1
|
Yu R, Jin Y, Liu L, Zhang Y, Wu X, Zuo Y, Qi Y, Yang Z, Zhou J, Xu M, Nie J, Ding B, Birch PRJ, Tian Z. Potato β-aminobutyric acid receptor IBI1 manipulates VOZ1 and VOZ2 transcription factor activity to promote disease resistance. PLANT PHYSIOLOGY 2024; 197:kiae561. [PMID: 39437309 DOI: 10.1093/plphys/kiae561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 10/25/2024]
Abstract
Upon infection with nonpathogenic microorganisms or treatment with natural or synthetic compounds, plants exhibit a more rapid and potent response to both biotic and abiotic stresses. However, the molecular mechanisms behind this phenomenon, known as defense priming, are poorly understood. β-minobutyric acid (BABA) is an endogenous stress metabolite that enhances plant tolerance to various abiotic stresses and primes plant defense responses, providing the ability to resist a variety of pathogens (broad-spectrum resistance). In this study, we identified an aspartyl-tRNA synthetase (AspRS), StIBI1 (named after Arabidopsis IMPAIRED IN BABA-INDUCED IMMUNITY 1 [IBI1]), as a BABA receptor in Solanum tuberosum. We elucidated the regulatory mechanisms by which StIBI1 interacts with two NAC (NAM, ATAF1, 2, and CUC2) transcription factors (TFs), StVOZ1 and StVOZ2 (VASCULAR PLANT ONE ZINC FINGER [VOZ]), to activate BABA-induced resistance (BABA-IR). StVOZ1 represses, whereas StVOZ2 promotes, immunity to the late blight pathogen Phytophthora infestans. Interestingly, BABA and StIBI1 influence StVOZ1- and StVOZ2-mediated immunity. StIBI1 interacts with StVOZ1 and StVOZ2 in the cytoplasm, reducing the nuclear accumulation of StVOZ1 and promoting the nuclear accumulation of StVOZ2. Our findings indicate that StVOZ1 and StVOZ2 finely regulate potato resistance to late blight through distinct signaling pathways. In summary, our study provides insights into the interaction between the potato BABA receptor StIBI1 and the TFs StVOZ1 and StVOZ2, which affects StVOZ1 and StVOZ2 stability and nuclear accumulation to regulate late blight resistance during BABA-IR. This research advances our understanding of the primary mechanisms of BABA-IR in potato and contributes to a theoretical basis for the prevention and control of potato late blight using BABA-IR.
Collapse
Affiliation(s)
- Ruimin Yu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agricultural and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Huazhong Agricultural University (HZAU), Wuhan 430070, China
| | - Yumeng Jin
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agricultural and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Huazhong Agricultural University (HZAU), Wuhan 430070, China
| | - Lang Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agricultural and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Huazhong Agricultural University (HZAU), Wuhan 430070, China
| | - Yonglin Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agricultural and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Huazhong Agricultural University (HZAU), Wuhan 430070, China
| | - Xinya Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agricultural and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Huazhong Agricultural University (HZAU), Wuhan 430070, China
| | - Yingtao Zuo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agricultural and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Huazhong Agricultural University (HZAU), Wuhan 430070, China
| | - Yetong Qi
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agricultural and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Huazhong Agricultural University (HZAU), Wuhan 430070, China
| | - Zhu Yang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agricultural and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Huazhong Agricultural University (HZAU), Wuhan 430070, China
| | - Jing Zhou
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agricultural and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Huazhong Agricultural University (HZAU), Wuhan 430070, China
| | - Meng Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agricultural and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Huazhong Agricultural University (HZAU), Wuhan 430070, China
| | - Jiahui Nie
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agricultural and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Huazhong Agricultural University (HZAU), Wuhan 430070, China
| | - Biao Ding
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
| | - Paul R J Birch
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Dundee DD2 5DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, UK
| | - Zhendong Tian
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agricultural and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Huazhong Agricultural University (HZAU), Wuhan 430070, China
| |
Collapse
|
2
|
Chavan SN, Degroote E, De Kock K, Demeestere K, Kyndt T. ARGONAUTE4 and the DNA demethylase REPRESSOR OF SILENCING 1C mediate dehydroascorbate-induced intergenerational nematode resistance in rice. PLANT PHYSIOLOGY 2024; 197:kiae598. [PMID: 39509606 DOI: 10.1093/plphys/kiae598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 11/15/2024]
Abstract
Plants can transmit information to the next generation and modulate the phenotype of their offspring through epigenetic mechanisms. In this study, we demonstrate the activation of "intergenerational acquired resistance" (IAR) in the progeny of rice (Oryza sativa) plants exogenously treated with dehydroascorbate (DHA). The offspring of lifelong DHA-treated plants (DHA-IAR) were significantly less susceptible to the root-knot nematode Meloidogyne graminicola and partially inherited the DHA-induced transcriptional response found in the parental plants. Phytohormone analyses on the DHA-IAR plants unveiled higher basal abscisic acid levels and a primed induction of the jasmonic acid pathway. RNA-seq analysis on the embryonic tissues of immature seeds of DHA-treated plants revealed major shifts in the expression of genes associated with epigenetic pathways. We confirmed that DHA treatment leads to a significant but transient pattern of global DNA hypomethylation in the parental plants 12 to 24 h after treatment. The induction of resistance in the parental plants requires the DNA demethylase REPRESSOR OF SILENCING 1C (ROS1c) and ARGONAUTE 4, suggesting a role for DNA demethylation and subsequent remethylation in establishment of this phenotype. Confirming the transience of global hypomethylation upon DHA treatment, no significant change in global DNA methylation levels was observed in DHA-IAR versus naïve plants. Finally, DHA could not induce IAR in the ros1c mutant line and the ARGONAUTE 4 (ago4ab)-RNAi line. These data indicate that a controlled collaboration between transient DNA demethylation and remethylation underlies the induced resistance and IAR phenotypes upon DHA treatment.
