1
|
Piccinini L, Nirina Ramamonjy F, Ursache R. Imaging plant cell walls using fluorescent stains: The beauty is in the details. J Microsc 2024; 295:102-120. [PMID: 38477035 DOI: 10.1111/jmi.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Plants continuously face various environmental stressors throughout their lifetime. To be able to grow and adapt in different environments, they developed specialized tissues that allowed them to maintain a protected yet interconnected body. These tissues undergo specific primary and secondary cell wall modifications that are essential to ensure normal plant growth, adaptation and successful land colonization. The composition of cell walls can vary among different plant species, organs and tissues. The ability to remodel their cell walls is fundamental for plants to be able to cope with multiple biotic and abiotic stressors. A better understanding of the changes taking place in plant cell walls may help identify and develop new strategies as well as tools to enhance plants' survival under environmental stresses or prevent pathogen attack. Since the invention of microscopy, numerous imaging techniques have been developed to determine the composition and dynamics of plant cell walls during normal growth and in response to environmental stimuli. In this review, we discuss the main advances in imaging plant cell walls, with a particular focus on fluorescent stains for different cell wall components and their compatibility with tissue clearing techniques. Lay Description: Plants are continuously subjected to various environmental stresses during their lifespan. They evolved specialized tissues that thrive in different environments, enabling them to maintain a protected yet interconnected body. Such tissues undergo distinct primary and secondary cell wall alterations essential to normal plant growth, their adaptability and successful land colonization. Cell wall composition may differ among various plant species, organs and even tissues. To deal with various biotic and abiotic stresses, plants must have the capacity to remodel their cell walls. Gaining insight into changes that take place in plant cell walls will help identify and create novel tools and strategies to improve plants' ability to withstand environmental challenges. Multiple imaging techniques have been developed since the introduction of microscopy to analyse the composition and dynamics of plant cell walls during growth and in response to environmental changes. Advancements in plant tissue cleaning procedures and their compatibility with cell wall stains have significantly enhanced our ability to perform high-resolution cell wall imaging. At the same time, several factors influence the effectiveness of cleaning and staining plant specimens, as well as the time necessary for the process, including the specimen's size, thickness, tissue complexity and the presence of autofluorescence. In this review, we will discuss the major advances in imaging plant cell walls, with a particular emphasis on fluorescent stains for diverse cell wall components and their compatibility with tissue clearing techniques. We hope that this review will assist readers in selecting the most appropriate stain or combination of stains to highlight specific cell wall components of interest.
Collapse
Affiliation(s)
- Luca Piccinini
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona, Spain
| | - Fabien Nirina Ramamonjy
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona, Spain
| | - Robertas Ursache
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona, Spain
| |
Collapse
|
2
|
Camacho-Fernández C, Corral-Martínez P, Calabuig-Serna A, Arjona-Mudarra P, Sancho-Oviedo D, Boutilier K, Seguí-Simarro JM. The different response of Brassica napus genotypes to microspore embryogenesis induced by heat shock and trichostatin A is not determined by changes in cell wall structure and composition but by different stress tolerance. PHYSIOLOGIA PLANTARUM 2024; 176:e14405. [PMID: 38923567 DOI: 10.1111/ppl.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
During microspore embryogenesis, microspores are induced to develop into haploid embryos. In Brassica napus, microspore embryogenesis is induced by a heat shock (HS), which initially produces embryogenic structures with different cell wall architectures and compositions, and with different potentials to develop into embryos. The B. napus DH4079 and DH12075 genotypes have high and very low embryo yields, respectively. In DH12075, embryo yield is greatly increased by combining HS and the histone deacetylase (HDAC) inhibitor trichostatin A (TSA). However, we show that HS + TSA inhibits embryogenesis in the highly embryogenic DH4079 line. To ascertain why TSA has such different effects in these lines, we treated DH4079 and DH12075 microspore cultures with TSA and compared the cell wall structure and composition of the different embryogenic structures in both lines, specifically the in situ levels and distribution of callose, cellulose, arabinogalactan proteins and high and low methyl-esterified pectin. For both lines, HS + TSA led to the formation of cell walls unfavorable for embryogenesis progression, with reduced levels of arabinogalactan proteins, reduced cell adhesion of inner walls and altered pectin composition. Thus, TSA effects on cell walls cannot explain their different embryogenic response to TSA. We also applied TSA to DH4079 cultures at different times and concentrations before HS application, with no negative effects on embryogenic induction. These results indicate that DH4079 microspores are hypersensitive to combined TSA and HS treatments, and open up new hypotheses about the causes of such hypersensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | - Kim Boutilier
- Bioscience, Wageningen University and Research, Wageningen, AA, Netherlands
| | | |
Collapse
|
3
|
Calabuig-Serna A, Mir R, Porcel R, Seguí-Simarro JM. The Highly Embryogenic Brassica napus DH4079 Line Is Recalcitrant to Agrobacterium-Mediated Genetic Transformation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2008. [PMID: 37653925 PMCID: PMC10221801 DOI: 10.3390/plants12102008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 08/15/2023]
Abstract
Brassica napus is a species of high agronomic interest, used as a model to study different processes, including microspore embryogenesis. The DH4079 and DH12075 lines show high and low embryogenic response, respectively, which makes them ideal to study the basic mechanisms controlling embryogenesis induction. Therefore, the availability of protocols for genetic transformation of these two backgrounds would help to generate tools to better understand this process. There are some reports in the literature showing the stable transformation of DH12075. However, no equivalent studies in DH4079 have been reported to date. We explored the ability of DH4079 plants to be genetically transformed. As a reference to compare with, we used the same protocols to transform DH12075. We used three different protocols previously reported as successful for B. napus stable transformation with Agrobacterium tumefaciens and analyzed the response of plants. Whereas DH12075 plants responded to genetic transformation, DH4079 plants were completely recalcitrant, not producing any single regenerant out of the 1784 explants transformed and cultured. Additionally, an Agrobacterium rhizogenes transient transformation assay was performed on both lines, and only DH12075, but no DH4079 seedlings, responded to A. rhizogenes infection. Therefore, we propose that the DH4079 line is recalcitrant to Agrobacterium-mediated transformation.
