclases in Plant Signaling. FRONTIERS IN PLANT SCIENCE 2017; 8:1704. [PMID: 29046682 PMCID: PMC5632652 DOI: 10.3389/fpls.2017.01704] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/19/2017] [Indexed: 05/19/2023]
Abstract
The cyclic nucleotide monophosphates (cNMPs), and notably 3',5'-cyclic guanosine monophosphate (cGMP) and 3',5'-cyclic adenosine monophosphate (cAMP) are now accepted as key signaling molecules in many processes in plants including growth and differentiation, photosynthesis, and biotic and abiotic defense. At the single molecule level, we are now beginning to understand how cNMPs modify specific target molecules such as cyclic nucleotide-gated channels, while at the systems level, a recent study of the Arabidopsis cNMP interactome has identified novel target molecules with specific cNMP-binding domains. A major advance came with the discovery and characterization of a steadily increasing number of guanylate cyclases (GCs) and adenylate cyclases (ACs). Several of the GCs are receptor kinases and include the brassinosteroid receptor, the phytosulfokine receptor, the Pep receptor, the plant natriuretic peptide receptor as well as a nitric oxide sensor. We foresee that in the near future many more molecular mechanisms and biological roles of GCs and ACs and their catalytic products will be discovered and further establish cNMPs as a key component of plant responses to the environment.
Collapse
Affiliation(s)
- Chris Gehring
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Ilona S. Turek
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Leibniz Institute of Plant Biochemistry, Halle, Germany
| |
Collapse
|
13
|
Wheeler JI, Wong A, Marondedze C, Groen AJ, Kwezi L, Freihat L, Vyas J, Raji MA, Irving HR, Gehring C. The brassinosteroid receptor BRI1 can generate cGMP enabling cGMP-dependent downstream signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:590-600. [PMID: 28482142 DOI: 10.1111/tpj.13589] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 05/24/2023]
Abstract
The brassinosteroid receptor brassinosteroid insensitive 1 (BRI1) is a member of the leucine-rich repeat receptor-like kinase family. The intracellular kinase domain of BRI1 is an active kinase and also encapsulates a guanylate cyclase catalytic centre. Using liquid chromatography tandem mass spectrometry, we confirmed that the recombinant cytoplasmic domain of BRI1 generates pmol amounts of cGMP per μg protein with a preference for magnesium over manganese as a co-factor. Importantly, a functional BRI1 kinase is essential for optimal cGMP generation. Therefore, the guanylate cyclase activity of BRI1 is modulated by the kinase while cGMP, the product of the guanylate cyclase, in turn inhibits BRI1 kinase activity. Furthermore, we show using Arabidopsis root cell cultures that cGMP rapidly potentiates phosphorylation of the downstream substrate brassinosteroid signaling kinase 1 (BSK1). Taken together, our results suggest that cGMP acts as a modulator that enhances downstream signaling while dampening signal generation from the receptor.
Collapse
Affiliation(s)
- Janet I Wheeler
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, 3052, Australia
- AgriBio, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Aloysius Wong
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- College of Natural, Applied and Health Sciences, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, China, 325060
| | - Claudius Marondedze
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Arnoud J Groen
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Lusisizwe Kwezi
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, 3052, Australia
- Council for Scientific and Industrial Research, Biosciences, Brummeria, Pretoria, 0001, South Africa
| | - Lubna Freihat
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, 3052, Australia
| | - Jignesh Vyas
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, 3052, Australia
| | - Misjudeen A Raji
- Analytical Chemistry Core Laboratory, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Helen R Irving
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, 3052, Australia
| | - Chris Gehring
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
14
|
The RNA-binding protein repertoire of Arabidopsis thaliana. Sci Rep 2016; 6:29766. [PMID: 27405932 PMCID: PMC4942612 DOI: 10.1038/srep29766] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/08/2016] [Indexed: 12/28/2022] Open
Abstract
RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category 'RNA-binding', have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses.
Collapse
|
15
|
Turek I, Gehring C. The plant natriuretic peptide receptor is a guanylyl cyclase and enables cGMP-dependent signaling. PLANT MOLECULAR BIOLOGY 2016; 91:275-86. [PMID: 26945740 DOI: 10.1007/s11103-016-0465-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/02/2016] [Indexed: 05/05/2023]
Abstract
The functional homologues of vertebrate natriuretic peptides (NPs), the plant natriuretic peptides (PNPs), are a novel class of peptidic hormones that signal via guanosine 3',5'-cyclic monophosphate (cGMP) and systemically affect plant salt and water balance and responses to biotrophic plant pathogens. Although there is increasing understanding of the complex roles of PNPs in plant responses at the systems level, little is known about the underlying signaling mechanisms. Here we report isolation and identification of a novel Leucine-Rich Repeat (LRR) protein that directly interacts with A. thaliana PNP, AtPNP-A. In vitro binding studies revealed that the Arabidopsis AtPNP-A binds specifically to the LRR protein, termed AtPNP-R1, and the active region of AtPNP-A is sufficient for the interaction to occur. Importantly, the cytosolic part of the AtPNP-R1, much like in some vertebrate NP receptors, harbors a catalytic center diagnostic for guanylyl cyclases and the recombinant AtPNP-R1 is capable of catalyzing the conversion of guanosine triphosphate to cGMP. In addition, we show that AtPNP-A causes rapid increases of cGMP levels in wild type (WT) leaf tissue while this response is significantly reduced in the atpnp-r1 mutants. AtPNP-A also causes cGMP-dependent net water uptake into WT protoplasts, and hence volume increases, whereas responses of the protoplasts from the receptor mutant are impaired. Taken together, our results suggest that the identified LRR protein is an AtPNP-A receptor essential for the PNP-dependent regulation of ion and water homeostasis in plants and that PNP- and vertebrate NP-receptors and their signaling mechanisms share surprising similarities.
