1
|
Wang K, Li J, Fan Y, Yang J. Temperature Effect on Rhizome Development in Perennial rice. RICE (NEW YORK, N.Y.) 2024; 17:32. [PMID: 38717687 PMCID: PMC11078906 DOI: 10.1186/s12284-024-00710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Traditional agriculture is becoming increasingly not adapted to global climate change. Compared with annual rice, perennial rice has strong environmental adaptation and needs fewer natural resources and labor inputs. Rhizome, a kind of underground stem for rice to achieve perenniallity, can grow underground horizontally and then bend upward, developing into aerial stems. The temperature has a great influence on plant development. To date, the effect of temperature on rhizome development is still unknown. Fine temperature treatment of Oryza longistaminata (OL) proved that compared with higher temperatures (28-30 ℃), lower temperature (17-19 ℃) could promote the sprouting of axillary buds and enhance negative gravitropism of branches, resulting in shorter rhizomes. The upward growth of branches was earlier at low temperature than that at high temperature, leading to a high frequency of shorter rhizomes and smaller branch angles. Comparative transcriptome showed that plant hormones played an essential role in the response of OL to temperature. The expressions of ARF17, ARF25 and FucT were up-regulated at low temperature, resulting in prospectively asymmetric auxin distribution, which subsequently induced asymmetric expression of IAA20 and WOX11 between the upper and lower side of the rhizome, further leading to upward growth of the rhizome. Cytokinin and auxin are phytohormones that can promote and inhibit bud outgrowth, respectively. The auxin biosynthesis gene YUCCA1 and cytokinin oxidase/dehydrogenase gene CKX4 and CKX9 were up-regulated, while cytokinin biosynthesis gene IPT4 was down-regulated at high temperature. Moreover, the D3 and D14 in strigolactones pathways, negatively regulating bud outgrowth, were up-regulated at high temperature. These results indicated that cytokinin, auxins, and strigolactones jointly control bud outgrowth at different temperatures. Our research revealed that the outgrowth of axillary bud and the upward growth of OL rhizome were earlier at lower temperature, providing clues for understanding the rhizome growth habit under different temperatures, which would be helpful for cultivating perennial rice.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yourong Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
| | - Jiangyi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
2
|
Dermendjiev G, Schnurer M, Stewart E, Nägele T, Marino G, Leister D, Thür A, Plott S, Jeż J, Ibl V. A bench-top Dark-Root device built with LEGO ® bricks enables a non-invasive plant root development analysis in soil conditions mirroring nature. FRONTIERS IN PLANT SCIENCE 2023; 14:1166511. [PMID: 37324682 PMCID: PMC10264708 DOI: 10.3389/fpls.2023.1166511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023]
Abstract
Roots are the hidden parts of plants, anchoring their above-ground counterparts in the soil. They are responsible for water and nutrient uptake and for interacting with biotic and abiotic factors in the soil. The root system architecture (RSA) and its plasticity are crucial for resource acquisition and consequently correlate with plant performance while being highly dependent on the surrounding environment, such as soil properties and therefore environmental conditions. Thus, especially for crop plants and regarding agricultural challenges, it is essential to perform molecular and phenotypic analyses of the root system under conditions as near as possible to nature (#asnearaspossibletonature). To prevent root illumination during experimental procedures, which would heavily affect root development, Dark-Root (D-Root) devices (DRDs) have been developed. In this article, we describe the construction and different applications of a sustainable, affordable, flexible, and easy to assemble open-hardware bench-top LEGO® DRD, the DRD-BIBLOX (Brick Black Box). The DRD-BIBLOX consists of one or more 3D-printed rhizoboxes, which can be filled with soil while still providing root visibility. The rhizoboxes sit in a scaffold of secondhand LEGO® bricks, which allows root development in the dark and non-invasive root tracking with an infrared (IR) camera and an IR light-emitting diode (LED) cluster. Proteomic analyses confirmed significant effects of root illumination on barley root and shoot proteomes. Additionally, we confirmed the significant effect of root illumination on barley root and shoot phenotypes. Our data therefore reinforces the importance of the application of field conditions in the lab and the value of our novel device, the DRD-BIBLOX. We further provide a DRD-BIBLOX application spectrum, spanning from investigating a variety of plant species and soil conditions and simulating different environmental conditions and stresses, to proteomic and phenotypic analyses, including early root tracking in the dark.
Collapse
Affiliation(s)
- Georgi Dermendjiev
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), University of Vienna, Vienna, Austria
| | - Madeleine Schnurer
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), University of Vienna, Vienna, Austria
| | - Ethan Stewart
- Plant Sciences Facility, Vienna Biocenter Core Facilities (VBCF), Vienna, Austria
| | - Thomas Nägele
- Faculty of Biology, Plant Evolutionary Cell Biology Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Giada Marino
- Faculty of Biology, Plant Evolutionary Cell Biology Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Dario Leister
- Faculty of Biology, Plant Evolutionary Cell Biology Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Alexandra Thür
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), University of Vienna, Vienna, Austria
| | - Stefan Plott
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), University of Vienna, Vienna, Austria
| | - Jakub Jeż
- Plant Sciences Facility, Vienna Biocenter Core Facilities (VBCF), Vienna, Austria
| | - Verena Ibl
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Understanding SUMO-mediated adaptive responses in plants to improve crop productivity. Essays Biochem 2022; 66:155-168. [PMID: 35920279 PMCID: PMC9400072 DOI: 10.1042/ebc20210068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 12/30/2022]
Abstract
The response to abiotic and biotic stresses in plants and crops is considered a multifaceted process. Due to their sessile nature, plants have evolved unique mechanisms to ensure that developmental plasticity remains during their life cycle. Among these mechanisms, post-translational modifications (PTMs) are crucial components of adaptive responses in plants and transduce environmental stimuli into cellular signalling through the modulation of proteins. SUMOylation is an emerging PTM that has received recent attention due to its dynamic role in protein modification and has quickly been considered a significant component of adaptive mechanisms in plants during stress with great potential for agricultural improvement programs. In the present review, we outline the concept that small ubiquitin-like modifier (SUMO)-mediated response in plants and crops to abiotic and biotic stresses is a multifaceted process with each component of the SUMO cycle facilitating tolerance to several different environmental stresses. We also highlight the clear increase in SUMO genes in crops when compared with Arabidopsis thaliana. The SUMO system is understudied in crops, given the importance of SUMO for stress responses, and for some SUMO genes, the apparent expansion provides new avenues to discover SUMO-conjugated targets that could regulate beneficial agronomical traits.