Collapse
Affiliation(s)
- Satish Namdeo Chavan
- Faculty of Bioscience Engineering, Department of Biotechnology, Ghent University, Proeftuinstraat 86 N1, Ghent 9000, Belgium
- ICAR-Indian Institute of Rice Research, Department of Nematology, Rajendranagar, Hyderabad 500030, India
| | - Eva Degroote
- Faculty of Bioscience Engineering, Department of Biotechnology, Ghent University, Proeftuinstraat 86 N1, Ghent 9000, Belgium
- Lima Europe, Rumst 2840, Belgium
- Faculty of Bioscience Engineering, Department of Green Chemistry and Technology, Ghent University, Ghent 9000, Belgium
| | - Karen De Kock
- Faculty of Bioscience Engineering, Department of Biotechnology, Ghent University, Proeftuinstraat 86 N1, Ghent 9000, Belgium
| | - Kristof Demeestere
- Faculty of Bioscience Engineering, Department of Green Chemistry and Technology, Ghent University, Ghent 9000, Belgium
| | - Tina Kyndt
- Faculty of Bioscience Engineering, Department of Biotechnology, Ghent University, Proeftuinstraat 86 N1, Ghent 9000, Belgium
| |
Collapse
|
3
|
Furci L, Pascual‐Pardo D, Tirot L, Zhang P, Hannan Parker A, Ton J. Heritable induced resistance in Arabidopsis thaliana: Tips and tools to improve effect size and reproducibility. PLANT DIRECT 2023; 7:e523. [PMID: 37638230 PMCID: PMC10457550 DOI: 10.1002/pld3.523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
Over a decade ago, three independent studies reported that pathogen- and herbivore-exposed Arabidopsis thaliana produces primed progeny with increased resistance. Since then, heritable induced resistance (h-IR) has been reported across numerous plant-biotic interactions, revealing a regulatory function of DNA (de)methylation dynamics. However, the identity of the epi-alleles controlling h-IR and the mechanisms by which they prime defense genes remain unknown, while the evolutionary significance of the response requires confirmation. Progress has been hampered by the relatively high variability, low effect size, and sometimes poor reproducibility of h-IR, as is exemplified by a recent study that failed to reproduce h-IR in A. thaliana by Pseudomonas syringae pv. tomato (Pst). This study aimed to improve h-IR effect size and reproducibility in the A. thaliana-Pst interaction. We show that recurrent Pst inoculations of seedlings result in stronger h-IR than repeated inoculations of older plants and that disease-related growth repression in the parents is a reliable marker for h-IR effect size in F1 progeny. Furthermore, RT-qPCR-based expression profiling of genes controlling DNA methylation maintenance revealed that the elicitation of strong h-IR upon seedling inoculations is marked by reduced expression of the chromatin remodeler DECREASE IN DNA METHYLATION 1 (DDM1) gene, which is maintained in the apical meristem and transmitted to F1 progeny. Two additional genes, MET1 and CHROMOMETHYLASE3 (CMT3), displayed similar transcriptional repression in progeny from seedling-inoculated plants. Thus, reduced expression of DDM1, MET1, and CMT3 can serve as a marker of robust h-IR in F1 progeny. Our report offers valuable information and markers to improve the effect size and reproducibility of h-IR in the A. thaliana-Pst model interaction.
