1
|
Kunjumon TK, Ghosh PP, Currie LMJ, Mathur J. Proximity driven plastid-nucleus relationships are facilitated by tandem plastid-ER dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6275-6294. [PMID: 39034638 PMCID: PMC11523032 DOI: 10.1093/jxb/erae313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Peri-nuclear clustering (PNC) of chloroplasts has largely been described in senescent and pathogen- or reactive oxygen species-stressed cells. Stromules, tubular plastid extensions, are also observed under similar conditions. Coincident observations of PNC and stromules associate the two phenomena in facilitating retrograde signaling between chloroplasts and the nucleus. However, PNC incidence in non-stressed cells under normal growth and developmental conditions, when stromules are usually not observed, remains unclear. Using transgenic Arabidopsis expressing different organelle-targeted fluorescent proteins, we show that PNC is a dynamic subcellular phenomenon that continues in the absence of light and is not dependent on stromule formation. PNC is facilitated by tandem plastid-endoplasmic reticulum (ER) dynamics created through membrane contact sites between the two organelles. While PNC increases upon ER membrane expansion, some plastids may remain in the peri-nuclear region due to their localization in ER-lined nuclear indentions. Moreover, some PNC plastids may sporadically extend stromules into ER-lined nuclear grooves. Our findings strongly indicate that PNC is not an exclusive response to stress caused by pathogens, high light, or exogenous H2O2 treatment, and does not require stromule formation. However, morphological and behavioral alterations in ER and concomitant changes in tandem, plastid-ER dynamics play a major role in facilitating the phenomenon.
Collapse
Affiliation(s)
- Thomas Kadanthottu Kunjumon
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON N1G2W1, Canada
| | - Puja Puspa Ghosh
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON N1G2W1, Canada
| | - Laura M J Currie
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON N1G2W1, Canada
| | - Jaideep Mathur
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON N1G2W1, Canada
| |
Collapse
|
2
|
Liu J, Chustecki JM, Lim BL. Dynamic motion of mitochondria, plastids, and NAD(P)H zoning in Arabidopsis pollen tubes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109132. [PMID: 39316923 DOI: 10.1016/j.plaphy.2024.109132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Pollen tubes consume a tremendous amount of energy and are the fastest-growing cells known in plants. Mitochondria are key organelles that supply energy and play important roles in modulating cellular redox homeostasis. Here, we found that endogenous NAD(P)H in Arabidopsis pollen tubes was spatially highly correlated with the distribution of mitochondria, both peaking in the subapex region. A weak association was also observed between the NAD(P)H levels and pollen plastids. Further studies using Class XI myosin mutants confirmed that altered mitochondrial distribution and trafficking concomitantly affected intracellular NAD(P)H zoning in pollen tubes. By targeting the NADPH- and NADH/NAD+-specific biosensors to the pollen tube cytosol of the myo11c1/myo11c2 double mutants, we showed that the growing pollen tubes in the double mutants possessed a lower level of cytosolic NADPH but a higher cytosolic NADH/NAD+ ratio than the WT. We also found that the knockout of Myo11C1 and Myo11C2 led to fragmented mitochondria with reduced motility. Therefore, altered cytosolic NAD(P)H levels may be secondary to changes in mitochondrial mobility, positioning, or morphology. Our results suggest that the spatial distribution and movement of mitochondria and plastids affect NAD(P)H zoning in Arabidopsis growing pollen tubes and that their movements depend on Class XI myosins.
Collapse
Affiliation(s)
- Jinhong Liu
- School of Biological Sciences, University of Hong Kong, Hong Kong China
| | - Joanna M Chustecki
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong China; HKU Shenzhen Institute of Research and Innovation, Shenzhen, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong China.
| |
Collapse
|
3
|
Chustecki JM, Johnston IG. Collective mitochondrial dynamics resolve conflicting cellular tensions: From plants to general principles. Semin Cell Dev Biol 2024; 156:253-265. [PMID: 38043948 DOI: 10.1016/j.semcdb.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/18/2023] [Accepted: 09/15/2023] [Indexed: 12/05/2023]
Abstract
Mitochondria play diverse and essential roles in eukaryotic cells, and plants are no exception. Plant mitochondria have several differences from their metazoan and fungal cousins: they often exist in a fragmented state, move rapidly on actin rather than microtubules, have many plant-specific metabolic features and roles, and usually contain only a subset of the complete mtDNA genome, which itself undergoes frequent recombination. This arrangement means that exchange and complementation is essential for plant mitochondria, and recent work has begun to reveal how their collective dynamics and resultant "social networks" of encounters support this exchange, connecting plant mitochondria in time rather than in space. This review will argue that this social network perspective can be extended to a "societal network", where mitochondrial dynamics are an essential part of the interacting cellular society of organelles and biomolecules. Evidence is emerging that mitochondrial dynamics allow optimal resolutions to competing cellular priorities; we will survey this evidence and review potential future research directions, highlighting that plant mitochondria can help reveal and test principles that apply across other kingdoms of life. In parallel with this fundamental cell biology, we also highlight the translational "One Health" importance of plant mitochondrial behaviour - which is exploited in the production of a vast amount of crops consumed worldwide - and the potential for multi-objective optimisation to understand and rationally re-engineer the evolved resolutions to these tensions.
Collapse
Affiliation(s)
- Joanna M Chustecki
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Iain G Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway; Computational Biology Unit, University of Bergen, Bergen, Norway.
| |
Collapse
|
4
|
Khan K, Tran HC, Mansuroglu B, Önsell P, Buratti S, Schwarzländer M, Costa A, Rasmusson AG, Van Aken O. Mitochondria-derived reactive oxygen species are the likely primary trigger of mitochondrial retrograde signaling in Arabidopsis. Curr Biol 2024; 34:327-342.e4. [PMID: 38176418 DOI: 10.1016/j.cub.2023.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/28/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
Besides their central function in respiration, plant mitochondria play a crucial role in maintaining cellular homeostasis during stress by providing "retrograde" feedback to the nucleus. Despite the growing understanding of this signaling network, the nature of the signals that initiate mitochondrial retrograde regulation (MRR) in plants remains unknown. Here, we investigated the dynamics and causative relationship of a wide range of mitochondria-related parameters for MRR, using a combination of Arabidopsis fluorescent protein biosensor lines, in vitro assays, and genetic and pharmacological approaches. We show that previously linked physiological parameters, including changes in cytosolic ATP, NADH/NAD+ ratio, cytosolic reactive oxygen species (ROS), pH, free Ca2+, and mitochondrial membrane potential, may often be correlated with-but are not the primary drivers of-MRR induction in plants. However, we demonstrate that the induced production of mitochondrial ROS is the likely primary trigger for MRR induction in Arabidopsis. Furthermore, we demonstrate that mitochondrial ROS-mediated signaling uses the ER-localized ANAC017-pathway to induce MRR response. Finally, our data suggest that mitochondrially generated ROS can induce MRR without substantially leaking into other cellular compartments such as the cytosol or ER lumen, as previously proposed. Overall, our results offer compelling evidence that mitochondrial ROS elevation is the likely trigger of MRR.
Collapse
Affiliation(s)
- Kasim Khan
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Huy Cuong Tran
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Berivan Mansuroglu
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Pinar Önsell
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Stefano Buratti
- Department of Biosciences, University of Milan, Via G. Celoria 26, Milan 20133, Italy
| | - Markus Schwarzländer
- Plant Energy Biology Lab, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Alex Costa
- Department of Biosciences, University of Milan, Via G. Celoria 26, Milan 20133, Italy; Institute of Biophysics, Consiglio Nazionale delle Ricerche, Via G. Celoria 26, 20133 Milan, Italy
| | - Allan G Rasmusson
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Olivier Van Aken
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden.
| |
Collapse
|
5
|
Mathur J, Ghosh PP. Using ER-Targeted Photoconvertible Fluorescent Proteins in Living Plant Cells. Methods Mol Biol 2024; 2772:291-299. [PMID: 38411823 DOI: 10.1007/978-1-0716-3710-4_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Photoconvertible fluorescent proteins (pcFPs) enable differential coloring of a single organelle. Several pcFP-based probes have been targeted to the endoplasmic reticulum (ER) and can serve as useful tools to study ER dynamics and interactions with other organelles. Here, we describe the procedure to conduct live-cell imaging experiments using ER-targeted pcFP-based probes. Potential problems that might occur during the experiments, their solutions, and several ways to improve the experiments are discussed.
Collapse
Affiliation(s)
- Jaideep Mathur
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada.
| | - Puja Puspa Ghosh
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
6
|
Hall MR, Kunjumon TK, Ghosh PP, Currie L, Mathur J. Organelle Interactions in Plant Cells. Results Probl Cell Differ 2024; 73:43-69. [PMID: 39242374 DOI: 10.1007/978-3-031-62036-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
The sequestration of enzymes and associated processes into sub-cellular domains, called organelles, is considered a defining feature of eukaryotic cells. However, what leads to specific outcomes and allows a eukaryotic cell to function singularly is the interactivity and exchanges between discrete organelles. Our ability to observe and assess sub-cellular interactions in living plant cells has expanded greatly following the creation of fluorescent fusion proteins targeted to different organelles. Notably, organelle interactivity changes quickly in response to stress and reverts to a normal less interactive state as homeostasis is re-established. Using key observations of some of the organelles present in a plant cell, this chapter provides a brief overview of our present understanding of organelle interactions in plant cells.
Collapse
Affiliation(s)
- Maya-Renee Hall
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Thomas Kadanthottu Kunjumon
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Puja Puspa Ghosh
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Laura Currie
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Jaideep Mathur
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
7
|
Hickey K, Nazarov T, Smertenko A. Organellomic gradients in the fourth dimension. PLANT PHYSIOLOGY 2023; 193:98-111. [PMID: 37243543 DOI: 10.1093/plphys/kiad310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
Organelles function as hubs of cellular metabolism and elements of cellular architecture. In addition to 3 spatial dimensions that describe the morphology and localization of each organelle, the time dimension describes complexity of the organelle life cycle, comprising formation, maturation, functioning, decay, and degradation. Thus, structurally identical organelles could be biochemically different. All organelles present in a biological system at a given moment of time constitute the organellome. The homeostasis of the organellome is maintained by complex feedback and feedforward interactions between cellular chemical reactions and by the energy demands. Synchronized changes of organelle structure, activity, and abundance in response to environmental cues generate the fourth dimension of plant polarity. Temporal variability of the organellome highlights the importance of organellomic parameters for understanding plant phenotypic plasticity and environmental resiliency. Organellomics involves experimental approaches for characterizing structural diversity and quantifying the abundance of organelles in individual cells, tissues, or organs. Expanding the arsenal of appropriate organellomics tools and determining parameters of the organellome complexity would complement existing -omics approaches in comprehending the phenomenon of plant polarity. To highlight the importance of the fourth dimension, this review provides examples of organellome plasticity during different developmental or environmental situations.