Collapse
|
4
|
G-Protein Phosphorylation: Aspects of Binding Specificity and Function in the Plant Kingdom. Int J Mol Sci 2022; 23:ijms23126544. [PMID: 35742988 PMCID: PMC9224535 DOI: 10.3390/ijms23126544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
Abstract
Plant survival depends on adaptive mechanisms that constantly rely on signal recognition and transduction. The predominant class of signal discriminators is receptor kinases, with a vast member composition in plants. The transduction of signals occurs in part by a simple repertoire of heterotrimeric G proteins, with a core composed of α-, β-, and γ-subunits, together with a 7-transmembrane Regulator G Signaling (RGS) protein. With a small repertoire of G proteins in plants, phosphorylation by receptor kinases is critical in regulating the active state of the G-protein complex. This review describes the in vivo detected phosphosites in plant G proteins and conservation scores, and their in vitro corresponding kinases. Furthermore, recently described outcomes, including novel arrestin-like internalization of RGS and a non-canonical phosphorylation switching mechanism that drives G-protein plasticity, are discussed.
Collapse
|
5
|
VviPLATZ1 is a major factor that controls female flower morphology determination in grapevine. Nat Commun 2021; 12:6995. [PMID: 34848714 PMCID: PMC8632994 DOI: 10.1038/s41467-021-27259-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022] Open
Abstract
Plant genetic sex determinants that mediate the transition to dioecy are predicted to be diverse, as this type of mating system independently evolved multiple times in angiosperms. Wild Vitis species are dioecious with individuals producing morphologically distinct female or male flowers; whereas, modern domesticated Vitis vinifera cultivars form hermaphrodite flowers capable of self-pollination. Here, we identify the VviPLATZ1 transcription factor as a key candidate female flower morphology factor that localizes to the Vitis SEX-DETERMINING REGION. The expression pattern of this gene correlates with the formation reflex stamens, a prominent morphological phenotype of female flowers. After generating CRISPR/Cas9 gene-edited alleles in a hermaphrodite genotype, phenotype analysis shows that individual homozygous lines produce flowers with reflex stamens. Taken together, our results demonstrate that loss of VviPLATZ1 function is a major factor that controls female flower morphology in Vitis. Unlike wild Vitis species, which produce either female or male flowers, modern grapevine cultivars form hermaphrodite flowers for self-pollination. Here, the authors report that the VviPLATZ1 (plant AT-rich sequence-and zinc-binding protein1) transcription factor functions in controlling female flower morphology determination.
Collapse
|
6
|
Ortiz-Luevano R, López-Bucio J, Martínez-Trujillo M, Sánchez-Calderón L. Changes induced by lead in root system architecture of Arabidopsis seedlings are mediated by PDR2-LPR1/2 phosphate dependent way. Biometals 2021; 34:603-620. [PMID: 33772672 DOI: 10.1007/s10534-021-00299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
As sessile organisms, plants respond to changing environments modulating their genetic expression, metabolism and postembryonic developmental program (PDP) to adapt. Among environmental stressor, lead (Pb) is one of the most hazardous pollutants which limits crop productivity. Here, we describe in detail the effects of a wide range of concentrations of Pb on growth and development and a possible convergence with phosphate (Pi) starvation response. We found that the response to Pb presents a biphasic curve dose response in biomass accumulation: below 400 µM show a stimulatory effect meanwhile at Pb doses up to 600 µM effects are inhibitory. We found that +Pb (800 µM) modifies root system architecture (RSA) and induces acidification media, according to in silico ion interaction, in the growing medium Pb and Pi coprecipitate and plants grow in both Pi deficiency and Pb stress at the same time, however in spite of seedlings are under Pi starvation AtPT2 expression are Pb downregulated indicating that in addition to Pi starvation stress, Pb regulates physiological responses in root system. Using the mutants stop1, lpr1/2 and lpi3, which are affected in Pi starvation response, we found that changes in RSA by +Pb is genetically regulated and there are shared pathways with Pi starvation response mediated by PDR2-LPR1/2 and LPI3 pathways since lpr1/2 and lpi3 mutants are insensitive to +Pb and Pi starvation. Taking together, these results indicate that similar changes in RSA induced by independent environmental stimuli +Pb and Pi starvation are due to similar mediated response by PDR2-LPR1/2 pathway.
Collapse
Affiliation(s)
- Ricardo Ortiz-Luevano
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Edificio R, Ciudad Universitaria, 58030, Morelia, Michoacán, México.,Laboratorio de Genómica Evolutiva, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Campus II, 98066, Zacatecas, Zacatecas, México
| | - José López-Bucio
- Instituto de Investigaciones Quıímico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, 58030, Morelia, Michoacán, México
| | - Miguel Martínez-Trujillo
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Edificio R, Ciudad Universitaria, 58030, Morelia, Michoacán, México
| | - Lenin Sánchez-Calderón
- Laboratorio de Genómica Evolutiva, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Campus II, 98066, Zacatecas, Zacatecas, México.
| |
Collapse
|
7
|
Garrido-Vargas F, Godoy T, Tejos R, O’Brien JA. Overexpression of the Auxin Receptor AFB3 in Arabidopsis Results in Salt Stress Resistance and the Modulation of NAC4 and SZF1. Int J Mol Sci 2020; 21:ijms21249528. [PMID: 33333760 PMCID: PMC7765236 DOI: 10.3390/ijms21249528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022] Open
Abstract
Soil salinity is a key problem for crop production worldwide. High salt concentration in soil negatively modulates plant growth and development. In roots, salinity affects the growth and development of both primary and lateral roots. The phytohormone auxin regulates various developmental processes during the plant’s life cycle, including several aspects of root architecture. Auxin signaling involves the perception by specialized receptors which module several regulatory pathways. Despite their redundancy, previous studies have shown that their functions can also be context-specific depending on tissue, developmental or environmental cues. Here we show that the over-expression of Auxin Signaling F-Box 3 receptor results in an increased resistance to salinity in terms of root architecture and germination. We also studied possible downstream signaling components to further characterize the role of auxin in response to salt stress. We identify the transcription factor SZF1 as a key component in auxin-dependent salt stress response through the regulation of NAC4. These results give lights of an auxin-dependent mechanism that leads to the modulation of root system architecture in response to salt identifying a hormonal cascade important for stress response.
Collapse
Affiliation(s)
- Fernanda Garrido-Vargas
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
| | - Tamara Godoy
- Laboratorio de Biotecnología Celular, Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique 1100000, Chile; (T.G.); (R.T.)
| | - Ricardo Tejos
- Laboratorio de Biotecnología Celular, Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique 1100000, Chile; (T.G.); (R.T.)
| | - José Antonio O’Brien
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence:
| |
Collapse
|
8
|
Ahammed GJ, Gantait S, Mitra M, Yang Y, Li X. Role of ethylene crosstalk in seed germination and early seedling development: A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:124-131. [PMID: 32220785 DOI: 10.1016/j.plaphy.2020.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 05/20/2023]
Abstract
Seed germination and early seedling development are two critical phases in plant lifecycle that largely determine crop yield. Phytohormones play an essential role in governing these developmental processes; of these, ethylene (ET; C2H4), the smallest gaseous hormone, plays a major role via crosstalk with other hormones. Typically, the mechanism of hormone (for instance, auxin, cytokinins, ET, and gibberellins) action is determined by cellular context, revealing either synergistic or antagonistic relations. Significant progress has been made, so far, on unveiling ET crosstalk with other hormones and environmental signals, such as light. In particular, stimulatory and inhibitory effects of ET on hypocotyl growth in light and dark, respectively, and its interaction with other hormones provide an ideal model to study the growth-regulatory pathways. In this review, we aim at exploring the mechanisms of multifarious phenomena that occur via ET crosstalk during the germination of seeds (overcoming dormancy), and all through the development of seedlings. Understanding the remarkably complex mechanism of ET crosstalk that emerges from the interaction between hormones and other molecular players to modulate plant growth, remains a challenge in plant developmental biology.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- College of Forestry, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, PR China.