Collapse
Affiliation(s)
- L. Furci
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodThe University of SheffieldSheffieldUK
- Plant Epigenetics UnitOkinawa Institute of Science and TechnologyOnnaOkinawaJapan
| | - D. Pascual‐Pardo
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodThe University of SheffieldSheffieldUK
| | - L. Tirot
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodThe University of SheffieldSheffieldUK
| | - P. Zhang
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodThe University of SheffieldSheffieldUK
| | - A. Hannan Parker
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodThe University of SheffieldSheffieldUK
| | - J. Ton
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodThe University of SheffieldSheffieldUK
| |
Collapse
|
4
|
Singh RR, Ameye M, Haesaert G, Deveux M, Spanoghe P, Audenaert K, Rabasse JM, Kyndt T. β-Aminobutyric acid induced phytotoxicity and effectiveness against nematode is stereomer-specific and dose-dependent in tomato. PHYSIOLOGIA PLANTARUM 2023; 175:e13862. [PMID: 36690578 DOI: 10.1111/ppl.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/10/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
β-Aminobutyric acid (BABA) induces resistance to a/biotic stress but is associated with phytotoxicity in some plant species. There are two enantiomers of BABA, the R and S enantiomers. We evaluated the phytotoxicity caused by the RS BABA (racemic mixture of R and S BABA), evaluating the dose-response effect and different modes of application on tomato. Results show that RS BABA-induced phytotoxicity in tomato is dose-dependent and stronger with foliar applications than with soil drench. We further evaluated the phytotoxicity of the two enantiomers separately and observed that BABA-induced phytotoxicity is stereomer-specific. In comparison with less phytotoxic effects induced by S BABA, R BABA induces dose-dependent and systemic phytotoxic symptoms. To investigate the possible physiological causes of this phytotoxicity, we measured levels of oxidative stress and anthocyanins and validated the findings with gene expression analyses. Our results show that high doses of RS and R BABA induce hydrogen peroxide, lipid peroxidation, and anthocyanin accumulation in tomato leaves, while this response is milder and more transient upon S BABA application. Next, we evaluated BABA induced resistance against root-knot nematode Meloidogyne incognita in tomato. BABA-induced resistance was found to be stereomer-specific and dependent on dose and mode of application. R or RS BABA multiple soil drench application at low doses induces resistance to nematodes with less phytotoxic effects. Taken together, our data provide useful knowledge on how BABA can be applied in crop production by enhancing stress tolerance and limiting phytotoxicity.
Collapse
Affiliation(s)
| | - Maarten Ameye
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Geert Haesaert
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Melissa Deveux
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Pieter Spanoghe
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | | | - Tina Kyndt
- Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Catoni M, Alvarez-Venegas R, Worrall D, Holroyd G, Barraza A, Luna E, Ton J, Roberts MR. Long-Lasting Defence Priming by β-Aminobutyric Acid in Tomato Is Marked by Genome-Wide Changes in DNA Methylation. FRONTIERS IN PLANT SCIENCE 2022; 13:836326. [PMID: 35498717 PMCID: PMC9051511 DOI: 10.3389/fpls.2022.836326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/23/2022] [Indexed: 05/26/2023]
Abstract
Exposure of plants to stress conditions or to certain chemical elicitors can establish a primed state, whereby responses to future stress encounters are enhanced. Stress priming can be long-lasting and likely involves epigenetic regulation of stress-responsive gene expression. However, the molecular events underlying priming are not well understood. Here, we characterise epigenetic changes in tomato plants primed for pathogen resistance by treatment with β-aminobutyric acid (BABA). We used whole genome bisulphite sequencing to construct tomato methylomes from control plants and plants treated with BABA at the seedling stage, and a parallel transcriptome analysis to identify genes primed for the response to inoculation by the fungal pathogen, Botrytis cinerea. Genomes of plants treated with BABA showed a significant reduction in global cytosine methylation, especially in CHH sequence contexts. Analysis of differentially methylated regions (DMRs) revealed that CHH DMRs were almost exclusively hypomethylated and were enriched in gene promoters and in DNA transposons located in the chromosome arms. Genes overlapping CHH DMRs were enriched for a small number of stress response-related gene ontology terms. In addition, there was significant enrichment of DMRs in the promoters of genes that are differentially expressed in response to infection with B. cinerea. However, the majority of genes that demonstrated priming did not contain DMRs, and nor was the overall distribution of methylated cytosines in primed genes altered by BABA treatment. Hence, we conclude that whilst BABA treatment of tomato seedlings results in characteristic changes in genome-wide DNA methylation, CHH hypomethylation appears only to target a minority of genes showing primed responses to pathogen infection. Instead, methylation may confer priming via in-trans regulation, acting at a distance from defence genes, and/or by targeting a smaller group of regulatory genes controlling stress responses.
