1
|
Gonnami M, Tominaga T, Isowa Y, Takashima S, Takeda N, Miura C, Takagi M, Egusa M, Mine A, Ifuku S, Kaminaka H. Chitin nanofibers promote rhizobial symbiotic nitrogen fixation in Lotus japonicus. Int J Biol Macromol 2024; 278:134910. [PMID: 39173792 DOI: 10.1016/j.ijbiomac.2024.134910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/26/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Chitin, an N-acetyl-D-glucosamine polymer, has multiple functions in living organisms, including the induction of disease resistance and growth promotion in plants. In addition, chitin oligosaccharides (COs) are used as the backbone of the signaling molecule Nod factor secreted by soil bacteria rhizobia to establish a mutual symbiosis with leguminous plants. Nod factor perception triggers host plant responses for rhizobial symbiosis. In this study, the effects of chitins on rhizobial symbiosis were examined in the leguminous plants Lotus japonicus and soybean. Chitin nanofiber (CNF), retained with polymeric structures, and COs elicited calcium spiking in L. japonicus roots expressing a nuclear-localized cameleon reporter. Shoot growth and symbiotic nitrogen fixation were significantly increased by CNF but not COs in L.japonicus and soybean. However, treatments with chitin and cellulose nanofiber, structurally similar polymers to CNF, did not affect shoot growth and nitrogen fixation in L.japonicus. Transcriptome analysis also supported the specific effects of CNF on rhizobial symbiosis in L.japonicus. Although chitins comprise the same monosaccharides and nanofibers share similar physical properties, only CNF can promote rhizobial nitrogen fixation in leguminous plants. Taking the advantages on physical properties, CNF could be a promising material for improving legume yield by enhancing rhizobial symbiosis.
Collapse
Affiliation(s)
- Mamu Gonnami
- Department of Agricultural Science, Graduate School of Sustainable Science, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | - Takaya Tominaga
- The United Graduate School of Agricultural Science, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | - Yukiko Isowa
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | - Sarasa Takashima
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | - Naoya Takeda
- School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Japan
| | - Chihiro Miura
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | - Momoko Takagi
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | - Mayumi Egusa
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | - Akira Mine
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo, Kyoto 606-8502, Japan
| | - Shinsuke Ifuku
- Graduate School of Engineering, Tottori University, 4-101 Koyama Minami, Tottori 680-8552, Japan; Unused Bioresource Utilization Center, Tottori University, 4-101 Koyama Minami, Tottori 680-8550, Japan
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan; Unused Bioresource Utilization Center, Tottori University, 4-101 Koyama Minami, Tottori 680-8550, Japan.
| |
Collapse
|
2
|
Ngaki MN, Srivastava SK, Feifei W, Bhattacharyya MK. The soybean plasma membrane GmDR1 protein conferring broad-spectrum disease and pest resistance regulates several receptor kinases and NLR proteins. Sci Rep 2024; 14:12253. [PMID: 38806545 PMCID: PMC11133457 DOI: 10.1038/s41598-024-62332-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Overexpression of Glycine max disease resistant 1 (GmDR1) exhibits broad-spectrum resistance against Fusarium virguliforme, Heterodera glycines (soybean cyst nematode), Tetranychus urticae (Koch) (spider mites), and Aphis glycines Matsumura (soybean aphids) in soybean. To understand the mechanisms of broad-spectrum immunity mediated by GmDR1, the transcriptomes of a strong and a weak GmDR1-overexpressor following treatment with chitin, a pathogen- and pest-associated molecular pattern (PAMP) common to these organisms, were investigated. The strong and weak GmDR1-overexpressors exhibited altered expression of 6098 and 992 genes, respectively, as compared to the nontransgenic control following chitin treatment. However, only 192 chitin- and 115 buffer-responsive genes exhibited over two-fold changes in expression levels in both strong and weak GmDR1-overexpressors as compared to the control. MapMan analysis of the 192 chitin-responsive genes revealed 64 biotic stress-related genes, of which 53 were induced and 11 repressed as compared to the control. The 53 chitin-induced genes include nine genes that encode receptor kinases, 13 encode nucleotide-binding leucine-rich repeat (NLR) receptor proteins, seven encode WRKY transcription factors, four ethylene response factors, and three MYB-like transcription factors. Investigation of a subset of these genes revealed three receptor protein kinases, seven NLR proteins, and one WRKY transcription factor genes that are induced following F. virguliforme and H. glycines infection. The integral plasma membrane GmDR1 protein most likely recognizes PAMPs including chitin and activates transcription of genes encoding receptor kinases, NLR proteins and defense-related genes. GmDR1 could be a pattern recognition receptor that regulates the expression of several NLRs for expression of PAMP-triggered immunity and/or priming the effector triggered immunity.