| | - Saikat Gantait
- Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Monisha Mitra
- Department of Agricultural Biotechnology, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Youxin Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China.
| |
Collapse
|
9
|
Wang X, Yu R, Wang J, Lin Z, Han X, Deng Z, Fan L, He H, Deng XW, Chen H. The Asymmetric Expression of SAUR Genes Mediated by ARF7/19 Promotes the Gravitropism and Phototropism of Plant Hypocotyls. Cell Rep 2020; 31:107529. [PMID: 32320660 DOI: 10.1016/j.celrep.2020.107529] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/21/2020] [Accepted: 03/27/2020] [Indexed: 10/24/2022] Open
Abstract
The asymmetric distribution of auxin leads to the bending growth of hypocotyls during gravitropic and phototropic responses, but the signaling events downstream of auxin remain unclear. Here, we identify many SAUR genes showing asymmetric expression in soybean hypocotyls during gravistimulation and then study their homologs in Arabidopsis. SAUR19 subfamily genes have asymmetric expression in Arabidopsis hypocotyls during gravitropic and phototropic responses, induced by the lateral redistribution of auxin. Both the mutation of SAUR19 subfamily genes and the ectopic expression of SAUR19 weaken these tropic responses, indicating the critical role of their asymmetric expression. The auxin-responsive transcription factor ARF7 may directly bind the SAUR19 promoter and activate SAUR19 expression asymmetrically in tropic responses. Taken together, our results reveal that a gravity- or light-triggered asymmetric auxin distribution induces the asymmetric expression of SAUR19 subfamily genes by ARF7 and ARF19 in the hypocotyls, which leads to bending growth during gravitropic and phototropic responses.
Collapse
Affiliation(s)
- Xiaoyi Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Renbo Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jiajun Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zechuan Lin
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xue Han
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhaoguo Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Liumin Fan
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hang He
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Haodong Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
10
|
CRK5 Protein Kinase Contributes to the Progression of Embryogenesis of Arabidopsis thaliana. Int J Mol Sci 2019; 20:ijms20246120. [PMID: 31817249 PMCID: PMC6941128 DOI: 10.3390/ijms20246120] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 12/26/2022] Open
Abstract
The fine tuning of hormone (e.g., auxin and gibberellin) levels and hormone signaling is required for maintaining normal embryogenesis. Embryo polarity, for example, is ensured by the directional movement of auxin that is controlled by various types of auxin transporters. Here, we present pieces of evidence for the auxin-gibberellic acid (GA) hormonal crosstalk during embryo development and the regulatory role of the Arabidopsis thaliana Calcium-Dependent Protein Kinase-Related Kinase 5 (AtCRK5) in this regard. It is pointed out that the embryogenesis of the Atcrk5-1 mutant is delayed in comparison to the wild type. This delay is accompanied with a decrease in the levels of GA and auxin, as well as the abundance of the polar auxin transport (PAT) proteins PIN1, PIN4, and PIN7 in the mutant embryos. We have previously showed that AtCRK5 can regulate the PIN2 and PIN3 proteins either directly by phosphorylation or indirectly affecting the GA level during the root gravitropic and hypocotyl hook bending responses. In this manuscript, we provide evidence that the AtCRK5 protein kinase can in vitro phosphorylate the hydrophilic loops of additional PIN proteins that are important for embryogenesis. We propose that AtCRK5 can govern embryo development in Arabidopsis through the fine tuning of auxin-GA level and the accumulation of certain polar auxin transport proteins.
Collapse
|
11
|
Nakamura M, Nishimura T, Morita MT. Bridging the gap between amyloplasts and directional auxin transport in plant gravitropism. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:54-60. [PMID: 31446250 DOI: 10.1016/j.pbi.2019.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/14/2019] [Accepted: 07/09/2019] [Indexed: 05/25/2023]
Abstract
Gravitropism is the directional control of plant organ growth in response to gravity. Specialized gravity-sensing cells contain amyloplasts that can change their position according to the direction of gravity. Gravity signaling, which is elicited by the relocation of amyloplasts, is a key process that redirects auxin transport from gravity-sensing cells to the lower flank of gravity-responsive organs. Despite the long history of research on plant gravitropism, a molecular detail of gravity signaling remained unexplained. Recent studies have characterized the Arabidopsis LAZY1 family genes to be key factors of gravity signaling. Furthermore, studies regarding Arabidopsis AGCVIII kinases have demonstrated the requirement of auxin transporter PIN-FORMED3 (PIN3) phosphorylation in plant gravitropism.
Collapse
Affiliation(s)
- Moritaka Nakamura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Takeshi Nishimura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki, 444-8585, Japan; Department of Basic Biology, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki, 444-8585, Japan; Department of Basic Biology, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan.
| |
Collapse
|
12
|
Baba AI, Andrási N, Valkai I, Gorcsa T, Koczka L, Darula Z, Medzihradszky KF, Szabados L, Fehér A, Rigó G, Cséplő Á. AtCRK5 Protein Kinase Exhibits a Regulatory Role in Hypocotyl Hook Development during Skotomorphogenesis. Int J Mol Sci 2019; 20:ijms20143432. [PMID: 31336871 PMCID: PMC6678082 DOI: 10.3390/ijms20143432] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Seedling establishment following germination requires the fine tuning of plant hormone levels including that of auxin. Directional movement of auxin has a central role in the associated processes, among others, in hypocotyl hook development. Regulated auxin transport is ensured by several transporters (PINs, AUX1, ABCB) and their tight cooperation. Here we describe the regulatory role of the Arabidopsis thaliana CRK5 protein kinase during hypocotyl hook formation/opening influencing auxin transport and the auxin-ethylene-GA hormonal crosstalk. It was found that the Atcrk5-1 mutant exhibits an impaired hypocotyl hook establishment phenotype resulting only in limited bending in the dark. The Atcrk5-1 mutant proved to be deficient in the maintenance of local auxin accumulation at the concave side of the hypocotyl hook as demonstrated by decreased fluorescence of the auxin sensor DR5::GFP. Abundance of the polar auxin transport (PAT) proteins PIN3, PIN7, and AUX1 were also decreased in the Atcrk5-1 hypocotyl hook. The AtCRK5 protein kinase was reported to regulate PIN2 protein activity by phosphorylation during the root gravitropic response. Here it is shown that AtCRK5 can also phosphorylate in vitro the hydrophilic loops of PIN3. We propose that AtCRK5 may regulate hypocotyl hook formation in Arabidopsis thaliana through the phosphorylation of polar auxin transport (PAT) proteins, the fine tuning of auxin transport, and consequently the coordination of auxin-ethylene-GA levels.