Collapse
Affiliation(s)
- Kathleen Hickey
- Institute of Biological Chemistry, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, 99164 WA, USA
| | - Taras Nazarov
- Institute of Biological Chemistry, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, 99164 WA, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, 99164 WA, USA
| |
Collapse
|
8
|
Newman TE, Kim H, Khentry Y, Sohn KH, Derbyshire MC, Kamphuis LG. The broad host range pathogen Sclerotinia sclerotiorum produces multiple effector proteins that induce host cell death intracellularly. MOLECULAR PLANT PATHOLOGY 2023; 24:866-881. [PMID: 37038612 PMCID: PMC10346375 DOI: 10.1111/mpp.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Sclerotinia sclerotiorum is a broad host range necrotrophic fungal pathogen, which causes disease on many economically important crop species. S. sclerotiorum has been shown to secrete small effector proteins to kill host cells and acquire nutrients. We set out to discover novel necrosis-inducing effectors and characterize their activity using transient expression in Nicotiana benthamiana leaves. Five intracellular necrosis-inducing effectors were identified with differing host subcellular localization patterns, which were named intracellular necrosis-inducing effector 1-5 (SsINE1-5). We show for the first time a broad host range pathogen effector, SsINE1, that uses an RxLR-like motif to enter host cells. Furthermore, we provide preliminary evidence that SsINE5 induces necrosis via an NLR protein. All five of the identified effectors are highly conserved in globally sourced S. sclerotiorum isolates. Taken together, these results advance our understanding of the virulence mechanisms employed by S. sclerotiorum and reveal potential avenues for enhancing genetic resistance to this damaging fungal pathogen.
Collapse
Affiliation(s)
- Toby E. Newman
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Haseong Kim
- Plant Immunity Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Yuphin Khentry
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Kee Hoon Sohn
- Plant Immunity Research CenterSeoul National UniversitySeoul08826Republic of Korea
- Department of Agricultural BiotechnologySeoul National UniversitySeoul08826Republic of Korea
- Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Republic of Korea
| | - Mark C. Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Lars G. Kamphuis
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| |
Collapse
|
9
|
Triplett E, Hayes C, Emendack Y, Longing S, Monclova C, Simpson C, Laza HE. Leaf structural traits mediating pre-existing physical innate resistance to sorghum aphid in sorghum under uninfested conditions. PLANTA 2023; 258:46. [PMID: 37468707 DOI: 10.1007/s00425-023-04194-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/23/2023] [Indexed: 07/21/2023]
Abstract
KEY MESSAGE We found four indicative traits of innate immunity. Sorghum-resistant varieties had a greater trichome, stomatal and chloroplast density, and smaller mesophyll intercellular width than susceptible varieties. The sorghum aphid (SA), Melanaphis sorghi (Theobald), can severely reduce sorghum yield. The contribution of structural traits to SA resistance has not been extensively studied. Moreover, the current screening method for resistance is inherently subjective for resistance and requires infestation in plants. Quantifying the microanatomical basis of innate SA resistance is crucial for developing reliable screening tools requiring no infestation. The goal of this study was to identify structural traits linked to physical innate SA resistance in sorghum. We conducted controlled environment and field experiments under no SA infestation conditions, with two resistant (R. LBK1 and R. Tx2783) and two susceptible (R. Tx7000 and R. Tx430) varieties. Leaf tissues collected at the fifth leaf stage in the controlled environment experiment were analyzed for the epidermal and mesophyll traits using light and transmission electron microscopy. Leaf tissues collected at physiological maturity in the field experiment were analyzed for surface traits using scanning electron microscopy. Our results showed that stomatal density, trichome density, trichome length, and chloroplast density are key leaf structural traits indicative of physical innate SA resistance. We found that resistant varieties had a greater density of trichomes (39%), stomata (31%), and chloroplast (42%), and smaller mesophyll intercellular width (- 52%) than susceptible varieties. However, the chloroplast, mitochondria, and epidermal cell ultrastructural traits were ineffective indicators of SA resistance. Our findings provide the foundation for developing an objective high-throughput method for SA resistance screening. We suggest a follow-up validation experiment to confirm our outcomes under SA infestation conditions.
Collapse
Affiliation(s)
- Ethan Triplett
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Chad Hayes
- Cropping Systems Research Laboratory, USDA-ARS, Lubbock, TX, 79415, USA
| | - Yves Emendack
- Cropping Systems Research Laboratory, USDA-ARS, Lubbock, TX, 79415, USA
| | - Scott Longing
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | | | - Catherine Simpson
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Haydee E Laza
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
10
|
Bian J, Su X, Yuan X, Zhang Y, Lin J, Li X. Endoplasmic reticulum membrane contact sites: cross-talk between membrane-bound organelles in plant cells. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2956-2967. [PMID: 36847172 DOI: 10.1093/jxb/erad068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/20/2023] [Indexed: 05/21/2023]
Abstract
Eukaryotic cells contain organelles surrounded by monolayer or bilayer membranes. Organelles take part in highly dynamic and organized interactions at membrane contact sites, which play vital roles during development and response to stress. The endoplasmic reticulum extends throughout the cell and acts as an architectural scaffold to maintain the spatial distribution of other membrane-bound organelles. In this review, we highlight the structural organization, dynamics, and physiological functions of membrane contact sites between the endoplasmic reticulum and various membrane-bound organelles, especially recent advances in plants. We briefly introduce how the combined use of dynamic and static imaging techniques can enable monitoring of the cross-talk between organelles via membrane contact sites. Finally, we discuss future directions for research fields related to membrane contact.
Collapse
Affiliation(s)
- Jiahui Bian
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Su
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyan Yuan
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuan Zhang
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Botany, Chinese Academy of Sciences, Beijing 100083, China
| | - Xiaojuan Li
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
11
|
Liu YT, Senkler J, Herrfurth C, Braun HP, Feussner I. Defining the lipidome of Arabidopsis leaf mitochondria: Specific lipid complement and biosynthesis capacity. PLANT PHYSIOLOGY 2023; 191:2185-2203. [PMID: 36691154 PMCID: PMC10069894 DOI: 10.1093/plphys/kiad035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Mitochondria are often considered as the power stations of the cell, playing critical roles in various biological processes such as cellular respiration, photosynthesis, stress responses, and programmed cell death. To maintain the structural and functional integrities of mitochondria, it is crucial to achieve a defined membrane lipid composition between different lipid classes wherein specific proportions of individual lipid species are present. Although mitochondria are capable of self-synthesizing a few lipid classes, many phospholipids are synthesized in the endoplasmic reticulum and transferred to mitochondria via membrane contact sites, as mitochondria are excluded from the vesicular transportation pathway. However, knowledge on the capability of lipid biosynthesis in mitochondria and the precise mechanism of maintaining the homeostasis of mitochondrial lipids is still scarce. Here we describe the lipidome of mitochondria isolated from Arabidopsis (Arabidopsis thaliana) leaves, including the molecular species of glycerolipids, sphingolipids, and sterols, to depict the lipid landscape of mitochondrial membranes. In addition, we define proteins involved in lipid metabolism by proteomic analysis and compare our data with mitochondria from cell cultures since they still serve as model systems. Proteins putatively localized to the membrane contact sites are proposed based on the proteomic results and online databases. Collectively, our results suggest that leaf mitochondria are capable-with the assistance of membrane contact site-localized proteins-of generating several lipid classes including phosphatidylethanolamines, cardiolipins, diacylgalactosylglycerols, and free sterols. We anticipate our work to be a foundation to further investigate the functional roles of lipids and their involvement in biochemical reactions in plant mitochondria.
Collapse
Affiliation(s)
| | | | - Cornelia Herrfurth
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, 37077 Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, University of Goettingen, 37077 Goettingen, Germany
| | | | | |
Collapse
|
12
|
Machado SR, de Deus Bento KB, Canaveze Y, Rodrigues TM. Peltate trichomes in the dormant shoot apex of Metrodorea nigra, a Rutaceae species with rhythmic growth. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:161-175. [PMID: 36278887 DOI: 10.1111/plb.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
In Metrodorea nigra, a Rutaceae species with rhythmic growth, the shoot apex in the dormant stage is enclosed by modified stipules. The young organs are fully covered with peltate secretory trichomes, and these structures remain immersed in a hyaline exudate within a hood-shaped structure. Our study focused on the morpho-functional characterization of the peltate trichomes and cytological events associated with secretion. Shoot apices were collected during both dormant and active stages and processed for anatomical, cytochemical and ultrastructural studies. Trichomes initiate secretion early on, remain active throughout leaf development, but collapse as the leaves expand; at which time secretory cavities start differentiation in the mesophyll and secretion increases as the leaf reaches full expansion. The subcellular apparatus of the trichome head cells is consistent with hydrophilic and lipophilic secretion. Secretion involves two vesicle types: the smaller vesicles are PATAg-positive (periodic acid/thiocarbohydrazide/silver proteinate) for carbohydrates and the larger ones are PATAg-negative. In the first phase of secretory activity, the vesicles containing polysaccharides discharge their contents through exocytosis with the secretion accumulating beneath the cuticle, which detaches from the cell wall. Later, a massive discharge of lipophilic substances (lipids and terpenes/phenols) results in their accumulation between the wall and cuticle. Release of the secretions occurs throughout the cuticular microchannels. Continued protection of the leaves throughout shoot development is ensured by replacement of the collapsed secretory trichomes by oil-secreting cavities. Our findings provide new perspectives for understanding secretion regulation in shoot apices of woody species with rhythmic growth.