Collapse
Affiliation(s)
| | - Subodh K Srivastava
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
- USDA-ARS APDL, BARC-East Building 1040, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Wang Feifei
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, The Chinese Academy of Sciences, Harbin, 150081, China
| | | |
Collapse
|
3
|
Saberi Riseh R, Gholizadeh Vazvani M, Vatankhah M, Kennedy JF. Chitin-induced disease resistance in plants: A review. Int J Biol Macromol 2024; 266:131105. [PMID: 38531527 DOI: 10.1016/j.ijbiomac.2024.131105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Chitin is composed of N-acetylglucosamine units. Chitin a polysaccharide found in the cell walls of fungi and exoskeletons of insects and crustaceans, can elicit a potent defense response in plants. Through the activation of defense genes, stimulation of defensive compound production, and reinforcement of physical barriers, chitin enhances the plant's ability to defend against pathogens. Chitin-based treatments have shown efficacy against various plant diseases caused by fungal, bacterial, viral, and nematode pathogens, and have been integrated into sustainable agricultural practices. Furthermore, chitin treatments have demonstrated additional benefits, such as promoting plant growth and improving tolerance to abiotic stresses. Further research is necessary to optimize treatment parameters, explore chitin derivatives, and conduct long-term field studies. Continued efforts in these areas will contribute to the development of innovative and sustainable strategies for disease management in agriculture, ultimately leading to improved crop productivity and reduced reliance on chemical pesticides.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
4
|
Xiang S, Zhang X, Cao Z, Peng S, Xu J, Huang Q, Huang J, Xu C, Sun X. Comparing the antibacterial activity of chitin nanocrystals with chitin: exploring the feasibility of chitin nanocrystals as novel pesticide nanocarriers in agriculture. PEST MANAGEMENT SCIENCE 2024; 80:1076-1086. [PMID: 37847147 DOI: 10.1002/ps.7838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND In recent years, nanomaterials-based pesticide carriers have garnered significant attention and sparked extensive research. However, most studies have primarily focused on investigating the impact of physical properties of nanomaterials, such as size and modifiable sites, on drug delivery efficiency of nano-pesticides. The limited exploration of biologically active nanomaterials poses a significant obstacle to the advancement and widespread adoption of nano-pesticides. In this study, we prepared chitin nanocrystals (ChNC) based on acid hydrolysis and systematically investigated the differences between nano- and normal chitin against plant bacteria (Pseudomonas syringae pv. tabaci). The primary objective was to seek out nanocarriers with heightened biological activity for the synthesis of nano-pesticides. RESULTS Zeta potential analysis, Fourier Transform infrared spectrometry (FTIR), X-Ray diffraction (XRD), Atomic force microscopy (AFM) and Transmission electron microscopy (TEM) identified the successful synthesis of ChNC. ChNC showcased remarkable bactericidal activity at comparable concentrations, surpassing that of chitin, particularly in its ability to inhibit bacterial biofilm formation. Furthermore, ChNC displayed heightened effectiveness in disrupting bacterial cell membranes, resulting in the leakage of bacterial cell contents, structural DNA damage, and impairment of DNA replication. Lastly, potting experiments revealed that ChNC is notably more effective in inhibiting the spread and propagation of bacteria on plant leaves. CONCLUSION ChNC exhibited higher antibacterial activity compared to chitin, enabling efficient control of plant bacterial diseases through enhanced interaction with bacteria. These findings offer compelling evidence of ChNC's superior bacterial inhibition capabilities, underscoring its potential as a promising nanocarrier for nano-pesticide research. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shunyu Xiang
- College of Plant Protection, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| | - Xiaofeng Zhang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Zhe Cao
- College of Plant Protection, Southwest University, Chongqing, China
| | - Shiqi Peng
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jingyun Xu
- Energy College of Science, The Pennsylvania State University, State College, PA, USA
| | - Qianqiao Huang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jin Huang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| | - Chen Xu
- Chongqing Shizhu Branch, China National Tobacco Corporation, Chongqing, China
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Egusa M, Watanabe S, Li H, Zewude DA, Ifuku S, Kaminaka H. Production of copper nanoparticle-immobilized chitin nanofibers and their role in plant disease control. JOURNAL OF PESTICIDE SCIENCE 2023; 48:86-92. [PMID: 37745172 PMCID: PMC10513960 DOI: 10.1584/jpestics.d23-001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/25/2023] [Indexed: 09/26/2023]
Abstract
Chitin is used in agriculture to improve crop production; however, its use is limited due to difficulties in its handling. A chitin nanofiber (CNF) overcomes this issue and, due to its elicitor activity, has great potential for crop protection. To expand CNF utilization, a copper nanoparticles-based antimicrobic CNF (CuNPs/CNF) was prepared using a chemical reduction method. The formation of CuNPs was confirmed via scanning electron microscopy. Thermogravimetric analysis revealed that the amount of CuNPs on the CNF was dose-dependent on the precursor salt, copper acetate. CuNPs endowed the CNF with strong antimicrobial activity against Alternaria brassicicola and Pectobacterium carotovorum. Moreover, the CuNPs/CNF reduced pathogen infection in cabbage. The antimicrobial activity and disease prevention of the CuNPs/CNF was increased compared to the corresponding CNF or commercial agrochemical Bordeaux treatment. These results indicate that CuNPs conferred antimicrobial activity on the CNF and increased the efficacy of plant disease protection.