Collapse
Affiliation(s)
- Abu Imran Baba
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| | - Norbert Andrási
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Ildikó Valkai
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Teréz Gorcsa
- Agricultural Biotechnology Institute, Szent-Györgyi Albert u. 4, H-2100 Gödöllő, Hungary
| | - Lilla Koczka
- Developmental and Cell Biology of Plants, CEITEC Masaryk University, 62500 Brno, Czech Republic
| | - Zsuzsanna Darula
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Katalin F Medzihradszky
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Attila Fehér
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
- Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary
| | - Gábor Rigó
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
- Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary.
| | - Ágnes Cséplő
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| |
Collapse
|
13
|
Zemlyanskaya EV, Omelyanchuk NA, Ubogoeva EV, Mironova VV. Deciphering Auxin-Ethylene Crosstalk at a Systems Level. Int J Mol Sci 2018; 19:ijms19124060. [PMID: 30558241 PMCID: PMC6321013 DOI: 10.3390/ijms19124060] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 01/17/2023] Open
Abstract
The auxin and ethylene pathways cooperatively regulate a variety of developmental processes in plants. Growth responses to ethylene are largely dependent on auxin, the key regulator of plant morphogenesis. Auxin, in turn, is capable of inducing ethylene biosynthesis and signaling, making the interaction of these hormones reciprocal. Recent studies discovered a number of molecular events underlying auxin-ethylene crosstalk. In this review, we summarize the results of fine-scale and large-scale experiments on the interactions between the auxin and ethylene pathways in Arabidopsis. We integrate knowledge on molecular crosstalk events, their tissue specificity, and associated phenotypic responses to decipher the crosstalk mechanisms at a systems level. We also discuss the prospects of applying systems biology approaches to study the mechanisms of crosstalk between plant hormones.
Collapse
Affiliation(s)
- Elena V Zemlyanskaya
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia.
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Nadya A Omelyanchuk
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia.
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Elena V Ubogoeva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia.
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Victoria V Mironova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia.
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
14
|
Serrano-Mislata A, Sablowski R. The pillars of land plants: new insights into stem development. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:11-17. [PMID: 29763857 PMCID: PMC6250904 DOI: 10.1016/j.pbi.2018.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/12/2018] [Accepted: 04/27/2018] [Indexed: 05/22/2023]
Abstract
In spite of its central importance in evolution, plant architecture and crop improvement, stem development remains poorly understood relative to other plant organs. Here, we summarise current knowledge of stem ontogenesis and its regulation, including insights from new image analysis and biophysical approaches. The stem initiates in the rib zone (RZ) of the shoot apical meristem, under transcriptional control by DELLA and BLH proteins. Links have emerged between these regulators and cell proliferation, patterning and oriented growth in the RZ. During subsequent internode elongation, cell wall properties and mechanics have been analysed in detail, revealing pectin modification as a prominent control point. Recent work has also highlighted signalling to coordinate growth of stem tissues with different mechanical properties.
Collapse
Affiliation(s)
| | - Robert Sablowski
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
15
|
Zhang N, Yu H, Yu H, Cai Y, Huang L, Xu C, Xiong G, Meng X, Wang J, Chen H, Liu G, Jing Y, Yuan Y, Liang Y, Li S, Smith SM, Li J, Wang Y. A Core Regulatory Pathway Controlling Rice Tiller Angle Mediated by the LAZY1-Dependent Asymmetric Distribution of Auxin. THE PLANT CELL 2018; 30:1461-1475. [PMID: 29915152 PMCID: PMC6096585 DOI: 10.1105/tpc.18.00063] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/08/2018] [Accepted: 06/15/2018] [Indexed: 05/18/2023]
Abstract
Tiller angle in cereals is a key shoot architecture trait that strongly influences grain yield. Studies in rice (Oryza sativa) have implicated shoot gravitropism in the regulation of tiller angle. However, the functional link between shoot gravitropism and tiller angle is unknown. Here, we conducted a large-scale transcriptome analysis of rice shoots in response to gravistimulation and identified two new nodes of a shoot gravitropism regulatory gene network that also controls rice tiller angle. We demonstrate that HEAT STRESS TRANSCRIPTION FACTOR 2D (HSFA2D) is an upstream positive regulator of the LAZY1-mediated asymmetric auxin distribution pathway. We also show that two functionally redundant transcription factor genes, WUSCHEL RELATED HOMEOBOX6 (WOX6) and WOX11, are expressed asymmetrically in response to auxin to connect gravitropism responses with the control of rice tiller angle. These findings define upstream and downstream genetic components that link shoot gravitropism, asymmetric auxin distribution, and rice tiller angle. The results highlight the power of the high-temporal-resolution RNA-seq data set and its use to explore further genetic components controlling tiller angle. Collectively, these approaches will identify genes to improve grain yields by facilitating the optimization of plant architecture.
Collapse
Affiliation(s)
- Ning Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yueyue Cai
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Linzhou Huang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Cao Xu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guosheng Xiong
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiyao Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Haofeng Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhui Jing
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yundong Yuan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Liang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shujia Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Steven M Smith
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
16
|
Baba AI, Rigó G, Ayaydin F, Rehman AU, Andrási N, Zsigmond L, Valkai I, Urbancsok J, Vass I, Pasternak T, Palme K, Szabados L, Cséplő Á. Functional Analysis of the Arabidopsis thaliana CDPK-Related Kinase Family: At CRK1 Regulates Responses to Continuous Light. Int J Mol Sci 2018; 19:ijms19051282. [PMID: 29693594 PMCID: PMC5983578 DOI: 10.3390/ijms19051282] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/12/2018] [Accepted: 04/22/2018] [Indexed: 12/24/2022] Open
Abstract
The Calcium-Dependent Protein Kinase (CDPK)-Related Kinase family (CRKs) consists of eight members in Arabidopsis. Recently, AtCRK5 was shown to play a direct role in the regulation of root gravitropic response involving polar auxin transport (PAT). However, limited information is available about the function of the other AtCRK genes. Here, we report a comparative analysis of the Arabidopsis CRK genes, including transcription regulation, intracellular localization, and biological function. AtCRK transcripts were detectable in all organs tested and a considerable variation in transcript levels was detected among them. Most AtCRK proteins localized at the plasma membrane as revealed by microscopic analysis of 35S::cCRK-GFP (Green Fluorescence Protein) expressing plants or protoplasts. Interestingly, 35S::cCRK1-GFP and 35S::cCRK7-GFP had a dual localization pattern which was associated with plasma membrane and endomembrane structures, as well. Analysis of T-DNA insertion mutants revealed that AtCRK genes are important for root growth and control of gravitropic responses in roots and hypocotyls. While Atcrk mutants were indistinguishable from wild type plants in short days, Atcrk1-1 mutant had serious growth defects under continuous illumination. Semi-dwarf phenotype of Atcrk1-1 was accompanied with chlorophyll depletion, disturbed photosynthesis, accumulation of singlet oxygen, and enhanced cell death in photosynthetic tissues. AtCRK1 is therefore important to maintain cellular homeostasis during continuous illumination.