Collapse
Affiliation(s)
- S R Machado
- Center of Electron Microscopy (CME), Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu City, SP, Brazil
| | - K B de Deus Bento
- Postgraduate Program in Plant Biology Interunits, Paulo State University (UNESP), Botucatu City, SP, Brazil
| | - Y Canaveze
- Department of Botany, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro City, RJ, Brazil
| | - T M Rodrigues
- Department of Biostatistics, Plant Biology, Parasitology and Zoology, Institute of Biosciences - IBB, São Paulo State University - UNESP, Botucatu City, SP, Brazil
| |
Collapse
|
13
|
Midorikawa K, Tateishi A, Toyooka K, Sato M, Imai T, Kodama Y, Numata K. Three-dimensional nanoscale analysis of light-dependent organelle changes in Arabidopsis mesophyll cells. PNAS NEXUS 2022; 1:pgac225. [PMID: 36712360 PMCID: PMC9802074 DOI: 10.1093/pnasnexus/pgac225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/15/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022]
Abstract
Different organelles function coordinately in numerous intracellular processes. Photorespiration incidental to photosynthetic carbon fixation is organized across three subcellular compartments: chloroplasts, peroxisomes, and mitochondria. Under light conditions, these three organelles often form a ternary organellar complex in close proximity, suggesting a connection with metabolism during photorespiration. However, due to the heterogeneity of intercellular organelle localization and morphology, organelles' responses to changes in the external environment remain poorly understood. Here, we used array tomography by field emission scanning electron microscopy to image organelles inside the whole plant cell at nanometer resolution, generating a three-dimensional (3D) spatial map of the light-dependent positioning of chloroplasts, peroxisomes, nuclei, and vacuoles. Our results show, in light-treated cells, the volume of peroxisomes increased, and mitochondria were simplified. In addition, the population of free organelles decreased, and the ternary complex centered on chloroplasts increased. Moreover, our results emphasized the expansion of the proximity area rather than the increase in the number of proximity sites interorganelles. All of these phenomena were quantified for the first time on the basis of nanoscale spatial maps. In summary, we provide the first 3D reconstruction of Arabidopsis mesophyll cells, together with nanoscale quantified organelle morphology and their positioning via proximity areas, and then evidence of their light-dependent changes.
Collapse
Affiliation(s)
- Keiko Midorikawa
- Biomacromoleules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan,Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
| | - Ayaka Tateishi
- Biomacromoleules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan,Department of Material Chemistry, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama, Kanagawa 230-0045, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama, Kanagawa 230-0045, Japan
| | - Takuto Imai
- Biomacromoleules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
14
|
TraB family proteins are components of ER-mitochondrial contact sites and regulate ER-mitochondrial interactions and mitophagy. Nat Commun 2022; 13:5658. [PMID: 36163196 PMCID: PMC9513094 DOI: 10.1038/s41467-022-33402-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 09/16/2022] [Indexed: 01/18/2023] Open
Abstract
ER-mitochondrial contact sites (EMCSs) are important for mitochondrial function. Here, we have identified a EMCS complex, comprising a family of uncharacterised mitochondrial outer membrane proteins, TRB1, TRB2, and the ER protein, VAP27-1. In Arabidopsis, there are three TraB family isoforms and the trb1/trb2 double mutant exhibits abnormal mitochondrial morphology, strong starch accumulation, and impaired energy metabolism, indicating that these proteins are essential for normal mitochondrial function. Moreover, TRB1 and TRB2 proteins also interact with ATG8 in order to regulate mitochondrial degradation (mitophagy). The turnover of depolarised mitochondria is significantly reduced in both trb1/trb2 and VAP27 mutants (vap27-1,3,4,6) under mitochondrial stress conditions, with an increased population of dysfunctional mitochondria present in the cytoplasm. Consequently, plant recovery after stress is significantly perturbed, suggesting that TRB1-regulated mitophagy and ER-mitochondrial interaction are two closely related processes. Taken together, we ascribe a dual role to TraB family proteins which are component of the EMCS complex in eukaryotes, regulating both interaction of the mitochondria to the ER and mitophagy.
Collapse
|
15
|
Chustecki JM, Etherington RD, Gibbs DJ, Johnston IG. Altered collective mitochondrial dynamics in the Arabidopsis msh1 mutant compromising organelle DNA maintenance. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5428-5439. [PMID: 35662332 PMCID: PMC9467644 DOI: 10.1093/jxb/erac250] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/01/2022] [Indexed: 05/19/2023]
Abstract
Mitochondria form highly dynamic populations in the cells of plants (and almost all eukaryotes). The characteristics and benefits of this collective behaviour, and how it is influenced by nuclear features, remain to be fully elucidated. Here, we use a recently developed quantitative approach to reveal and analyse the physical and collective 'social' dynamics of mitochondria in an Arabidopsis msh1 mutant where the organelle DNA maintenance machinery is compromised. We use a newly created line combining the msh1 mutant with mitochondrially targeted green fluorescent protein (GFP), and characterize mitochondrial dynamics with a combination of single-cell time-lapse microscopy, computational tracking, and network analysis. The collective physical behaviour of msh1 mitochondria is altered from that of the wild type in several ways: mitochondria become less evenly spread, and networks of inter-mitochondrial encounters become more connected, with greater potential efficiency for inter-organelle exchange-reflecting a potential compensatory mechanism for the genetic challenge to the mitochondrial DNA population, supporting more inter-organelle exchange. We find that these changes are similar to those observed in friendly, where mitochondrial dynamics are altered by a physical perturbation, suggesting that this shift to higher connectivity may reflect a general response to mitochondrial challenges, where physical dynamics of mitochondria may be altered to control the genetic structure of the mtDNA population.
Collapse
Affiliation(s)
| | | | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
16
|
Mdivi-1 Induced Mitochondrial Fusion as a Potential Mechanism to Enhance Stress Tolerance in Wheat. Life (Basel) 2022; 12:life12091386. [PMID: 36143422 PMCID: PMC9503966 DOI: 10.3390/life12091386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Mitochondria play a key role in providing energy to cells. This paper is dedicated to elucidating mitochondria-dependent mechanisms that may enhance abiotic stress tolerance in wheat. Mitochondria are constantly undergoing dynamic processes of fusion and fission. In plants, stressful conditions tend to favor mitochondrial fusion processes. The role of mitochondrial fusion was studied by applying Mdivi-1, an inhibitor of mitochondrial fission, to wheat roots subjected to a wounding stress. Increased mitochondrial functional activity and upregulation of genes involved in energy metabolism suggest that mitochondrial fusion is associated with a general activation of energy metabolism. Controlling mitochondrial fusion rates could change the physiology of wheat plants by altering the energy status of the cell and helping to reduce the effects of stress. Abstract Mitochondria play a key role in providing energy to cells. These organelles are constantly undergoing dynamic processes of fusion and fission that change in stressful conditions. The role of mitochondrial fusion in wheat root cells was studied using Mdivi-1, an inhibitor of the mitochondrial fragmentation protein Drp1. The effect of the inhibitor was studied on mitochondrial dynamics in the roots of wheat seedlings subjected to a wounding stress, simulated by excision. Treatment of the stressed roots with the inhibitor increased the size of the mitochondria, enhanced their functional activity, and elevated their membrane potentials. Mitochondrial fusion was accompanied by a decrease in ROS formation and associated cell damage. Exposure to Mdivi-1 also upregulated genes encoding the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and an energy sensor AMP-dependent protein sucrose non-fermenting-related kinase (SnRK1), suggesting that mitochondrial fusion is associated with a general activation of energy metabolism. Controlling mitochondrial fusion rates could change the physiology of wheat plants by altering the energy status of the cell and helping to mitigate the effects of stress.
Collapse
|
17
|
Reactive oxygen species signalling in plant stress responses. Nat Rev Mol Cell Biol 2022; 23:663-679. [PMID: 35760900 DOI: 10.1038/s41580-022-00499-2] [Citation(s) in RCA: 521] [Impact Index Per Article: 260.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 11/08/2022]
Abstract
Reactive oxygen species (ROS) are key signalling molecules that enable cells to rapidly respond to different stimuli. In plants, ROS play a crucial role in abiotic and biotic stress sensing, integration of different environmental signals and activation of stress-response networks, thus contributing to the establishment of defence mechanisms and plant resilience. Recent advances in the study of ROS signalling in plants include the identification of ROS receptors and key regulatory hubs that connect ROS signalling with other important stress-response signal transduction pathways and hormones, as well as new roles for ROS in organelle-to-organelle and cell-to-cell signalling. Our understanding of how ROS are regulated in cells by balancing production, scavenging and transport has also increased. In this Review, we discuss these promising developments and how they might be used to increase plant resilience to environmental stress.
Collapse
|
18
|
Tarasenko TA, Koulintchenko MV. Heterogeneity of the Mitochondrial Population in Cells of Plants and Other Organisms. Mol Biol 2022. [DOI: 10.1134/s0026893322020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Fukushima S, Akita K, Takagi T, Kobayashi K, Moritoki N, Sugaya H, Arimura SI, Kuroiwa H, Kuroiwa T, Nagata N. Existence of giant mitochondria-containing sheet structures lacking cristae and matrix in the etiolated cotyledon of Arabidopsis thaliana. PROTOPLASMA 2022; 259:731-742. [PMID: 34417661 PMCID: PMC9010340 DOI: 10.1007/s00709-021-01696-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Mitochondria are essential organelles involved in the production and supply of energy in eukaryotic cells. Recently, the use of serial section scanning electron microscopy (S3EM) has allowed accurate three-dimensional (3D) reconstructed images of even complex organelle structures. Using this method, ultrathin sections of etiolated cotyledons were observed 4 days after germination of Arabidopsis thaliana in the dark, and giant mitochondria were found. To exclude the possibility of chemical fixation artifacts, this study confirmed the presence of giant mitochondria in high-pressure frozen samples. The 3D reconstructed giant mitochondria had a complex structure that included not only the elongated region but also the flattened shape of a disk. It contained the characteristic sheet structure, and the sheet lacked cristae and matrix but consisted of outer and inner membranes. Whether this phenomenon could be observed in living cells was investigated using the transformant with mitochondrial matrix expressing green fluorescent protein. Small globular mitochondria observed in light-treated samples were also represented in etiolated cotyledons. Although no giant mitochondria were observed in light-treated samples, they were found in the dark 3 days after germination and rapidly increased in number on the fourth day. Therefore, giant mitochondria were observed only in dark samples. These findings were supported by electron microscopy results.
Collapse
Affiliation(s)
- Saki Fukushima
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Kae Akita
- Department of Chemical Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Tomoko Takagi
- Department of Chemical Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, Japan
- Laboratory of Electron Microscopy, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Keiko Kobayashi
- Department of Chemical Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Nobuko Moritoki
- Laboratory of Electron Microscopy, Japan Women's University, Bunkyo-ku, Tokyo, Japan
- Electron Microscope Laboratory, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Hajime Sugaya
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shin-Ichi Arimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Haruko Kuroiwa
- Department of Chemical Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Tsuneyoshi Kuroiwa
- Department of Chemical Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Noriko Nagata
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, Bunkyo-ku, Tokyo, Japan.
- Department of Chemical Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, Japan.