Collapse
Affiliation(s)
- Marco Catoni
- School of Bioscience, University of Birmingham, Birmingham, United Kingdom
| | - Raul Alvarez-Venegas
- Departamento de Ingeniería Genética, CINVESTAV-IPN, Unidad Irapuato, Guanajuato, Mexico
| | - Dawn Worrall
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Geoff Holroyd
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Aarón Barraza
- CONACYT-CIBNOR, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| | - Estrella Luna
- School of Bioscience, University of Birmingham, Birmingham, United Kingdom
| | - Jurriaan Ton
- School of Biosciences, Institute of Sustainable Food, University of Sheffield, Sheffield, United Kingdom
| | - Michael R. Roberts
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
6
|
Martínez-Aguilar K, Hernández-Chávez JL, Alvarez-Venegas R. Priming of seeds with INA and its transgenerational effect in common bean (Phaseolus vulgaris L.) plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110834. [PMID: 33691968 DOI: 10.1016/j.plantsci.2021.110834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/04/2021] [Accepted: 01/30/2021] [Indexed: 05/14/2023]
Abstract
Priming is a mechanism of defense that prepares the plant's immune system for a faster and/or stronger activation of cellular defenses against future exposure to different types of stress. This enhanced resistance can be achieved by using inorganic and organic compounds which imitate the biological induction of systemic acquired resistance. INA (2,6 dichloro-isonicotinic acid) was the first synthetic compound created as a resistance inducer for plant-pathogen interactions. However, the use of INA to activate primed resistance in common bean, at the seed stage and during germination, remains experimentally unexplored. Here, we test the hypothesis that INA-seed treatment would induce resistance in common bean plants to Pseudomonas syringae pv. phaseolicola, and that the increased resistance is not accompanied by a tradeoff between plant defense and growth. Additionally, it was hypothesized that treating seeds with INA has a transgenerational priming effect. We provide evidence that seed treatment activates a primed state for disease resistance, in which low nucleosome enrichment and reduced histone activation marks during the priming phase, are associated with a defense-resistant phenotype, characterized by symptom appearance, pathogen accumulation, yield, and changes in gene expression. In addition, the priming status for induced resistance can be inherited to its offspring.
Collapse
|
7
|
Pastor-Fernández J, Gamir J, Pastor V, Sanchez-Bel P, Sanmartín N, Cerezo M, Flors V. Arabidopsis Plants Sense Non-self Peptides to Promote Resistance Against Plectosphaerella cucumerina. FRONTIERS IN PLANT SCIENCE 2020; 11:529. [PMID: 32536929 PMCID: PMC7225342 DOI: 10.3389/fpls.2020.00529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/07/2020] [Indexed: 05/20/2023]
Abstract
Peptides are important regulators that participate in the modulation of almost every physiological event in plants, including defense. Recently, many of these peptides have been described as defense elicitors, termed phytocytokines, that are released upon pest or pathogen attack, triggering an amplification of plant defenses. However, little is known about peptides sensing and inducing resistance activities in heterologous plants. In the present study, exogenous peptides from solanaceous species, Systemins and HypSys, are sensed and induce resistance to the necrotrophic fungus Plectosphaerella cucumerina in the taxonomically distant species Arabidopsis thaliana. Surprisingly, other peptides from closer taxonomic clades have very little or no effect on plant protection. In vitro bioassays showed that the studied peptides do not have direct antifungal activities, suggesting that they protect the plant through the promotion of the plant immune system. Interestingly, tomato Systemin was able to induce resistance at very low concentrations (0.1 and 1 nM) and displays a maximum threshold being ineffective above at higher concentrations. Here, we show evidence of the possible involvement of the JA-signaling pathway in the Systemin-Induced Resistance (Sys-IR) in Arabidopsis. Additionally, Systemin treated plants display enhanced BAK1 and BIK1 gene expression following infection as well as increased production of ROS after PAMP treatment suggesting that Systemin sensitizes Arabidopsis perception to pathogens and PAMPs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Víctor Flors
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain
| |
Collapse
|
8
|
Li R, Sheng J, Shen L. Nitric Oxide Plays an Important Role in β-Aminobutyric Acid-Induced Resistance to Botrytis cinerea in Tomato Plants. THE PLANT PATHOLOGY JOURNAL 2020; 36:121-132. [PMID: 32296292 PMCID: PMC7143515 DOI: 10.5423/ppj.oa.11.2019.0274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/16/2020] [Accepted: 03/03/2020] [Indexed: 05/25/2023]
Abstract
β-Aminobutyric acid (BABA) has consistently been reported to enhance plant immunity. However, the specific mechanisms and downstream components that mediate this resistance are not yet agreed upon. Nitric oxide (NO) is an important signal molecule involved in a diverse range of physiological processes, and whether NO is involved in BABA-induced resistance is interesting. In this study, treatment with BABA significantly increased NO accumulation and reduced the sensitivity to Botrytis cinerea in tomato plants. BABA treatment reduced physical signs of infection and increased both the transcription of key defense marker genes and the activity of defensive enzymes. Interestingly, compared to treatment with BABA alone, treatment with BABA plus cPTIO (NO specific scavenger) not only significantly reduced NO accumulation, but also increased disease incidence and lesion area. These results suggest that NO accumulation plays an important role in BABA-induced resistance against B. cinerea in tomato plants.