Collapse
Affiliation(s)
- Abu Imran Baba
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary.
| | - Gábor Rigó
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
- Department of Plant Biology, University of Szeged, 6726 Szeged, Hungary.
| | - Ferhan Ayaydin
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Ateeq Ur Rehman
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Norbert Andrási
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Laura Zsigmond
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Ildikó Valkai
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - János Urbancsok
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway.
| | - Imre Vass
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Taras Pasternak
- Faculty of Biologie II, Albert-Ludwigs Universität, Schänzlestr. 1, 79104 Freiburg, Germany.
| | - Klaus Palme
- Faculty of Biologie II, Albert-Ludwigs Universität, Schänzlestr. 1, 79104 Freiburg, Germany.
| | - László Szabados
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Ágnes Cséplő
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| |
Collapse
|
17
|
A Novel G-Protein-Coupled Receptors Gene from Upland Cotton Enhances Salt Stress Tolerance in Transgenic Arabidopsis. Genes (Basel) 2018; 9:genes9040209. [PMID: 29649144 PMCID: PMC5924551 DOI: 10.3390/genes9040209] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 11/17/2022] Open
Abstract
Plants have developed a number of survival strategies which are significant for enhancing their adaptation to various biotic and abiotic stress factors. At the transcriptome level, G-protein-coupled receptors (GPCRs) are of great significance, enabling the plants to detect a wide range of endogenous and exogenous signals which are employed by the plants in regulating various responses in development and adaptation. In this research work, we carried out genome-wide analysis of target of Myb1 (TOM1), a member of the GPCR gene family. The functional role of TOM1 in salt stress tolerance was studied using a transgenic Arabidopsis plants over-expressing the gene. By the use of the functional domain PF06454, we obtained 16 TOM genes members in Gossypium hirsutum, 9 in Gossypium arboreum, and 11 in Gossypium raimondii. The genes had varying physiochemical properties, and it is significant to note that all the grand average of hydropathy (GRAVY) values were less than one, indicating that all are hydrophobic in nature. In all the genes analysed here, both the exonic and intronic regions were found. The expression level of Gh_A07G0747 (GhTOM) was significantly high in the transgenic lines as compared to the wild type; a similar trend in expression was observed in all the salt-related genes tested in this study. The study in epidermal cells confirmed the localization of the protein coded by the gene TOM1 in the plasma membrane. Analysis of anti-oxidant enzymes showed higher concentrations of antioxidants in transgenic lines and relatively lower levels of oxidant substances such as H₂O₂. The low malondialdehyde (MDA) level in transgenic lines indicated that the transgenic lines had relatively low level of oxidative damage compared to the wild types. The results obtained indicate that Gh_A07G0747 (GhTOM) can be a putative target gene for enhancing salt stress tolerance in plants and could be exploited in the future for the development of salt stress-tolerant cotton cultivars.
Collapse
|
18
|
Harmer SL, Brooks CJ. Growth-mediated plant movements: hidden in plain sight. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:89-94. [PMID: 29107827 PMCID: PMC5826749 DOI: 10.1016/j.pbi.2017.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 05/18/2023]
Abstract
While fast plant movements are spectacular but rare, almost all plants exhibit relatively slow, growth-mediated tropic movements that are key to their survival in the natural world. In this brief review, we discuss recent insights into the molecular mechanisms underlying phototropism, gravitropism, hydrotropism, and autostraightening. Careful molecular genetic and physiological studies have helped confirm the importance of lateral auxin gradients in gravitropic and phototropic responses. However, auxin signaling does not explain all tropisms: recent work has shown that abscisic acid signaling mediates root hydrotropism and has implicated mechanosensing in autostraightening, the organ straightening process recently modeled as a proprioceptive response. The interactions between distinct tropic signaling pathways and other internal and external sensory processes are also now being untangled.
Collapse
Affiliation(s)
- Stacey L Harmer
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Christopher J Brooks
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
19
|
Taniguchi M, Furutani M, Nishimura T, Nakamura M, Fushita T, Iijima K, Baba K, Tanaka H, Toyota M, Tasaka M, Morita MT. The Arabidopsis LAZY1 Family Plays a Key Role in Gravity Signaling within Statocytes and in Branch Angle Control of Roots and Shoots. THE PLANT CELL 2017; 29:1984-1999. [PMID: 28765510 PMCID: PMC5590491 DOI: 10.1105/tpc.16.00575] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/29/2017] [Accepted: 07/21/2017] [Indexed: 05/18/2023]
Abstract
During gravitropism, the directional signal of gravity is perceived by gravity-sensing cells called statocytes, leading to asymmetric distribution of auxin in the responding organs. To identify the genes involved in gravity signaling in statocytes, we performed transcriptome analyses of statocyte-deficient Arabidopsis thaliana mutants and found two candidates from the LAZY1 family, AtLAZY1/LAZY1-LIKE1 (LZY1) and AtDRO3/AtNGR1/LZY2 We showed that LZY1, LZY2, and a paralog AtDRO1/AtNGR2/LZY3 are redundantly involved in gravitropism of the inflorescence stem, hypocotyl, and root. Mutations of LZY genes affected early processes in gravity signal transduction without affecting amyloplast sedimentation. Statocyte-specific expression of LZY genes rescued the mutant phenotype, suggesting that LZY genes mediate gravity signaling in statocytes downstream of amyloplast displacement, leading to the generation of asymmetric auxin distribution in gravity-responding organs. We also found that lzy mutations reversed the growth angle of lateral branches and roots. Moreover, expression of the conserved C-terminal region of LZY proteins also reversed the growth direction of primary roots in the lzy mutant background. In lateral root tips of lzy multiple mutants, asymmetric distribution of PIN3 and auxin response were reversed, suggesting that LZY genes regulate the direction of polar auxin transport in response to gravity through the control of asymmetric PIN3 expression in the root cap columella.