Collapse
Affiliation(s)
| | | | - Hujun Li
- Department of Engineering, Graduate School of Sustainability Science, Tottori University
| | - Dagmawi Abebe Zewude
- Department of Engineering, Graduate School of Sustainability Science, Tottori University
- Unused Bioresource Utilization Center, Tottori University
| | - Shinsuke Ifuku
- Department of Engineering, Graduate School of Sustainability Science, Tottori University
- Center for Research on Green Sustainable Chemistry, Tottori University
- Unused Bioresource Utilization Center, Tottori University
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University
- Unused Bioresource Utilization Center, Tottori University
| |
Collapse
|
6
|
Cao Z, Ma X, Zou A, Shi Z, Xiang S, Xu J, Cai L, Huang J, Sun X. Chitin nanocrystals supported copper: a new nanomaterial with high activity with P. syringae pv. Tabaci. PEST MANAGEMENT SCIENCE 2023; 79:2017-2028. [PMID: 36708071 DOI: 10.1002/ps.7377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/28/2022] [Accepted: 01/28/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The application of chemical pesticides in control of plant bacterial disease may cause potential environmental pollution. Herein, based on the resistance-inducing ability and the special rod-like structure with high aspect ratio of bio-derived chitin nanocrystals (ChNC), a new Cu composite rod-like nanoparticle was fabricated (ChNC@Cu). The antibacterial activity of the composite nanoparticle was systematically studied, and its safety was evaluated. RESULTS TEM, FTIR, ICP and other characterization methods proved that ChNC@Cu is a nano rod-like structure, with a Cu2+ loading capacity of 2.63%. In vitro experiments showed that the inhibition rate of ChNC@Cu to P. syringae pv. tabaci was more than 95% when the copper content was 41.6 μg mL-1 . In vivo experiments showed that ChNC@Cu had a good protective effect on P. syringae pv. tabaci of tobacco. In addition, ChNC@Cu exhibited stronger antibacterial activity than Thiodiazole copper (TC) at the same copper content. The study on the antibacterial mechanism of ChNC@Cu proved that ChNC@Cu caused bacterial death by destroying the bacterial cell membrane structure and damaging the DNA bacteria. And ChNC@Cu is highly safe for plants and can promote seed germination and plant growth. CONCLUSION The special rod-like structure of ChNC can enrich Cu2+ to form ChNC@Cu. ChNC@Cu has a good protective effect on bacterial infection of tobacco, and achieves a great antibacterial activity at low Cu2+ concentration, which indicated that ChNC@Cu has induced resistance and antibacterial effect. As a novel green nanofungicide, ChNC@Cu has high potential application value in control of agricultural bacterial diseases. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhe Cao
- College of Plant Protection, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| | - Xiaozhou Ma
- College of Plant Protection, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| | - Aihong Zou
- College of Plant Protection, Southwest University, Chongqing, China
| | - Zhenxu Shi
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| | - Shunyu Xiang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jingyun Xu
- Energy College of Science, The Pennsylvania State University, State College, USA
| | - Lin Cai
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jin Huang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Suwanchaikasem P, Nie S, Idnurm A, Selby‐Pham J, Walker R, Boughton BA. Effects of chitin and chitosan on root growth, biochemical defense response and exudate proteome of Cannabis sativa. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:115-133. [PMID: 37362423 PMCID: PMC10290428 DOI: 10.1002/pei3.10106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 06/28/2023]