- Laboratory of Electron Microscopy, Japan Women's University, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
20
|
Fuchs P, Bohle F, Lichtenauer S, Ugalde JM, Feitosa Araujo E, Mansuroglu B, Ruberti C, Wagner S, Müller-Schüssele SJ, Meyer AJ, Schwarzländer M. Reductive stress triggers ANAC017-mediated retrograde signaling to safeguard the endoplasmic reticulum by boosting mitochondrial respiratory capacity. THE PLANT CELL 2022; 34:1375-1395. [PMID: 35078237 PMCID: PMC9125394 DOI: 10.1093/plcell/koac017] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/18/2021] [Indexed: 05/16/2023]
Abstract
Redox processes are at the heart of universal life processes, such as metabolism, signaling, or folding of secreted proteins. Redox landscapes differ between cell compartments and are strictly controlled to tolerate changing conditions and to avoid cell dysfunction. While a sophisticated antioxidant network counteracts oxidative stress, our understanding of reductive stress responses remains fragmentary. Here, we observed root growth impairment in Arabidopsis thaliana mutants of mitochondrial alternative oxidase 1a (aox1a) in response to the model thiol reductant dithiothreitol (DTT). Mutants of mitochondrial uncoupling protein 1 (ucp1) displayed a similar phenotype indicating that impaired respiratory flexibility led to hypersensitivity. Endoplasmic reticulum (ER) stress was enhanced in the mitochondrial mutants and limiting ER oxidoreductin capacity in the aox1a background led to synergistic root growth impairment by DTT, indicating that mitochondrial respiration alleviates reductive ER stress. The observations that DTT triggered nicotinamide adenine dinucleotide (NAD) reduction in vivo and that the presence of thiols led to electron transport chain activity in isolated mitochondria offer a biochemical framework of mitochondrion-mediated alleviation of thiol-mediated reductive stress. Ablation of transcription factor Arabidopsis NAC domain-containing protein17 (ANAC017) impaired the induction of AOX1a expression by DTT and led to DTT hypersensitivity, revealing that reductive stress tolerance is achieved by adjusting mitochondrial respiratory capacity via retrograde signaling. Our data reveal an unexpected role for mitochondrial respiratory flexibility and retrograde signaling in reductive stress tolerance involving inter-organelle redox crosstalk.
Collapse
Affiliation(s)
- Philippe Fuchs
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Finja Bohle
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
| | - José Manuel Ugalde
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Elias Feitosa Araujo
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
| | - Berivan Mansuroglu
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Cristina Ruberti
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
| | - Stephan Wagner
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Stefanie J Müller-Schüssele
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| |
Collapse
|
21
|
Mathur J, Kroeker OF, Lobbezoo M, Mathur N. The ER Is a Common Mediator for the Behavior and Interactions of Other Organelles. FRONTIERS IN PLANT SCIENCE 2022; 13:846970. [PMID: 35401583 PMCID: PMC8990311 DOI: 10.3389/fpls.2022.846970] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/02/2022] [Indexed: 05/29/2023]
Abstract
Optimal functioning of a plant cell depends upon the efficient exchange of genetic information, ions, proteins and metabolites between the different organelles. Intuitively, increased proximity between organelles would be expected to play an important role in facilitating exchanges between them. However, it remains to be seen whether under normal, relatively non-stressed conditions organelles maintain close proximity at all. Moreover, does interactivity involve direct and frequent physical contact between the different organelles? Further, many organelles transition between spherical and tubular forms or sporadically produce thin tubular extensions, but it remains unclear whether changes in organelle morphology play a role in increasing their interactivity. Here, using targeted multicolored fluorescent fusion proteins, we report observations on the spatiotemporal relationship between plastids, mitochondria, peroxisomes and the endoplasmic reticulum in living plant cells. Under normal conditions of growth, we observe that the smaller organelles do not establish direct, physical contacts with each other but, irrespective of their individual form they all maintain intimate connectivity with the ER. Proximity between organelles does increase in response to stress through concomitant alterations in ER dynamics. Significantly, even under increased proximity the ER still remains sandwiched between the different organelles. Our observations provide strong live-imaging-based evidence for the ER acting as a common mediator in interactions between other organelles.
Collapse
|
22
|
Melkikh AV, Sutormina MI. From leaves to roots: Biophysical models of transport of substances in plants. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 169-170:53-83. [PMID: 35114180 DOI: 10.1016/j.pbiomolbio.2022.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/19/2022]
Abstract
The transport processes of substances in various plant tissues are extremely diverse. However, models aimed at elucidating the mechanisms of such processes are almost absent in the literature. A unified view of all these transport processes is necessary, considering the laws of statistical physics and thermodynamics. A model of active ion transport was constructed based on the laws of statistical physics. Using this model, we traced the entire pathway of substances and energy in a plant. The pathway included aspects of the production of energy in the process of photosynthesis, consumption of energy to obtain nutrients from the soil, transport of such substances to the main organelles of all types of plant cells, the rise of water with dissolved substances along the trunk to the leaves, and the evaporation of water, accompanied by a change in the percentage of isotopes caused by different rates of evaporation. Models of ion transport in the chloroplasts and mitochondria of plant cells have been constructed. A generalized model comprising plant cells and their vacuoles was analyzed. A model of the transport of substances in the roots of plants was also developed. Based on this model, the problem of transport of substances in tall trees has been considered. The calculated concentrations of ions in the vacuoles of cells and resting potentials agreed well with the experimental data.
Collapse
Affiliation(s)
- A V Melkikh
- Ural Federal University, Yekaterinburg, Russia.
| | | |
Collapse
|
23
|
Kang BH, Anderson CT, Arimura SI, Bayer E, Bezanilla M, Botella MA, Brandizzi F, Burch-Smith TM, Chapman KD, Dünser K, Gu Y, Jaillais Y, Kirchhoff H, Otegui MS, Rosado A, Tang Y, Kleine-Vehn J, Wang P, Zolman BK. A glossary of plant cell structures: Current insights and future questions. THE PLANT CELL 2022; 34:10-52. [PMID: 34633455 PMCID: PMC8846186 DOI: 10.1093/plcell/koab247] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 05/03/2023]
Abstract
In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.
Collapse
Affiliation(s)
- Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Shin-ichi Arimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Emmanuelle Bayer
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, Villenave d'Ornon F-33140, France
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga 29071, Spain
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Kai Dünser
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Yangnan Gu
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver V6T1Z4, Canada
| | - Yu Tang
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Jürgen Kleine-Vehn
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bethany Karlin Zolman
- Department of Biology, University of Missouri, St. Louis, St. Louis, Missouri 63121, USA
| |
Collapse
|
24
|
Møller IM, Rasmusson AG, Van Aken O. Plant mitochondria - past, present and future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:912-959. [PMID: 34528296 DOI: 10.1111/tpj.15495] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The study of plant mitochondria started in earnest around 1950 with the first isolations of mitochondria from animal and plant tissues. The first 35 years were spent establishing the basic properties of plant mitochondria and plant respiration using biochemical and physiological approaches. A number of unique properties (compared to mammalian mitochondria) were observed: (i) the ability to oxidize malate, glycine and cytosolic NAD(P)H at high rates; (ii) the partial insensitivity to rotenone, which turned out to be due to the presence of a second NADH dehydrogenase on the inner surface of the inner mitochondrial membrane in addition to the classical Complex I NADH dehydrogenase; and (iii) the partial insensitivity to cyanide, which turned out to be due to an alternative oxidase, which is also located on the inner surface of the inner mitochondrial membrane, in addition to the classical Complex IV, cytochrome oxidase. With the appearance of molecular biology methods around 1985, followed by genomics, further unique properties were discovered: (iv) plant mitochondrial DNA (mtDNA) is 10-600 times larger than the mammalian mtDNA, yet it only contains approximately 50% more genes; (v) plant mtDNA has kept the standard genetic code, and it has a low divergence rate with respect to point mutations, but a high recombinatorial activity; (vi) mitochondrial mRNA maturation includes a uniquely complex set of activities for processing, splicing and editing (at hundreds of sites); (vii) recombination in mtDNA creates novel reading frames that can produce male sterility; and (viii) plant mitochondria have a large proteome with 2000-3000 different proteins containing many unique proteins such as 200-300 pentatricopeptide repeat proteins. We describe the present and fairly detailed picture of the structure and function of plant mitochondria and how the unique properties make their metabolism more flexible allowing them to be involved in many diverse processes in the plant cell, such as photosynthesis, photorespiration, CAM and C4 metabolism, heat production, temperature control, stress resistance mechanisms, programmed cell death and genomic evolution. However, it is still a challenge to understand how the regulation of metabolism and mtDNA expression works at the cellular level and how retrograde signaling from the mitochondria coordinates all those processes.
Collapse
Affiliation(s)
- Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | | | | |
Collapse
|
25
|
Welchen E, Gonzalez DH. Breaking boundaries: exploring short- and long-distance mitochondrial signalling in plants. THE NEW PHYTOLOGIST 2021; 232:494-501. [PMID: 34255867 DOI: 10.1111/nph.17614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/29/2021] [Indexed: 05/20/2023]
Abstract
Communication of mitochondria with other cell compartments is essential for the coordination of cellular functions. Mitochondria send retrograde signals through metabolites, redox changes, direct organelle contacts and protein trafficking. Accumulating evidence indicates that, in animal systems, changes in mitochondrial function also trigger responses in other, either neighbouring or distantly located, cells. Although not clearly established, there are indications that this type of communication may also be operative in plants. Grafting experiments suggested that the translocation of entire mitochondria or submitochondrial vesicles between neighbouring cells is possible in plants, as already documented in animals. Changes in mitochondrial function also regulate cell-to-cell communication via plasmodesmata and may be transmitted over long distances through plant hormones acting as mitokines to relay mitochondrial signals to distant tissues. Long-distance movement of transcripts encoding mitochondrial proteins involved in crucial aspects of metabolism and retrograde signalling was also described. Finally, changes in mitochondrial reactive species (ROS) production may affect the 'ROS wave' that triggers systemic acquired acclimation throughout the plant. In this review, we summarise available evidence suggesting that mitochondria establish sophisticated communications not only within the cell but also with neighbouring cells and distant tissues to coordinate plant growth and stress responses in a cell nonautonomous manner.
Collapse
Affiliation(s)
- Elina Welchen
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina
| | - Daniel H Gonzalez
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina
| |
Collapse
|
26
|
Rose RJ. Contribution of Massive Mitochondrial Fusion and Subsequent Fission in the Plant Life Cycle to the Integrity of the Mitochondrion and Its Genome. Int J Mol Sci 2021; 22:5429. [PMID: 34063907 PMCID: PMC8196625 DOI: 10.3390/ijms22115429] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
Plant mitochondria have large genomes to house a small number of key genes. Most mitochondria do not contain a whole genome. Despite these latter characteristics, the mitochondrial genome is faithfully maternally inherited. To maintain the mitochondrial genes-so important for energy production-the fusion and fission of mitochondria are critical. Fission in plants is better understood than fusion, with the dynamin-related proteins (DRP 3A and 3B) driving the constriction of the mitochondrion. How the endoplasmic reticulum and the cytoskeleton are linked to the fission process is not yet fully understood. The fusion mechanism is less well understood, as obvious orthologues are not present. However, there is a recently described gene, MIRO2, that appears to have a significant role, as does the ER and cytoskeleton. Massive mitochondrial fusion (MMF or hyperfusion) plays a significant role in plants. MMF occurs at critical times of the life cycle, prior to flowering, in the enlarging zygote and at germination, mixing the cells' mitochondrial population-the so-called "discontinuous whole". MMF in particular aids genome repair, the conservation of critical genes and possibly gives an energy boost to important stages of the life cycle. MMF is also important in plant regeneration, an important component of plant biotechnology.
