1
|
Zhang KL, Leng YN, Hao RR, Zhang WY, Li HF, Chen MX, Zhu FY. Adaptation of High-Altitude Plants to Harsh Environments: Application of Phenotypic-Variation-Related Methods and Multi-Omics Techniques. Int J Mol Sci 2024; 25:12666. [PMID: 39684378 DOI: 10.3390/ijms252312666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
High-altitude plants face extreme environments such as low temperature, low oxygen, low nutrient levels, and strong ultraviolet radiation, causing them to adopt complex adaptation mechanisms. Phenotypic variation is the core manifestation of ecological adaptation and evolution. Many plants have developed a series of adaptive strategies through long-term natural selection and evolution, enabling them to survive and reproduce under such harsh conditions. This article reviews the techniques and methods used in recent years to study the adaptive evolution of high-altitude plants, including transplantation techniques, genomics, transcriptomics, proteomics, and metabolomics techniques, and their applications in high-altitude plant adaptive evolution. Transplantation technology focuses on phenotypic variation, which refers to natural variations in morphological, physiological, and biochemical characteristics, exploring their key roles in nutrient utilization, photosynthesis optimization, and stress-resistance protection. Multiple omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, have revealed genes, regulatory pathways, and metabolic networks associated with phenotypic variations at the genetic and molecular levels. At the same time, the limitations and deficiencies of current technologies used to study plant adaptation to high-altitude environments were discussed. In addition, we propose future improvements to existing technologies and advocate for the integration of different technologies at multiple levels to study the molecular mechanisms of plant adaptation to high-altitude environments, thus providing insights for future research in this field.
Collapse
Affiliation(s)
- Kai-Lu Zhang
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Ya-Nan Leng
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Rui-Rui Hao
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Wen-Yao Zhang
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Hong-Fei Li
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Mo-Xian Chen
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Fu-Yuan Zhu
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
2
|
Antenozio ML, Caissutti C, Caporusso FM, Marzi D, Brunetti P. Urban Air Pollution and Plant Tolerance: Omics Responses to Ozone, Nitrogen Oxides, and Particulate Matter. PLANTS (BASEL, SWITZERLAND) 2024; 13:2027. [PMID: 39124144 PMCID: PMC11313721 DOI: 10.3390/plants13152027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Urban air pollution is a crucial global challenge, mainly originating from urbanization and industrial activities, which are continuously increasing. Vegetation serves as a natural air filter for air pollution, but adverse effects on plant health, photosynthesis, and metabolism can occur. Recent omics technologies have revolutionized the study of molecular plant responses to air pollution, overcoming previous limitations. This review synthesizes the latest advancements in molecular plant responses to major air pollutants, emphasizing ozone (O3), nitrogen oxides (NOX), and particulate matter (PM) research. These pollutants induce stress responses common to other abiotic and biotic stresses, including the activation of reactive oxygen species (ROSs)-scavenging enzymes and hormone signaling pathways. New evidence has shown the central role of antioxidant phenolic compound biosynthesis, via the phenylpropanoid pathway, in air pollution stress responses. Transcription factors like WRKY, AP2/ERF, and MYB, which connect hormone signaling to antioxidant biosynthesis, were also affected. To date, research has predominantly focused on laboratory studies analyzing individual pollutants. This review highlights the need for comprehensive field studies and the identification of molecular tolerance traits, which are crucial for the identification of tolerant plant species, aimed at the development of sustainable nature-based solutions (NBSs) to mitigate urban air pollution.
Collapse
Affiliation(s)
- Maria Luisa Antenozio
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), 00015 Monterotondo, Italy; (M.L.A.); (C.C.); (F.M.C.)
| | - Cristina Caissutti
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), 00015 Monterotondo, Italy; (M.L.A.); (C.C.); (F.M.C.)
| | - Francesca Maria Caporusso
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), 00015 Monterotondo, Italy; (M.L.A.); (C.C.); (F.M.C.)
- Department of Biology and Biotechnologies ‘Charles Darwin’ (BBCD), Sapienza University of Roma, 00185 Roma, Italy
| | - Davide Marzi
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), 00015 Monterotondo, Italy; (M.L.A.); (C.C.); (F.M.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Patrizia Brunetti
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), 00015 Monterotondo, Italy; (M.L.A.); (C.C.); (F.M.C.)
| |
Collapse
|
3
|
Qi S, Wang J, Zhang Y, Naz M, Afzal MR, Du D, Dai Z. Omics Approaches in Invasion Biology: Understanding Mechanisms and Impacts on Ecological Health. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091860. [PMID: 37176919 PMCID: PMC10181282 DOI: 10.3390/plants12091860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Invasive species and rapid climate change are affecting the control of new plant diseases and epidemics. To effectively manage these diseases under changing environmental conditions, a better understanding of pathophysiology with holistic approach is needed. Multiomics approaches can help us to understand the relationship between plants and microbes and construct predictive models for how they respond to environmental stresses. The application of omics methods enables the simultaneous analysis of plant hosts, soil, and microbiota, providing insights into their intricate relationships and the mechanisms underlying plant-microbe interactions. This can help in the development of novel strategies for enhancing plant health and improving soil ecosystem functions. The review proposes the use of omics methods to study the relationship between plant hosts, soil, and microbiota, with the aim of developing a new technique to regulate soil health. This approach can provide a comprehensive understanding of the mechanisms underlying plant-microbe interactions and contribute to the development of effective strategies for managing plant diseases and improving soil ecosystem functions. In conclusion, omics technologies offer an innovative and holistic approach to understanding plant-microbe interactions and their response to changing environmental conditions.
Collapse
Affiliation(s)
- Shanshan Qi
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiahao Wang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Zhang
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Misbah Naz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Muhammad Rahil Afzal
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Daolin Du
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhicong Dai
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
4
|
Gupta A, Sharma T, Singh SP, Bhardwaj A, Srivastava D, Kumar R. Prospects of microgreens as budding living functional food: Breeding and biofortification through OMICS and other approaches for nutritional security. Front Genet 2023; 14:1053810. [PMID: 36760994 PMCID: PMC9905132 DOI: 10.3389/fgene.2023.1053810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Nutrient deficiency has resulted in impaired growth and development of the population globally. Microgreens are considered immature greens (required light for photosynthesis and growing medium) and developed from the seeds of vegetables, legumes, herbs, and cereals. These are considered "living superfood/functional food" due to the presence of chlorophyll, beta carotene, lutein, and minerals like magnesium (Mg), Potassium (K), Phosphorus (P), and Calcium (Ca). Microgreens are rich at the nutritional level and contain several phytoactive compounds (carotenoids, phenols, glucosinolates, polysterols) that are helpful for human health on Earth and in space due to their anti-microbial, anti-inflammatory, antioxidant, and anti-carcinogenic properties. Microgreens can be used as plant-based nutritive vegetarian foods that will be fruitful as a nourishing constituent in the food industryfor garnish purposes, complement flavor, texture, and color to salads, soups, flat-breads, pizzas, and sandwiches (substitute to lettuce in tacos, sandwich, burger). Good handling practices may enhance microgreens'stability, storage, and shelf-life under appropriate conditions, including light, temperature, nutrients, humidity, and substrate. Moreover, the substrate may be a nutritive liquid solution (hydroponic system) or solid medium (coco peat, coconut fiber, coir dust and husks, sand, vermicompost, sugarcane filter cake, etc.) based on a variety of microgreens. However integrated multiomics approaches alongwith nutriomics and foodomics may be explored and utilized to identify and breed most potential microgreen genotypes, biofortify including increasing the nutritional content (macro-elements:K, Ca and Mg; oligo-elements: Fe and Zn and antioxidant activity) and microgreens related other traits viz., fast growth, good nutritional values, high germination percentage, and appropriate shelf-life through the implementation of integrated approaches includes genomics, transcriptomics, sequencing-based approaches, molecular breeding, machine learning, nanoparticles, and seed priming strategiesetc.
Collapse
Affiliation(s)
- Astha Gupta
- Sharda School of Agricultural Sciences, Sharda University, Greater Noida, India,*Correspondence: Astha Gupta, ; Rajendra Kumar,
| | - Tripti Sharma
- Sharda School of Agricultural Sciences, Sharda University, Greater Noida, India
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University,, Kanpur, India
| | - Archana Bhardwaj
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | - Deepti Srivastava
- Department of Agriculture, Integral Institute of Agricultural Science and Technology, Integral University, Lucknow, Uttar Pradesh, India
| | - Rajendra Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India,*Correspondence: Astha Gupta, ; Rajendra Kumar,
| |
Collapse
|
5
|
Huang P, Hameed R, Abbas M, Balooch S, Alharthi B, Du Y, Abbas A, Younas A, Du D. Integrated omic techniques and their genomic features for invasive weeds. Funct Integr Genomics 2023; 23:44. [PMID: 36680630 DOI: 10.1007/s10142-023-00971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
Many emerging invasive weeds display rapid adaptation against different stressful environments compared to their natives. Rapid adaptation and dispersal habits helped invasive populations have strong diversity within the population compared to their natives. Advances in molecular marker techniques may lead to an in-depth understanding of the genetic diversity of invasive weeds. The use of molecular techniques is rapidly growing, and their implications in invasive weed studies are considered powerful tools for genome purposes. Here, we review different approach used multi-omics by invasive weed studies to understand the functional structural and genomic changes in these species under different environmental fluctuations, particularly, to check the accessibility of advance-sequencing techniques used by researchers in genome sequence projects. In this review-based study, we also examine the importance and efficiency of different molecular techniques in identifying and characterizing different genes, associated markers, proteins, metabolites, and key metabolic pathways in invasive and native weeds. Use of these techniques could help weed scientists to further reduce the knowledge gaps in understanding invasive weeds traits. Although these techniques can provide robust insights about the molecular functioning, employing a single omics platform can rarely elucidate the gene-level regulation and the associated real-time expression of weedy traits due to the complex and overlapping nature of biological interactions. We conclude that different multi-omic techniques will provide long-term benefits in launching new genome projects to enhance the understanding of invasive weeds' invasion process.
Collapse
Affiliation(s)
- Ping Huang
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Rashida Hameed
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Manzer Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, Sichuan Province, People's Republic of China
| | - Sidra Balooch
- Institute of Botany, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Badr Alharthi
- Department of Biology, University College of Al Khurmah, Taif University, PO. Box 11099, Taif, 21944, Saudi Arabia
| | - Yizhou Du
- Faculty of Engineering, School of Computer Science, University of Sydney, Sydney, New South Wales, Australia
| | - Adeel Abbas
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Afifa Younas
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Daolin Du
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
6
|
Kerry RG, Montalbo FJP, Das R, Patra S, Mahapatra GP, Maurya GK, Nayak V, Jena AB, Ukhurebor KE, Jena RC, Gouda S, Majhi S, Rout JR. An overview of remote monitoring methods in biodiversity conservation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80179-80221. [PMID: 36197618 PMCID: PMC9534007 DOI: 10.1007/s11356-022-23242-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Conservation of biodiversity is critical for the coexistence of humans and the sustenance of other living organisms within the ecosystem. Identification and prioritization of specific regions to be conserved are impossible without proper information about the sites. Advanced monitoring agencies like the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) had accredited that the sum total of species that are now threatened with extinction is higher than ever before in the past and are progressing toward extinct at an alarming rate. Besides this, the conceptualized global responses to these crises are still inadequate and entail drastic changes. Therefore, more sophisticated monitoring and conservation techniques are required which can simultaneously cover a larger surface area within a stipulated time frame and gather a large pool of data. Hence, this study is an overview of remote monitoring methods in biodiversity conservation via a survey of evidence-based reviews and related studies, wherein the description of the application of some technology for biodiversity conservation and monitoring is highlighted. Finally, the paper also describes various transformative smart technologies like artificial intelligence (AI) and/or machine learning algorithms for enhanced working efficiency of currently available techniques that will aid remote monitoring methods in biodiversity conservation.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004 India
| | | | - Rajeswari Das
- Department of Soil Science and Agricultural Chemistry, School of Agriculture, GIET University, Gunupur, Rayagada, Odisha 765022 India
| | - Sushmita Patra
- Indian Council of Agricultural Research-Directorate of Foot and Mouth Disease-International Centre for Foot and Mouth Disease, Arugul, Bhubaneswar, Odisha 752050 India
| | | | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi, 221005 India
| | - Vinayak Nayak
- Indian Council of Agricultural Research-Directorate of Foot and Mouth Disease-International Centre for Foot and Mouth Disease, Arugul, Bhubaneswar, Odisha 752050 India
| | - Atala Bihari Jena
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | | | - Ram Chandra Jena
- Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004 India
| | - Sushanto Gouda
- Department of Zoology, Mizoram University, Aizawl, 796009 India
| | - Sanatan Majhi
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004 India
| | - Jyoti Ranjan Rout
- School of Biological Sciences, AIPH University, Bhubaneswar, Odisha 752101 India
| |
Collapse
|
7
|
Peng WX, Yue X, Chen H, Ma NL, Quan Z, Yu Q, Wei Z, Guan R, Lam SS, Rinklebe J, Zhang D, Zhang B, Bolan N, Kirkham MB, Sonne C. A review of plants formaldehyde metabolism: Implications for hazardous emissions and phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129304. [PMID: 35739801 DOI: 10.1016/j.jhazmat.2022.129304] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/20/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The wide use of hazardous formaldehyde (CH2O) in disinfections, adhesives and wood-based furniture leads to undesirable emissions to indoor environments. This is highly problematic as formaldehyde is a highly hazardous and toxic compound present in both liquid and gaseous form. The majority of gaseous and atmospheric formaldehyde derive from microbial and plant decomposition. However, plants also reversibly absorb formaldehyde released from for example indoor structural materials in such as furniture, thus offering beneficial phytoremediation properties. Here we provide the first comprehensive review of plant formaldehyde metabolism, physiology and remediation focusing on release and absorption including species-specific differences for maintaining indoor environmental air quality standards. Phytoremediation depends on rhizosphere, temperature, humidity and season and future indoor formaldehyde remediation therefore need to take these biological factors into account including the balance between emission and phytoremediation. This would pave the road for remediation of formaldehyde air pollution and improve planetary health through several of the UN Sustainable Development Goals.