Abstract
Fungal pathogens pose a major threat to Cannabis sativa production, requiring safe and effective management procedures to control disease. Chitin and chitosan are natural molecules that elicit plant defense responses. Investigation of their effects on C. sativa will advance understanding of plant responses towards elicitors and provide a potential pathway to enhance plant resistance against diseases. Plants were grown in the in vitro Root-TRAPR system and treated with colloidal chitin and chitosan. Plant morphology was monitored, then plant tissues and exudates were collected for enzymatic activity assays, phytohormone quantification, qPCR analysis and proteomics profiling. Chitosan treatments showed increased total chitinase activity and expression of pathogenesis-related (PR) genes by 3-5 times in the root tissues. In the exudates, total peroxidase and chitinase activities and levels of defense proteins such as PR protein 1 and endochitinase 2 were increased. Shoot development was unaffected, but root development was inhibited after chitosan exposure. In contrast, chitin treatments had no significant impact on any defense parameters, including enzymatic activities, hormone quantities, gene expression levels and root secreted proteins. These results indicate that colloidal chitosan, significantly enhancing defense responses in C. sativa root system, could be used as a potential elicitor, particularly in hydroponic scenarios to manage crop diseases.
Collapse
Affiliation(s)
| | - Shuai Nie
- Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneMelbourneVictoria3052Australia
| | - Alexander Idnurm
- School of BioSciencesUniversity of MelbourneMelbourneVictoria3010Australia
| | - Jamie Selby‐Pham
- School of BioSciencesUniversity of MelbourneMelbourneVictoria3010Australia
- Cannabis and Biostimulants Research Group Pty LtdMelbourneVictoria3020Australia
| | - Robert Walker
- School of BioSciencesUniversity of MelbourneMelbourneVictoria3010Australia
| | - Berin A. Boughton
- School of BioSciencesUniversity of MelbourneMelbourneVictoria3010Australia
- Australian National Phenome CentreMurdoch UniversityPerthWestern Australia6150Australia
| |
Collapse
|
8
|
Sakata N, Ishiga Y. Prevention of Stomatal Entry as a Strategy for Plant Disease Control against Foliar Pathogenic Pseudomonas Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030590. [PMID: 36771673 PMCID: PMC9919041 DOI: 10.3390/plants12030590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 05/14/2023]
Abstract
The genus Pseudomonas includes some of the most problematic and studied foliar bacterial pathogens. Generally, in a successful disease cycle there is an initial epiphytic lifestyle on the leaf surface and a subsequent aggressive endophytic stage inside the leaf apoplast. Leaf-associated bacterial pathogens enter intercellular spaces and internal leaf tissues by natural surface opening sites, such as stomata. The stomatal crossing is complex and dynamic, and functional genomic studies have revealed several virulence factors required for plant entry. Currently, treatments with copper-containing compounds, where authorized and admitted, and antibiotics are commonly used against bacterial plant pathogens. However, strains resistant to these chemicals occur in the fields. Therefore, the demand for alternative control strategies has been increasing. This review summarizes efficient strategies to prevent bacterial entry. Virulence factors required for entering the leaf in plant-pathogenic Pseudomonas species are also discussed.
Collapse
Affiliation(s)
- Nanami Sakata
- Correspondence: (N.S.); (Y.I.); Tel./Fax: (+81)-029-853-4792 (Y.I.)
| | - Yasuhiro Ishiga
- Correspondence: (N.S.); (Y.I.); Tel./Fax: (+81)-029-853-4792 (Y.I.)