Collapse
Affiliation(s)
| | | | | | - Jose M. Seguí-Simarro
- Cell Biology Group-COMAV Institute, Universitat Politècnica de València, 46022 Valencia, Spain; (A.C.-S.); (R.P.)
| |
Collapse
|
4
|
Niccolò T, Anderson AW, Emidio A. Apomixis: oh, what a tangled web we have! PLANTA 2023; 257:92. [PMID: 37000270 PMCID: PMC10066125 DOI: 10.1007/s00425-023-04124-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Apomixis is a complex evolutionary trait with many possible origins. Here we discuss various clues and causes, ultimately proposing a model harmonizing the three working hypotheses on the topic. Asexual reproduction through seeds, i.e., apomixis, is the holy grail of plant biology. Its implementation in modern breeding could be a game-changer for agriculture. It has the potential to generate clonal crops and maintain valuable complex genotypes and their associated heterotic traits without inbreeding depression. The genetic basis and origins of apomixis are still unclear. There are three central hypothesis for the development of apomixis that could be: i) a deviation from the sexual developmental program caused by an asynchronous development, ii) environmentally triggered through epigenetic regulations (a polyphenism of sex), iii) relying on one or more genes/alleles. Because of the ever-increasing complexity of the topic, the path toward a detailed understanding of the mechanisms underlying apomixis remains unclear. Here, we discuss the most recent advances in the evolution perspective of this multifaceted trait. We incorporated our understanding of the effect of endogenous effectors, such as small RNAs, epigenetic regulation, hormonal pathways, protein turnover, and cell wall modification in response to an upside stress. This can be either endogenous (hybridization or polyploidization) or exogenous environmental stress, mainly due to oxidative stress and the corresponding ROS (Reacting Oxygen Species) effectors. Finally, we graphically represented this tangled web.
Collapse
Affiliation(s)
- Terzaroli Niccolò
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
| | - Aaron W Anderson
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
- Fulbright Scholar From Department of Plant Sciences, University of California, Davis, USA
| | - Albertini Emidio
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
- Consorzio Interuniversitario per le Biotecnologie (CIB), Trieste, Italy
| |
Collapse
|
5
|
Bednarek PT, Orłowska R, Mańkowski DR, Zimny J, Kowalczyk K, Nowak M, Zebrowski J. Glutathione and copper ions as critical factors of green plant regeneration efficiency of triticale in vitro anther culture. FRONTIERS IN PLANT SCIENCE 2022; 13:926305. [PMID: 35982694 PMCID: PMC9379855 DOI: 10.3389/fpls.2022.926305] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/07/2022] [Indexed: 05/02/2023]
Abstract
Plant tissue culture techniques are handy tools for obtaining unique plant materials that are difficult to propagate or important for agriculture. Homozygous materials derived through in vitro cultures are invaluable and significantly accelerate the evaluation of new varieties, e.g., cereals. The induction of somatic embryogenesis/androgenesis and the regeneration and its efficiency can be influenced by the external conditions of tissue culture, such as the ingredients present in the induction or regeneration media. We have developed an approach based on biological system, molecular markers, Fourier Transform Infrared spectroscopy, and structural equation modeling technique to establish links between changes in sequence and DNA methylation at specific symmetric (CG, CHG) and asymmetric (CHH) sequences, glutathione, and green plant regeneration efficiency in the presence of variable supplementation of induction medium with copper ions. The methylation-sensitive Amplified Fragment Length Polymorphism was used to assess tissue culture-induced variation, Fourier Transform Infrared spectroscopy to describe the glutathione spectrum, and a structural equation model to develop the relationship between sequence variation, de novo DNA methylation within asymmetric sequence contexts, and copper ions in the induction medium, as well as, glutathione, and green plant efficiency. An essential aspect of the study is demonstrating the contribution of glutathione to green plant regeneration efficiency and indicating the critical role of copper ions in influencing tissue culture-induced variation, glutathione, and obtaining green regenerants. The model presented here also has practical implications, showing that manipulating the concentration of copper ions in the induction medium may influence cell function and increases green plant regeneration efficiency.