Collapse
Affiliation(s)
- Wan-Xi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Xiaochen Yue
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Huiling Chen
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Nyuk Ling Ma
- Faculty of Science & Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Zhou Quan
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Qing Yu
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Zihan Wei
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Ruirui Guan
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou 450002, People's Republic of China; Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India
| | - Dangquan Zhang
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The UWA Institute of Agriculture, M079, Perth WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Christian Sonne
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou 450002, People's Republic of China; Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
8
|
Singh RK, Singh C, Chandana BS, Mahto RK, Patial R, Gupta A, Gahlaut V, Hamwieh A, Upadhyaya HD, Kumar R. Exploring Chickpea Germplasm Diversity for Broadening the Genetic Base Utilizing Genomic Resourses. Front Genet 2022; 13:905771. [PMID: 36035111 PMCID: PMC9416867 DOI: 10.3389/fgene.2022.905771] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/24/2022] [Indexed: 12/01/2022] Open
Abstract
Legume crops provide significant nutrition to humans as a source of protein, omega-3 fatty acids as well as specific macro and micronutrients. Additionally, legumes improve the cropping environment by replenishing the soil nitrogen content. Chickpeas are the second most significant staple legume food crop worldwide behind dry bean which contains 17%–24% protein, 41%–51% carbohydrate, and other important essential minerals, vitamins, dietary fiber, folate, β-carotene, anti-oxidants, micronutrients (phosphorus, calcium, magnesium, iron, and zinc) as well as linoleic and oleic unsaturated fatty acids. Despite these advantages, legumes are far behind cereals in terms of genetic improvement mainly due to far less effort, the bottlenecks of the narrow genetic base, and several biotic and abiotic factors in the scenario of changing climatic conditions. Measures are now called for beyond conventional breeding practices to strategically broadening of narrow genetic base utilizing chickpea wild relatives and improvement of cultivars through advanced breeding approaches with a focus on high yield productivity, biotic and abiotic stresses including climate resilience, and enhanced nutritional values. Desirable donors having such multiple traits have been identified using core and mini core collections from the cultivated gene pool and wild relatives of Chickpea. Several methods have been developed to address cross-species fertilization obstacles and to aid in inter-specific hybridization and introgression of the target gene sequences from wild Cicer species. Additionally, recent advances in “Omics” sciences along with high-throughput and precise phenotyping tools have made it easier to identify genes that regulate traits of interest. Next-generation sequencing technologies, whole-genome sequencing, transcriptomics, and differential genes expression profiling along with a plethora of novel techniques like single nucleotide polymorphism exploiting high-density genotyping by sequencing assays, simple sequence repeat markers, diversity array technology platform, and whole-genome re-sequencing technique led to the identification and development of QTLs and high-density trait mapping of the global chickpea germplasm. These altogether have helped in broadening the narrow genetic base of chickpeas.
Collapse
Affiliation(s)
| | - Charul Singh
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - B S Chandana
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | - Rohit K Mahto
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | - Ranjana Patial
- Department of Agricultural Sciences, Chandigarh University, Mohali, India
| | - Astha Gupta
- School of Agricultural Sciences, Sharda University, Greater Noida, India
| | - Vijay Gahlaut
- Institute of Himalayan Bioresource Technology (CSIR), Pālampur, India
| | - Aladdin Hamwieh
- International Center for Agriculture Research in the Dry Areas (ICARDA), Giza, Egypt
| | - H D Upadhyaya
- Department of Entomology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, United States
| | - Rajendra Kumar
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| |
Collapse
|
9
|
Zhou Z, Lin B, Tan J, Hao P, Hua S, Deng Z. Tandem Mass Tag-Based Quantitative Proteomics Reveals Implication of a Late Embryogenesis Abundant Protein (BnLEA57) in Seed Oil Accumulation in Brassica napus L. FRONTIERS IN PLANT SCIENCE 2022; 13:907244. [PMID: 35720596 PMCID: PMC9201403 DOI: 10.3389/fpls.2022.907244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Enhancing oil content is one of the major goals in Brassica napus breeding; however, genetic regulation of seed oil content in plants is complex and not fully elucidated. In this study, we report proteins that were differentially accumulated in immature seeds of 35 days after anthesis between two recombinant inbred lines with contrasting seed oil content, high oil content line (HOCL) and low oil content line (LOCL) using a multiplex isobaric tandem mass tags (TMT)-based quantitative proteomic approach. Over 4,600 proteins were quantified in seeds of the two lines, and 342 proteins showed differential accumulation between seeds of HOCL and LOCL. Gene Ontology enrichment analysis revealed that the differentially accumulated proteins were enriched in proteins involved in lipid biosynthesis and metabolism, photosynthesis, and nutrient reservoir activity. Western blot confirmed the increased abundance of a late embryogenesis abundant protein (BnLEA57) in HOCL seeds compared with LOCL seeds, and overexpression of either BnLEA57 gene or its homology BnLEA55 in transgenic Arabidopsis thaliana enhanced oil content in Arabidopsis seeds. Our work provides new insights into the molecular regulatory mechanism of seed oil content in B. napus.
Collapse
Affiliation(s)
- Zhongjing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Baogang Lin
- Zhejiang Key Laboratory of Digital Dry Land Crops, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jinjuan Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Pengfei Hao
- Zhejiang Key Laboratory of Digital Dry Land Crops, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shuijin Hua
- Zhejiang Key Laboratory of Digital Dry Land Crops, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhiping Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
10
|
A Review of Integrative Omic Approaches for Understanding Rice Salt Response Mechanisms. PLANTS 2022; 11:plants11111430. [PMID: 35684203 PMCID: PMC9182744 DOI: 10.3390/plants11111430] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023]
Abstract
Soil salinity is one of the most serious environmental challenges, posing a growing threat to agriculture across the world. Soil salinity has a significant impact on rice growth, development, and production. Hence, improving rice varieties’ resistance to salt stress is a viable solution for meeting global food demand. Adaptation to salt stress is a multifaceted process that involves interacting physiological traits, biochemical or metabolic pathways, and molecular mechanisms. The integration of multi-omics approaches contributes to a better understanding of molecular mechanisms as well as the improvement of salt-resistant and tolerant rice varieties. Firstly, we present a thorough review of current knowledge about salt stress effects on rice and mechanisms behind rice salt tolerance and salt stress signalling. This review focuses on the use of multi-omics approaches to improve next-generation rice breeding for salinity resistance and tolerance, including genomics, transcriptomics, proteomics, metabolomics and phenomics. Integrating multi-omics data effectively is critical to gaining a more comprehensive and in-depth understanding of the molecular pathways, enzyme activity and interacting networks of genes controlling salinity tolerance in rice. The key data mining strategies within the artificial intelligence to analyse big and complex data sets that will allow more accurate prediction of outcomes and modernise traditional breeding programmes and also expedite precision rice breeding such as genetic engineering and genome editing.
Collapse
|
11
|
Wheat Proteomics for Abiotic Stress Tolerance and Root System Architecture: Current Status and Future Prospects. Proteomes 2022; 10:proteomes10020017. [PMID: 35645375 PMCID: PMC9150004 DOI: 10.3390/proteomes10020017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Wheat is an important staple cereal for global food security. However, climate change is hampering wheat production due to abiotic stresses, such as heat, salinity, and drought. Besides shoot architectural traits, improving root system architecture (RSA) traits have the potential to improve yields under normal and stressed environments. RSA growth and development and other stress responses involve the expression of proteins encoded by the trait controlling gene/genes. Hence, mining the key proteins associated with abiotic stress responses and RSA is important for improving sustainable yields in wheat. Proteomic studies in wheat started in the early 21st century using the two-dimensional (2-DE) gel technique and have extensively improved over time with advancements in mass spectrometry. The availability of the wheat reference genome has allowed the exploration of proteomics to identify differentially expressed or abundant proteins (DEPs or DAPs) for abiotic stress tolerance and RSA improvement. Proteomics contributed significantly to identifying key proteins imparting abiotic stress tolerance, primarily related to photosynthesis, protein synthesis, carbon metabolism, redox homeostasis, defense response, energy metabolism and signal transduction. However, the use of proteomics to improve RSA traits in wheat is in its infancy. Proteins related to cell wall biogenesis, carbohydrate metabolism, brassinosteroid biosynthesis, and transportation are involved in the growth and development of several RSA traits. This review covers advances in quantification techniques of proteomics, progress in identifying DEPs and/or DAPs for heat, salinity, and drought stresses, and RSA traits, and the limitations and future directions for harnessing proteomics in wheat improvement.
Collapse
|
12
|
Tortosa M, Velasco P, Rodríguez VM, Cartea ME. Changes in Brassica oleracea Leaves Infected With Xanthomonas campestris pv. campestris by Proteomics Analysis. FRONTIERS IN PLANT SCIENCE 2022; 12:781984. [PMID: 35211128 PMCID: PMC8860909 DOI: 10.3389/fpls.2021.781984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Understanding plant's response mechanisms against pathogenesis is fundamental for the development of resistant crop varieties and more productive agriculture. In this regard, "omic" approaches are heralded as valuable technologies. In this work, combining isobaric tags for relative and absolute quantification (iTRAQ) technology with mass spectrometry, the proteomes from leaves of Brassica oleracea plants infected with Xanthomonas campestris pv. campestris (Xcc), and control plants at two different post-infection times were compared. Stronger proteomic changes were obtained at 12 days post-infection in comparison with 3 days. The responses observed involved different cell processes, from primary metabolism, such as photosynthesis or photorespiration, to other complex processes such as redox homeostasis, hormone signaling, or defense mechanisms. Most of the proteins decreased in the earlier response were involved in energetic metabolism, whereas later response was characterized by a recovery of primary metabolism. Furthermore, our results indicated that proteolysis machinery and reactive oxygen species (ROS) homeostasis could be key processes during this plant-pathogen interaction. Current data provide new insights into molecular mechanisms that may be involved in defense responses of B. oleracea to Xcc.