| |
Collapse
|
9
|
Takagi M, Hotamori K, Naito K, Matsukawa S, Egusa M, Nishizawa Y, Kanno Y, Seo M, Ifuku S, Mine A, Kaminaka H. Chitin-induced systemic disease resistance in rice requires both OsCERK1 and OsCEBiP and is mediated via perturbation of cell-wall biogenesis in leaves. FRONTIERS IN PLANT SCIENCE 2022; 13:1064628. [PMID: 36518504 PMCID: PMC9742455 DOI: 10.3389/fpls.2022.1064628] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Chitin is a well-known elicitor of disease resistance and its recognition by plants is crucial to perceive fungal infections. Chitin can induce both a local immune response and a systemic disease resistance when provided as a supplement in soils. Unlike local immune responses, it is poorly explored how chitin-induced systemic disease resistance is developed. In this study, we report the systemic induction of disease resistance against the fungal pathogen Bipolaris oryzae by chitin supplementation of soils in rice. The transcriptome analysis uncovered genes related to cell-wall biogenesis, cytokinin signaling, regulation of phosphorylation, and defence priming in the development of chitin-induced systemic response. Alterations of cell-wall composition were observed in leaves of rice plants grown in chitin-supplemented soils, and the disease resistance against B. oryzae was increased in rice leaves treated with a cellulose biosynthesis inhibitor. The disruption of genes for lysin motif (LysM)-containing chitin receptors, OsCERK1 (Chitin elicitor receptor kinase 1) and OsCEBiP (Chitin elicitor-binding protein), compromised chitin-induced systemic disease resistance against B. oryzae and differential expression of chitin-induced genes found in wild-type rice plants. These findings suggest that chitin-induced systemic disease resistance in rice is caused by a perturbation of cell-wall biogenesis in leaves through long-distance signalling after local recognition of chitins by OsCERK1 and OsCEBiP.
Collapse
Affiliation(s)
- Momoko Takagi
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kei Hotamori
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Keigo Naito
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Sumire Matsukawa
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Mayumi Egusa
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Yoko Nishizawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Shinsuke Ifuku
- Graduate School of Engineering, Tottori University, Tottori, Japan
- Unused Bioresource Utilization Center, Tottori University, Tottori, Japan
| | - Akira Mine
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, Tottori, Japan
- Unused Bioresource Utilization Center, Tottori University, Tottori, Japan
| |
Collapse
|
10
|
Antoszewski M, Mierek-Adamska A, Dąbrowska GB. The Importance of Microorganisms for Sustainable Agriculture-A Review. Metabolites 2022; 12:1100. [PMID: 36422239 PMCID: PMC9694901 DOI: 10.3390/metabo12111100] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
In the face of climate change, progressive degradation of the environment, including agricultural land negatively affecting plant growth and development, endangers plant productivity. Seeking efficient and sustainable agricultural techniques to replace agricultural chemicals is one of the most important challenges nowadays. The use of plant growth-promoting microorganisms is among the most promising approaches; however, molecular mechanisms underneath plant-microbe interactions are still poorly understood. In this review, we summarized the knowledge on plant-microbe interactions, highlighting the role of microbial and plant proteins and metabolites in the formation of symbiotic relationships. This review covers rhizosphere and phyllosphere microbiomes, the role of root exudates in plant-microorganism interactions, the functioning of the plant's immune system during the plant-microorganism interactions. We also emphasized the possible role of the stringent response and the evolutionarily conserved mechanism during the established interaction between plants and microorganisms. As a case study, we discussed fungi belonging to the genus Trichoderma. Our review aims to summarize the existing knowledge about plant-microorganism interactions and to highlight molecular pathways that need further investigation.
Collapse
Affiliation(s)
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | | |
Collapse
|
11
|
Ogasahara T, Kouzai Y, Watanabe M, Takahashi A, Takahagi K, Kim JS, Matsui H, Yamamoto M, Toyoda K, Ichinose Y, Mochida K, Noutoshi Y. Time-series transcriptome of Brachypodium distachyon during bacterial flagellin-induced pattern-triggered immunity. FRONTIERS IN PLANT SCIENCE 2022; 13:1004184. [PMID: 36186055 PMCID: PMC9521188 DOI: 10.3389/fpls.2022.1004184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/01/2022] [Indexed: 05/30/2023]
Abstract
Plants protect themselves from microorganisms by inducing pattern-triggered immunity (PTI) via recognizing microbe-associated molecular patterns (MAMPs), conserved across many microbes. Although the MAMP perception mechanism and initial events during PTI have been well-characterized, knowledge of the transcriptomic changes in plants, especially monocots, is limited during the intermediate and terminal stages of PTI. Here, we report a time-series high-resolution RNA-sequencing (RNA-seq) analysis during PTI in the leaf disks of Brachypodium distachyon. We identified 6,039 differentially expressed genes (DEGs) in leaves sampled at 0, 0.5, 1, 3, 6, and 12 hours after treatment (hat) with the bacterial flagellin peptide flg22. The k-means clustering method classified these DEGs into 10 clusters (6 upregulated and 4 downregulated). Based on the results, we selected 10 PTI marker genes in B. distachyon. Gene ontology (GO) analysis suggested a tradeoff between defense responses and photosynthesis during PTI. The data indicated the recovery of photosynthesis started at least at 12 hat. Over-representation analysis of transcription factor genes and cis-regulatory elements in DEG promoters implied the contribution of 12 WRKY transcription factors in plant defense at the early stage of PTI induction.