Collapse
Affiliation(s)
- Masatoshi Taniguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | - Masahiko Furutani
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | - Takeshi Nishimura
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | - Moritaka Nakamura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Toyohito Fushita
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Kohta Iijima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Kenichiro Baba
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Hirokazu Tanaka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, Sakura-ku, Saitama 338-8570, Japan
| | - Masao Tasaka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Miyo Terao Morita
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
20
|
Hu Y, Depaepe T, Smet D, Hoyerova K, Klíma P, Cuypers A, Cutler S, Buyst D, Morreel K, Boerjan W, Martins J, Petrášek J, Vandenbussche F, Van Der Straeten D. ACCERBATIN, a small molecule at the intersection of auxin and reactive oxygen species homeostasis with herbicidal properties. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4185-4203. [PMID: 28922768 PMCID: PMC5853866 DOI: 10.1093/jxb/erx242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/22/2017] [Indexed: 05/30/2023]
Abstract
The volatile two-carbon hormone ethylene acts in concert with an array of signals to affect etiolated seedling development. From a chemical screen, we isolated a quinoline carboxamide designated ACCERBATIN (AEX) that exacerbates the 1-aminocyclopropane-1-carboxylic acid-induced triple response, typical for ethylene-treated seedlings in darkness. Phenotypic analyses revealed distinct AEX effects including inhibition of root hair development and shortening of the root meristem. Mutant analysis and reporter studies further suggested that AEX most probably acts in parallel to ethylene signaling. We demonstrated that AEX functions at the intersection of auxin metabolism and reactive oxygen species (ROS) homeostasis. AEX inhibited auxin efflux in BY-2 cells and promoted indole-3-acetic acid (IAA) oxidation in the shoot apical meristem and cotyledons of etiolated seedlings. Gene expression studies and superoxide/hydrogen peroxide staining further revealed that the disrupted auxin homeostasis was accompanied by oxidative stress. Interestingly, in light conditions, AEX exhibited properties reminiscent of the quinoline carboxylate-type auxin-like herbicides. We propose that AEX interferes with auxin transport from its major biosynthesis sites, either as a direct consequence of poor basipetal transport from the shoot meristematic region, or indirectly, through excessive IAA oxidation and ROS accumulation. Further investigation of AEX can provide new insights into the mechanisms connecting auxin and ROS homeostasis in plant development and provide useful tools to study auxin-type herbicides.
Collapse
Affiliation(s)
- Yuming Hu
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat, Ghent, Belgium
| | - Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat, Ghent, Belgium
| | - Dajo Smet
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat, Ghent, Belgium
| | - Klara Hoyerova
- Institute of Experimental Botany ASCR, Praha, Czech Republic
| | - Petr Klíma
- Institute of Experimental Botany ASCR, Praha, Czech Republic
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek, Belgium
| | - Sean Cutler
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Dieter Buyst
- NMR and Structure Analysis, Department of Organic Chemistry, Krijgslaan, Ghent, Belgium
| | - Kris Morreel
- Department of Plant Systems Biology, VIB (Flanders Institute for Biotechnology), Technologiepark, Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB (Flanders Institute for Biotechnology), Technologiepark, Ghent, Belgium
| | - José Martins
- NMR and Structure Analysis, Department of Organic Chemistry, Krijgslaan, Ghent, Belgium
| | - Jan Petrášek
- Institute of Experimental Botany ASCR, Praha, Czech Republic
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat, Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat, Ghent, Belgium
| |
Collapse
|
21
|
Kupriyanova EV, Albert EV, Bliznina AI, Mamoshina PO, Ezhova TA. Arabidopsis DNA topoisomerase I alpha is required for adaptive response to light and flower development. Biol Open 2017; 6:832-843. [PMID: 28495963 PMCID: PMC5483022 DOI: 10.1242/bio.024422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA topoisomerase I alpha (TOP1α) plays a specific role in Arabidopsis thaliana development and is required for stem cell regulation in shoot and floral meristems. Recently, a new role independent of meristem functioning has been described for TOP1α, namely flowering time regulation. The same feature had been detected by us earlier for fas5, a mutant allele of TOP1α. In this study we clarify the effects of fas5 on bolting initiation and analyze the molecular basis of its role on flowering time regulation. We show that fas5 mutation leads to a constitutive shade avoidance syndrome, accompanied by leaf hyponasty, petiole elongation, lighter leaf color and early bolting. Other alleles of TOP1α demonstrate the same shade avoidance response. RNA sequencing confirmed the activation of shade avoidance gene pathways in fas5 mutant plants. It also revealed the repression of many genes controlling floral meristem identity and organ morphogenesis. Our research further expands the knowledge of TOP1α function in plant development and reveals that besides stem cell maintenance TOP1α plays an important new role in regulating the adaptive plant response to light stimulus and flower development. Summary: This study expands upon the existing knowledge of Arabidopsis DNA topoisomerase gene TOP1α function in plant development and demonstrates its important new role in regulating shade response and flower development.
Collapse
Affiliation(s)
- Evgenia V Kupriyanova
- Department of Genetics, Faculty of Biology, Lomonosov Moscow State University, 119234, Leninskiye Gory 1/12, Moscow 119234, Russia
| | - Evgeniy V Albert
- Department of Genetics, Faculty of Biology, Lomonosov Moscow State University, 119234, Leninskiye Gory 1/12, Moscow 119234, Russia
| | - Aleksandra I Bliznina
- Department of Genetics, Faculty of Biology, Lomonosov Moscow State University, 119234, Leninskiye Gory 1/12, Moscow 119234, Russia
| | - Polina O Mamoshina
- Department of Genetics, Faculty of Biology, Lomonosov Moscow State University, 119234, Leninskiye Gory 1/12, Moscow 119234, Russia
| | - Tatiana A Ezhova
- Department of Genetics, Faculty of Biology, Lomonosov Moscow State University, 119234, Leninskiye Gory 1/12, Moscow 119234, Russia
| |
Collapse
|
22
|
Hu Y, Vandenbussche F, Van Der Straeten D. Regulation of seedling growth by ethylene and the ethylene-auxin crosstalk. PLANTA 2017; 245:467-489. [PMID: 28188422 DOI: 10.1007/s00425-017-2651-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/08/2017] [Indexed: 05/06/2023]
Abstract
This review highlights that the auxin gradient, established by local auxin biosynthesis and transport, can be controlled by ethylene, and steers seedling growth. A better understanding of the mechanisms in Arabidopsis will increase potential applications in crop species. In dark-grown Arabidopsis seedlings, exogenous ethylene treatment triggers an exaggeration of the apical hook, the inhibition of both hypocotyl and root elongation, and radial swelling of the hypocotyl. These features are predominantly based on the differential cell elongation in different cells/tissues mediated by an auxin gradient. Interestingly, the physiological responses regulated by ethylene and auxin crosstalk can be either additive or synergistic, as in primary root and root hair elongation, or antagonistic, as in hypocotyl elongation. This review focuses on the crosstalk of these two hormones at the seedling stage. Before illustrating the crosstalk, ethylene and auxin biosynthesis, metabolism, transport and signaling are briefly discussed.