Collapse
Affiliation(s)
| | | | | | - María Elena Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia, Spanish Council for Scientific Research (CSIC), Pontevedra, Spain
| |
Collapse
|
13
|
Mohd Afandi NS, Habib MAH, Ismail MN. Recent insights on gene expression studies on Hevea Brasiliensis fatal leaf fall diseases. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:471-484. [PMID: 35400887 PMCID: PMC8943083 DOI: 10.1007/s12298-022-01145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Hevea brasiliensis is one of the most important agricultural commodities globally, heavily cultivated in Southeast Asia. Fatal leaf fall diseases cause aggressive leaf defoliation, linked to lower latex yield and death of crops before maturity. Due to the significant consequences of the disease to H. brasiliensis, the recent gene expression studies from four fall leaf diseases of H. brasiliensis were gathered; South American leaf blight, powdery mildew, Corynespora cassiicola and Phytophthora leaf fall disease. The differential analysis observed the pattern of commonly expressed genes upon fungi triggers using RT-PCR, DDRT-PCR, Real-time qRT-PCR and RNA-Seq. We have observed that RNA-Seq is the best tool to seek novel genes. Among the identified genes with defence-against fungi were pathogenesis-related genes such as β-1,3-glucanase and chitinase, the reactive oxygen species, and the phytoalexin biosynthesis. This manuscript also provided functional elaboration on the responsive genes and predicted possible biosynthetic pathways to identify and characterise novel genes in the future. At the end of the manuscript, the PCR methods and proteomic approaches were presented for future molecular and biochemical studies in the related diseases to H. brasiliensis.
Collapse
Affiliation(s)
- Nur Syafiqah Mohd Afandi
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia
| | - Mohd Afiq Hazlami Habib
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia
| | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
| |
Collapse
|
14
|
Tiwari M, Singh B, Min D, Jagadish SVK. Omics Path to Increasing Productivity in Less-Studied Crops Under Changing Climate-Lentil a Case Study. FRONTIERS IN PLANT SCIENCE 2022; 13:813985. [PMID: 35615121 PMCID: PMC9125188 DOI: 10.3389/fpls.2022.813985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/04/2022] [Indexed: 05/08/2023]
Abstract
Conventional breeding techniques for crop improvement have reached their full potential, and hence, alternative routes are required to ensure a sustained genetic gain in lentils. Although high-throughput omics technologies have been effectively employed in major crops, less-studied crops such as lentils have primarily relied on conventional breeding. Application of genomics and transcriptomics in lentils has resulted in linkage maps and identification of QTLs and candidate genes related to agronomically relevant traits and biotic and abiotic stress tolerance. Next-generation sequencing (NGS) complemented with high-throughput phenotyping (HTP) technologies is shown to provide new opportunities to identify genomic regions and marker-trait associations to increase lentil breeding efficiency. Recent introduction of image-based phenotyping has facilitated to discern lentil responses undergoing biotic and abiotic stresses. In lentil, proteomics has been performed using conventional methods such as 2-D gel electrophoresis, leading to the identification of seed-specific proteome. Metabolomic studies have led to identifying key metabolites that help differentiate genotypic responses to drought and salinity stresses. Independent analysis of differentially expressed genes from publicly available transcriptomic studies in lentils identified 329 common transcripts between heat and biotic stresses. Similarly, 19 metabolites were common across legumes, while 31 were common in genotypes exposed to drought and salinity stress. These common but differentially expressed genes/proteins/metabolites provide the starting point for developing high-yielding multi-stress-tolerant lentils. Finally, the review summarizes the current findings from omic studies in lentils and provides directions for integrating these findings into a systems approach to increase lentil productivity and enhance resilience to biotic and abiotic stresses under changing climate.
Collapse
Affiliation(s)
- Manish Tiwari
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
- *Correspondence: Manish Tiwari,
| | - Baljinder Singh
- National Institute of Plant Genome Research, New Delhi, India
| | - Doohong Min
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - S. V. Krishna Jagadish
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
- S. V. Krishna Jagadish,
| |
Collapse
|
15
|
de Souza CM, Zorzatto C, Quinhones CGS, Lopes JML, de Carvalho HH, Araújo WL, Viccini LF. Deciphering ploidal levels of Lippia alba by using proteomics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:385-389. [PMID: 34404009 DOI: 10.1016/j.plaphy.2021.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Lippia alba (Mill.) N.E. Brown (Verbenaceae), popularly known as "lemon balm" or "bushy matgrass", is widely used in folk medicine due to its anti-inflammatory, antispasmodic, analgesic, and digestive properties. It was described as an autopolyploid complex with five cytotypes (2n = 30, 38, 45, 60 and 90). To enhance our understanding of the biological variation of the species, we investigated, comparatively, the proteomic profile of all ploidal levels (diploid, aneuploid, triploid, tetraploid, and hexaploid). Leaf proteins were extracted with subsequent separation by two-dimensional electrophoresis, spot analysis, and protein identification by mass spectrometry. By comparing the proteomic profile of diploid accession to the profile of the other ploidal levels we identified differential expression between the analysed spots. We identified 34 proteins with differential expression between the ploidal levels in comparison with the diploid. The identified proteins seem to play relevant roles in the primary metabolism of L. alba suggesting that a specific set of proteins was selected during the polyploidization process, being the triploid the most different one. Given that protein composition can substantially affect the desired therapeutic effect, we posit that further combination of proteomic and metabolomic studies may help to unravel genetic variations and phenotypic profiles in L. alba.
Collapse
Affiliation(s)
- Camila Maurmann de Souza
- Departmento de Biologia, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Cristiane Zorzatto
- Departmento de Biologia, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Carla G S Quinhones
- School of Life Science and Environment, Department of Genetic and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal
| | - Juliana Mainenti Leal Lopes
- Departmento de Biologia, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil; School of Life Science and Environment, Department of Genetic and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal; BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1649-004, Lisboa, Portugal
| | - Humberto Henrique de Carvalho
- Departmento de Biologia, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil; Departamento de de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Lyderson Facio Viccini
- Departmento de Biologia, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil.
| |
Collapse
|
16
|
Pazhamala LT, Kudapa H, Weckwerth W, Millar AH, Varshney RK. Systems biology for crop improvement. THE PLANT GENOME 2021; 14:e20098. [PMID: 33949787 DOI: 10.1002/tpg2.20098] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/09/2021] [Indexed: 05/19/2023]
Abstract
In recent years, generation of large-scale data from genome, transcriptome, proteome, metabolome, epigenome, and others, has become routine in several plant species. Most of these datasets in different crop species, however, were studied independently and as a result, full insight could not be gained on the molecular basis of complex traits and biological networks. A systems biology approach involving integration of multiple omics data, modeling, and prediction of the cellular functions is required to understand the flow of biological information that underlies complex traits. In this context, systems biology with multiomics data integration is crucial and allows a holistic understanding of the dynamic system with the different levels of biological organization interacting with external environment for a phenotypic expression. Here, we present recent progress made in the area of various omics studies-integrative and systems biology approaches with a special focus on application to crop improvement. We have also discussed the challenges and opportunities in multiomics data integration, modeling, and understanding of the biology of complex traits underpinning yield and stress tolerance in major cereals and legumes.
Collapse
Affiliation(s)
- Lekha T Pazhamala
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324, India
| | - Himabindu Kudapa
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324, India
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology and School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324, India
- State Agricultural Biotechnology Centre, Crop Research Innovation Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
17
|
Balasubramanian VK, Purvine SO, Liang Y, Kelly RT, Pasa-Tolic L, Chrisler WB, Blumwald E, Stewart CN, Zhu Y, Ahkami AH. Cell-Type-Specific Proteomics Analysis of a Small Number of Plant Cells by Integrating Laser Capture Microdissection with a Nanodroplet Sample Processing Platform. Curr Protoc 2021; 1:e153. [PMID: 34043287 DOI: 10.1002/cpz1.153] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Plant organs and tissues contain multiple cell types, which are well organized in 3-dimensional structure to efficiently perform physiological functions such as homeostasis and response to environmental perturbation and pathogen infection. It is critically important to perform molecular measurements at the cell-type-specific level to discover mechanisms and unique features of cell populations that govern differentiation and respond to external perturbations. Although mass spectrometry-based proteomics has been demonstrated as an enabling discovery tool for studying plant physiology, conventional approaches require millions of cells to generate robust biological conclusions. Such requirements mask the cell-to-cell heterogeneities and limit the comprehensive profiling of plant proteins at spatially resolved and cell-type-specific resolutions. This article describes a recently developed proteomics workflow for studying a small number of plant cells by integrating laser capture microdissection, microfluidic nanodroplet-based sample preparation, and ultrasensitive liquid chromatography-mass spectrometry. Using poplar as a model tree species, we provide detailed protocols, including plant leaf and root tissue harvest, sample preparation, cryosectioning, laser microdissection, protein digestion, mass spectrometry measurement, and data analysis. We show that the workflow enables the precise identification and quantification of thousands of proteins from hundreds of isolated plant root and leaf cells. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Plant tissue fixation and embedding Support Protocol 1: Preparation of 2.5% CMC solution Support Protocol 2: Slow freezing of CMC blocks to avoid crack development in the block Basic Protocol 2: Preparation of cryosections Alternate Protocol: Using a vacuum manifold to dehydrate the cryosection slides (primarily for root tissues) Basic Protocol 3: Laser capture microdissection of specific types of plant cells Basic Protocol 4: Nanodroplet-based sample preparation for ultrasensitive proteomic analysis Support Protocol 3: Fabrication of nanowell chips Basic Protocol 5: Liquid chromatography and mass spectrometry.
Collapse
Affiliation(s)
- Vimal K Balasubramanian
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington
| | - Yiran Liang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Ljiljana Pasa-Tolic
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington
| | - William B Chrisler
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, California
| | - C Neal Stewart
- Department of Plant Sciences, Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, Tennessee
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington
| | - Amir H Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington
| |
Collapse
|
18
|
Venegas-Molina J, Molina-Hidalgo FJ, Clicque E, Goossens A. Why and How to Dig into Plant Metabolite-Protein Interactions. TRENDS IN PLANT SCIENCE 2021; 26:472-483. [PMID: 33478816 DOI: 10.1016/j.tplants.2020.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Interaction between metabolites and proteins drives cellular regulatory processes within and between organisms. Recent reports highlight that numerous plant metabolites embrace multiple biological activities, beyond a sole role as substrates, products, or cofactors of enzymes, or as defense or growth-regulatory compounds. Though several technologies have been developed to identify and characterize metabolite-protein interactions, the systematic implementation of such methods in the plant field remains limited. Here, we discuss the plant metabolic space, with a specific focus on specialized metabolites and their roles, and review the technologies to study their interaction with proteins. We approach it both from a plant's perspective, to increase our understanding of plant metabolite-dependent regulatory networks, and from a human perspective, to empower agrochemical and drug discoveries.
Collapse
Affiliation(s)
- Jhon Venegas-Molina
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Francisco J Molina-Hidalgo
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Elke Clicque
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
19
|
Urrutia M, Blein‐Nicolas M, Prigent S, Bernillon S, Deborde C, Balliau T, Maucourt M, Jacob D, Ballias P, Bénard C, Sellier H, Gibon Y, Giauffret C, Zivy M, Moing A. Maize metabolome and proteome responses to controlled cold stress partly mimic early-sowing effects in the field and differ from those of Arabidopsis. PLANT, CELL & ENVIRONMENT 2021; 44:1504-1521. [PMID: 33410508 PMCID: PMC8248070 DOI: 10.1111/pce.13993] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/31/2020] [Indexed: 05/21/2023]
Abstract
In Northern Europe, sowing maize one-month earlier than current agricultural practices may lead to moderate chilling damage. However, studies of the metabolic responses to low, non-freezing, temperatures remain scarce. Here, genetically-diverse maize hybrids (Zea mays, dent inbred lines crossed with a flint inbred line) were cultivated in a growth chamber at optimal temperature and then three decreasing temperatures for 2 days each, as well as in the field. Leaf metabolomic and proteomic profiles were determined. In the growth chamber, 50% of metabolites and 18% of proteins changed between 20 and 16°C. These maize responses, partly differing from those of Arabidopsis to short-term chilling, were mapped on genome-wide metabolic maps. Several metabolites and proteins showed similar variation for all temperature decreases: seven MS-based metabolite signatures and two proteins involved in photosynthesis decreased continuously. Several increasing metabolites or proteins in the growth-chamber chilling conditions showed similar trends in the early-sowing field experiment, including trans-aconitate, three hydroxycinnamate derivatives, a benzoxazinoid, a sucrose synthase, lethal leaf-spot 1 protein, an allene oxide synthase, several glutathione transferases and peroxidases. Hybrid groups based on field biomass were used to search for the metabolite or protein responses differentiating them in growth-chamber conditions, which could be of interest for breeding.