Collapse
Affiliation(s)
- Tsubasa Ogasahara
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yusuke Kouzai
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Megumi Watanabe
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Akihiro Takahashi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Kotaro Takahagi
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - June-Sik Kim
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Hidenori Matsui
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Mikihiro Yamamoto
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Kazuhiro Toyoda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yuki Ichinose
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki, Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
12
|
Optimization of Chitin Nanofiber Preparation by Ball Milling as Filler for Composite Resin. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6070197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chitin nanofiber is a nanomaterial produced by pulverizing chitin, the main component of crab shells. Since it has excellent mechanical properties, it is expected to be used as a reinforcing material to strengthen materials. Chitin was mechanically ground in water using a ball mill to prepare nanofibers. The ball size, total ball weight, and milling time were varied, and the resulting water dispersion and the cast film were analyzed to optimize the conditions for efficient preparation. The length and width of the nanofibers were also measured by SEM and AFM observations. The size of the balls affected the level of grinding and the intensity of impact energy on the chitin. The most efficient crushing was achieved when the diameter was 1 mm. The total ball weight directly affects the milling frequency, and milling proceeds as the total weight increases. However, if too many balls occupy the container, the grinding efficiency decreases. Therefore, a total ball weight of 300 g was optimal. Regarding the milling time, the chitin becomes finer depending on the increase of that time. However, after a specific time, the shape did not change much. Therefore, a milling time of approximately 150 min was appropriate.
Collapse
|
13
|
Zewude DA, Noguchi T, Sato K, Izawa H, Ifuku S. Production of chitin nanoparticles by bottom-up approach from alkaline chitin solution. Int J Biol Macromol 2022; 210:123-127. [PMID: 35526772 DOI: 10.1016/j.ijbiomac.2022.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 11/05/2022]
Abstract
Most of the series of nanochitins have been produced by the break-down process. In this study, chitin nanoparticles were prepared by a bottom-up process. Chitin was treated with sodium hydroxide to obtain an alkaline chitin aqueous solution. The alkaline chitin was regenerated by neutralization and then vigorously stirred to obtain chitin nanoparticles. The average particle size of the chitin nanoparticles was 7 nm. The individual particles were stably dispersed in water. Chitin nanoparticles had lower crystallinity than the raw material chitin and the surface of the chitin nanoparticles regenerated in water were presumed to be hydrophilic. The low crystallinity and the high hydrophilicity of the surface contributed to the high dispersibility of the chitin nanoparticles in water. Chitin nanoparticles had higher heat resistance than the raw material chitin, suggesting a large change in the higher-order structure associated with dissolution and subsequent regeneration of chitin. Since chitin nanoparticles interact with each other less than chitin nanofibers produced by mechanical treatment, the viscosity of nanoparticles was smaller than that of nanofibers. Therefore, it can be prepared at a high concentration. In addition, the chitin nanoparticles can be easily redispersed in water after being concentrated by centrifugation.
Collapse
Affiliation(s)
- Dagmawi Abebe Zewude
- Department of Engineering, Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan
| | - Takako Noguchi
- Koyo Chemical Co., Ltd., 217 Takenouchi-danchi, Sakaiminato, Tottori 684-0046, Japan
| | - Kimihiko Sato
- Koyo Chemical Co., Ltd., 217 Takenouchi-danchi, Sakaiminato, Tottori 684-0046, Japan
| | - Hironori Izawa
- Department of Engineering, Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan; Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan
| | - Shinsuke Ifuku
- Department of Engineering, Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan; Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan.