Collapse
Affiliation(s)
- Piotr T. Bednarek
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, Poland
| | - Renata Orłowska
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, Poland
| | - Dariusz R. Mańkowski
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, Poland
| | - Janusz Zimny
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, Poland
| | - Krzysztof Kowalczyk
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Lublin, Poland
| | - Michał Nowak
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Lublin, Poland
| | - Jacek Zebrowski
- Institute of Biology and Biotechnology, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
6
|
Dubas E, Żur I, Moravčiková J, Fodor J, Krzewska M, Surówka E, Nowicka A, Gerši Z. Proteins, Small Peptides and Other Signaling Molecules Identified as Inconspicuous but Possibly Important Players in Microspores Reprogramming Toward Embryogenesis. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.745865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this review, we describe and integrate the latest knowledge on the signaling role of proteins and peptides in the stress-induced microspore embryogenesis (ME) in some crop plants with agricultural importance (i.e., oilseed rape, tobacco, barley, wheat, rice, triticale, rye). Based on the results received from the most advanced omix analyses, we have selected some inconspicuous but possibly important players in microspores reprogramming toward embryogenic development. We provide an overview of the roles and downstream effect of stress-related proteins (e.g., β-1,3-glucanases, chitinases) and small signaling peptides, especially cysteine—(e.g., glutathione, γ-thionins, rapid alkalinization factor, lipid transfer, phytosulfokine) and glycine-rich peptides and other proteins (e.g., fasciclin-like arabinogalactan protein) on acclimation ability of microspores and the cell wall reconstruction in a context of ME induction and haploids/doubled haploids (DHs) production. Application of these molecules, stimulating the induction and proper development of embryo-like structures and green plant regeneration, brings significant improvement of the effectiveness of DHs procedures and could result in its wider incorporation on a commercial scale. Recent advances in the design and construction of synthetic peptides–mainly cysteine-rich peptides and their derivatives–have accelerated the development of new DNA-free genome-editing techniques. These new systems are evolving incredibly fast and soon will find application in many areas of plant science and breeding.
Collapse
|
7
|
Bednarek PT, Orłowska R, Mańkowski DR, Oleszczuk S, Zebrowski J. Structural Equation Modeling (SEM) Analysis of Sequence Variation and Green Plant Regeneration via Anther Culture in Barley. Cells 2021; 10:2774. [PMID: 34685752 PMCID: PMC8534894 DOI: 10.3390/cells10102774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
The process of anther culture involves numerous abiotic stresses required for cellular reprogramming, microspore developmental switch, and plant regeneration. These stresses affect DNA methylation patterns, sequence variation, and the number of green plants regenerated. Recently, in barley (Hordeum vulgare L.), mediation analysis linked DNA methylation changes, copper (Cu2+) and silver (Ag+) ion concentrations, sequence variation, β-glucans, green plants, and duration of anther culture (Time). Although several models were used to explain particular aspects of the relationships between these factors, a generalized complex model employing all these types of data was not established. In this study, we combined the previously described partial models into a single complex model using the structural equation modeling approach. Based on the evaluated model, we demonstrated that stress conditions (such as starvation and darkness) influence β-glucans employed by cells for glycolysis and the tricarboxylic acid cycle. Additionally, Cu2+ and Ag+ ions affect DNA methylation and induce sequence variation. Moreover, these ions link DNA methylation with green plants. The structural equation model also showed the role of time in relationships between parameters included in the model and influencing plant regeneration via anther culture. Utilization of structural equation modeling may have both scientific and practical implications, as it demonstrates links between biological phenomena (e.g., culture-induced variation, green plant regeneration and biochemical pathways), and provides opportunities for regulating these phenomena for particular biotechnological purposes.
Collapse
Affiliation(s)
- Piotr Tomasz Bednarek
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Błonie, Poland;
| | - Renata Orłowska
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Błonie, Poland;
| | - Dariusz Rafał Mańkowski
- Department of Seed Science and Technology, Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Błonie, Poland;
| | - Sylwia Oleszczuk
- Department of Plant Biotechnology and Cytogenetics, Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Błonie, Poland;
| | - Jacek Zebrowski
- Institute of Biology and Biotechnology, University of Rzeszow, 35-959 Rzeszow, Poland;
| |
Collapse
|
8
|
Camacho-Fernández C, Seguí-Simarro JM, Mir R, Boutilier K, Corral-Martínez P. Cell Wall Composition and Structure Define the Developmental Fate of Embryogenic Microspores in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:737139. [PMID: 34691114 PMCID: PMC8526864 DOI: 10.3389/fpls.2021.737139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Microspore cultures generate a heterogeneous population of embryogenic structures that can be grouped into highly embryogenic structures [exine-enclosed (EE) and loose bicellular structures (LBS)] and barely embryogenic structures [compact callus (CC) and loose callus (LC) structures]. Little is known about the factors behind these different responses. In this study we performed a comparative analysis of the composition and architecture of the cell walls of each structure by confocal and quantitative electron microscopy. Each structure presented specific cell wall characteristics that defined their developmental fate. EE and LBS structures, which are responsible for most of the viable embryos, showed a specific profile with thin walls rich in arabinogalactan proteins (AGPs), highly and low methyl-esterified pectin and callose, and a callose-rich subintinal layer not necessarily thick, but with a remarkably high callose concentration. The different profiles of EE and LBS walls support the development as suspensorless and suspensor-bearing embryos, respectively. Conversely, less viable embryogenic structures (LC) presented the thickest walls and the lowest values for almost all of the studied cell wall components. These cell wall properties would be the less favorable for cell proliferation and embryo progression. High levels of highly methyl-esterified pectin are necessary for wall flexibility and growth of highly embryogenic structures. AGPs seem to play a role in cell wall stiffness, possibly due to their putative role as calcium capacitors, explaining the positive relationship between embryogenic potential and calcium levels.