Collapse
Affiliation(s)
- Ray J Rose
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
27
|
Chustecki JM, Gibbs DJ, Bassel GW, Johnston IG. Network analysis of Arabidopsis mitochondrial dynamics reveals a resolved tradeoff between physical distribution and social connectivity. Cell Syst 2021; 12:419-431.e4. [PMID: 34015261 PMCID: PMC8136767 DOI: 10.1016/j.cels.2021.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/22/2021] [Accepted: 04/13/2021] [Indexed: 11/27/2022]
Abstract
Mitochondria in plant cells exist largely as individual organelles which move, colocalize, and interact, but the cellular priorities addressed by these dynamics remain incompletely understood. Here, we elucidate these principles by studying the dynamic "social networks" of mitochondria in Arabidopsis thaliana wildtype and mutants, describing the colocalization of individuals over time. We combine single-cell live imaging of hypocotyl mitochondrial dynamics with individual-based modeling and network analysis. We identify an inevitable tradeoff between mitochondrial physical priorities (an even cellular distribution of mitochondria) and “social” priorities (individuals interacting, to facilitate the exchange of chemicals and information). This tradeoff results in a tension between maintaining mitochondrial spacing and facilitating colocalization. We find that plant cells resolve this tension to favor efficient networks with high potential for exchanging contents. We suggest that this combination of physical modeling coupled to experimental data through network analysis can shed light on the fundamental principles underlying these complex organelle dynamics. A record of this paper’s transparent peer review process is included in the supplemental information. Dynamic social networks of plant mitochondria reflect physical organellar encounters Network analysis and modeling show priorities and tradeoffs for mitochondrial motion Mitochondria in plant cells trade off physical spacing against social connectivity Plant cells favor efficient networks with high potential for information exchange
Collapse
Affiliation(s)
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - George W Bassel
- Department of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Iain G Johnston
- Department of Mathematics, University of Bergen, Realfagbygget, Bergen 5007, Norway; Computational Biology Unit, University of Bergen, Høyteknologisenteret i Bergen, Bergen 5008, Norway.
| |
Collapse
|
28
|
Mathur J. Organelle extensions in plant cells. PLANT PHYSIOLOGY 2021; 185:593-607. [PMID: 33793902 PMCID: PMC8133556 DOI: 10.1093/plphys/kiaa055] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/15/2020] [Indexed: 05/03/2023]
Abstract
The life strategy of plants includes their ability to respond quickly at the cellular level to changes in their environment. The use of targeted fluorescent protein probes and imaging of living cells has revealed several rapidly induced organelle responses that create the efficient sub-cellular machinery for maintaining homeostasis in the plant cell. Several organelles, including plastids, mitochondria, and peroxisomes, extend and retract thin tubules that have been named stromules, matrixules, and peroxules, respectively. Here, I combine all these thin tubular forms under the common head of organelle extensions. All extensions change shape continuously and in their elongated form considerably increase organelle outreach into the surrounding cytoplasm. Their pleomorphy reflects their interactions with the dynamic endoplasmic reticulum and cytoskeletal elements. Here, using foundational images and time-lapse movies, and providing salient information on some molecular and biochemically characterized mutants with increased organelle extensions, I draw attention to their common role in maintaining homeostasis in plant cells.
Collapse
Affiliation(s)
- Jaideep Mathur
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular biology, University of Guelph, 50 Stone Road, Guelph, Ontario, N1G2W1 Canada
- Author for communication:
| |
Collapse
|
29
|
Winnicki K, Łudzik K, Żabka A, Polit JT, Zawisza A, Maszewski J. Anti-algal activity of the 12-5-12 gemini surfactant results from its impact on the photosynthetic apparatus. Sci Rep 2021; 11:2360. [PMID: 33504917 PMCID: PMC7840743 DOI: 10.1038/s41598-021-82165-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/15/2021] [Indexed: 01/30/2023] Open
Abstract
A rapid amplification of algal population has a negative impact on the environment and the global economy. Thus, control of algal proliferation is an important issue and effective procedures which reduce algal blooms and control algal fouling are highly desired. Gemini surfactants are considered to have a low environmental impact, therefore they seem to be a promising group of detergents which could reduce algal blooms in water systems. Furthermore, due to their emulsifying properties they could replace algaecides added to antifouling paints and decrease algae adhesion to various surfaces. In this study the toxic effect of the 12-5-12 gemini surfactant was investigated on Chlorella cells and close attention was paid to a potential mechanism of its action. At the high cell density (10.05 × 107 cells/mL) a dose-dependent cell death was found and the IC50 value was reached at the concentration of 19.6 µmol/L after 72-h exposure to the surfactant. The decrease in chlorophyll autofluorescence shows that the photosynthetic apparatus seems to be the target of the tested compound. The presented studies indicate that gemini surfactants could effectively reduce algal blooms in water systems, and if added to paints, they could decrease algal growth on external building walls or other water immersed surfaces.
Collapse
Affiliation(s)
- Konrad Winnicki
- grid.10789.370000 0000 9730 2769Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lódź, Poland
| | - Katarzyna Łudzik
- grid.10789.370000 0000 9730 2769Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, ul. Pomorska 163/165, 90-236 Łódź, Poland ,grid.33762.330000000406204119Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Aneta Żabka
- grid.10789.370000 0000 9730 2769Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lódź, Poland
| | - Justyna Teresa Polit
- grid.10789.370000 0000 9730 2769Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lódź, Poland
| | - Anna Zawisza
- grid.10789.370000 0000 9730 2769Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, ul. Tamka 12, 91-403 Łódź, Poland
| | - Janusz Maszewski
- grid.10789.370000 0000 9730 2769Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lódź, Poland
| |
Collapse
|
30
|
Mathur J. Review: Morphology, behaviour and interactions of organelles. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110662. [PMID: 33218631 DOI: 10.1016/j.plantsci.2020.110662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/12/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
High quality transmission electron micrographs have played a major role in shaping our views on organelles in plant cells. However, these snapshots of dead, fixed and sectioned tissue do not automatically convey an appreciation of the dynamic nature of organelles in living cells. Advances in the imaging of subcellular structures in living cells using multicoloured, targeted fluorescent proteins reveal considerable changes in organelle pleomorphy that might be limited to small regions of the cell. The fresh data and insights also challenge several existing ideas on organelle behaviour and interactivity. Here, using succinct examples from plastids, mitochondria, peroxisomes, and the endoplasmic reticulum I present an evolving view of subcellular dynamics in the plant cell.
Collapse
Affiliation(s)
- Jaideep Mathur
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, Ontario, N1G2W1, Canada
| |
Collapse
|
31
|
Parthenium hysterophorus steps up Ca-regulatory pathway in defence against highlight intensities. Sci Rep 2020; 10:8934. [PMID: 32488180 PMCID: PMC7265497 DOI: 10.1038/s41598-020-65721-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 05/04/2020] [Indexed: 12/21/2022] Open
Abstract
Parthenium hysterophorus exhibits tolerance to a great extent against abiotic stresses including high light intensities. In this study, P. hysterophorus was subjected to three different light intensities viz. control (CL, 250 µmol photons m-2 s-1), moderately high (ML, 500 µmol photons m-2 s-1) and high (HL, 1000 µmol photons m-2 s-1) for assessment of biochemical and physiological responses at 3 and 5 days after treatment (DAT). Proteomic responses were also observed at 5 DAT. Level of oxidative stress marker, abundance of H2O2 and O2- was highest in leaves exposed to HL followed by ML treatment. Biomass accumulation, photosynthetic parameters, chloroplast and mitochondrial integrity were also affected by both ML and HL treatments. Differential protein expression data showed modulation of thirty-eight proteins in ML and HL intensities. P. hysterophorus exhibited good ability to survive in ML then HL treatment as demonstrated by enhancement of the antioxidant system and photosynthesis. Furthermore, P. hysterophorus mobilized some key proteins related to calcium signaling, which in turn coordinate physiological homeostasis under stress. Proline and total soluble sugar content were high under stress; however, results of simulated experiment of our study indicate such accumulation of osmolytes may inhibit photon-availability to chloroplast. These results clarify our understanding of the mechanisms underlying the light stress tolerance of P. hysterophorus.
Collapse
|
32
|
Baillie AL, Falz AL, Müller-Schüssele SJ, Sparkes I. It Started With a Kiss: Monitoring Organelle Interactions and Identifying Membrane Contact Site Components in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:517. [PMID: 32435254 PMCID: PMC7218140 DOI: 10.3389/fpls.2020.00517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/06/2020] [Indexed: 05/10/2023]
Abstract
Organelle movement and interaction are dynamic processes. Interpreting the functional role and mechanistic detail of interactions at membrane contact sites requires careful quantification of parameters such as duration, frequency, proximity, and surface area of contact, and identification of molecular components. We provide an overview of current methods used to quantify organelle interactions in plants and other organisms and propose novel applications of existing technologies to tackle this emerging topic in plant cell biology.
Collapse
Affiliation(s)
- Alice L. Baillie
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Anna-Lena Falz
- Institut für Nutzpflanzenforschung und Ressourcenschutz (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Stefanie J. Müller-Schüssele
- Institut für Nutzpflanzenforschung und Ressourcenschutz (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Imogen Sparkes
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
33
|
Golin S, Negroni YL, Bennewitz B, Klösgen RB, Mulisch M, La Rocca N, Cantele F, Vigani G, Lo Schiavo F, Krupinska K, Zottini M. WHIRLY2 plays a key role in mitochondria morphology, dynamics, and functionality in Arabidopsis thaliana. PLANT DIRECT 2020; 4:e00229. [PMID: 32490348 PMCID: PMC7261051 DOI: 10.1002/pld3.229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/18/2020] [Accepted: 04/24/2020] [Indexed: 06/02/2023]
Abstract
WHIRLY2 is a single-stranded DNA binding protein associated with mitochondrial nucleoids. In the why 2-1 mutant of Arabidopsis thaliana, a major proportion of leaf mitochondria has an aberrant structure characterized by disorganized nucleoids, reduced abundance of cristae, and a low matrix density despite the fact that the macroscopic phenotype during vegetative growth is not different from wild type. These features coincide with an impairment of the functionality and dynamics of mitochondria that have been characterized in detail in wild-type and why 2-1 mutant cell cultures. In contrast to the development of the vegetative parts, seed germination is compromised in the why 2-1 mutant. In line with that, the expression level of why 2 in seeds of wild-type plants is higher than that of why 3, whereas in adult plant no difference is found. Intriguingly, in early stages of shoots development of the why 2-1 mutant, although not in seeds, the expression level of why 3 is enhanced. These results suggest that WHIRLY3 is a potential candidate to compensate for the lack of WHIRLY2 in the why 2-1 mutant. Such compensation is possible only if the two proteins are localized in the same organelle. Indeed, in organello protein transport experiments using intact mitochondria and chloroplasts revealed that WHIRLY3 can be dually targeted into both, chloroplasts and mitochondria. Together, these data indicate that the alterations of mitochondria nucleoids are tightly linked to alterations of mitochondria morphology and functionality. This is even more evident in those phases of plant life when mitochondrial activity is particularly high, such as seed germination. Moreover, our results indicate that the differential expression of why 2 and why 3 predetermines the functional replacement of WHIRLY2 by WHIRLY3, which is restricted though to the vegetative parts of the plant.