Collapse
Affiliation(s)
- Yuming Hu
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium.
| |
Collapse
|
23
|
Zhu R, Dong X, Hao W, Gao W, Zhang W, Xia S, Liu T, Shang Z. Heterotrimeric G Protein-Regulated Ca 2+ Influx and PIN2 Asymmetric Distribution Are Involved in Arabidopsis thaliana Roots' Avoidance Response to Extracellular ATP. FRONTIERS IN PLANT SCIENCE 2017; 8:1522. [PMID: 28919907 PMCID: PMC5585194 DOI: 10.3389/fpls.2017.01522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/18/2017] [Indexed: 05/04/2023]
Abstract
Extracellular ATP (eATP) has been reported to be involved in plant growth as a primary messenger in the apoplast. Here, roots of Arabidopsis thaliana seedlings growing in jointed medium bent upon contact with ATP-containing medium to keep away from eATP, showing a marked avoidance response. Roots responded similarly to ADP and bz-ATP but did not respond to AMP and GTP. The eATP avoidance response was reduced in loss-of-function mutants of heterotrimeric G protein α subunit (Gα) (gpa1-1 and gpa1-2) and enhanced in Gα-over-expression (OE) lines (wGα and cGα). Ethylenebis(oxyethylenenitrilo) tetraacetic acid (EGTA) and Gd3+ remarkably suppressed eATP-induced root bending. ATP-stimulated Ca2+ influx was impaired in Gα null mutants and increased in its OE lines. DR5-GFP and PIN2 were asymmetrically distributed in ATP-stimulated root tips, this effect was strongly suppressed by EGTA and diminished in Gα null mutants. In addition, some eATP-induced genes' expression was also impaired in Gα null mutants. Based on these results, we propose that heterotrimeric Gα-regulated Ca2+ influx and PIN2 distribution may be key signaling events in eATP sensing and avoidance response in Arabidopsis thaliana roots.
Collapse
|
24
|
Zhang Y, Yu Q, Jiang N, Yan X, Wang C, Wang Q, Liu J, Zhu M, Bednarek SY, Xu J, Pan J. Clathrin regulates blue light-triggered lateral auxin distribution and hypocotyl phototropism in Arabidopsis. PLANT, CELL & ENVIRONMENT 2017; 40:165-176. [PMID: 27770560 DOI: 10.1111/pce.12854] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 05/20/2023]
Abstract
Phototropism is the process by which plants grow towards light in order to maximize the capture of light for photosynthesis, which is particularly important for germinating seedlings. In Arabidopsis, hypocotyl phototropism is predominantly triggered by blue light (BL), which has a profound effect on the establishment of asymmetric auxin distribution, essential for hypocotyl phototropism. Two auxin efflux transporters ATP-binding cassette B19 (ABCB19) and PIN-formed 3 (PIN3) are known to mediate the effect of BL on auxin distribution in the hypocotyl, but the details for how BL triggers PIN3 lateralization remain poorly understood. Here, we report a critical role for clathrin in BL-triggered, PIN3-mediated asymmetric auxin distribution in hypocotyl phototropism. We show that unilateral BL induces relocalization of clathrin in the hypocotyl. Loss of clathrin light chain 2 (CLC2) and CLC3 affects endocytosis and lateral distribution of PIN3 thereby impairing BL-triggered establishment of asymmetric auxin distribution and consequently, phototropic bending. Conversely, auxin efflux inhibitors N-1-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid affect BL-induced relocalization of clathrin, endocytosis and lateralization of PIN3 as well as asymmetric distribution of auxin. These results together demonstrate an important interplay between auxin and clathrin function that dynamically regulates BL-triggered hypocotyl phototropism in Arabidopsis.
Collapse
Affiliation(s)
- Ying Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Qinqin Yu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Nan Jiang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xu Yan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Chao Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Qingmei Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jianzhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Muyuan Zhu
- Institute of Genetics, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sebastian Y Bednarek
- Department of Biochemistry, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Jian Xu
- Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Jianwei Pan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
25
|
Zhu Q, Žádníková P, Smet D, Van Der Straeten D, Benková E. Real-Time Analysis of the Apical Hook Development. Methods Mol Biol 2017; 1497:1-8. [PMID: 27864752 DOI: 10.1007/978-1-4939-6469-7_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mechanisms for cell protection are essential for survival of multicellular organisms. In plants, the apical hook, which is transiently formed in darkness when the germinating seedling penetrates towards the soil surface, plays such protective role and shields the vitally important shoot apical meristem and cotyledons from damage. The apical hook is formed by bending of the upper hypocotyl soon after germination, and it is maintained in a closed stage while the hypocotyl continues to penetrate through the soil and rapidly opens when exposed to light in proximity of the soil surface. To uncover the complex molecular network orchestrating this spatiotemporally tightly coordinated process, monitoring of the apical hook development in real time is indispensable. Here we describe an imaging platform that enables high-resolution kinetic analysis of this dynamic developmental process.
Collapse
Affiliation(s)
- Qiang Zhu
- Department of Life Sciences, Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Petra Žádníková
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Dajo Smet
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent University, Ghent, Belgium
| | | | - Eva Benková
- Department of Life Sciences, Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria.
| |
Collapse
|
26
|
Takahashi-Asami M, Shichijo C, Tsurumi S, Hashimoto T. Ethylene Is Not Responsible for Phytochrome-Mediated Apical Hook Exaggeration in Tomato. FRONTIERS IN PLANT SCIENCE 2016; 7:1756. [PMID: 27933077 PMCID: PMC5120132 DOI: 10.3389/fpls.2016.01756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
The apical hook of tomato seedlings is exaggerated by phytochrome actions, while in other species such as bean, pea and Arabidopsis, the hook is exaggerated by ethylene and opens by phytochrome actions. The present study was aimed to clarify mainly whether ethylene is responsible for the phytochrome-mediated hook exaggeration of tomato seedlings. Dark-grown 5-day-old seedlings were subjected to various ways of ethylene application in the dark as well as under the actions of red (R) or far-red light (FR). The ethylene emitted by seedlings was also quantified relative to hook exaggeration. The results show: Ambient ethylene, up-to about 1.0 μL L-1, suppressed (opened) the hooks formed in the dark as well as the ones exaggerated by R or FR, while at 3.0-10 μL L-1 it enhanced (closed) the hook only slightly as compared with the most-suppressed level at about 1.0 μL L-1. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene biosynthesis, did not enhance the hook, only mimicking the suppressive effects of ambient ethylene. The biosynthesis inhibitor, CoCl2 or aminoethoxyvinylglycine, enhanced hook curvature, and the enhancement was canceled by supplement of ethylene below 1.0 μL L-1. Auxin transport inhibitor, N-1-naphthylphthalamic acid, by contrast, suppressed curvature markedly without altering ethylene emission. The effects of the above-stated treatments did not differentiate qualitatively among the R-, FR-irradiated seedlings and dark control so as to explain phytochrome-mediated hook exaggeration. In addition, ethylene emission by seedlings was affected neither by R nor FR at such fluences as to cause hook exaggeration. In conclusion, (1) ethylene suppresses not only the light-exaggerated hook, but also the dark-formed one; (2) ethylene emission is not affected by R or FR, and also not correlated with the hook exaggerations; thus ethylene is not responsible for the hook exaggeration in tomato; and (3) auxin is essential for the maintenance and development of the hook in tomato as is the case in other species lacking phytochrome-mediated hook exaggeration. A possible mechanism of phytochrome action for hook exaggeration is discussed.