Collapse
Affiliation(s)
| | - Jose M. Seguí-Simarro
- Cell Biology Group, COMAV Institute, Universitat Politècnica de València, Valencia, Spain
| | - Ricardo Mir
- Cell Biology Group, COMAV Institute, Universitat Politècnica de València, Valencia, Spain
| | - Kim Boutilier
- Bioscience, Wageningen University and Research, Wageningen, Netherlands
| | - Patricia Corral-Martínez
- Cell Biology Group, COMAV Institute, Universitat Politècnica de València, Valencia, Spain
- Bioscience, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
9
|
Bednarek PT, Pachota KA, Dynkowska WM, Machczyńska J, Orłowska R. Understanding In Vitro Tissue Culture-Induced Variation Phenomenon in Microspore System. Int J Mol Sci 2021; 22:7546. [PMID: 34299165 PMCID: PMC8304781 DOI: 10.3390/ijms22147546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
In vitro tissue culture plant regeneration is a complicated process that requires stressful conditions affecting the cell functioning at multiple levels, including signaling pathways, transcriptome functioning, the interaction between cellular organelles (retro-, anterograde), compounds methylation, biochemical cycles, and DNA mutations. Unfortunately, the network linking all these aspects is not well understood, and the available knowledge is not systemized. Moreover, some aspects of the phenomenon are poorly studied. The present review attempts to present a broad range of aspects involved in the tissue culture-induced variation and hopefully would stimulate further investigations allowing a better understanding of the phenomenon and the cell functioning.
Collapse
Affiliation(s)
- Piotr Tomasz Bednarek
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland; (K.A.P.); (W.M.D.); (J.M.); (R.O.)
| | | | | | | | | |
Collapse
|
10
|
Zieliński K, Dubas E, Gerši Z, Krzewska M, Janas A, Nowicka A, Matušíková I, Żur I, Sakuda S, Moravčíková J. β-1,3-Glucanases and chitinases participate in the stress-related defence mechanisms that are possibly connected with modulation of arabinogalactan proteins (AGP) required for the androgenesis initiation in rye (Secale cereale L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110700. [PMID: 33288013 DOI: 10.1016/j.plantsci.2020.110700] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/12/2020] [Accepted: 09/27/2020] [Indexed: 05/18/2023]
Abstract
This work presents the biochemical, cytochemical and molecular studies on two groups of PR proteins, β-1,3-glucanases and chitinases, and the arabinogalactan proteins (AGP) during the early stages of androgenesis induction in two breeding lines of rye (Secale cereale L.) with different androgenic potential. The process of androgenesis was initiated by tillers pre-treatments with low temperature, mannitol and/or reduced glutathione and resulted in microspores reprogramming and formation of androgenic structures what was associated with high activity of β-1,3-glucanases and chitinases. Some isoforms of β-1,3-glucanases, namely several acidic isoforms of about 26 kDa; appeared to be anther specific. Chitinases were well represented but were less variable. RT-qPCR revealed that the cold-responsive chitinase genes Chit1 and Chit2 were expressed at a lower level in the microspores and whole anthers while the cold-responsive Glu2 and Glu3 were not active. The stress pre-treatments modifications promoted the AGP accumulation. An apparent dominance of some AGP epitopes (LM2, JIM4 and JIM14) was detected in the androgenesis-responsive rye line. An abundant JIM13 epitopes in the vesicles and inner cell walls of the microspores and in the cell walls of the anther cell layers appeared to be the most specific for embryogenesis.
Collapse
Affiliation(s)
- Kamil Zieliński
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Ewa Dubas
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland; Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland.
| | - Zuzana Gerši
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Nám. J. Herdu 2, 917 01, Slovak Republic.
| | - Monika Krzewska
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Agnieszka Janas
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland; Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland.
| | - Anna Nowicka
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland; Institute of Experimental Botany of the Czech Academy of Sciences v. v. i. (IEB), Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Šlechtitelů 31, 783 71, Olomouc, Czech Republic.
| | - Ildikó Matušíková
- Department of Ecochemistry and Radioecology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Nám. J. Herdu 2, 917 01, Slovak Republic.
| | - Iwona Żur
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Shohei Sakuda
- Department of Biosciences, Teikyo University, Utsunomiya, 320-8551, Japan.
| | - Jana Moravčíková
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Nám. J. Herdu 2, 917 01, Slovak Republic; Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P.O.B. 39A, 95 007, Nitra, Slovak Republic.
| |
Collapse
|
11
|
Castillo AM, Valero-Rubira I, Burrell MÁ, Allué S, Costar MA, Vallés MP. Trichostatin A Affects Developmental Reprogramming of Bread Wheat Microspores towards an Embryogenic Route. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1442. [PMID: 33114625 PMCID: PMC7693754 DOI: 10.3390/plants9111442] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022]
Abstract
Microspores can be developmentally reprogrammed by the application of different stress treatments to initiate an embryogenic pathway leading to the production of doubled haploid (DH) plants. Epigenetic modifications are involved in cell reprogramming and totipotency in response to stress. To increase microspore embryogenesis (ME) efficiency in bread wheat, the effect of the histone deacetylase inhibitor trichostatin A (TSA) has been examined in two cultivars of wheat with different microspore embryogenesis response. Diverse strategies were assayed using 0-0.4 µM TSA as a single induction treatment and after or simultaneously with cold or mannitol stresses. The highest efficiency was achieved when 0.4 µM TSA was applied to anthers for 5 days simultaneously with a 0.7 M mannitol treatment, producing a four times greater number of green DH plants than mannitol. Ultrastructural studies by transmission electron microscopy indicated that mannitol with TSA and mannitol treatments induced similar morphological changes in early stages of microspore reprogramming, although TSA increased the number of microspores with 'star-like' morphology and symmetric divisions. The effect of TSA on the transcript level of four ME marker genes indicated that the early signaling pathways in ME, involving the TaTDP1 and TAA1b genes, may be mediated by changes in acetylation patterns of histones and/or other proteins.