Collapse
Affiliation(s)
- Serena Golin
- Department of Biology University of Padova Padova Italy
| | | | - Bationa Bennewitz
- Institute of Biology-Plant Physiology Martin Luther University Halle-Wittenberg Halle (Saale) Germany
| | - Ralf B Klösgen
- Institute of Biology-Plant Physiology Martin Luther University Halle-Wittenberg Halle (Saale) Germany
| | - Maria Mulisch
- Institute of Botany Christian-Albrechts University of Kiel Kiel Germany
| | | | | | - Gianpiero Vigani
- Department of Life Science and Systems Biology University of Turin Turin Italy
| | | | - Karin Krupinska
- Institute of Botany Christian-Albrechts University of Kiel Kiel Germany
| | | |
Collapse
|
34
|
White RR, Lin C, Leaves I, Castro IG, Metz J, Bateman BC, Botchway SW, Ward AD, Ashwin P, Sparkes I. Miro2 tethers the ER to mitochondria to promote mitochondrial fusion in tobacco leaf epidermal cells. Commun Biol 2020; 3:161. [PMID: 32246085 PMCID: PMC7125145 DOI: 10.1038/s42003-020-0872-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/25/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are highly pleomorphic, undergoing rounds of fission and fusion. Mitochondria are essential for energy conversion, with fusion favouring higher energy demand. Unlike fission, the molecular components involved in mitochondrial fusion in plants are unknown. Here, we show a role for the GTPase Miro2 in mitochondria interaction with the ER and its impacts on mitochondria fusion and motility. Mutations in AtMiro2's GTPase domain indicate that the active variant results in larger, fewer mitochondria which are attached more readily to the ER when compared with the inactive variant. These results are contrary to those in metazoans where Miro predominantly controls mitochondrial motility, with additional GTPases affecting fusion. Synthetically controlling mitochondrial fusion rates could fundamentally change plant physiology by altering the energy status of the cell. Furthermore, altering tethering to the ER could have profound effects on subcellular communication through altering the exchange required for pathogen defence.
Collapse
Affiliation(s)
| | - Congping Lin
- Department of Mathematics, Harrison Building, University of Exeter, Exeter, EX4 4QF, UK
- Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Lab of Engineering Modeling and Scientific Computing, Huazhong University of Science and Technology, Wuhan, China
| | - Ian Leaves
- Biosciences, CLES, Exeter University, Exeter, EX4 4QD, UK
| | - Inês G Castro
- Biosciences, CLES, Exeter University, Exeter, EX4 4QD, UK
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Jeremy Metz
- Biosciences, CLES, Exeter University, Exeter, EX4 4QD, UK
| | - Benji C Bateman
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Didcot, Oxon, OX11 0FA, UK
| | - Stanley W Botchway
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Didcot, Oxon, OX11 0FA, UK
| | - Andrew D Ward
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Didcot, Oxon, OX11 0FA, UK
| | - Peter Ashwin
- Department of Mathematics, Harrison Building, University of Exeter, Exeter, EX4 4QF, UK
| | - Imogen Sparkes
- Biosciences, CLES, Exeter University, Exeter, EX4 4QD, UK.
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK.
| |
Collapse
|
35
|
Nunn AVW, Guy GW, Botchway SW, Bell JD. From sunscreens to medicines: Can a dissipation hypothesis explain the beneficial aspects of many plant compounds? Phytother Res 2020; 34:1868-1888. [PMID: 32166791 PMCID: PMC7496984 DOI: 10.1002/ptr.6654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 01/16/2020] [Accepted: 02/16/2020] [Indexed: 12/17/2022]
Abstract
Medicine has utilised plant‐based treatments for millennia, but precisely how they work is unclear. One approach is to use a thermodynamic viewpoint that life arose by dissipating geothermal and/or solar potential. Hence, the ability to dissipate energy to maintain homeostasis is a fundamental principle in all life, which can be viewed as an accretion system where layers of complexity have built upon core abiotic molecules. Many of these compounds are chromophoric and are now involved in multiple pathways. Plants have further evolved a plethora of chromophoric compounds that can not only act as sunscreens and redox modifiers, but also have now become integrated into a generalised stress adaptive system. This could be an extension of the dissipative process. In animals, many of these compounds are hormetic, modulating mitochondria and calcium signalling. They can also display anti‐pathogen effects. They could therefore modulate bioenergetics across all life due to the conserved electron transport chain and proton gradient. In this review paper, we focus on well‐described medicinal compounds, such as salicylic acid and cannabidiol and suggest, at least in animals, their activity reflects their evolved function in plants in relation to stress adaptation, which itself evolved to maintain dissipative homeostasis.
Collapse
Affiliation(s)
- Alistair V W Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, UK
| | | | - Stanley W Botchway
- STFC, UKRI & Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Jimmy D Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, UK
| |
Collapse
|
36
|
Poór P. Effects of Salicylic Acid on the Metabolism of Mitochondrial Reactive Oxygen Species in Plants. Biomolecules 2020; 10:E341. [PMID: 32098073 PMCID: PMC7072379 DOI: 10.3390/biom10020341] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 01/16/2023] Open
Abstract
Different abiotic and biotic stresses lead to the production and accumulation of reactive oxygen species (ROS) in various cell organelles such as in mitochondria, resulting in oxidative stress, inducing defense responses or programmed cell death (PCD) in plants. In response to oxidative stress, cells activate various cytoprotective responses, enhancing the antioxidant system, increasing the activity of alternative oxidase and degrading the oxidized proteins. Oxidative stress responses are orchestrated by several phytohormones such as salicylic acid (SA). The biomolecule SA is a key regulator in mitochondria-mediated defense signaling and PCD, but the mode of its action is not known in full detail. In this review, the current knowledge on the multifaceted role of SA in mitochondrial ROS metabolism is summarized to gain a better understanding of SA-regulated processes at the subcellular level in plant defense responses.
Collapse
Affiliation(s)
- Péter Poór
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
37
|
Bai Y, Jing G, Zhou J, Li S, Bi R, Zhao J, Jia Q, Zhang Q, Zhang W. Overexpression of soybean GmPLDγ enhances seed oil content and modulates fatty acid composition in transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110298. [PMID: 31779909 DOI: 10.1016/j.plantsci.2019.110298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/23/2019] [Accepted: 10/02/2019] [Indexed: 05/26/2023]
Abstract
Phospholipase D (PLD) hydrolyzes the phosphodiester bond of glycerophospholipids to yield phosphatidic acid (PA) and a free headgroup. PLDs are important for plant growth, development, and responses to external stresses. However, their roles in triacylglycerol (TAG) synthesis are still unclear. Here, we report that a soybean (Glycine max) PLDγ (GmPLDγ) is involved in glycerolipid turnover and seed oil production. GmPLDγ was targeted to mitochondria and exhibited PLD activity that was activated by oleate and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]. Overexpression of GmPLDγ (abbreviated GmPLDγ-OE) in Arabidopsis thaliana resulted in enhanced seed weight, elevated levels of TAGs with 18-, 20-, and 22-carbon fatty acids (FAs), and altered oil-body morphology. Furthermore, the levels of membrane lipids in vegetative tissues decreased significantly, whereas no overt changes were found in mature seeds except for a decrease in the digalactosyldiacylglycerol (DGDG) level in the GmPLDγ-OE lines. Additionally, the expression of genes involved in glycerolipid metabolism was significantly upregulated in developing siliques in GmPLDγ-OE lines. Together, our data indicate a regulatory role for GmPLDγ in TAG synthesis and fatty-acid remodeling, highlighting the importance of mitochondria-directed glycerophospholipid homeostasis in seed oil accumulation.
Collapse
Affiliation(s)
- Yang Bai
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Guangqin Jing
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jing Zhou
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Shuxiang Li
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Rongrong Bi
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jiangzhe Zhao
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Qianru Jia
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
38
|
Kimata Y, Higaki T, Kurihara D, Ando N, Matsumoto H, Higashiyama T, Ueda M. Mitochondrial dynamics and segregation during the asymmetric division of Arabidopsis zygotes. QUANTITATIVE PLANT BIOLOGY 2020; 1:e3. [PMID: 37077329 PMCID: PMC10095797 DOI: 10.1017/qpb.2020.4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/03/2020] [Accepted: 09/25/2020] [Indexed: 05/02/2023]
Abstract
The zygote is the first cell of a multicellular organism. In most angiosperms, the zygote divides asymmetrically to produce an embryo-precursor apical cell and a supporting basal cell. Zygotic division should properly segregate symbiotic organelles, because they cannot be synthesized de novo. In this study, we revealed the real-time dynamics of the principle source of ATP biogenesis, mitochondria, in Arabidopsis thaliana zygotes using live-cell observations and image quantifications. In the zygote, the mitochondria formed the extended structure associated with the longitudinal array of actin filaments (F-actins) and were polarly distributed along the apical-basal axis. The mitochondria were then temporally fragmented during zygotic division, and the resulting apical cells inherited mitochondria at higher concentration compared to the basal cells. Further observation of postembryonic organs showed that these mitochondrial behaviours are characteristic of the zygote. Overall, our results showed that the zygote has spatiotemporal regulation that unequally distributes the mitochondria.