Collapse
Affiliation(s)
- Rui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, China
| | - Lin Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
9
|
De Vrieze M, Gloor R, Massana Codina J, Torriani S, Gindro K, L'Haridon F, Bailly A, Weisskopf L. Biocontrol Activity of Three Pseudomonas in a Newly Assembled Collection of Phytophthora infestans Isolates. PHYTOPATHOLOGY 2019; 109:1555-1565. [PMID: 31041882 DOI: 10.1094/phyto-12-18-0487-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Late blight caused by the oomycete Phytophthora infestans constitutes the greatest threat to potato production worldwide. Considering the increasing concerns regarding the emergence of novel fungicide-resistant genotypes and the general demand for reducing inputs of synthetic and copper-based fungicides, the need for alternative control methods is acute. Several bacterial antagonists have shown anti-Phytophthora effects during in vitro and greenhouse experiments. We report the effects of three Pseudomonas strains recovered from field-grown potatoes against a collection of P. infestans isolates assembled for this study. The collection comprised 19 P. infestans isolates of mating types A1 and A2 greatly varying in fungicide resistance and virulence profiles as deduced from leaf disc experiments on Black's differential set. The mycelial growth of all P. infestans isolates was fully inhibited when co-cultivated with the most active Pseudomonas strain (R47). Moreover, the isolates reacted differently to exposure to the less active Pseudomonas strains (S19 and R76). Leaf disc infection experiments with six selected P. infestans isolates showed that four of them, including highly virulent and fungicide-resistant ones, could be efficiently controlled by different potato-associated Pseudomonas strains.[Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mout De Vrieze
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
- Research Division Plant Protection, Agroscope, Route de Duillier 60, CH-1260 Nyon, Switzerland
| | - Ramona Gloor
- Research Division Plant Protection, Agroscope, Route de Duillier 60, CH-1260 Nyon, Switzerland
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Josep Massana Codina
- Research Division Plant Protection, Agroscope, Route de Duillier 60, CH-1260 Nyon, Switzerland
| | - Stefano Torriani
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Katia Gindro
- Research Division Plant Protection, Agroscope, Route de Duillier 60, CH-1260 Nyon, Switzerland
| | - Floriane L'Haridon
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Aurélien Bailly
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| |
Collapse
|
10
|
Moshynets OV, Babenko LM, Rogalsky SP, Iungin OS, Foster J, Kosakivska IV, Potters G, Spiers AJ. Priming winter wheat seeds with the bacterial quorum sensing signal N-hexanoyl-L-homoserine lactone (C6-HSL) shows potential to improve plant growth and seed yield. PLoS One 2019; 14:e0209460. [PMID: 30802259 PMCID: PMC6388923 DOI: 10.1371/journal.pone.0209460] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/07/2019] [Indexed: 01/07/2023] Open
Abstract
Several model plants are known to respond to bacterial quorum sensing molecules with altered root growth and gene expression patterns and induced resistance to plant pathogens. These compounds may represent novel elicitors that could be applied as seed primers to enhance cereal crop resistance to pathogens and abiotic stress and to improve yields. We investigated whether the acyl-homoserine lactone N-hexanoyl-L-homoserine lactone (C6-HSL) impacted winter wheat (Triticum aestivum L.) seed germination, plant development and productivity, using two Ukrainian varieties, Volodarka and Yatran 60, in both in vitro experiments and field trials. In vitro germination experiments indicated that C6-HSL seed priming had a small but significant positive impact on germination levels (1.2x increase, p < 0.0001), coleoptile and radicle development (1.4x increase, p < 0.0001). Field trials over two growing seasons (2015–16 and 2016–17) also demonstrated significant improvements in biomass at the tillering stage (1.4x increase, p < 0.0001), and crop structure and productivity at maturity including grain yield (1.4–1.5x increase, p < 0.0007) and quality (1.3x increase in good grain, p < 0.0001). In some cases variety effects were observed (p ≤ 0.05) suggesting that the effect of C6-HSL seed priming might depend on plant genetics, and some benefits of priming were also evident in F1 plants grown from seeds collected the previous season (p ≤ 0.05). These field-scale findings suggest that bacterial acyl-homoserine lactones such as C6-HSL could be used to improve cereal crop growth and yield and reduce reliance on fungicides and fertilisers to combat pathogens and stress.