Collapse
Affiliation(s)
- Maria Urrutia
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- Present address:
Dtp. Biología Molecular y BioquímicaUniv. MálagaMálagaSpain
| | - Mélisande Blein‐Nicolas
- INRAE, CNRS, AgroParisTech, GQE‐Le MoulonUniv. Paris‐SaclayGif‐sur‐YvetteFrance
- PAPPSO, doi:10.15454/1.5572393176364355E12, GQE‐Le MoulonGif‐sur‐YvetteFrance
| | - Sylvain Prigent
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
| | - Stéphane Bernillon
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- PMB‐Metabolome, INRAE, 2018, Bordeaux Metabolome, doi:10.15454/1.5572412770331912E12, MetaboHUB, PHENOME, IBVM, Centre INRAE de Nouvelle Aquitaine‐BordeauxVillenave d'OrnonFrance
| | - Catherine Deborde
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- PMB‐Metabolome, INRAE, 2018, Bordeaux Metabolome, doi:10.15454/1.5572412770331912E12, MetaboHUB, PHENOME, IBVM, Centre INRAE de Nouvelle Aquitaine‐BordeauxVillenave d'OrnonFrance
| | - Thierry Balliau
- INRAE, CNRS, AgroParisTech, GQE‐Le MoulonUniv. Paris‐SaclayGif‐sur‐YvetteFrance
- PAPPSO, doi:10.15454/1.5572393176364355E12, GQE‐Le MoulonGif‐sur‐YvetteFrance
| | - Mickaël Maucourt
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- PMB‐Metabolome, INRAE, 2018, Bordeaux Metabolome, doi:10.15454/1.5572412770331912E12, MetaboHUB, PHENOME, IBVM, Centre INRAE de Nouvelle Aquitaine‐BordeauxVillenave d'OrnonFrance
| | - Daniel Jacob
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- PMB‐Metabolome, INRAE, 2018, Bordeaux Metabolome, doi:10.15454/1.5572412770331912E12, MetaboHUB, PHENOME, IBVM, Centre INRAE de Nouvelle Aquitaine‐BordeauxVillenave d'OrnonFrance
| | - Patricia Ballias
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- PMB‐Metabolome, INRAE, 2018, Bordeaux Metabolome, doi:10.15454/1.5572412770331912E12, MetaboHUB, PHENOME, IBVM, Centre INRAE de Nouvelle Aquitaine‐BordeauxVillenave d'OrnonFrance
| | - Camille Bénard
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- PMB‐Metabolome, INRAE, 2018, Bordeaux Metabolome, doi:10.15454/1.5572412770331912E12, MetaboHUB, PHENOME, IBVM, Centre INRAE de Nouvelle Aquitaine‐BordeauxVillenave d'OrnonFrance
| | | | - Yves Gibon
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- PMB‐Metabolome, INRAE, 2018, Bordeaux Metabolome, doi:10.15454/1.5572412770331912E12, MetaboHUB, PHENOME, IBVM, Centre INRAE de Nouvelle Aquitaine‐BordeauxVillenave d'OrnonFrance
| | - Catherine Giauffret
- INRAE, Univ. Liège, Univ. Lille, Univ. Picardie Jules Verne, BioEcoAgroPeronneFrance
| | - Michel Zivy
- INRAE, CNRS, AgroParisTech, GQE‐Le MoulonUniv. Paris‐SaclayGif‐sur‐YvetteFrance
- PAPPSO, doi:10.15454/1.5572393176364355E12, GQE‐Le MoulonGif‐sur‐YvetteFrance
| | - Annick Moing
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- PMB‐Metabolome, INRAE, 2018, Bordeaux Metabolome, doi:10.15454/1.5572412770331912E12, MetaboHUB, PHENOME, IBVM, Centre INRAE de Nouvelle Aquitaine‐BordeauxVillenave d'OrnonFrance
| |
Collapse
|
20
|
Kumar R, Sharma V, Suresh S, Ramrao DP, Veershetty A, Kumar S, Priscilla K, Hangargi B, Narasanna R, Pandey MK, Naik GR, Thomas S, Kumar A. Understanding Omics Driven Plant Improvement and de novo Crop Domestication: Some Examples. Front Genet 2021; 12:637141. [PMID: 33889179 PMCID: PMC8055929 DOI: 10.3389/fgene.2021.637141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/02/2021] [Indexed: 01/07/2023] Open
Abstract
In the current era, one of biggest challenges is to shorten the breeding cycle for rapid generation of a new crop variety having high yield capacity, disease resistance, high nutrient content, etc. Advances in the "-omics" technology have revolutionized the discovery of genes and bio-molecules with remarkable precision, resulting in significant development of plant-focused metabolic databases and resources. Metabolomics has been widely used in several model plants and crop species to examine metabolic drift and changes in metabolic composition during various developmental stages and in response to stimuli. Over the last few decades, these efforts have resulted in a significantly improved understanding of the metabolic pathways of plants through identification of several unknown intermediates. This has assisted in developing several new metabolically engineered important crops with desirable agronomic traits, and has facilitated the de novo domestication of new crops for sustainable agriculture and food security. In this review, we discuss how "omics" technologies, particularly metabolomics, has enhanced our understanding of important traits and allowed speedy domestication of novel crop plants.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Srinivas Suresh
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Akash Veershetty
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Sharan Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Kagolla Priscilla
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Rahul Narasanna
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Manish Kumar Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Sherinmol Thomas
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India
| |
Collapse
|
21
|
Sepehri M, Ghaffari MR, Khayam Nekoui M, Sarhadi E, Moghadam A, Khatabi B, Hosseini Salekdeh G. Root endophytic fungus Serendipita indica modulates barley leaf blade proteome by increasing the abundance of photosynthetic proteins in response to salinity. J Appl Microbiol 2021; 131:1870-1889. [PMID: 33694234 DOI: 10.1111/jam.15063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022]
Abstract
AIMS The present study aimed at analysing the proteome pattern of the leaf blade of barley (Hordeum vulgare L.) in Serendipita indica-colonised plants to decipher the molecular mechanism of S. indica-mediated salt stress. This work is aligned with our previous research on barley leaf sheath to study proteomic pattern variability in leaf blade and sheath of barley plant in response to salinity and S. indica inoculation. METHODS AND RESULTS The experiment was conducted using a completely randomised factorial design with four replications and two treatments: salinity (0 and 300 mmol l-1 NaCl) and fungus (noninoculated and S. indica-inoculated). The leaf blades of the salt-treated S. indica-colonised and noninoculated plants were harvested after 2 weeks of salt treatment for the physiological and proteomic analyses. After exposure to 300 mmol l-1 NaCl, shoot dry matter production in noninoculated control plants decreased 84% which was about twofold higher than inoculated plants with S. indica. However, the accumulation of sodium in the shoot of S. indica-inoculated plants was significantly lower than the control plants. Analysis of the proteome profile revealed a high number of significantly up-regulated proteins involved in photosynthesis (26 out of 42 identified proteins). CONCLUSIONS The results demonstrated how the enhanced plant growth and salt stress resistance induced by S. indica was positively associated with the up-regulation of several proteins involved in photosynthesis and carbohydrate metabolism. In fact, S. indica improved photosynthesis in order to reach the best possible performance of the host plant under salt stress. SIGNIFICANCE AND IMPACT OF THE STUDY Current research provides new insight into the mechanism applied by S. indica in reducing the negative impacts of salt stress in barley at physiological and molecular levels.
Collapse
Affiliation(s)
- M Sepehri
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - M R Ghaffari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - M Khayam Nekoui
- Faculty of Biological Science, Research Center of Biotechnology Development, Tarbiat Modares University, Tehran, Iran
| | - E Sarhadi
- Research Institute of Forests and Rangelands, Tehran, Iran
| | - A Moghadam
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - B Khatabi
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - G Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran.,Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
22
|
Lin P, Bai HR, He L, Huang QX, Zeng QH, Pan YZ, Jiang BB, Zhang F, Zhang L, Liu QL. Proteome-wide and lysine crotonylation profiling reveals the importance of crotonylation in chrysanthemum (Dendranthema grandiforum) under low-temperature. BMC Genomics 2021; 22:51. [PMID: 33446097 PMCID: PMC7809856 DOI: 10.1186/s12864-020-07365-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/30/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Low-temperature severely affects the growth and development of chrysanthemum which is one kind of ornamental plant well-known and widely used in the world. Lysine crotonylation is a recently identified post-translational modification (PTM) with multiple cellular functions. However, lysine crotonylation under low-temperature stress has not been studied. RESULTS Proteome-wide and lysine crotonylation of chrysanthemum at low-temperature was analyzed using TMT (Tandem Mass Tag) labeling, sensitive immuno-precipitation, and high-resolution LC-MS/MS. The results showed that 2017 crotonylation sites were identified in 1199 proteins. Treatment at 4 °C for 24 h and - 4 °C for 4 h resulted in 393 upregulated proteins and 500 downregulated proteins (1.2-fold threshold and P < 0.05). Analysis of biological information showed that lysine crotonylation was involved in photosynthesis, ribosomes, and antioxidant systems. The crotonylated proteins and motifs in chrysanthemum were compared with other plants to obtain orthologous proteins and conserved motifs. To further understand how lysine crotonylation at K136 affected APX (ascorbate peroxidase), we performed a site-directed mutation at K136 in APX. Site-directed crotonylation showed that lysine decrotonylation at K136 reduced APX activity, and lysine complete crotonylation at K136 increased APX activity. CONCLUSION In summary, our study comparatively analyzed proteome-wide and crotonylation in chrysanthemum under low-temperature stress and provided insights into the mechanisms of crotonylation in positively regulated APX activity to reduce the oxidative damage caused by low-temperature stress. These data provided an important basis for studying crotonylation to regulate antioxidant enzyme activity in response to low-temperature stress and a new research ideas for chilling-tolerance and freezing-tolerance chrysanthemum molecular breeding.
Collapse
Affiliation(s)
- Ping Lin
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| | - Hui-Ru Bai
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| | - Ling He
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| | - Qiu-Xiang Huang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| | - Qin-Han Zeng
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yuan-Zhi Pan
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| | - Bei-Bei Jiang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| | - Fan Zhang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| | - Lei Zhang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| | - Qing-Lin Liu
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China.
| |
Collapse
|
23
|
Adigun OA, Nadeem M, Pham TH, Jewell LE, Cheema M, Thomas R. Recent advances in bio-chemical, molecular and physiological aspects of membrane lipid derivatives in plant pathology. PLANT, CELL & ENVIRONMENT 2021; 44:1-16. [PMID: 33034375 DOI: 10.1111/pce.13904] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Plant pathogens pose a significant threat to the food industry and food security accounting for 10-40% crop losses annually on a global scale. Economic losses from plant diseases are estimated at $300B for major food crops and are associated with reduced food availability and accessibility and also high food costs. Although strategies exist to reduce the impact of diseases in plants, many of these introduce harmful chemicals to our food chain. Therefore, it is important to understand and utilize plants' immune systems to control plant pathogens to enable more sustainable agriculture. Lipids are core components of cell membranes and as such are part of the first line of defense against pathogen attack. Recent developments in omics technologies have advanced our understanding of how plant membrane lipid biosynthesis, remodelling and/or signalling modulate plant responses to infection. Currently, there is limited information available in the scientific literature concerning lipid signalling targets and their biochemical and physiological consequences in response to plant pathogens. This review focusses on the functions of membrane lipid derivatives and their involvement in plant responses to pathogens as biotic stressors. We describe major plant defense systems including systemic-acquired resistance, basal resistance, hypersensitivity and the gene-for-gene concept in this context.