| |
Collapse
|
14
|
Lally RD, Donaleshen K, Chirwa U, Eastridge K, Saintilnord W, Dickinson E, Murphy R, Borst S, Horgan K, Dawson K. Transcriptomic Response of Huanglongbing-Infected Citrus sinensis Following Field Application of a Microbial Fermentation Product. FRONTIERS IN PLANT SCIENCE 2021; 12:754391. [PMID: 34917102 PMCID: PMC8669595 DOI: 10.3389/fpls.2021.754391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/05/2021] [Indexed: 06/14/2023]
Abstract
Huanglongbing (HLB) is considered the most destructive disease in Citrus production and threatens the future of the industry. Microbial-derived defense elicitors have gained recognition for their role in plant defense priming. This work assessed a 5% (V/V) microbial fermentation application (MFA) and its role in the elicitation of defense responses in HLB-infected Citrus sinensis trees following a foliar application with a pump sprayer. Using a PCR detection method, HLB infection levels were monitored in healthy and infected trees for 20months. Nutrient analysis assessed N, P, K, Ca, Mg, Mn, Zn, Fe, B, and Cu concentrations in the trees. MFA significantly increased Cu concentrations in treated trees and resulted in the stabilization of disease index (DI) in infected trees. Initial real-time qPCR analysis of defense-associated genes showed a significant increase in pathogenesis-related protein 2 (PR2) and phenylalanine ammonia lyase (PAL) gene expression in healthy and HLB-infected trees in response to MFA. Gene expression of PR2 and PAL peaked 6h post-microbial fermentation application during an 8-h sampling period. A transcriptomic assessment using GeneChip microarray of the hour 6 samples revealed differential expression of 565 genes when MFA was applied to healthy trees and 909 genes when applied infected citrus trees when compared to their respective controls. There were 403 uniquely differentially expressed genes in response to MFA following an intersectional analysis of both healthy and infected citrus trees. The transcriptomic analysis revealed that several genes associated with plant development, growth, and defense were upregulated in response to MFA, including multiple PR genes, lignin formation genes, ROS-related genes, hormone synthases, and hormone regulators. This study provides further evidence that MFA may play an important role as a plant elicitor in an integrated pest management strategy in citrus and other agronomically important crops.
Collapse
Affiliation(s)
| | | | | | | | - Wesley Saintilnord
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | | | | | | | | | | |
Collapse
|
15
|
Preparation and recycling property of nanofiber-reinforced polystyrene molded product using the emulsion-forming ability of chitin nanofibers. Polym J 2021. [DOI: 10.1038/s41428-021-00586-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
García YH, Zamora OR, Troncoso-Rojas R, Tiznado-Hernández ME, Báez-Flores ME, Carvajal-Millan E, Rascón-Chu A. Toward Understanding the Molecular Recognition of Fungal Chitin and Activation of the Plant Defense Mechanism in Horticultural Crops. Molecules 2021; 26:molecules26216513. [PMID: 34770922 PMCID: PMC8587247 DOI: 10.3390/molecules26216513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 11/25/2022] Open
Abstract
Large volumes of fruit and vegetable production are lost during postharvest handling due to attacks by necrotrophic fungi. One of the promising alternatives proposed for the control of postharvest diseases is the induction of natural defense responses, which can be activated by recognizing molecules present in pathogens, such as chitin. Chitin is one of the most important components of the fungal cell wall and is recognized through plant membrane receptors. These receptors belong to the receptor-like kinase (RLK) family, which possesses a transmembrane domain and/or receptor-like protein (RLP) that requires binding to another RLK receptor to recognize chitin. In addition, these receptors have extracellular LysM motifs that participate in the perception of chitin oligosaccharides. These receptors have been widely studied in Arabidopsis thaliana (A. thaliana) and Oryza sativa (O. sativa); however, it is not clear how the molecular recognition and plant defense mechanisms of chitin oligosaccharides occur in other plant species or fruits. This review includes recent findings on the molecular recognition of chitin oligosaccharides and how they activate defense mechanisms in plants. In addition, we highlight some of the current advances in chitin perception in horticultural crops.
Collapse
Affiliation(s)
- Yaima Henry García
- Coordinación de Tecnología en Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico; (Y.H.G.); (O.R.Z.); (M.E.T.-H.); (A.R.-C.)
| | - Orlando Reyes Zamora
- Coordinación de Tecnología en Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico; (Y.H.G.); (O.R.Z.); (M.E.T.-H.); (A.R.-C.)
| | - Rosalba Troncoso-Rojas
- Coordinación de Tecnología en Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico; (Y.H.G.); (O.R.Z.); (M.E.T.-H.); (A.R.-C.)