Collapse
Affiliation(s)
- Olena V. Moshynets
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kiev, Ukraine
- * E-mail: (OM); (AS)
| | - Lidia M. Babenko
- M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Sergiy P. Rogalsky
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Olga S. Iungin
- D.K. Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Jessica Foster
- School of Science, Engineering and Technology, Abertay University, Dundee, United Kingdom
| | - Iryna V. Kosakivska
- M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Geert Potters
- Antwerp Maritime Academy, Antwerp, Belgium
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Andrew J. Spiers
- School of Science, Engineering and Technology, Abertay University, Dundee, United Kingdom
- * E-mail: (OM); (AS)
| |
Collapse
|
11
|
Thomas C, Mabon R, Andrivon D, Val F. The Effectiveness of Induced Defense Responses in a Susceptible Potato Genotype Depends on the Growth Rate of Phytophthora infestans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:76-85. [PMID: 30048603 DOI: 10.1094/mpmi-03-18-0064-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phytophthora infestans causes the devastating potato late blight disease, which is widely controlled with fungicides. However, the debate about chemical control is fueling a promotion toward alternative methods. In this context, the enhancement of natural plant immunity could be a strategy for more sustainable protection. We previously demonstrated that a concentrated culture filtrate (CCF) of P. infestans primes defense reactions in potato. They are genotype-dependent and metabolites produced decrease pathogen growth in vitro but not in vivo on tubers. Induced potato defenses are assumed to affect P. infestans life history traits depending on strains. This assumption was studied in vivo through induced leaflets on a susceptible genotype inoculated with four P. infestans strains differing for lesion growth rate. This study combines both defenses mechanistic analysis and ecological observations. Defense-gene expressions were thus assessed by quantitative reverse transcription-polymerase chain reaction; pathogen development was simultaneously evaluated by measuring necrosis, quantifying mycelial DNA, and counting sporangia. The results showed that CCF pretreatment reduced the pathogenicity differences between slow- and fast-growing strains. Moreover, after elicitation, PR-1, PR-4, PAL, POX, and THT induction was strain-dependent. These results suggest that P. infestans could develop different strategies to overcome plant defenses and should be considered in biocontrol and epidemic management of late blight.
Collapse
Affiliation(s)
- Cécile Thomas
- 1 INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653 Le Rheu Cedex, France; and
| | - Romain Mabon
- 1 INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653 Le Rheu Cedex, France; and
| | - Didier Andrivon
- 1 INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653 Le Rheu Cedex, France; and
| | - Florence Val
- 2 Agrocampus Ouest, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, 65, rue de Saint-Brieuc, 35042 Rennes Cedex, France
| |
Collapse
|
12
|
Kuźnicki D, Meller B, Arasimowicz-Jelonek M, Braszewska-Zalewska A, Drozda A, Floryszak-Wieczorek J. BABA-Induced DNA Methylome Adjustment to Intergenerational Defense Priming in Potato to Phytophthora infestans. FRONTIERS IN PLANT SCIENCE 2019; 10:650. [PMID: 31214209 PMCID: PMC6554679 DOI: 10.3389/fpls.2019.00650] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/30/2019] [Indexed: 05/21/2023]
Abstract
We provide evidence that alterations in DNA methylation patterns contribute to the regulation of stress-responsive gene expression for an intergenerational resistance of β-aminobutyric acid (BABA)-primed potato to Phytophthora infestans. Plants exposed to BABA rapidly modified their methylation capacity toward genome-wide DNA hypermethylation. De novo induced DNA methylation (5-mC) correlated with the up-regulation of Chromomethylase 3 (CMT3), Domains rearranged methyltransferase 2 (DRM2), and Repressor of silencing 1 (ROS1) genes in potato. BABA transiently activated DNA hypermethylation in the promoter region of the R3a resistance gene triggering its downregulation in the absence of the oomycete pathogen. However, in the successive stages of priming, an excessive DNA methylation state changed into demethylation with the active involvement of potato DNA glycosylases. Interestingly, the 5-mC-mediated changes were transmitted into the next generation in the form of intergenerational stress memory. Descendants of the primed potato, which derived from tubers or seeds carrying the less methylated R3a promoter, showed a higher transcription of R3a that associated with an augmented intergenerational resistance to virulent P. infestans when compared to the inoculated progeny of unprimed plants. Furthermore, our study revealed that enhanced transcription of some SA-dependent genes (NPR1, StWRKY1, and PR1) was not directly linked with DNA methylation changes in the promoter region of these genes, but was a consequence of methylation-dependent alterations in the transcriptional network.