Collapse
Affiliation(s)
- Oludoyin Adeseun Adigun
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Muhammad Nadeem
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Thu Huong Pham
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Linda Elizabeth Jewell
- St. John's Research and Development Centre, Agriculture and Agri-Food Canada, 204 Brookfield Rd, St. John's, Newfoundland and Labrador, A1E 6J5, Canada
| | - Mumtaz Cheema
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Raymond Thomas
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| |
Collapse
|
24
|
Identification of Differentially Expressed Proteins in Sugarcane in Response to Infection by Xanthomonas albilineans Using iTRAQ Quantitative Proteomics. Microorganisms 2020; 8:microorganisms8010076. [PMID: 31947808 PMCID: PMC7023244 DOI: 10.3390/microorganisms8010076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/16/2019] [Accepted: 12/28/2019] [Indexed: 01/02/2023] Open
Abstract
Sugarcane can suffer severe yield losses when affected by leaf scald, a disease caused by Xanthomonas albilineans. This bacterial pathogen colonizes the vascular system of sugarcane, which can result in reduced plant growth and plant death. In order to better understand the molecular mechanisms involved in the resistance of sugarcane to leaf scald, a comparative proteomic study was performed with two sugarcane cultivars inoculated with X. albilineans: one resistant (LCP 85-384) and one susceptible (ROC20) to leaf scald. The iTRAQ (isobaric tags for relative and absolute quantification) approach at 0 and 48 h post-inoculation (hpi) was used to identify and annotate differentially expressed proteins (DEPs). A total of 4295 proteins were associated with 1099 gene ontology (GO) terms by GO analysis. Among those, 285 were DEPs during X. albilineans infection in cultivars LCP 85-384 and ROC20. One hundred seventy-two DEPs were identified in resistant cultivar LCP 85-384, and 113 of these proteins were upregulated and 59 were downregulated. One hundred ninety-two DEPs were found in susceptible cultivar ROC20 and half of these (92) were upregulated, whereas the other half corresponded to downregulated proteins. The significantly upregulated DEPs in LCP 85-384 were involved in metabolic pathways, the biosynthesis of secondary metabolites, and the phenylpropanoid biosynthesis pathway. Additionally, the expression of seven candidate genes related to photosynthesis and glycolytic pathways, plant innate immune system, glycosylation process, plant cytochrome P450, and non-specific lipid transfer protein was verified based on transcription levels in sugarcane during infection by X. albilineans. Our findings shed new light on the differential expression of proteins in sugarcane cultivars in response to infection by X. albilineans. The identification of these genes provides important information for sugarcane variety improvement programs using molecular breeding strategies.
Collapse
|
25
|
Righetti PG, Boschetti E. Low-abundance plant protein enrichment with peptide libraries to enlarge proteome coverage and related applications. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110302. [PMID: 31779915 DOI: 10.1016/j.plantsci.2019.110302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/15/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
In plant tissues proteins are present in low amounts but in a very large number. To this peculiar situation many complex foreign components render protein extraction and purification very difficult. In the last several years interesting technologies have been described to improve the technical situation to the point that some methodologies allow reaching very low-abundance proteins and minor allergens. Among enrichment methods the one documented in this report is based on combinatorial peptide ligand libraries (CPLLs) that emerged in the last decade by contributing to largely improve the knowledge in plant proteomics. It is the aim of this review to describe how this technology allows detecting low-abundance proteins from various plant tissues and to report the dynamics of the proteome components in response to environmental changes and biotic attacks. Typical documented examples with the description of their scientific interest are reported. The described technical approach and selected applications are considered as one of the most advanced approaches for plant proteomics investigations with possibilities not only to enlarge the knowledge of plant proteomes but also to discover novel allergens as well as plant biomarkers subsequent to stressful situations.
Collapse
Affiliation(s)
- Pier Giorgio Righetti
- Department of Chemistry Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20131, Milan, Italy.
| | - Egisto Boschetti
- Scientific Consultant, JAM Conseil, 92200, Neuilly-sur-Seine, France
| |
Collapse
|
26
|
Afzal M, Alghamdi SS, Migdadi HH, Khan MA, Nurmansyah, Mirza SB, El-Harty E. Legume genomics and transcriptomics: From classic breeding to modern technologies. Saudi J Biol Sci 2019; 27:543-555. [PMID: 31889880 PMCID: PMC6933173 DOI: 10.1016/j.sjbs.2019.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 02/06/2023] Open
Abstract
Legumes are essential and play a significant role in maintaining food standards and augmenting physiochemical soil properties through the biological nitrogen fixation process. Biotic and abiotic factors are the main factors limiting legume production. Classical breeding methodologies have been explored extensively about the problem of truncated yield in legumes but have not succeeded at the desired rate. Conventional breeding improved legume genotypes but with more resources and time. Recently, the invention of next-generation sequencing (NGS) and high-throughput methods for genotyping have opened new avenues for research and developments in legume studies. During the last decade, genome sequencing for many legume crops documented. Sequencing and re-sequencing of important legume species have made structural variation and functional genomics conceivable. NGS and other molecular techniques such as the development of markers; genotyping; high density genetic linkage maps; quantitative trait loci (QTLs) identification, expressed sequence tags (ESTs), single nucleotide polymorphisms (SNPs); and transcription factors incorporated into existing breeding technologies have made possible the accurate and accelerated delivery of information for researchers. The application of genome sequencing, RNA sequencing (transcriptome sequencing), and DNA sequencing (re-sequencing) provide considerable insights for legume development and improvement programs. Moreover, RNA-Seq helps to characterize genes, including differentially expressed genes, and can be applied for functional genomics studies, especially when there is limited information available for the studied genomes. Genome-based crop development studies and the availability of genomics data as well as decision-making gears look be specific for breeding programs. This review mainly presents an overview of the path from classical breeding to new emerging genomics tools, which will trigger and accelerate genomics-assisted breeding for recognition of novel genes for yield and quality characters for sustainable legume crop production.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Salem S Alghamdi
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hussein H Migdadi
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Altaf Khan
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nurmansyah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shaher Bano Mirza
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey.,Department of Biosciences, COMSATS Institute of Information Technology (CIIT), Chak Shahzad, Islamabad, Pakistan
| | - Ehab El-Harty
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Gayen D, Gayali S, Barua P, Lande NV, Varshney S, Sengupta S, Chakraborty S, Chakraborty N. Dehydration-induced proteomic landscape of mitochondria in chickpea reveals large-scale coordination of key biological processes. J Proteomics 2019; 192:267-279. [PMID: 30243939 DOI: 10.1016/j.jprot.2018.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/09/2018] [Accepted: 09/11/2018] [Indexed: 12/28/2022]
Abstract
Mitochondria play crucial roles in regulating multiple biological processes particularly electron transfer and energy metabolism in eukaryotic cells. Exposure to water-deficit or dehydration may affect mitochondrial function, and dehydration response may dictate cell fate decisions. iTRAQ-based quantitative proteome of a winter legume, chickpea, demonstrated the central metabolic alterations in mitochondria, presumably involved in dehydration adaptation. Three-week-old chickpea seedlings were subjected to progressive dehydration and the magnitude of dehydration-induced compensatory physiological responses was monitored in terms of physicochemical characteristics and mitochondrial architecture. The proteomics analysis led to the identification of 40 dehydration-responsive proteins whose expressions were significantly modulated by dehydration. The differentially expressed proteins were implicated in different metabolic processes, with obvious functional tendencies toward purine-thiamine metabolic network, pathways of carbon fixation and oxidative phosphorylation. The linearity of dehydration-induced proteome alteration was examined with transcript abundance of randomly selected candidates under multivariate stress conditions. The differentially regulated proteins were validated through sequence analysis. An extensive sequence based localization prediction revealed >62.5% proteins to be mitochondrial resident by, at least, one prediction algorithm. The results altogether provide intriguing insights into the dehydration-responsive metabolic pathways and useful clues to identify crucial proteins linked to stress tolerance. BIOLOGICAL SIGNIFICANCE: Investigation on plant mitochondrial proteome is of significance because it would allow a better understanding of mitochondrial function in plant adaptation to stress. Mitochondria are the unique organelles, which play a crucial role in energy metabolism and cellular homeostasis, particularly when exposed to stress conditions. Chickpea is one of the cultivated winter legumes, which enriches soil nitrogen and has very low water footprint and thus contributes to fortification of sustainable agriculture. We therefore examined the dehydration-responsive mitochondrial proteome landscape of chickpea and queried whether molecular interplay of mitochondrial proteins modulate dehydration tolerance. A total of 40 dehydration-induced mitochondrial proteins were identified, predicted to be involved in key metabolic processes. Our future efforts would focus on understanding both posttranslational modification and processing for comprehensive characterization of mitochondrial protein function. This approach will facilitate mining of more biomarkers linked to the tolerance trait and contribute to crop adaptation to climate change.
Collapse
Affiliation(s)
- Dipak Gayen
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, India
| | - Saurabh Gayali
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, India
| | - Pragya Barua
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, India
| | - Nilesh Vikram Lande
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, India
| | - Swati Varshney
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Shantanu Sengupta
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, India.
| |
Collapse
|
28
|
Srivastava S, Merchant M, Rai A, Rai SN. Standardizing Proteomics Workflow for Liquid Chromatography-Mass Spectrometry: Technical and Statistical Considerations. JOURNAL OF PROTEOMICS & BIOINFORMATICS 2019; 12:48-55. [PMID: 32148359 PMCID: PMC7059694 DOI: 10.35248/0974-276x.19.12.496] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
INTRODUCTION The quantitative measurements based on liquid chromatography (LC) coupled with mass spectrometry (MS) often suffer from the problem of missing values and data heterogeneity from technical variability. We considered a proteomics data set generated from human kidney biopsy material to investigate the technical effects of sample preparation and the quantitative MS. METHODS We studied the effect of tissue storage methods (TSMs) and tissue extraction methods (TEMs) on data analysis. There are two TSMs: frozen (FR) and FFPE (formalin-fixed paraffin embedded); and three TEMs: MAX, TX followed by MAX and SDS followed by MAX. We assessed the impact of different strategies to analyze the data while considering heterogeneity and MVs. We have used analysis of variance (ANOVA) model to study the effects due to various sources of variability. RESULTS AND CONCLUSION We found that the FFPE TSM is better than the FR TSM. We also found that the one-step TEM (MAX) is better than those of two-steps TEMs. Furthermore, we found the imputation method is a better approach than excluding the proteins with MVs or using unbalanced design.
Collapse
Affiliation(s)
- Sudhir Srivastava
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
- Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, Kentucky, United States of America
| | - Michael Merchant
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky, United States of America
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Shesh N. Rai
- Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, Kentucky, United States of America
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
- Corresponding author: Shesh N. Rai, Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, Kentucky, United States of America, Tel: + 502-852-4030; Fax: + 502-852-7979;
| |
Collapse
|
29
|
|
30
|
Proteomic Analysis of Rapeseed Root Response to Waterlogging Stress. PLANTS 2018; 7:plants7030071. [PMID: 30205432 PMCID: PMC6160990 DOI: 10.3390/plants7030071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 01/03/2023]
Abstract
The overall health of a plant is constantly affected by the changing and hostile environment. Due to climate change and the farming pattern of rice (Oryza sativa) and rapeseed (Brassica napus L.), stress from waterlogging poses a serious threat to productivity assurance and the yield of rapeseed in China's Yangtze River basin. In order to improve our understanding of the complex mechanisms behind waterlogging stress and identify waterlogging-responsive proteins, we firstly conducted iTRAQ (isobaric tags for relative and absolute quantification)-based quantitative proteomic analysis of rapeseed roots under waterlogging treatments, for both a tolerant cultivar ZS9 and sensitive cultivar GH01. A total of 7736 proteins were identified by iTRAQ, of which several hundred showed different expression levels, including 233, 365, and 326 after waterlogging stress for 4H, 8H, and 12H in ZS9, respectively, and 143, 175, and 374 after waterlogging stress for 4H, 8H, and 12H in GH01, respectively. For proteins repeatedly identified at different time points, gene ontology (GO) cluster analysis suggested that the responsive proteins of the two cultivars were both enriched in the biological process of DNA-dependent transcription and the oxidation⁻reduction process, and response to various stress and hormone stimulus, while different distribution frequencies in the two cultivars was investigated. Moreover, overlap proteins with similar or opposite tendencies of fold change between ZS9 and GH01 were observed and clustered based on the different expression ratios, suggesting the two genotype cultivars exhibited diversiform molecular mechanisms or regulation pathways in their waterlogging stress response. The following qRT-PCR (quantitative real-time polymerase chain reaction) results verified the candidate proteins at transcription levels, which were prepared for further research. In conclusion, proteins detected in this study might perform different functions in waterlogging responses and would provide information conducive to better understanding adaptive mechanisms under environmental stresses.
Collapse
|
31
|
Begcy K, Sandhu J, Walia H. Transient Heat Stress During Early Seed Development Primes Germination and Seedling Establishment in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:1768. [PMID: 30568666 PMCID: PMC6290647 DOI: 10.3389/fpls.2018.01768] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/14/2018] [Indexed: 05/05/2023]
Abstract
Rice yield is highly sensitive to increased temperature. Given the trend of increasing global temperatures, this sensitivity to higher temperatures poses a challenge for achieving global food security. Early seed development in rice is highly sensitive to unfavorable environmental conditions. Heat stress (HS) during this stage decreases seed size and fertility, thus reducing yield. Here, we explore the transgenerational phenotypic consequences of HS during early seed development on seed viability, germination, and establishment. To elucidate the impact of HS on the developmental events in post-zygotic rice seeds, we imposed moderate (35°C) and severe (39°C) HS treatments initiated 1 day after fertilization and maintained for 24, 48, or 72 h. The transient HS treatments altered the initiation of endosperm (ED) cellularization, seed size and/or the duration of spikelet ripening. Notably, seeds exposed to 24 and 48 h moderate HS exhibited higher germination rate compared to seeds derived from plants grown under control or severe HS. A short-term HS resulted in altered expression of Gibberellin (GA) and ABA biosynthesis genes during early seed development, and GA and ABA levels and starch content at maturity. The increased germination rate after 24 of moderate HS could be due to altered ABA sensitivity and/or increased starch level. Our findings on the impact of transient HS on hormone homeostasis provide an experimental framework to elucidate the underlying molecular and metabolic pathways.