Collapse
Affiliation(s)
- Miki Takahashi-Asami
- Plant Physiology, Department of Biology, Graduate School of Science, Kobe UniversityKobe, Japan
| | - Chizuko Shichijo
- Plant Physiology, Department of Biology, Graduate School of Science, Kobe UniversityKobe, Japan
| | - Seiji Tsurumi
- Center for Supports to Research and Education Activities, Kobe UniversityKobe, Japan
| | | |
Collapse
|
27
|
PPP1, a plant-specific regulator of transcription controls Arabidopsis development and PIN expression. Sci Rep 2016; 6:32196. [PMID: 27553690 PMCID: PMC4995536 DOI: 10.1038/srep32196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/04/2016] [Indexed: 01/31/2023] Open
Abstract
Directional transport of auxin is essential for plant development, with PIN auxin transport proteins representing an integral part of the machinery that controls hormone distribution. However, unlike the rapidly emerging framework of molecular determinants regulating PIN protein abundance and subcellular localization, insights into mechanisms controlling PIN transcription are still limited. Here we describe PIN2 PROMOTER BINDING PROTEIN 1 (PPP1), an evolutionary conserved plant-specific DNA binding protein that acts on transcription of PIN genes. Consistent with PPP1 DNA-binding activity, PPP1 reporter proteins are nuclear localized and analysis of PPP1 null alleles and knockdown lines indicated a function as a positive regulator of PIN expression. Furthermore, we show that ppp1 pleiotropic mutant phenotypes are partially reverted by PIN overexpression, and results are presented that underline a role of PPP1-PIN promoter interaction in PIN expression control. Collectively, our findings identify an elementary, thus far unknown, plant-specific DNA-binding protein required for post-embryonic plant development, in general, and correct expression of PIN genes, in particular.
Collapse
|
28
|
Suzuki H, Yokawa K, Nakano S, Yoshida Y, Fabrissin I, Okamoto T, Baluška F, Koshiba T. Root cap-dependent gravitropic U-turn of maize root requires light-induced auxin biosynthesis via the YUC pathway in the root apex. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4581-91. [PMID: 27307546 PMCID: PMC4973731 DOI: 10.1093/jxb/erw232] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Gravitropism refers to the growth or movement of plants that is influenced by gravity. Roots exhibit positive gravitropism, and the root cap is thought to be the gravity-sensing site. In some plants, the root cap requires light irradiation for positive gravitropic responses. However, the mechanisms regulating this phenomenon are unknown. We herein report that maize roots exposed to white light continuously for ≥1-2h show increased indole-3-acetic acid (IAA) levels in the root tips, especially in the transition zone (1-3mm from the tip). Treatment with IAA biosynthesis inhibitors yucasin and l-kynurenine prevented any increases in IAA content and root curvature under light conditions. Analyses of the incorporation of a stable isotope label from tryptophan into IAA revealed that some of the IAA in roots was synthesized in the root apex. Furthermore, Zmvt2 and Zmyuc gene transcripts were detected in the root apex. One of the Zmyuc genes (ZM2G141383) was up-regulated by light irradiation in the 0-1mm tip region. Our findings suggest that IAA accumulation in the transition zone is due to light-induced activation of Zmyuc gene expression in the 0-1mm root apex region. Light-induced changes in IAA levels and distributions mediate the maize root gravitropic U-turn.
Collapse
Affiliation(s)
- Hiromi Suzuki
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Ken Yokawa
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan IZMB, University of Bonn, D-53115 Bonn, Germany
| | - Sayuri Nakano
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Yuriko Yoshida
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Isabelle Fabrissin
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | | | - Tomokazu Koshiba
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
29
|
Schüler O, Hemmersbach R, Böhmer M. A Bird's-Eye View of Molecular Changes in Plant Gravitropism Using Omics Techniques. FRONTIERS IN PLANT SCIENCE 2015; 6:1176. [PMID: 26734055 PMCID: PMC4689802 DOI: 10.3389/fpls.2015.01176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/08/2015] [Indexed: 05/10/2023]
Abstract
During evolution, plants have developed mechanisms to adapt to a variety of environmental stresses, including drought, high salinity, changes in carbon dioxide levels and pathogens. Central signaling hubs and pathways that are regulated in response to these stimuli have been identified. In contrast to these well studied environmental stimuli, changes in transcript, protein and metabolite levels in response to a gravitational stimulus are less well understood. Amyloplasts, localized in statocytes of the root tip, in mesophyll cells of coleoptiles and in the elongation zone of the growing internodes comprise statoliths in higher plants. Deviations of the statocytes with respect to the earthly gravity vector lead to a displacement of statoliths relative to the cell due to their inertia and thus to gravity perception. Downstream signaling events, including the conversion from the biophysical signal of sedimentation of distinct heavy mass to a biochemical signal, however, remain elusive. More recently, technical advances, including clinostats, drop towers, parabolic flights, satellites, and the International Space Station, allowed researchers to study the effect of altered gravity conditions - real and simulated micro- as well as hypergravity on plants. This allows for a unique opportunity to study plant responses to a purely anthropogenic stress for which no evolutionary program exists. Furthermore, the requirement for plants as food and oxygen sources during prolonged manned space explorations led to an increased interest in the identi-fication of genes involved in the adaptation of plants to microgravity. Transcriptomic, proteomic, phosphoproteomic, and metabolomic profiling strategies provide a sensitive high-throughput approach to identify biochemical alterations in response to changes with respect to the influence of the gravitational vector and thus the acting gravitational force on the transcript, protein and metabolite level. This review aims at summarizing recent experimental approaches and discusses major observations.
Collapse
Affiliation(s)
- Oliver Schüler
- Institute of Aerospace Medicine, Gravitational Biology, German Aerospace CenterCologne, Germany
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms UniversitätMünster, Germany
| | - Ruth Hemmersbach
- Institute of Aerospace Medicine, Gravitational Biology, German Aerospace CenterCologne, Germany
| | - Maik Böhmer
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms UniversitätMünster, Germany
| |
Collapse
|
30
|
Van de Poel B, Smet D, Van Der Straeten D. Ethylene and Hormonal Cross Talk in Vegetative Growth and Development. PLANT PHYSIOLOGY 2015; 169:61-72. [PMID: 26232489 PMCID: PMC4577414 DOI: 10.1104/pp.15.00724] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/29/2015] [Indexed: 05/20/2023]
Abstract
Ethylene is a gaseous plant hormone that most likely became a functional hormone during the evolution of charophyte green algae, prior to land colonization. From this ancient origin, ethylene evolved into an important growth regulator that is essential for myriad plant developmental processes. In vegetative growth, ethylene appears to have a dual role, stimulating and inhibiting growth, depending on the species, tissue, and cell type, developmental stage, hormonal status, and environmental conditions. Moreover, ethylene signaling and response are part of an intricate network in cross talk with internal and external cues. Besides being a crucial factor in the growth control of roots and shoots, ethylene can promote flowering, fruit ripening and abscission, as well as leaf and petal senescence and abscission and, hence, plays a role in virtually every phase of plant life. Last but not least, together with jasmonates, salicylate, and abscisic acid, ethylene is important in steering stress responses.
Collapse
Affiliation(s)
- Bram Van de Poel
- Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
| | - Dajo Smet
- Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|