Collapse
Affiliation(s)
- Ana María Castillo
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda Montañana 1005, 50059 Zaragoza, Spain; (A.M.C.); (I.V.-R.); (S.A.); (M.A.C.)
| | - Isabel Valero-Rubira
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda Montañana 1005, 50059 Zaragoza, Spain; (A.M.C.); (I.V.-R.); (S.A.); (M.A.C.)
| | - María Ángela Burrell
- Departamento de Patología, Anatomía y Fisiología, Facultad de Ciencias, Universidad de Navarra, C/Irrunlarrea s/n, 31008 Pamplona, Spain;
| | - Sandra Allué
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda Montañana 1005, 50059 Zaragoza, Spain; (A.M.C.); (I.V.-R.); (S.A.); (M.A.C.)
| | - María Asunción Costar
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda Montañana 1005, 50059 Zaragoza, Spain; (A.M.C.); (I.V.-R.); (S.A.); (M.A.C.)
| | - María Pilar Vallés
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda Montañana 1005, 50059 Zaragoza, Spain; (A.M.C.); (I.V.-R.); (S.A.); (M.A.C.)
| |
Collapse
|
12
|
Du B, Zhang Q, Cao Q, Xing Y, Qin L, Fang K. Changes of cell wall components during embryogenesis of Castanea mollissima. JOURNAL OF PLANT RESEARCH 2020; 133:257-270. [PMID: 32036472 DOI: 10.1007/s10265-020-01170-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
The Chinese chestnut (Castanea mollissima Blume) 'Huaihuang' was chosen as the experimental material to observe embryogenesis and the dynamic changes of cell wall components during this process. Various developmental stages of embryos, including globular embryos, heart embryos, torpedo embryos and cotyledon embryos, were observed. The results showed that during embryogenesis, cellulose increased, and callose rapidly degraded. In the cell walls of developing embryos, pectic homogalacturonan (HG), especially low-esterified HG, was abundant, suggesting rapid synthesis and de-methyl-esterification of HG. Extensin and galactan increased with the development of the embryos. In contrast, the arabinan epitopes decreased in developing embryos but were more abundant than galactan epitopes at all stages. Xylan epitopes showed explicit boundaries between the outer epidermal wall and the rest of the inner tissues, and the fluorescence intensity of the outer epidermal wall was significantly higher than that of the inner tissues. Furthermore, the results indicated that the outer epidermal wall contained high amounts of cellulose, HG pectin and hemicellulose, especially arabinan and xylan. These results suggested the presence of rapid pectin metabolism, cellulose synthesis, rapid degradation of callose, different distributive patterns and dynamic changes of hemicellulose (galactan, arabinan and xylan) and extensin during embryogenesis. Various cell wall components exist in different tissues of the embryo, and dynamic changes in cell wall components are involved in the embryonic development process.
Collapse
Affiliation(s)
- Bingshuai Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, No. 7 Road Beinong, Changping District, Beijing, 102206, China
| | - Qing Zhang
- Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Road Beinong, Changping District, Beijing, 102206, China
| | - Qingqin Cao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Road Beinong, Changping District, Beijing, 102206, China
| | - Yu Xing
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Road Beinong, Changping District, Beijing, 102206, China
| | - Ling Qin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China.
- Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Road Beinong, Changping District, Beijing, 102206, China.
| | - Kefeng Fang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China.
- College of Landscape Architecture, Beijing University of Agriculture, No. 7 Road Beinong, Changping District, Beijing, 102206, China.
- Key Laboratory of Urban Agriculture (North China Ministry of Agriculture P. R. China), Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
13
|
Rivas-Sendra A, Corral-Martínez P, Porcel R, Camacho-Fernández C, Calabuig-Serna A, Seguí-Simarro JM. Embryogenic competence of microspores is associated with their ability to form a callosic, osmoprotective subintinal layer. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1267-1281. [PMID: 30715473 PMCID: PMC6382338 DOI: 10.1093/jxb/ery458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/19/2018] [Indexed: 05/05/2023]
Abstract
Microspore embryogenesis is an experimental morphogenic pathway with important applications in basic research and applied plant breeding, but its genetic, cellular, and molecular bases are poorly understood. We applied a multidisciplinary approach using confocal and electron microscopy, detection of Ca2+, callose, and cellulose, treatments with caffeine, digitonin, and endosidin7, morphometry, qPCR, osmometry, and viability assays in order to study the dynamics of cell wall formation during embryogenesis induction in a high-response rapeseed (Brassica napus) line and two recalcitrant rapeseed and eggplant (Solanum melongena) lines. Formation of a callose-rich subintinal layer (SL) was common to microspore embryogenesis in the different genotypes. However, this process was directly related to embryogenic response, being greater in high-response genotypes. A link could be established between Ca2+ influx, abnormal callose/cellulose deposition, and the genotype-specific embryogenic competence. Callose deposition in inner walls and SLs are independent processes, regulated by different callose synthases. Viability and control of internal osmolality are also related to SL formation. In summary, we identified one of the causes of recalcitrance to embryogenesis induction: a reduced or absent protective SL. In responding genotypes, SLs are markers for changes in cell fate and serve as osmoprotective barriers to increase viability in imbalanced in vitro environments. Genotype-specific differences relate to different responses against abiotic (heat/osmotic) stresses.