Collapse
|
32
|
Tholey A, Taylor NL, Heazlewood JL, Bendixen E. We Are Not Alone: The iMOP Initiative and Its Roles in a Biology- and Disease-Driven Human Proteome Project. J Proteome Res 2017; 16:4273-4280. [DOI: 10.1021/acs.jproteome.7b00408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Nicolas L. Taylor
- Australian
Research Council Centre of Excellence in Plant Energy Biology, School
of Molecular Sciences and Institute of Agriculture, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Joshua L. Heazlewood
- School
of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Emøke Bendixen
- Department
of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
33
|
Ghatak A, Chaturvedi P, Paul P, Agrawal GK, Rakwal R, Kim ST, Weckwerth W, Gupta R. Proteomics survey of Solanaceae family: Current status and challenges ahead. J Proteomics 2017; 169:41-57. [PMID: 28528990 DOI: 10.1016/j.jprot.2017.05.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/19/2017] [Accepted: 05/16/2017] [Indexed: 10/25/2022]
Abstract
Solanaceae is one of the major economically important families of higher plants and has played a central role in human nutrition since the dawn of human civilization. Therefore, researchers have always been interested in understanding the complex behavior of Solanaceae members to identify key transcripts, proteins or metabolites, which are potentially associated with major traits. Proteomics studies have contributed significantly to understanding the physiology of Solanaceae members. A compilation of all the published reports showed that both gel-based (75%) and gel-free (25%) proteomic technologies have been utilized to establish the proteomes of different tissues, organs, and organelles under normal and adverse environmental conditions. Among the Solanaceae members, most of the research has been focused on tomato (42%) followed by potato (28%) and tobacco (20%), owing to their economic importance. This review comprehensively covers the progress made so far in the field of Solanaceae proteomics including novel methods developed to isolate the proteins from different tissues. Moreover, key proteins presented in this review can serve as a resource to select potential targets for crop improvement. We envisage that information presented in this review would enable us to design the stress tolerant plants with enhanced yields.
Collapse
Affiliation(s)
- Arindam Ghatak
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Puneet Paul
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, 68583-0915, USA
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal; GRADE Academy Private Limited, Adarsh Nagar-13, Birgunj, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal; GRADE Academy Private Limited, Adarsh Nagar-13, Birgunj, Nepal; Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-707, Republic of Korea
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Ravi Gupta
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-707, Republic of Korea.
| |
Collapse
|
34
|
Li G, Wu Y, Liu G, Xiao X, Wang P, Gao T, Xu M, Han Q, Wang Y, Guo T, Kang G. Large-scale Proteomics Combined with Transgenic Experiments Demonstrates An Important Role of Jasmonic Acid in Potassium Deficiency Response in Wheat and Rice. Mol Cell Proteomics 2017; 16:1889-1905. [PMID: 28821602 PMCID: PMC5671998 DOI: 10.1074/mcp.ra117.000032] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Indexed: 12/03/2022] Open
Abstract
Potassium (K+) is the most abundant inorganic cation in plants, and molecular dissection of K+ deficiency has received considerable interest in order to minimize K+ fertilizer input and develop high quality K+-efficient crops. However, the molecular mechanism of plant responses to K+ deficiency is still poorly understood. In this study, 2-week-old bread wheat seedlings grown hydroponically in Hoagland solution were transferred to K+-free conditions for 8 d, and their root and leaf proteome profiles were assessed using the iTRAQ proteome method. Over 4000 unique proteins were identified, and 818 K+-responsive protein species showed significant differences in abundance. The differentially expressed protein species were associated with diverse functions and exhibited organ-specific differences. Most of the differentially expressed protein species related to hormone synthesis were involved in jasmonic acid (JA) synthesis and the upregulated abundance of JA synthesis-related enzymes could result in the increased JA concentrations. Abundance of allene oxide synthase (AOS), one key JA synthesis-related enzyme, was significantly increased in K+-deficient wheat seedlings, and its overexpression markedly increased concentrations of K+ and JA, altered the transcription levels of some genes encoding K+-responsive protein species, as well as enhanced the tolerance of rice plants to low K+ or K+ deficiency. Moreover, rice AOS mutant (osaos) exhibited more sensitivity to low K+ or K+ deficiency. Our findings could highlight the importance of JA in K+ deficiency, and imply a network of molecular processes underlying plant responses to K+ deficiency.
Collapse
Affiliation(s)
- Gezi Li
- From the ‡National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China.,§Collaborative Innovation Center of Henan Food Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yufang Wu
- From the ‡National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China
| | - Guoyu Liu
- From the ‡National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China
| | - Xianghong Xiao
- §Collaborative Innovation Center of Henan Food Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pengfei Wang
- From the ‡National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China
| | - Tian Gao
- From the ‡National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China
| | - Mengjun Xu
- §Collaborative Innovation Center of Henan Food Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qiaoxia Han
- ¶National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yonghua Wang
- From the ‡National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China.,¶National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tiancai Guo
- From the ‡National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China.,¶National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guozhang Kang
- From the ‡National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China; .,§Collaborative Innovation Center of Henan Food Crops, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
35
|
Jiang Z, Kumar M, Padula MP, Pernice M, Kahlke T, Kim M, Ralph PJ. Development of an Efficient Protein Extraction Method Compatible with LC-MS/MS for Proteome Mapping in Two Australian Seagrasses Zostera muelleri and Posidonia australis. FRONTIERS IN PLANT SCIENCE 2017; 8:1416. [PMID: 28861098 PMCID: PMC5559503 DOI: 10.3389/fpls.2017.01416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/31/2017] [Indexed: 05/31/2023]
Abstract
The availability of the first complete genome sequence of the marine flowering plant Zostera marina (commonly known as seagrass) in early 2016, is expected to significantly raise the impact of seagrass proteomics. Seagrasses are marine ecosystem engineers that are currently declining worldwide at an alarming rate due to both natural and anthropogenic disturbances. Seagrasses (especially species of the genus Zostera) are compromised for proteomic studies primarily due to the lack of efficient protein extraction methods because of their recalcitrant cell wall which is rich in complex polysaccharides and a high abundance of secondary metabolites in their cells. In the present study, three protein extraction methods that are commonly used in plant proteomics i.e., phenol (P); trichloroacetic acid/acetone/SDS/phenol (TASP); and borax/polyvinyl-polypyrrolidone/phenol (BPP) extraction, were evaluated quantitatively and qualitatively based on two dimensional isoelectric focusing (2D-IEF) maps and LC-MS/MS analysis using the two most abundant Australian seagrass species, namely Zostera muelleri and Posidonia australis. All three tested methods produced high quality protein extracts with excellent 2D-IEF maps in P. australis. However, the BPP method produces better results in Z. muelleri compared to TASP and P. Therefore, we further modified the BPP method (M-BPP) by homogenizing the tissue in a modified protein extraction buffer containing both ionic and non-ionic detergents (0.5% SDS; 1.5% Triton X-100), 2% PVPP and protease inhibitors. Further, the extracted proteins were solubilized in 0.5% of zwitterionic detergent (C7BzO) instead of 4% CHAPS. This slight modification to the BPP method resulted in a higher protein yield, and good quality 2-DE maps with a higher number of protein spots in both the tested seagrasses. Further, the M-BPP method was successfully utilized in western-blot analysis of phosphoenolpyruvate carboxylase (PEPC-a key enzyme for carbon metabolism). This optimized protein extraction method will be a significant stride toward seagrass proteome mining and identifying the protein biomarkers to stress response of seagrasses under the scenario of global climate change and anthropogenic perturbations.
Collapse
Affiliation(s)
- Zhijian Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney (UTS)Sydney, NSW, Australia
| | - Manoj Kumar
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney (UTS)Sydney, NSW, Australia
| | - Matthew P. Padula
- Proteomics Core Facility, University of Technology Sydney (UTS)Sydney, NSW, Australia
| | - Mathieu Pernice
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney (UTS)Sydney, NSW, Australia
| | - Tim Kahlke
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney (UTS)Sydney, NSW, Australia
| | - Mikael Kim
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney (UTS)Sydney, NSW, Australia
| | - Peter J. Ralph
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney (UTS)Sydney, NSW, Australia
| |
Collapse
|
36
|
Meise P, Jozefowicz AM, Uptmoor R, Mock HP, Ordon F, Schum A. Comparative shoot proteome analysis of two potato (Solanum tuberosum L.) genotypes contrasting in nitrogen deficiency responses in vitro. J Proteomics 2017; 166:68-82. [PMID: 28733104 DOI: 10.1016/j.jprot.2017.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/10/2017] [Accepted: 07/15/2017] [Indexed: 10/19/2022]
Abstract
Aiming at a better understanding of the physiological and biochemical background of nitrogen use efficiency, alterations in the shoot proteome under N-deficiency were investigated in two contrasting potato genotypes grown in vitro with 60 and 7.5mM N, respectively. A gel based proteomic approach was applied to identify candidate proteins associated with genotype specific responses to N-deficiency. 21% of the detected proteins differed in abundance between the two genotypes. Between control and N-deficiency conditions 19.5% were differentially accumulated in the sensitive and 15% in the tolerant genotype. 93% of the highly N-deficiency responsive proteins were identified by MALDI TOF/TOF mass spectrometry. The major part was associated with photosynthesis, carbohydrate metabolism, stress response and regulation. Differential accumulation of enzymes involved in the Calvin cycle and glycolysis suggest activation of alternative carbohydrate pathways. In the tolerant genotype, increased abundance under N-deficiency was also found for enzymes involved in chlorophyll synthesis and stability of enzymes, which increase photosynthetic carbon fixation efficiency. Out of a total of 106 differentially abundant proteins, only eight were detected in both genotypes. Our findings suggest that mutually responsive proteins reflect universal stress responses while adaptation to N-deficiency in metabolic pathways is more genotype specific. SIGNIFICANCE Nitrogen losses from arable farm land considerably contribute to environmental pollution. In potato, this is a special problem due cultivation on light soils, irrigation and the shallow root system. Therefore, breeding of cultivars with improved nitrogen use efficiency and stable yields under reduced N fertilization is an important issue. Knowledge of genotype dependent adaptation to N-deficiency at the proteome level can help to understand regulation of N efficiency and development of N-efficient cultivars.
Collapse
Affiliation(s)
- Philipp Meise
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, OT Groß Lüsewitz, Rudolf-Schick-Platz 3, 18190 Sanitz, Germany
| | - Anna Maria Jozefowicz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Physiology and Cell Biology, Applied Biochemistry, OT Gatersleben, Corrensstraße 3, 06466 Stadt Seeland, Germany
| | - Ralf Uptmoor
- University of Rostock, Faculty of Agricultural and Environmental Science, Justus-von-Liebig-Weg 6, 18055 Rostock, Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Physiology and Cell Biology, Applied Biochemistry, OT Gatersleben, Corrensstraße 3, 06466 Stadt Seeland, Germany
| | - Frank Ordon
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, OT Groß Lüsewitz, Rudolf-Schick-Platz 3, 18190 Sanitz, Germany
| | - Annegret Schum
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, OT Groß Lüsewitz, Rudolf-Schick-Platz 3, 18190 Sanitz, Germany.
| |
Collapse
|
37
|
Rai A, Saito K, Yamazaki M. Integrated omics analysis of specialized metabolism in medicinal plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:764-787. [PMID: 28109168 DOI: 10.1111/tpj.13485] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 05/19/2023]
Abstract
Medicinal plants are a rich source of highly diverse specialized metabolites with important pharmacological properties. Until recently, plant biologists were limited in their ability to explore the biosynthetic pathways of these metabolites, mainly due to the scarcity of plant genomics resources. However, recent advances in high-throughput large-scale analytical methods have enabled plant biologists to discover biosynthetic pathways for important plant-based medicinal metabolites. The reduced cost of generating omics datasets and the development of computational tools for their analysis and integration have led to the elucidation of biosynthetic pathways of several bioactive metabolites of plant origin. These discoveries have inspired synthetic biology approaches to develop microbial systems to produce bioactive metabolites originating from plants, an alternative sustainable source of medicinally important chemicals. Since the demand for medicinal compounds are increasing with the world's population, understanding the complete biosynthesis of specialized metabolites becomes important to identify or develop reliable sources in the future. Here, we review the contributions of major omics approaches and their integration to our understanding of the biosynthetic pathways of bioactive metabolites. We briefly discuss different approaches for integrating omics datasets to extract biologically relevant knowledge and the application of omics datasets in the construction and reconstruction of metabolic models.