Collapse
Affiliation(s)
- Yusuke Kimata
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto860-8555, Japan
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- JST, PRESTO, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Naoe Ando
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hikari Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Minako Ueda
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Author for correspondence: M. Ueda, Tel.: +81 22-795-6713; E-mail:
| |
Collapse
|
39
|
Steiner P, Obwegeser S, Wanner G, Buchner O, Lütz-Meindl U, Holzinger A. Cell Wall Reinforcements Accompany Chilling and Freezing Stress in the Streptophyte Green Alga Klebsormidium crenulatum. FRONTIERS IN PLANT SCIENCE 2020; 11:873. [PMID: 32714344 PMCID: PMC7344194 DOI: 10.3389/fpls.2020.00873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/28/2020] [Indexed: 05/15/2023]
Abstract
Adaptation strategies in freezing resistance were investigated in Klebsormidium crenulatum, an early branching streptophyte green alga related to higher plants. Klebsormidium grows naturally in unfavorable environments like alpine biological soil crusts, exposed to desiccation, high irradiation and cold stress. Here, chilling and freezing induced alterations of the ultrastructure were investigated. Control samples (kept at 20°C) were compared to chilled (4°C) as well as extracellularly frozen algae (-2 and -4°C). A software-controlled laboratory freezer (AFU, automatic freezing unit) was used for algal exposure to various temperatures and freezing was manually induced. Samples were then high pressure frozen and cryo-substituted for electron microscopy. Control cells had a similar appearance in size and ultrastructure as previously reported. While chilling stressed algae only showed minor ultrastructural alterations, such as small inward facing cell wall plugs and minor alterations of organelles, drastic changes of the cell wall and in organelle distribution were found in extracellularly frozen samples (-2°C and -4°C). In frozen samples, the cytoplasm was not retracted from the cell wall, but extensive three-dimensional cell wall layers were formed, most prominently in the corners of the cells, as determined by FIB-SEM and TEM tomography. Similar alterations/adaptations of the cell wall were not reported or visualized in Klebsormidium before, neither in controls, nor during other stress scenarios. This indicates that the cell wall is reinforced by these additional wall layers during freezing stress. Cells allowed to recover from freezing stress (-2°C) for 5 h at 20°C lost these additional cell wall layers, suggesting their dynamic formation. The composition of these cell wall reinforcement areas was investigated by immuno-TEM. In addition, alterations of structure and distribution of mitochondria, dictyosomes and a drastically increased endoplasmic reticulum were observed in frozen cells by TEM and TEM tomography. Measurements of the photosynthetic oxygen production showed an acclimation of Klebsormidium to chilling stress, which correlates with our findings on ultrastructural alterations of morphology and distribution of organelles. The cell wall reinforcement areas, together with the observed changes in organelle structure and distribution, are likely to contribute to maintenance of an undisturbed cell physiology and to adaptation to chilling and freezing stress.
Collapse
Affiliation(s)
- Philip Steiner
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Sabrina Obwegeser
- Department of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck, Austria
| | - Gerhard Wanner
- Ultrastructural Research, Department Biology I, Ludwig-Maximilians-University, Munich, Germany
| | - Othmar Buchner
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | | - Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck, Austria
- *Correspondence: Andreas Holzinger,
| |
Collapse
|
40
|
Falz AL, Müller-Schüssele SJ. Physcomitrella as a model system for plant cell biology and organelle-organelle communication. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:7-13. [PMID: 31254720 DOI: 10.1016/j.pbi.2019.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
In multicellular eukaryotic cells, metabolism and growth are sustained by the cooperative functioning of organelles in combination with cell-to-cell communication at the organism level. In land plants, multiple strategies have evolved to adapt to life outside water. As basal land plant, the moss Physcomitrella patens is used for comparative genomics, allowing to study lineage-specific features, as well as to track the evolution of fundamental parameters of plant cell organisation and physiology. P. patens is a versatile model for cell biology research, especially to investigate adaptive growth, stress biology as well as organelle dynamics and interactions. Recent advances include the use of genetically encoded biosensors for in vivo imaging of physiological parameters.
Collapse
Affiliation(s)
- Anna-Lena Falz
- INRES - Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | | |
Collapse
|
41
|
Fürtauer L, Küstner L, Weckwerth W, Heyer AG, Nägele T. Resolving subcellular plant metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:438-455. [PMID: 31361942 PMCID: PMC8653894 DOI: 10.1111/tpj.14472] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 05/15/2023]
Abstract
Plant cells are characterized by a high degree of compartmentalization and a diverse proteome and metabolome. Only a very limited number of studies has addressed combined subcellular proteomics and metabolomics which strongly limits biochemical and physiological interpretation of large-scale 'omics data. Our study presents a methodological combination of nonaqueous fractionation, shotgun proteomics, enzyme activities and metabolomics to reveal subcellular diurnal dynamics of plant metabolism. Subcellular marker protein sets were identified and enzymatically validated to resolve metabolism in a four-compartment model comprising chloroplasts, cytosol, vacuole and mitochondria. These marker sets are now available for future studies that aim to monitor subcellular metabolome and proteome dynamics. Comparing subcellular dynamics in wild type plants and HXK1-deficient gin2-1 mutants revealed a strong impact of HXK1 activity on metabolome dynamics in multiple compartments. Glucose accumulation in the cytosol of gin2-1 was accompanied by diminished vacuolar glucose levels. Subcellular dynamics of pyruvate, succinate and fumarate amounts were significantly affected in gin2-1 and coincided with differential mitochondrial proteome dynamics. Lowered mitochondrial glycine and serine amounts in gin2-1 together with reduced abundance of photorespiratory proteins indicated an effect of the gin2-1 mutation on photorespiratory capacity. Our findings highlight the necessity to resolve plant metabolism to a subcellular level to provide a causal relationship between metabolites, proteins and metabolic pathway regulation.
Collapse
Affiliation(s)
- Lisa Fürtauer
- Department Biology I, Plant Evolutionary Cell BiologyLudwig‐Maximilians‐Universität MünchenPlanegg‐MartinsriedGermany
- Department of Ecogenomics and Systems BiologyUniversity of ViennaViennaAustria
| | - Lisa Küstner
- Department of Plant BiotechnologyUniversity of StuttgartInstitute of Biomaterials and Biomolecular SystemsStuttgartGermany
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems BiologyUniversity of ViennaViennaAustria
- Vienna Metabolomics CenterUniversity of ViennaViennaAustria
| | - Arnd G. Heyer
- Department of Plant BiotechnologyUniversity of StuttgartInstitute of Biomaterials and Biomolecular SystemsStuttgartGermany
| | - Thomas Nägele
- Department Biology I, Plant Evolutionary Cell BiologyLudwig‐Maximilians‐Universität MünchenPlanegg‐MartinsriedGermany
- Department of Ecogenomics and Systems BiologyUniversity of ViennaViennaAustria
- Vienna Metabolomics CenterUniversity of ViennaViennaAustria
| |
Collapse
|
42
|
Asfaw KG, Liu Q, Maisch J, Münch SW, Wehl I, Bräse S, Bogeski I, Schepers U, Nick P. A Peptoid Delivers CoQ-derivative to Plant Mitochondria via Endocytosis. Sci Rep 2019; 9:9839. [PMID: 31285457 PMCID: PMC6614412 DOI: 10.1038/s41598-019-46182-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 06/21/2019] [Indexed: 11/09/2022] Open
Abstract
Controlled delivery of molecules interfering specifically with target activities in a cell of interest can be a powerful tool for experimental manipulation, because it can be administered at a defined time point and does not require genetic transformation, which in some systems is difficult and time consuming. Peptides as versatile tools that can be tailored for binding numerous binding partners, are of special interest. However, their passage through membranes, their intracellular targeting, and their sensitivity to proteases is limiting. The use of peptoids, where cationic amino-acid side chains are linked to nitrogen (rather than to carbon) of the peptide bond, can circumvent these limitations, because they are not cleavable by proteases. In the current work, we provide a proof-of-concept that such Trojan Peptoids, the plant PeptoQ, can be used to target a functional cargo (i.e. a rhodamine-labelled peptoid and a coenzyme Q10 derivative) into mitochondria of tobacco BY-2 cells as experimental model. We show that the uptake is specific for mitochondria, rapid, dose-dependent, and requires clathrin-mediated endocytosis, as well as actin filaments, while microtubules seem to be dispensable. Viability of the treated cells is not affected, and they show better survival under salt stress, a condition that perturbs oxidative homeostasis in mitochondria. In congruence with improved homeostasis, we observe that the salt induced accumulation of superoxide is mitigated and even inverted by pretreatment with PeptoQ. Using double labelling with appropriate fluorescent markers, we show that targeting of this Trojan Peptoid to the mitochondria is not based on a passage through the plasma membrane (as thought hitherto), but on import via endocytotic vesicles and subsequent accumulation in the mitochondrial intermembrane space, from where it can enter the matrix, e.g. when the permeability of the inner membrane is increased under salt stress.
Collapse
Affiliation(s)
- Kinfemichael Geressu Asfaw
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany.
| | - Qiong Liu
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Jan Maisch
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Stephan W Münch
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
| | - Ilona Wehl
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1 D-76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1 D-76344, Eggenstein-Leopoldshafen, Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, 37073, Göttingen, Germany
| | - Ute Schepers
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| |
Collapse
|
43
|
Johnston IG. Tension and Resolution: Dynamic, Evolving Populations of Organelle Genomes within Plant Cells. MOLECULAR PLANT 2019; 12:764-783. [PMID: 30445187 DOI: 10.1016/j.molp.2018.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Mitochondria and plastids form dynamic, evolving populations physically embedded in the fluctuating environment of the plant cell. Their evolutionary heritage has shaped how the cell controls the genetic structure and the physical behavior of its organelle populations. While the specific genes involved in these processes are gradually being revealed, the governing principles underlying this controlled behavior remain poorly understood. As the genetic and physical dynamics of these organelles are central to bioenergetic performance and plant physiology, this challenges both fundamental biology and strategies to engineer better-performing plants. This article reviews current knowledge of the physical and genetic behavior of mitochondria and chloroplasts in plant cells. An overarching hypothesis is proposed whereby organelles face a tension between genetic robustness and individual control and responsiveness, and different species resolve this tension in different ways. As plants are immobile and thus subject to fluctuating environments, their organelles are proposed to favor individual responsiveness, sacrificing genetic robustness. Several notable features of plant organelles, including large genomes, mtDNA recombination, fragmented organelles, and plastid/mitochondrial differences may potentially be explained by this hypothesis. Finally, the ways that quantitative and systems biology can help shed light on the plethora of open questions in this field are highlighted.