Collapse
Affiliation(s)
- Ilona Turek
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 2395-6900, Saudi Arabia
| | - Chris Gehring
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 2395-6900, Saudi Arabia.
| |
Collapse
|
16
|
Gupta A, Sarkar AK, Senthil-Kumar M. Global Transcriptional Analysis Reveals Unique and Shared Responses in Arabidopsis thaliana Exposed to Combined Drought and Pathogen Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:686. [PMID: 27252712 PMCID: PMC4878317 DOI: 10.3389/fpls.2016.00686] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/04/2016] [Indexed: 05/18/2023]
Abstract
With frequent fluctuations in global climate, plants are exposed to co-occurring drought and pathogen infection and this combination adversely affects plant survival. In the past, some studies indicated that morpho-physiological responses of plants to the combined stress are different from the individual stressed plants. However, interaction of drought stressed plants with pathogen has not been widely studied at molecular level. Such studies are important to understand the defense pathways that operate as part of combined stress tolerance mechanism. In this study, Arabidopsis thaliana was exposed to individual drought stress, Pseudomonas syringae pv tomato DC3000 (Pst DC3000) infection and their combination. Using Affymetrix WT gene 1.0 ST array, global transcriptome profiling of leaves under individual drought stress and pathogen infection was compared with their combination. The results obtained from pathway mapping (KAAS and MAPMAN) demonstrated the modulation in defense pathways in A. thaliana under drought and host pathogen Pst DC3000 infection. Further, our study revealed "tailored" responses under combined stress and the time of occurrence of each stress during their concurrence has shown differences in transcriptome profile. Our results from microarray and RT-qPCR revealed regulation of 20 novel genes uniquely during the stress interaction. This study indicates that plants exposed to concurrent drought and pathogen stress experience a new state of stress. Thus, under frequently changing climatic conditions, time of occurrence of each stress in the interaction defines the plant responses and should thus be studied explicitly.
Collapse
|
17
|
Rai V, Sarkar S, Satpati S, Dey N. Overexpression of human peroxisomal enoyl-CoA delta isomerase2 HsPECI2, an ortholog of bamboo expressed during gregarious flowering alters salinity stress responses and polar lipid content in tobacco. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:232-243. [PMID: 32480456 DOI: 10.1071/fp15292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/20/2015] [Indexed: 06/11/2023]
Abstract
Peroxisomal enoyl-CoA delta isomerase2 (PECI2) is one of the key enzymes that has critical role in lipid metabolism and plant development during salt stress. Seven out of ten tobacco plants overexpressing human PECI2 (HsPECI2) with PTS1-sequence showed hypersensitivity to salt. Under salt-stress, T2 transformed plants (HsPECI2) displayed reduced primary root, delayed shoot-growth, and visibly smaller rosette leaves turning pale yellow as compared to the pKYLX71 vector control plant. Also, we found altered reactive oxygen species (ROS) levels and reduced catalase activity in 100mM sodium chloride (NaCl) treated HsPECI2 transformed plant compared with the pKYLX71 counterpart. ESI-MS/MS data showed that the polar lipids were differentially modulated upon salt treatment in HsPECI2 transformed and pKYLX71 plants as compared with the respective untreated counterpart. Notably, the levels of monogalactosyldiacylglycerol and phosphatidic acid varied significantly, whereas phosphatidylcholine, phosphatidylserine and digalactosyldiacylglycerol contents were moderately upregulated. In parallel, abscisic acid (ABA) responsiveness assay confirmed insensitivity of HsPECI2 transformed plant towards ABA. Overall our data proclaim that HsPECI2 play multifunctional role in normal development and response to salinity stress apart from its primary role in β-oxidation.
Collapse
Affiliation(s)
- Vineeta Rai
- Division of Gene Function and Regulation, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India
| | - Shayan Sarkar
- Division of Gene Function and Regulation, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India
| | - Suresh Satpati
- Division of Translational Research and Technology Development, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India
| | - Nrisingha Dey
- Division of Gene Function and Regulation, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India
| |
Collapse
|
18
|
Quantitative proteome changes in Arabidopsis thaliana suspension-cultured cells in response to plant natriuretic peptides. Data Brief 2015. [PMID: 26217812 PMCID: PMC4510553 DOI: 10.1016/j.dib.2015.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Proteome changes in the Arabidopsis thaliana suspension cells in response to the A. thaliana plant natriuretic peptide (PNP), AtPNP-A (At2g18660) were assessed using quantitative proteomics employing tandem mass tag (TMT) labeling and tandem mass spectrometry (LC–MS/MS). In this study, we characterized temporal responses of suspension-cultured cells to 1 nM and 10 pM AtPNP-A at 0, 10 and 30 min post-treatment. Both concentrations we found to yield a distinct differential proteome signature. The data shown in this article are associated with the article “Plant natriuretic peptides induce a specific set of proteins diagnostic for an adaptive response to abiotic stress” by Turek et al. (Front. Plant Sci. 5 (2014) 661) and have been deposited to the ProteomeXchange with identifier PXD001386.
Collapse
|