Collapse
Affiliation(s)
- Amit Rai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Kazuki Saito
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| |
Collapse
|
38
|
Hart-Smith G, Reis RS, Waterhouse PM, Wilkins MR. Improved Quantitative Plant Proteomics via the Combination of Targeted and Untargeted Data Acquisition. FRONTIERS IN PLANT SCIENCE 2017; 8:1669. [PMID: 29021799 PMCID: PMC5623951 DOI: 10.3389/fpls.2017.01669] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/11/2017] [Indexed: 05/18/2023]
Abstract
Quantitative proteomics strategies - which are playing important roles in the expanding field of plant molecular systems biology - are traditionally designated as either hypothesis driven or non-hypothesis driven. Many of these strategies aim to select individual peptide ions for tandem mass spectrometry (MS/MS), and to do this mixed hypothesis driven and non-hypothesis driven approaches are theoretically simple to implement. In-depth investigations into the efficacies of such approaches have, however, yet to be described. In this study, using combined samples of unlabeled and metabolically 15N-labeled Arabidopsis thaliana proteins, we investigate the mixed use of targeted data acquisition (TDA) and data dependent acquisition (DDA) - referred to as TDA/DDA - to facilitate both hypothesis driven and non-hypothesis driven quantitative data collection in individual LC-MS/MS experiments. To investigate TDA/DDA for hypothesis driven data collection, 7 miRNA target proteins of differing size and abundance were targeted using inclusion lists comprised of 1558 m/z values, using 3 different TDA/DDA experimental designs. In samples in which targeted peptide ions were of particularly low abundance (i.e., predominantly only marginally above mass analyser detection limits), TDA/DDA produced statistically significant increases in the number of targeted peptides identified (230 ± 8 versus 80 ± 3 for DDA; p = 1.1 × 10-3) and quantified (35 ± 3 versus 21 ± 2 for DDA; p = 0.038) per experiment relative to the use of DDA only. These expected improvements in hypothesis driven data collection were observed alongside unexpected improvements in non-hypothesis driven data collection. Untargeted peptide ions with m/z values matching those in inclusion lists were repeatedly identified and quantified across technical replicate TDA/DDA experiments, resulting in significant increases in the percentages of proteins repeatedly quantified in TDA/DDA experiments only relative to DDA experiments only (33.0 ± 2.6% versus 8.0 ± 2.7%, respectively; p = 0.011). These results were observed together with uncompromised broad-scale MS/MS data collection in TDA/DDA experiments relative to DDA experiments. Using our observations we provide guidelines for TDA/DDA method design for quantitative plant proteomics studies, and suggest that TDA/DDA is a broadly underutilized proteomics data acquisition strategy.
Collapse
Affiliation(s)
- Gene Hart-Smith
- NSW Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Gene Hart-Smith,
| | - Rodrigo S. Reis
- School of Biological Sciences, University of Sydney, Sydney, NSW, Australia
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Peter M. Waterhouse
- School of Biological Sciences, University of Sydney, Sydney, NSW, Australia
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Marc R. Wilkins
- NSW Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
39
|
Vu LD, Verstraeten I, Stes E, Van Bel M, Coppens F, Gevaert K, De Smet I. Proteome Profiling of Wheat Shoots from Different Cultivars. FRONTIERS IN PLANT SCIENCE 2017; 8:332. [PMID: 28348574 PMCID: PMC5346552 DOI: 10.3389/fpls.2017.00332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/24/2017] [Indexed: 05/20/2023]
Abstract
Wheat is a cereal grain and one of the world's major food crops. Recent advances in wheat genome sequencing are by now facilitating its genomic and proteomic analyses. However, little is known about possible differences in total protein levels of hexaploid versus tetraploid wheat cultivars, and also knowledge of phosphorylated wheat proteins is still limited. Here, we performed a detailed analysis of the proteome of seedling leaves from two hexaploid wheat cultivars (Triticum aestivum L. Pavon 76 and USU-Apogee) and one tetraploid wheat (T. turgidum ssp. durum cv. Senatore Cappelli). Our shotgun proteomics data revealed that, whereas we observed some significant differences, overall a high similarity between hexaploid and tetraploid varieties with respect to protein abundance was observed. In addition, already at the seedling stage, a small set of proteins was differential between the small (USU-Apogee) and larger hexaploid wheat cultivars (Pavon 76), which could potentially act as growth predictors. Finally, the phosphosites identified in this study can be retrieved from the in-house developed plant PTM-Viewer (bioinformatics.psb.ugent.be/webtools/ptm_viewer/), making this the first searchable repository for phosphorylated wheat proteins. This paves the way for further in depth, quantitative (phospho)proteome-wide differential analyses upon a specific trigger or environmental change.
Collapse
Affiliation(s)
- Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
- Center for Plant Systems Biology, VIBGhent, Belgium
- Medical Biotechnology Center, VIBGhent, Belgium
- Department of Biochemistry, Ghent UniversityGhent, Belgium
| | - Inge Verstraeten
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
- Center for Plant Systems Biology, VIBGhent, Belgium
| | - Elisabeth Stes
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
- Center for Plant Systems Biology, VIBGhent, Belgium
- Medical Biotechnology Center, VIBGhent, Belgium
- Department of Biochemistry, Ghent UniversityGhent, Belgium
| | - Michiel Van Bel
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
- Center for Plant Systems Biology, VIBGhent, Belgium
| | - Frederik Coppens
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
- Center for Plant Systems Biology, VIBGhent, Belgium
| | - Kris Gevaert
- Medical Biotechnology Center, VIBGhent, Belgium
- Department of Biochemistry, Ghent UniversityGhent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
- Center for Plant Systems Biology, VIBGhent, Belgium
- *Correspondence: Ive De Smet,
| |
Collapse
|
40
|
Hashiguchi A, Komatsu S. Posttranslational Modifications and Plant-Environment Interaction. Methods Enzymol 2016; 586:97-113. [PMID: 28137579 DOI: 10.1016/bs.mie.2016.09.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Posttranslational modifications (PTMs) of proteins such as phosphorylation and ubiquitination are crucial for controlling protein stability, localization, and conformation. Genetic information encoded in DNA is transcribed, translated, and increases its complexity by multiple PTMs. Conformational change introduced by PTMs affects interacting partners of each proteins and their downstream signaling; therefore, PTMs are the major level of modulations of total outcome of living cells. Plants are living in harsh environment that requires unremitting physiological modulation to survive, and the plant response to various environment stresses is regulated by PTMs of proteins. This review deals with the novel knowledge of PTM-focused proteomic studies on various life conditions. PTMs are focused that mediate plant-environment interaction such as stress perception, protein homeostasis, control of energy shift, and defense by immune system. Integration of diverse signals on a protein via multiple PTMs is discussed as well, considering current situation where signal integration became an emerging area approached by systems biology into account.
Collapse
Affiliation(s)
- A Hashiguchi
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - S Komatsu
- National Institute of Crop Science, NARO, Tsukuba, Japan.
| |
Collapse
|
41
|
Vu LD, Stes E, Van Bel M, Nelissen H, Maddelein D, Inzé D, Coppens F, Martens L, Gevaert K, De Smet I. Up-to-Date Workflow for Plant (Phospho)proteomics Identifies Differential Drought-Responsive Phosphorylation Events in Maize Leaves. J Proteome Res 2016; 15:4304-4317. [DOI: 10.1021/acs.jproteome.6b00348] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lam Dai Vu
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Medical
Biotechnology Center, VIB, 9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Elisabeth Stes
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Medical
Biotechnology Center, VIB, 9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Michiel Van Bel
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Hilde Nelissen
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Davy Maddelein
- Medical
Biotechnology Center, VIB, 9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Dirk Inzé
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Frederik Coppens
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lennart Martens
- Medical
Biotechnology Center, VIB, 9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Kris Gevaert
- Medical
Biotechnology Center, VIB, 9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Ive De Smet
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
42
|
Global proteome analysis in plants by means of peptide libraries and applications. J Proteomics 2016; 143:3-14. [DOI: 10.1016/j.jprot.2016.02.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/20/2016] [Accepted: 02/26/2016] [Indexed: 01/07/2023]
|
43
|
Mustafiz A, Kumari S, Karan R. Ascribing Functions to Genes: Journey Towards Genetic Improvement of Rice Via Functional Genomics. Curr Genomics 2016; 17:155-76. [PMID: 27252584 PMCID: PMC4869004 DOI: 10.2174/1389202917666160202215135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 11/22/2022] Open
Abstract
Rice, one of the most important cereal crops for mankind, feeds more than half the world population. Rice has been heralded as a model cereal owing to its small genome size, amenability to easy transformation, high synteny to other cereal crops and availability of complete genome sequence. Moreover, sequence wealth in rice is getting more refined and precise due to resequencing efforts. This humungous resource of sequence data has confronted research fraternity with a herculean challenge as well as an excellent opportunity to functionally validate expressed as well as regulatory portions of the genome. This will not only help us in understanding the genetic basis of plant architecture and physiology but would also steer us towards developing improved cultivars. No single technique can achieve such a mammoth task. Functional genomics through its diverse tools viz. loss and gain of function mutants, multifarious omics strategies like transcriptomics, proteomics, metabolomics and phenomics provide us with the necessary handle. A paradigm shift in technological advances in functional genomics strategies has been instrumental in generating considerable amount of information w.r.t functionality of rice genome. We now have several databases and online resources for functionally validated genes but despite that we are far from reaching the desired milestone of functionally characterizing each and every rice gene. There is an urgent need for a common platform, for information already available in rice, and collaborative efforts between researchers in a concerted manner as well as healthy public-private partnership, for genetic improvement of rice crop better able to handle the pressures of climate change and exponentially increasing population.