Collapse
Affiliation(s)
- Daniel Kuźnicki
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Barbara Meller
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | | | - Agnieszka Braszewska-Zalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, The University of Silesia in Katowice, Katowice, Poland
| | - Andżelika Drozda
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Jolanta Floryszak-Wieczorek
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
- *Correspondence: Jolanta Floryszak-Wieczorek,
| |
Collapse
|
13
|
Pétriacq P, López A, Luna E. Fruit Decay to Diseases: Can Induced Resistance and Priming Help? PLANTS (BASEL, SWITZERLAND) 2018; 7:E77. [PMID: 30248893 PMCID: PMC6314081 DOI: 10.3390/plants7040077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 11/16/2022]
Abstract
Humanity faces the challenge of having to increase food production to feed an exponentially growing world population, while crop diseases reduce yields to levels that we can no longer afford. Besides, a significant amount of waste is produced after fruit harvest. Fruit decay due to diseases at a post-harvest level can claim up to 50% of the total production worldwide. Currently, the most effective means of disease control is the use of pesticides. However, their use post-harvest is extremely limited due to toxicity. The last few decades have witnessed the development of safer methods of disease control post-harvest. They have all been included in programs with the aim of achieving integrated pest (and disease) management (IPM) to reduce pesticide use to a minimum. Unfortunately, these approaches have failed to provide robust solutions. Therefore, it is necessary to develop alternative strategies that would result in effective control. Exploiting the immune capacity of plants has been described as a plausible route to prevent diseases post-harvest. Post-harvest-induced resistance (IR) through the use of safer chemicals from biological origin, biocontrol, and physical means has also been reported. In this review, we summarize the successful activity of these different strategies and explore the mechanisms behind. We further explore the concept of priming, and how its long-lasting and broad-spectrum nature could contribute to fruit resistance.
Collapse
Affiliation(s)
- Pierre Pétriacq
- UMR 1332 Biologie du Fruit et Pathologie, Université de Bordeaux et INRA de Bordeaux, F-33883 Villenave d'Ornon, France.
- Plateforme Métabolome Bordeaux-MetaboHUB, Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France.
| | - Ana López
- Department of Plant Molecular Genetics, Spanish National Centre for Biotechnology, 28049 Madrid, Spain.
| | - Estrella Luna
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
14
|
Meller B, Kuźnicki D, Arasimowicz-Jelonek M, Deckert J, Floryszak-Wieczorek J. BABA-Primed Histone Modifications in Potato for Intergenerational Resistance to Phytophthora infestans. FRONTIERS IN PLANT SCIENCE 2018; 9:1228. [PMID: 30233606 PMCID: PMC6135045 DOI: 10.3389/fpls.2018.01228] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/02/2018] [Indexed: 05/23/2023]
Abstract
In this paper we analyzed β-aminobutyric acid (BABA)-primed epigenetic adjustment of potato cv. "Sarpo Mira" to Phytophthora infestans. The first stress-free generation of the potato genotype obtained from BABA-primed parent plants via tubers and seeds showed pronounced resistance to the pathogen, which was tuned with the transcriptional memory of SA-responsive genes. During the early priming phase before the triggering stress, we found robust bistable deposition of histone marks (H3K4me2 and H3K27me3) on the NPR1 (Non-expressor of PR genes) and the SNI1 gene (Suppressor of NPR1, Inducible), in which transcription antagonized silencing. Switchable chromatin states of these adverse systemic acquired resistance (SAR) regulators probably reprogrammed responsiveness of the PR1 and PR2 genes and contributed to stress imprinting. The elevated levels of heritable H3K4me2 tag in the absence of transcription on SA-dependent genes in BABA-primed (F0) and its vegetative and generative progeny (F1) before pathogen challenge provided evidence for the epigenetic mark for intergenerational memory in potato. Moreover, our study revealed that histone acetylation was not critical for maintaining BABA-primed defense information until the plants were triggered with the virulent pathogen when rapid and boosted PRs gene expression probably required histone acetyltransferase (HAT) activity both in F0 and F1 progeny.
Collapse
Affiliation(s)
- Barbara Meller
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Daniel Kuźnicki
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | | | - Joanna Deckert
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | |
Collapse
|
15
|
Baccelli I, Glauser G, Mauch-Mani B. The accumulation of β-aminobutyric acid is controlled by the plant's immune system. PLANTA 2017; 246:791-796. [PMID: 28762076 DOI: 10.1007/s00425-017-2751-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/22/2017] [Indexed: 05/18/2023]
Abstract
Endogenous levels of β-aminobutyric acid (BABA) increase after the molecular recognition of pathogen presence. BABA is accumulated differently during resistance or susceptibility to disease. The priming molecule β-aminobutyric acid has been recently shown to be a natural product of plants, and this has provided significance to the previous discovery of a perception mechanism in Arabidopsis. BABA levels were found to increase after abiotic stress or infection with virulent pathogens, but the role of endogenous BABA in defence has remained to be established. To investigate the biological significance of endogenous BABA variations during plant-pathogen interactions, we investigated how infections with virulent, avirulent (AvrRpt2), and non-pathogenic (hrpA) strains of Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), as well as treatment with defence elicitors (Flg22 and AtPep2), affect the accumulation of BABA in Arabidopsis plants. We found that BABA levels increased more rapidly during resistance than susceptibility to Pst DC3000. In addition, BABA was accumulated during PAMP-triggered immunity (PTI) after infection with the non-pathogenic Pst DC3000 hrpA mutant, or treatment with elicitors. Importantly, treatment with Flg22 induced BABA rise in Columbia-0 plants but not in Wassilewskija-0 plants, which naturally possess a non-functional flagellin receptor. These results indicate that BABA levels are controlled by the plant's immune system, thus advancing the understanding of the biological role of plant produced BABA.