Collapse
Affiliation(s)
- Alba Rivas-Sendra
- Cell Biology Group - COMAV Institute, Universitat Politècnica de València (UPV), Valencia, Spain
- Present address: Universidad Regional Amazónica IKIAM, Tena, Ecuador
| | - Patricia Corral-Martínez
- Cell Biology Group - COMAV Institute, Universitat Politècnica de València (UPV), Valencia, Spain
| | - Rosa Porcel
- Cell Biology Group - COMAV Institute, Universitat Politècnica de València (UPV), Valencia, Spain
| | | | - Antonio Calabuig-Serna
- Cell Biology Group - COMAV Institute, Universitat Politècnica de València (UPV), Valencia, Spain
| | | |
Collapse
|
14
|
Corral-Martínez P, Driouich A, Seguí-Simarro JM. Dynamic Changes in Arabinogalactan-Protein, Pectin, Xyloglucan and Xylan Composition of the Cell Wall During Microspore Embryogenesis in Brassica napus. FRONTIERS IN PLANT SCIENCE 2019; 10:332. [PMID: 30984213 PMCID: PMC6447685 DOI: 10.3389/fpls.2019.00332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/04/2019] [Indexed: 05/05/2023]
Abstract
Microspore embryogenesis is a manifestation of plant cell totipotency whereby new cell walls are formed as a consequence of the embryogenic switch. In particular, the callose-rich subintinal layer created immediately upon induction of embryogenesis was recently related to protection against stress. However, little is currently known about the functional significance of other compositional changes undergone by the walls of embryogenic microspores. We characterized these changes in Brassica napus at different stages during induction of embryogenic microspores and development of microspore-derived embryos (MDEs) by using a series of monoclonal antibodies specific for cell wall components, including arabinogalactan-proteins (AGPs), pectins, xyloglucan and xylan. We used JIM13, JIM8, JIM14 and JIM16 for AGPs, CCRC-M13, LM5, LM6, JIM7, JIM5 and LM7 for pectins, CCRC-M1 and LM15 for xyloglucan, and LM11 for xylan. By transmission electron microscopy and quantification of immunogold labeling on high-pressure frozen, freeze-substituted samples, we profiled the changes in cell wall ultrastructure and composition at the different stages of microspore embryogenesis. As a reference to compare with, we also studied in vivo microspores and maturing pollen grains. We showed that the cell wall of embryogenic microspores is a highly dynamic structure whose architecture, arrangement and composition changes dramatically as microspores undergo embryogenesis and then transform into MDEs. Upon induction, the composition of the preexisting microspore intine walls is remodeled, and unusual walls with a unique structure and composition are formed. Changes in AGP composition were related to developmental fate. In particular, AGPs containing the JIM13 epitope were massively excreted into the cell apoplast, and appeared associated to cell totipotency. According to the ultrastructure and the pectin and xyloglucan composition of these walls, we deduced that commitment to embryogenesis induces the formation of fragile, plastic and deformable cell walls, which allow for cell expansion and microspore growth. We also showed that these special walls are transient, since cell wall composition in microspore-derived embryos was completely different. Thus, once adopted the embryogenic developmental pathway and far from the effects of heat shock exposure, cell wall biosynthesis would approach the structure, composition and properties of conventional cell walls.
Collapse
Affiliation(s)
- Patricia Corral-Martínez
- COMAV – Universitat Politècnica de València, Ciudad Politécnica de la Innovación, Valencia, Spain
- *Correspondence: Patricia Corral-Martínez, Jose M. Seguí-Simarro,
| | - Azeddine Driouich
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche Normandie-Végétal – FED 4277, Université de Rouen Normandie, Mont-Saint-Aignan, France
| | - Jose M. Seguí-Simarro
- COMAV – Universitat Politècnica de València, Ciudad Politécnica de la Innovación, Valencia, Spain
- *Correspondence: Patricia Corral-Martínez, Jose M. Seguí-Simarro,
| |
Collapse
|
15
|
Pais MS. Somatic Embryogenesis Induction in Woody Species: The Future After OMICs Data Assessment. FRONTIERS IN PLANT SCIENCE 2019; 10:240. [PMID: 30984207 PMCID: PMC6447717 DOI: 10.3389/fpls.2019.00240] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/12/2019] [Indexed: 05/15/2023]
Abstract
Very early somatic embryogenesis has been recognized as a powerful method to propagate plants in vitro. For some woody species and in particular for some coniferous trees, somatic embryogenesis induction has become a routine procedure. For the majority, the application of this technology presents yet many limitations especially due to the genotype, the induction conditions, the number of embryos produced, maturation, and conversion, among other factors that compromise the systematic use of somatic embryogenesis for commercial purposes especially of woody species and forest trees in particular. The advancements obtained on somatic embryogenesis in Arabidopsis and the development of OMIC technologies allowed the characterization of genes and the corresponding proteins that are conserved in woody species. This knowledge will help in understanding the molecular mechanisms underlying the complex regulatory networks that control somatic embryogenesis in woody plants. In this revision, we report on developments of OMICs (genomics, transcriptomics, metabolomics, and proteomics) applied to somatic embryogenesis induction and its contribution for understanding the change of fate giving rise to the expression of somatic embryogenesis competence.