Collapse
Affiliation(s)
- Ananda Mustafiz
- South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi
| | - Sumita Kumari
- Sher-e-Kashmir University of Agriculture Sciences and Technology, Jammu 180009, India
| | - Ratna Karan
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville - 32611, Florida, USA
| |
Collapse
|
44
|
Chakraborty S, Nascimento R, Zaini PA, Gouran H, Rao BJ, Goulart LR, Dandekar AM. Sequence/structural analysis of xylem proteome emphasizes pathogenesis-related proteins, chitinases and β-1, 3-glucanases as key players in grapevine defense against Xylella fastidiosa. PeerJ 2016; 4:e2007. [PMID: 27257535 PMCID: PMC4888286 DOI: 10.7717/peerj.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/13/2016] [Indexed: 11/20/2022] Open
Abstract
Background. Xylella fastidiosa, the causative agent of various plant diseases including Pierce’s disease in the US, and Citrus Variegated Chlorosis in Brazil, remains a continual source of concern and economic losses, especially since almost all commercial varieties are sensitive to this Gammaproteobacteria. Differential expression of proteins in infected tissue is an established methodology to identify key elements involved in plant defense pathways. Methods. In the current work, we developed a methodology named CHURNER that emphasizes relevant protein functions from proteomic data, based on identification of proteins with similar structures that do not necessarily have sequence homology. Such clustering emphasizes protein functions which have multiple copies that are up/down-regulated, and highlights similar proteins which are differentially regulated. As a working example we present proteomic data enumerating differentially expressed proteins in xylem sap from grapevines that were infected with X. fastidiosa. Results. Analysis of this data by CHURNER highlighted pathogenesis related PR-1 proteins, reinforcing this as the foremost protein function in xylem sap involved in the grapevine defense response to X. fastidiosa. β-1, 3-glucanase, which has both anti-microbial and anti-fungal activities, is also up-regulated. Simultaneously, chitinases are found to be both up and down-regulated by CHURNER, and thus the net gain of this protein function loses its significance in the defense response. Discussion. We demonstrate how structural data can be incorporated in the pipeline of proteomic data analysis prior to making inferences on the importance of individual proteins to plant defense mechanisms. We expect CHURNER to be applicable to any proteomic data set.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Department of Plant Sciences, University of California, Davis (UC Davis) , CA , United States of America
| | - Rafael Nascimento
- Department of Plant Sciences, University of California, Davis (UC Davis), CA, United States of America; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, Uberlândia Minas Gerais, Brazil
| | - Paulo A Zaini
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama , Uberlândia Minas Gerais , Brazil
| | - Hossein Gouran
- Department of Plant Sciences, University of California, Davis (UC Davis) , CA , United States of America
| | - Basuthkar J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research , Mumbai, Maharashtra , India
| | - Luiz R Goulart
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, Uberlândia Minas Gerais, Brazil; Department of Medical Microbiology and Immunology, University of California, Davis (UC Davis), CA, United States of America
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis (UC Davis) , CA , United States of America
| |
Collapse
|
45
|
Pandey MK, Roorkiwal M, Singh VK, Ramalingam A, Kudapa H, Thudi M, Chitikineni A, Rathore A, Varshney RK. Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects. FRONTIERS IN PLANT SCIENCE 2016; 7:455. [PMID: 27199998 PMCID: PMC4852475 DOI: 10.3389/fpls.2016.00455] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/24/2016] [Indexed: 05/19/2023]
Abstract
Legumes play a vital role in ensuring global nutritional food security and improving soil quality through nitrogen fixation. Accelerated higher genetic gains is required to meet the demand of ever increasing global population. In recent years, speedy developments have been witnessed in legume genomics due to advancements in next-generation sequencing (NGS) and high-throughput genotyping technologies. Reference genome sequences for many legume crops have been reported in the last 5 years. The availability of the draft genome sequences and re-sequencing of elite genotypes for several important legume crops have made it possible to identify structural variations at large scale. Availability of large-scale genomic resources and low-cost and high-throughput genotyping technologies are enhancing the efficiency and resolution of genetic mapping and marker-trait association studies. Most importantly, deployment of molecular breeding approaches has resulted in development of improved lines in some legume crops such as chickpea and groundnut. In order to support genomics-driven crop improvement at a fast pace, the deployment of breeder-friendly genomics and decision support tools seems appear to be critical in breeding programs in developing countries. This review provides an overview of emerging genomics and informatics tools/approaches that will be the key driving force for accelerating genomics-assisted breeding and ultimately ensuring nutritional and food security in developing countries.
Collapse
Affiliation(s)
- Manish K. Pandey
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Manish Roorkiwal
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Vikas K. Singh
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Abirami Ramalingam
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Mahendar Thudi
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Anu Chitikineni
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
- The University of Western AustraliaCrawley, WA, Australia
| |
Collapse
|
46
|
Soltis DE, Misra BB, Shan S, Chen S, Soltis PS. Polyploidy and the proteome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:896-907. [PMID: 26993527 DOI: 10.1016/j.bbapap.2016.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 03/06/2016] [Accepted: 03/11/2016] [Indexed: 12/23/2022]
Abstract
Although major advances have been made during the past 20 years in our understanding of the genetic and genomic consequences of polyploidy, our knowledge of polyploidy and the proteome is in its infancy. One of our goals is to stimulate additional study, particularly broad-scale proteomic analyses of polyploids and their progenitors. Although it may be too early to generalize regarding the extent to which transcriptomic data are predictive of the proteome of polyploids, it is clear that the proteome does not always reflect the transcriptome. Despite limited data, important observations on the proteomes of polyploids are emerging. In some cases, proteomic profiles show qualitatively and/or quantitatively non-additive patterns, and proteomic novelty has been observed. Allopolyploids generally combine the parental contributions, but there is evidence of parental dominance of one contributing genome in some allopolyploids. Autopolyploids are typically qualitatively identical to but quantitatively different from their parents. There is also evidence of parental legacy at the proteomic level. Proteomes clearly provide insights into the consequences of genomic merger and doubling beyond what is obtained from genomic and/or transcriptomic data. Translating proteomic changes in polyploids to differences in morphology and physiology remains the holy grail of polyploidy--this daunting task of linking genotype to proteome to phenotype should emerge as a focus of polyploidy research in the next decade. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; Department of Biology, University of Florida, Gainesville, FL 32611, USA; Genetics Institute, University of Florida, Gainesville, FL 32608, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA.
| | - Biswapriya B Misra
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Shengchen Shan
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; Genetics Institute, University of Florida, Gainesville, FL 32608, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA; Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; Genetics Institute, University of Florida, Gainesville, FL 32608, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
47
|
Canut H, Albenne C, Jamet E. Post-translational modifications of plant cell wall proteins and peptides: A survey from a proteomics point of view. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:983-90. [PMID: 26945515 DOI: 10.1016/j.bbapap.2016.02.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/12/2016] [Accepted: 02/24/2016] [Indexed: 12/21/2022]
Abstract
Plant cell wall proteins (CWPs) and peptides are important players in cell walls contributing to their assembly and their remodeling during development and in response to environmental constraints. Since the rise of proteomics technologies at the beginning of the 2000's, the knowledge of CWPs has greatly increased leading to the discovery of new CWP families and to the description of the cell wall proteomes of different organs of many plants. Conversely, cell wall peptidomics data are still lacking. In addition to the identification of CWPs and peptides by mass spectrometry (MS) and bioinformatics, proteomics has allowed to describe their post-translational modifications (PTMs). At present, the best known PTMs consist in proteolytic cleavage, N-glycosylation, hydroxylation of P residues into hydroxyproline residues (O), O-glycosylation and glypiation. In this review, the methods allowing the capture of the modified proteins based on the specific properties of their PTMs as well as the MS technologies used for their characterization are briefly described. A focus is done on proteolytic cleavage leading to protein maturation or release of signaling peptides and on O-glycosylation. Some new technologies, like top-down proteomics and terminomics, are described. They aim at a finer description of proteoforms resulting from PTMs or degradation mechanisms. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Hervé Canut
- Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France
| | - Cécile Albenne
- Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France
| | - Elisabeth Jamet
- Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France.
| |
Collapse
|
48
|
Johnová P, Skalák J, Saiz-Fernández I, Brzobohatý B. Plant responses to ambient temperature fluctuations and water-limiting conditions: A proteome-wide perspective. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:916-31. [PMID: 26861773 DOI: 10.1016/j.bbapap.2016.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/26/2015] [Accepted: 02/04/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Every year, environmental stresses such as limited water and nutrient availability, salinity, and temperature fluctuations inflict significant losses on crop yields across the globe. Recently, developments in analytical techniques, e.g. mass spectrometry, have led to great advances towards understanding how plants respond to environmental stresses. These processes are mediated by many molecular pathways and, at least partially, via proteome-environment interactions. SCOPE OF REVIEW This review focuses on the current state of knowledge about interactions between the plant proteome and the environment, with a special focus on drought and temperature responses of plant proteome dynamics, and subcellular and organ-specific compartmentalization, in Arabidopsis thaliana and crop species. MAJOR CONCLUSIONS Correct plant development under non-optimal conditions requires complex self-protection mechanisms, many of them common to different abiotic stresses. Proteome analyses of plant responses to temperature and drought stresses have revealed an intriguing interplay of modifications, mainly affecting the photosynthetic machinery, carbohydrate metabolism, and ROS activation and scavenging. Imbalances between transcript-level and protein-level regulation observed during adaptation to abiotic stresses suggest that many of the regulatory processes are controlled at translational and post-translational levels; proteomics is thus essential in revealing important regulatory networks. GENERAL SIGNIFICANCE Because information from proteomic data extends far beyond what can be deduced from transcriptome analysis, the results of proteome studies have substantially deepened our understanding of stress adaptation in plants; this is clearly a prerequisite for designing strategies to improve the yield and quality of crops grown under unfavorable conditions brought about by ongoing climatic change. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Patricie Johnová
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and, Mendel University in Brno, CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Jan Skalák
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and, Mendel University in Brno, CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Iñigo Saiz-Fernández
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and, Mendel University in Brno, CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and, Mendel University in Brno, CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
49
|
Kamal AHM, Komatsu S. Proteins involved in biophoton emission and flooding-stress responses in soybean under light and dark conditions. Mol Biol Rep 2016; 43:73-89. [PMID: 26754663 DOI: 10.1007/s11033-015-3940-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/31/2015] [Indexed: 01/15/2023]
Abstract
To know the molecular systems basically flooding conditions in soybean, biophoton emission measurements and proteomic analyses were carried out for flooding-stressed roots under light and dark conditions. Photon emission was analyzed using a photon counter. Gel-free quantitative proteomics were performed to identify significant changes proteins using the nano LC-MS along with SIEVE software. Biophoton emissions were significantly increased in both light and dark conditions after flooding stress, but gradually decreased with continued flooding exposure compared to the control plants. Among the 120 significantly identified proteins in the roots of soybean plants, 73 and 19 proteins were decreased and increased in the light condition, respectively, and 4 and 24 proteins were increased and decreased, respectively, in the dark condition. The proteins were mainly functionally grouped into cell organization, protein degradation/synthesis, and glycolysis. The highly abundant lactate/malate dehydrogenase proteins were decreased in flooding-stressed roots exposed to light, whereas the lysine ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme was increased in both light and dark conditions. Notably, however, specific enzyme assays revealed that the activities of these enzymes and biophoton emission were sharply increased after 3 days of flooding stress. This finding suggests that the source of biophoton emission in roots might involve the chemical excitation of electron or proton through enzymatic or non-enzymatic oxidation and reduction reactions. Moreover, the lysine ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme may play important roles in responses in flooding stress of soybean under the light condition and as a contributing factor to biophoton emission.
Collapse
Affiliation(s)
- Abu Hena Mostafa Kamal
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba, 305-8518, Japan
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba, 305-8518, Japan.
| |
Collapse
|
50
|
Chakraborty S, Nascimento R, Zaini PA, Gouran H, Rao BJ, Goulart LR, Dandekar AM. Sequence/structural analysis of xylem proteome emphasizes pathogenesis-related proteins, chitinases and β-1, 3-glucanases as key players in grapevine defense against Xylella fastidiosa. PeerJ 2016. [PMID: 27257535 DOI: 10.7717/peerj2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Background. Xylella fastidiosa, the causative agent of various plant diseases including Pierce's disease in the US, and Citrus Variegated Chlorosis in Brazil, remains a continual source of concern and economic losses, especially since almost all commercial varieties are sensitive to this Gammaproteobacteria. Differential expression of proteins in infected tissue is an established methodology to identify key elements involved in plant defense pathways. Methods. In the current work, we developed a methodology named CHURNER that emphasizes relevant protein functions from proteomic data, based on identification of proteins with similar structures that do not necessarily have sequence homology. Such clustering emphasizes protein functions which have multiple copies that are up/down-regulated, and highlights similar proteins which are differentially regulated. As a working example we present proteomic data enumerating differentially expressed proteins in xylem sap from grapevines that were infected with X. fastidiosa. Results. Analysis of this data by CHURNER highlighted pathogenesis related PR-1 proteins, reinforcing this as the foremost protein function in xylem sap involved in the grapevine defense response to X. fastidiosa. β-1, 3-glucanase, which has both anti-microbial and anti-fungal activities, is also up-regulated. Simultaneously, chitinases are found to be both up and down-regulated by CHURNER, and thus the net gain of this protein function loses its significance in the defense response. Discussion. We demonstrate how structural data can be incorporated in the pipeline of proteomic data analysis prior to making inferences on the importance of individual proteins to plant defense mechanisms. We expect CHURNER to be applicable to any proteomic data set.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Department of Plant Sciences, University of California, Davis (UC Davis) , CA , United States of America
| | - Rafael Nascimento
- Department of Plant Sciences, University of California, Davis (UC Davis), CA, United States of America; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, Uberlândia Minas Gerais, Brazil
| | - Paulo A Zaini
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama , Uberlândia Minas Gerais , Brazil
| | - Hossein Gouran
- Department of Plant Sciences, University of California, Davis (UC Davis) , CA , United States of America
| | - Basuthkar J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research , Mumbai, Maharashtra , India
| | - Luiz R Goulart
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, Uberlândia Minas Gerais, Brazil; Department of Medical Microbiology and Immunology, University of California, Davis (UC Davis), CA, United States of America
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis (UC Davis) , CA , United States of America
| |
Collapse
|