Collapse
Affiliation(s)
- Ivan Baccelli
- Laboratory of Molecular and Cell Biology, Institute of Biology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Brigitte Mauch-Mani
- Laboratory of Molecular and Cell Biology, Institute of Biology, University of Neuchâtel, Neuchâtel, 2000, Switzerland.
| |
Collapse
|
16
|
Agathokleous E. Perspectives for elucidating the ethylenediurea (EDU) mode of action for protection against O 3 phytotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:530-537. [PMID: 28478379 DOI: 10.1016/j.ecoenv.2017.04.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/22/2017] [Accepted: 04/28/2017] [Indexed: 05/22/2023]
Abstract
Ethylenediurea (EDU) has been widely studied for its effectiveness to protect plants against injuries caused by surface ozone (O3), however its mode of action remains unclear. So far, there is not a unified methodological approach and thus the methodology is quite arbitrary, thereby making it more difficult to generalize findings and understand the EDU mode of action. This review examines the question of whether potential N addition to plants by EDU is a fundamental underlying mechanism in protecting against O3 phytotoxicity. Yet, this review proposes an evidence-based hypothesis that EDU may protect plants against O3 deleterious effects upon generation of EDU-induced hormesis, i.e. by activating plant defense at low doses. This hypothesis challenges the future research directions. Revealing a hormesis-based EDU mode of action in protecting plants against O3 toxicity would have further implications to ecotoxicology and environmental safety. Furthermore, this review discusses the need for further studies on plant metabolism under EDU treatment through relevant experimental approach, and attempts to set the bases for approaching a unified methodology that will contribute in revealing the EDU mode of action. In this framework, focus is given to the main EDU application methods.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), National Research and Development Agency, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan; Research Faculty of Agriculture, School of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo, Hokkaido 060-8589, Japan.
| |
Collapse
|
17
|
Lankinen Å, Abreha KB, Alexandersson E, Andersson S, Andreasson E. Nongenetic Inheritance of Induced Resistance in a Wild Annual Plant. PHYTOPATHOLOGY 2016; 106:877-83. [PMID: 27070426 DOI: 10.1094/phyto-10-15-0278-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nongenetic inheritance (e.g., transgenerational epigenetic effects) has received increasing interest in recent years, particularly in plants. However, most studies have involved a few model species and relatively little is known about wild species in these respects. We investigated transgenerational induced resistance to infection by the devastating oomycete Phytophthora infestans in Solanum physalifolium, a wild relative of cultivated potato. We treated plants with β-aminobutyric acid (BABA), a nontoxic compound acting as an inducing agent, or infected plants with P. infestans. BABA treatment reduced lesion size in detached-leaf assays inoculated by P. infestans in two of three tested genotypes, suggesting that resistance to oomycetes can be induced by BABA within a generation not only in crops or model species but also in wild species directly collected from nature. Both BABA treatment and infection in the parental generation reduced lesions in the subsequent generation in one of two genotypes, indicating a transgenerational influence on resistance that varies among genotypes. We did not detect treatment effects on seed traits, indicating the involvement of a mechanism unrelated to maternal effects. In conclusion, our study provides data on BABA induction and nongenetic inheritance of induced resistance in a wild relative of cultivated potato, implying that this factor might be important in the ecological and agricultural landscape.
Collapse
Affiliation(s)
- Åsa Lankinen
- First, second, third, and fifth authors: Swedish University of Agricultural Sciences, Plant Protection Biology, P.O. Box 102, S-230 53 Alnarp, Sweden; and fourth author: Department of Biology, Lund University, Ecology Building, S-223 62 Lund, Sweden
| | - Kibrom B Abreha
- First, second, third, and fifth authors: Swedish University of Agricultural Sciences, Plant Protection Biology, P.O. Box 102, S-230 53 Alnarp, Sweden; and fourth author: Department of Biology, Lund University, Ecology Building, S-223 62 Lund, Sweden
| | - Erik Alexandersson
- First, second, third, and fifth authors: Swedish University of Agricultural Sciences, Plant Protection Biology, P.O. Box 102, S-230 53 Alnarp, Sweden; and fourth author: Department of Biology, Lund University, Ecology Building, S-223 62 Lund, Sweden
| | - Stefan Andersson
- First, second, third, and fifth authors: Swedish University of Agricultural Sciences, Plant Protection Biology, P.O. Box 102, S-230 53 Alnarp, Sweden; and fourth author: Department of Biology, Lund University, Ecology Building, S-223 62 Lund, Sweden
| | - Erik Andreasson
- First, second, third, and fifth authors: Swedish University of Agricultural Sciences, Plant Protection Biology, P.O. Box 102, S-230 53 Alnarp, Sweden; and fourth author: Department of Biology, Lund University, Ecology Building, S-223 62 Lund, Sweden
| |
Collapse
|