Collapse
|
16
|
Ahmadi B, Ahmadi M, Teixeira da Silva JA. Microspore embryogenesis in Brassica: calcium signaling, epigenetic modification, and programmed cell death. PLANTA 2018; 248:1339-1350. [PMID: 30171331 DOI: 10.1007/s00425-018-2996-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/28/2018] [Indexed: 05/08/2023]
Abstract
Stress induction followed by excessive calcium influx causes multiple changes in microspores resulting in chromatin remodeling, epigenetic modifications, and removal of unwanted gametophytic components via autophagy, switching microspores towards ME. In Brassica, isolated microspores that are placed under specific external stresses can switch their default developmental pathway towards an embryogenic state. Microspore embryogenesis is a unique system that speeds up breeding programs and, in the context of developmental biology, provides an excellent tool for embryogenesis to be investigated in greater detail. The last few years have provided ample evidence that has allowed Brassica researchers to markedly increase their understanding of the molecular and sub-cellular changes underlying this process. We review recent advances in this field, focusing mainly on the perception to inductive stresses, signal transduction, molecular and structural alterations, and the involvement of programmed cell death at the onset of embryogenic induction.
Collapse
Affiliation(s)
- Behzad Ahmadi
- Department of Maize and Forage Crops Research, Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Medya Ahmadi
- Department of Plant Pathology, Ferdowsi Mashhad University, Mashhad, Iran
| | | |
Collapse
|
17
|
Reipert S, Goldammer H, Richardson C, Goldberg MW, Hawkins TJ, Hollergschwandtner E, Kaufmann WA, Antreich S, Stierhof YD. Agitation Modules: Flexible Means to Accelerate Automated Freeze Substitution. J Histochem Cytochem 2018; 66:903-921. [PMID: 29969056 DOI: 10.1369/0022155418786698] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
For ultrafast fixation of biological samples to avoid artifacts, high-pressure freezing (HPF) followed by freeze substitution (FS) is preferred over chemical fixation at room temperature. After HPF, samples are maintained at low temperature during dehydration and fixation, while avoiding damaging recrystallization. This is a notoriously slow process. McDonald and Webb demonstrated, in 2011, that sample agitation during FS dramatically reduces the necessary time. Then, in 2015, we (H.G. and S.R.) introduced an agitation module into the cryochamber of an automated FS unit and demonstrated that the preparation of algae could be shortened from days to a couple of hours. We argued that variability in the processing, reproducibility, and safety issues are better addressed using automated FS units. For dissemination, we started low-cost manufacturing of agitation modules for two of the most widely used FS units, the Automatic Freeze Substitution Systems, AFS(1) and AFS2, from Leica Microsystems, using three dimensional (3D)-printing of the major components. To test them, several labs independently used the modules on a wide variety of specimens that had previously been processed by manual agitation, or without agitation. We demonstrate that automated processing with sample agitation saves time, increases flexibility with respect to sample requirements and protocols, and produces data of at least as good quality as other approaches.
Collapse
Affiliation(s)
- Siegfried Reipert
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria
| | - Helmuth Goldammer
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria
| | | | - Martin W Goldberg
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Timothy J Hawkins
- Department of Biosciences, Durham University, Durham, United Kingdom
| | | | - Walter A Kaufmann
- Electron Microscopy Facility, Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Sebastian Antreich
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria
| | - York-Dieter Stierhof
- Center for Plant Molecular Biology (ZMBP), Microscopy, University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Rivas-Sendra A, Calabuig-Serna A, Seguí-Simarro JM. Dynamics of Calcium during In vitro Microspore Embryogenesis and In vivo Microspore Development in Brassica napus and Solanum melongena. FRONTIERS IN PLANT SCIENCE 2017; 8:1177. [PMID: 28736567 PMCID: PMC5500647 DOI: 10.3389/fpls.2017.01177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/20/2017] [Indexed: 05/07/2023]
Abstract
Calcium is widely known to have a role as a signaling molecule in many different processes, including stress response and activation of the embryogenic program. However, there are no direct clues about calcium levels during microspore embryogenesis, an experimental process that combines a developmental switch toward embryogenesis and the simultaneous application of different stressing factors. In this work, we used FluoForte, a calcium-specific fluorescent vital dye, to track by confocal microscopy the changes in levels and subcellular distribution of calcium in living rapeseed (B. napus) and eggplant (S. melongena) microspores and pollen grains during in vivo development, as well as during the first stages of in vitro-induced microspore embryogenesis in rapeseed. During in vivo development, a clear peak of cytosolic Ca2+ was observed in rapeseed vacuolate microspores and young pollen grains, the stages more suitable for embryogenesis induction. However, the Ca2+ levels observed in eggplant were dramatically lower than in rapeseed. Just after in vitro induction, Ca2+ levels increased specifically in rapeseed embryogenic microspores at levels dramatically higher than during in vivo development. The increase was observed in the cytosol, but predominantly in vacuoles. Non-embryogenic forms such as callus-like and pollen-like structures presented remarkably different calcium patterns. After the heat shock-based inductive treatment, Ca2+ levels progressively decreased in all cases. Together, our results reveal unique calcium dynamics in in vivo rapeseed microspores, as well as in those reprogrammed to in vitro embryogenesis, establishing a link between changes in Ca2+ level and subcellular distribution, and microspore embryogenesis.