Collapse
Affiliation(s)
- Iain G Johnston
- School of Biosciences, University of Birmingham, Birmingham, UK; Birmingham Institute for Forest Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
44
|
Ito-Inaba Y, Sato M, Sato MP, Kurayama Y, Yamamoto H, Ohata M, Ogura Y, Hayashi T, Toyooka K, Inaba T. Alternative Oxidase Capacity of Mitochondria in Microsporophylls May Function in Cycad Thermogenesis. PLANT PHYSIOLOGY 2019; 180:743-756. [PMID: 30918084 PMCID: PMC6548267 DOI: 10.1104/pp.19.00150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Cone thermogenesis is a widespread phenomenon in cycads and may function to promote volatile emissions that affect pollinator behavior. Given their large population size and intense and durable heat-producing effects, cycads are important organisms for comprehensive studies of plant thermogenesis. However, knowledge of mitochondrial morphology and function in cone thermogenesis is limited. Therefore, we investigated these mitochondrial properties in the thermogenic cycad species Cycas revoluta Male cones generated heat even in cool weather conditions. Female cones produced heat, but to a lesser extent than male cones. Ultrastructural analyses of the two major tissues of male cones, microsporophylls and microsporangia, revealed the existence of a population of mitochondria with a distinct morphology in the microsporophylls. In these cells, we observed large mitochondria (cross-sectional area of 2 μm2 or more) with a uniform matrix density that occupied >10% of the total mitochondrial volume. Despite the size difference, many nonlarge mitochondria (cross-sectional area <2 μm2) also exhibited a shape and a matrix density similar to those of large mitochondria. Alternative oxidase (AOX) capacity and expression levels in microsporophylls were much higher than those in microsporangia. The AOX genes expressed in male cones revealed two different AOX complementary DNA sequences: CrAOX1 and CrAOX2 The expression level of CrAOX1 mRNA in the microsporophylls was 100 times greater than that of CrAOX2 mRNA. Collectively, these results suggest that distinctive mitochondrial morphology and CrAOX1-mediated respiration in microsporophylls might play a role in cycad cone thermogenesis.
Collapse
Affiliation(s)
- Yasuko Ito-Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Mitsuhiko P Sato
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuya Kurayama
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Haruna Yamamoto
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Mizuki Ohata
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takehito Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| |
Collapse
|
45
|
Pannexin 2 Localizes at ER-Mitochondria Contact Sites. Cancers (Basel) 2019; 11:cancers11030343. [PMID: 30862038 PMCID: PMC6468579 DOI: 10.3390/cancers11030343] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 01/02/2023] Open
Abstract
Endomembrane specialization allows functional compartmentalization but imposes physical constraints to information flow within the cell. However, the evolution of an endomembrane system was associated with the emergence of contact sites facilitating communication between membrane-bound organelles. Contact sites between the endoplasmic reticulum (ER) and mitochondria are highly conserved in terms of their morphological features but show surprising molecular diversity within and across eukaryote species. ER-mitochondria contact sites are thought to regulate key processes in oncogenesis but their molecular composition remains poorly characterized in mammalian cells. In this study, we investigate the localization of pannexin 2 (Panx2), a membrane channel protein showing tumor-suppressing properties in cancer cells. Using a combination of subcellular fractionation, particle tracking in live-cell, and immunogold electron microscopy, we show that Panx2 localizes at ER-mitochondria contact sites in mammalian cells and sensitizes cells to apoptotic stimuli.
Collapse
|
46
|
Pain C, Kriechbaumer V, Kittelmann M, Hawes C, Fricker M. Quantitative analysis of plant ER architecture and dynamics. Nat Commun 2019; 10:984. [PMID: 30816109 PMCID: PMC6395764 DOI: 10.1038/s41467-019-08893-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) is a highly dynamic polygonal membrane network composed of interconnected tubules and sheets (cisternae) that forms the first compartment in the secretory pathway involved in protein translocation, folding, glycosylation, quality control, lipid synthesis, calcium signalling, and metabolon formation. Despite its central role in this plethora of biosynthetic, metabolic and physiological processes, there is little quantitative information on ER structure, morphology or dynamics. Here we describe a software package (AnalyzER) to automatically extract ER tubules and cisternae from multi-dimensional fluorescence images of plant ER. The structure, topology, protein-localisation patterns, and dynamics are automatically quantified using spatial, intensity and graph-theoretic metrics. We validate the method against manually-traced ground-truth networks, and calibrate the sub-resolution width estimates against ER profiles identified in serial block-face SEM images. We apply the approach to quantify the effects on ER morphology of drug treatments, abiotic stress and over-expression of ER tubule-shaping and cisternal-modifying proteins.
Collapse
Affiliation(s)
- Charlotte Pain
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Verena Kriechbaumer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Maike Kittelmann
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Mark Fricker
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
47
|
IMOTO Y, ABE Y, OKUMOTO K, OHNUMA M, KUROIWA H, KUROIWA T, FUJIKI Y. Dynamics of the nucleoside diphosphate kinase protein DYNAMO2 correlates with the changes in the global GTP level during the cell cycle of Cyanidioschyzon merolae. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:75-85. [PMID: 30745504 PMCID: PMC6403433 DOI: 10.2183/pjab.95.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
GTP is an essential source of energy that supports a large array of cellular mechanochemical structures ranging from protein synthesis machinery to cytoskeletal apparatus for maintaining the cell cycle. However, GTP regulation during the cell cycle has been difficult to investigate because of heterogenous levels of GTP in asynchronous cell cycles and genetic redundancy of the GTP-generating enzymes. Here, in the unicellular red algae Cyanidioschyzon merolae, we demonstrated that the ATP-GTP-converting enzyme DYNAMO2 is an essential regulator of global GTP levels during the cell cycle. The cell cycle of C. merolae can be highly synchronized by light/dark stimulations to examine GTP levels at desired time points. Importantly, the genome of C. merolae encodes only two isoforms of the ATP-GTP-converting enzyme, namely DYNAMO1 and DYNAMO2. DYNAMO1 regulates organelle divisions, whereas DYNAMO2 is entirely localized in the cytoplasm. DYNAMO2 protein levels increase during the S-M phases, and changes in GTP levels are correlated with these DYNAMO2 protein levels. These results indicate that DYNAMO2 is a potential regulator of global GTP levels during the cell cycle.
Collapse
Affiliation(s)
- Yuuta IMOTO
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Yuichi ABE
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kanji OKUMOTO
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Mio OHNUMA
- Institute of Technology, Hiroshima College, Hiroshima, Japan
| | - Haruko KUROIWA
- Department of Chemical and Biological Science, Faculty of Science, Japan Women’s University, Tokyo, Japan
| | - Tsuneyoshi KUROIWA
- Department of Chemical and Biological Science, Faculty of Science, Japan Women’s University, Tokyo, Japan
| | - Yukio FUJIKI
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
48
|
The Photoconvertible Fluorescent Protein Dendra2 Tag as a Tool to Investigate Intracellular Protein Dynamics. Methods Mol Biol 2019; 1992:201-214. [PMID: 31148040 DOI: 10.1007/978-1-4939-9469-4_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Fluorescence proteins changing spectral properties after exposure to light with a specific wavelength have recently become outstanding aids in the study of intracellular protein dynamics. Herein we show using Arabidopsis SYNAPTOTAGMIN 1 as a model protein that the Dendra2 green to red photoconvertible protein tag in combination with confocal scanning laser microscopy is a useful tool to study membrane protein intracellular dynamics.
Collapse
|
49
|
Lorenz C, Brandt S, Borisjuk L, Rolletschek H, Heinzel N, Tohge T, Fernie AR, Braun HP, Hildebrandt TM. The Role of Persulfide Metabolism During Arabidopsis Seed Development Under Light and Dark Conditions. FRONTIERS IN PLANT SCIENCE 2018; 9:1381. [PMID: 30283487 PMCID: PMC6156424 DOI: 10.3389/fpls.2018.01381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/30/2018] [Indexed: 05/25/2023]
Abstract
The sulfur dioxygenase ETHE1 oxidizes persulfides in the mitochondrial matrix and is involved in the degradation of L-cysteine and hydrogen sulfide. ETHE1 has an essential but as yet undefined function in early embryo development of Arabidopsis thaliana. In leaves, ETHE1 is strongly induced by extended darkness and participates in the use of amino acids as alternative respiratory substrates during carbohydrate starvation. Thus, we tested the effect of darkness on seed development in an ETHE1 deficient mutant in comparison to the wild type. Since ETHE1 knock-out is embryo lethal, the knock-down line ethe1-1 with about 1% residual sulfur dioxygenase activity was used for this study. We performed phenotypic analysis, metabolite profiling and comparative proteomics in order to investigate the general effect of extended darkness on seed metabolism and further define the specific function of the mitochondrial sulfur dioxygenase ETHE1 in seeds. Shading of the siliques had no morphological effect on embryogenesis in wild type plants. However, the developmental delay that was already visible in ethe1-1 seeds under control conditions was further enhanced in the darkness. Dark conditions strongly affected seed quality parameters of both wild type and mutant plants. The effect of ETHE1 knock-down on amino acid profiles was clearly different from that found in leaves indicating that in seeds persulfide oxidation interacts with alanine and glycine rather than branched-chain amino acid metabolism. Sulfur dioxygenase deficiency led to defects in endosperm development possibly due to alterations in the cellularization process. In addition, we provide evidence for a potential role of persulfide metabolism in abscisic acid (ABA) signal transduction in seeds. We conclude that the knock-down of ETHE1 causes metabolic re-arrangements in seeds that differ from those in leaves. Putative mechanisms that cause the aberrant endosperm and embryo development are discussed.
Collapse
Affiliation(s)
- Christin Lorenz
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Hanover, Germany
| | - Saskia Brandt
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Hanover, Germany
| | - Ljudmilla Borisjuk
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Hardy Rolletschek
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nicolas Heinzel
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Hans-Peter Braun
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Hanover, Germany
| | - Tatjana M. Hildebrandt
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Hanover, Germany
| |
Collapse
|
50
|
Abstract
A large amount of ultrastructural, biochemical and molecular analysis indicates that peroxisomes and mitochondria not only share the same subcellular space but also maintain considerable overlap in their proteins, responses and functions. Recent approaches using imaging of fluorescent proteins targeted to both organelles in living plant cells are beginning to show the dynamic nature of their interactivity. Based on the observations of living cells, mitochondria respond rapidly to stress by undergoing fission. Mitochondrial fission is suggested to release key membrane-interacting members of the FISSION1 and DYNAMIN RELATED PROTEIN3 families and appears to be followed by the formation of thin peroxisomal extensions called peroxules. In a model we present the peroxules as an intermediate state prior to the formation of tubular peroxisomes, which, in turn are acted upon by the constriction-related proteins released by mitochondria and undergo rapid constriction and fission to increase the number of peroxisomes in a cell. The fluorescent protein aided imaging of peroxisome-mitochondria interaction provides visual evidence for their cooperation in maintenance of cellular homeostasis in plants.
Collapse
Affiliation(s)
- Jaideep Mathur
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON, N1G2W1, Canada.
| | - Aymen Shaikh
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON, N1G2W1, Canada
| | - Neeta Mathur
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON, N1G2W1, Canada
| |
Collapse
|