Collapse
Affiliation(s)
| | | | - Jose M. Seguí-Simarro
- Cell Biology Group, Institute for Conservation and Breeding of Valencian Agrodiversity (COMAV), Universitat Politècnica de ValènciaValencia, Spain
| |
Collapse
|
19
|
Corral-Martínez P, García-Fortea E, Bernard S, Driouich A, Seguí-Simarro JM. Ultrastructural Immunolocalization of Arabinogalactan Protein, Pectin and Hemicellulose Epitopes Through Anther Development in Brassica napus. PLANT & CELL PHYSIOLOGY 2016; 57:2161-2174. [PMID: 27481894 DOI: 10.1093/pcp/pcw133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/20/2016] [Indexed: 05/07/2023]
Abstract
In this work, we performed an extensive and detailed analysis of the changes in cell wall composition during Brassica napus anther development. We used immunogold labeling to study the spatial and temporal patterns of the composition and distribution of different arabinogalactan protein (AGP), pectin, xyloglucan and xylan epitopes in high-pressure-frozen/freeze-substituted anthers, quantifying and comparing their relative levels in the different anther tissues and developmental stages. We used the following monoclonal antibodies: JIM13, JIM8, JIM14 and JIM16 for AGPs, LM5, LM6, JIM7, JIM5 and LM7 for pectins, CCRC-M1, CCRC-M89 and LM15 for xyloglucan, and LM11 for xylan. Each cell wall epitope showed a characteristic temporal and spatial labeling pattern. Microspore, pollen and tapetal cells showed similar patterns for each epitope, whereas the outermost anther layers (epidermis, endothecium and middle layers) presented remarkably different patterns. Our results suggested that AGPs, pectins, xyloglucan and xylan have specific roles during anther development. The AGP epitopes studied appeared to belong to AGPs specifically involved in microspore differentiation, and contributed first by the tapetum and then, upon tapetal dismantling, by the endothecium and middle layers. In contrast, the changes in pectin and hemicellulose epitopes suggested a specific role in anther dehiscence, facilitating anther wall weakening and rupture. The distribution of the different cell wall constituents is regulated in a tissue- and stage-specific manner, which seems directly related to the role of each tissue at each stage.
Collapse
Affiliation(s)
- Patricia Corral-Martínez
- COMAV, Universitat Politècnica de València, CPI, Edificio 8E, Escalera I, Camino de Vera, s/n, 46022, Valencia, Spain
| | - Edgar García-Fortea
- COMAV, Universitat Politècnica de València, CPI, Edificio 8E, Escalera I, Camino de Vera, s/n, 46022, Valencia, Spain
| | - Sophie Bernard
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV)-EA 4358, Plateforme d'Imagerie Cellulaire (PRIMACEN) et Grand Reseau de Recherche VASI de Haute Normandie, Normandie Université, Université de Rouen, 76821 Mont Saint Aignan, Cedex, France
| | - Azeddine Driouich
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV)-EA 4358, Plateforme d'Imagerie Cellulaire (PRIMACEN) et Grand Reseau de Recherche VASI de Haute Normandie, Normandie Université, Université de Rouen, 76821 Mont Saint Aignan, Cedex, France
| | - Jose M Seguí-Simarro
- COMAV, Universitat Politècnica de València, CPI, Edificio 8E, Escalera I, Camino de Vera, s/n, 46022, Valencia, Spain
| |
Collapse
|
20
|
Long JM, Liu Z, Wu XM, Fang YN, Jia HH, Xie ZZ, Deng XX, Guo WW. Genome-scale mRNA and small RNA transcriptomic insights into initiation of citrus apomixis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5743-5756. [PMID: 27619233 PMCID: PMC5066493 DOI: 10.1093/jxb/erw338] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nucellar embryony (NE) is an adventitious form of apomixis common in citrus, wherein asexual embryos initiate directly from nucellar cells surrounding the embryo sac. NE enables the fixation of desirable agronomic traits and the production of clonal offspring of virus-free rootstock, but impedes progress in hybrid breeding. In spite of the great importance of NE in citrus breeding and commercial production, little is understood about the underlying molecular mechanisms. In this study, the stages of nucellar embryo initiation (NEI) were determined for two polyembryonic citrus cultivars via histological observation. To explore the genes and regulatory pathways involved in NEI, we performed mRNA-seq and sRNA-seq analyses of ovules immediately prior to and at stages during NEI in the two pairs of cultivars. A total of 305 differentially expressed genes (DEGs) were identified between the poly- and monoembryonic ovules. Gene ontology (GO) analysis revealed that several processes are significantly enriched based on DEGs. In particular, response to stress, and especially response to oxidative stress, was over-represented in polyembryonic ovules. Nearly 150 miRNAs, comprising ~90 conserved and ~60 novel miRNAs, were identified in the ovules of either cultivar pair. Only two differentially expressed miRNAs (DEMs) were identified, of which the novel miRN23-5p was repressed whereas the targets accumulated in the polyembryonic ovules. This integrated study on the transcriptional and post-transcriptional regulatory profiles between poly- and monoembryonic citrus ovules provides new insights into the mechanism of NE, which should contribute to revealing the regulatory mechanisms of plant apomixis.
Collapse
Affiliation(s)
- Jian-Mei Long
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Zheng Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Yan-Ni Fang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Hui-Hui Jia
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Zong-Zhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Xiu-Xin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|