- Correspondence:
| | - Martín Ernesto Tiznado-Hernández
- Coordinación de Tecnología en Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico; (Y.H.G.); (O.R.Z.); (M.E.T.-H.); (A.R.-C.)
| | - María Elena Báez-Flores
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa. Calle de las Américas y Josefa Ortiz de Domínguez, Culiacán C.P. 80013, Mexico;
| | - Elizabeth Carvajal-Millan
- Coordinación de Tecnología en Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico;
| | - Agustín Rascón-Chu
- Coordinación de Tecnología en Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico; (Y.H.G.); (O.R.Z.); (M.E.T.-H.); (A.R.-C.)
| |
Collapse
|
17
|
Ramakrishna B, Sarma PVSRN, Ankati S, Bhuvanachandra B, Podile AR. Elicitation of defense response by transglycosylated chitooligosaccharides in rice seedlings. Carbohydr Res 2021; 510:108459. [PMID: 34700217 DOI: 10.1016/j.carres.2021.108459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022]
Abstract
Long-chain chitooligosaccharides (COS) with degree of polymerization (DP) more than 4 are known to have potential biological activities. A hyper-transglycosylating mutant of an endo-chitinase from Serratia proteamaculans (SpChiD-Y28A) was used to synthesize COS with DP6 and DP7 using COS DP5 as substrate. Purified COS with DP5-7 were tested to elicit the defense response in rice seedlings. Among the COS used, DP7 strongly induced oxidative burst response as well as peroxidase, and phenylalanine ammonia lyase activites. A few selected marker genes in salicylic acid (SA)- and jasmonic acid-dependent pathways were evaluated by real-time PCR. The expression levels of pathogenesis-related (PR) genes PR1a and PR10 and defense response genes (chitinase1, peroxidase and β -1,3-glucanase) were up regulated upon COS treatment in rice seedlings. The DP7 induced Phenylalanine ammonia lyase and Isochorismate synthase 1 genes, with concomitant increase of Mitogen-activated protein kinase 6 and WRKY45 transcription factor genes indicated the possible role of phosphorylation in the transmission of a signal to induce SA-mediated defense response in rice.
Collapse
Affiliation(s)
- Bellamkonda Ramakrishna
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Telangana, India
| | - P V S R N Sarma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Telangana, India
| | - Sravani Ankati
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Telangana, India
| | - Bhoopal Bhuvanachandra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Telangana, India
| | - Appa Rao Podile
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
18
|
Saito H, Yamashita Y, Sakata N, Ishiga T, Shiraishi N, Usuki G, Nguyen VT, Yamamura E, Ishiga Y. Covering Soybean Leaves With Cellulose Nanofiber Changes Leaf Surface Hydrophobicity and Confers Resistance Against Phakopsora pachyrhizi. FRONTIERS IN PLANT SCIENCE 2021; 12:726565. [PMID: 34539719 PMCID: PMC8448067 DOI: 10.3389/fpls.2021.726565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/03/2021] [Indexed: 05/08/2023]
Abstract
Asian soybean rust (ASR) caused by Phakopsora pachyrhizi, an obligate biotrophic fungal pathogen, is the most devastating soybean production disease worldwide. Currently, timely fungicide application is the only means to control ASR in the field. We investigated cellulose nanofiber (CNF) application on ASR disease management. CNF-treated leaves showed reduced lesion number after P. pachyrhizi inoculation compared to control leaves, indicating that covering soybean leaves with CNF confers P. pachyrhizi resistance. We also demonstrated that formation of P. pachyrhizi appressoria, and also gene expression related to these formations, such as chitin synthases (CHSs), were significantly suppressed in CNF-treated soybean leaves compared to control leaves. Moreover, contact angle measurement revealed that CNF converts soybean leaf surface properties from hydrophobic to hydrophilic. These results suggest that CNF can change soybean leaf surface hydrophobicity, conferring resistance against P. pachyrhizi, based on the reduced expression of CHSs, as well as reduced formation of pre-infection structures. This is the first study to investigate CNF application to control field disease.
Collapse
Affiliation(s)
- Haruka Saito
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuji Yamashita
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Nanami Sakata
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takako Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Nanami Shiraishi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Giyu Usuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Viet Tru Nguyen
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Western Highlands Agriculture and Forestry Science Institute, Buon Ma Thuot, Vietnam
| | - Eiji Yamamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yasuhiro Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
19
|
Gan SKE, Phua SX, Yeo JY, Heng ZSL, Xing Z. Method for Zero-Waste Circular Economy Using Worms for Plastic Agriculture: Augmenting Polystyrene Consumption and Plant Growth. Methods Protoc 2021; 4:mps4020043. [PMID: 34205648 PMCID: PMC8293350 DOI: 10.3390/mps4020043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 01/01/2023] Open
Abstract
Polystyrene (PS) is one of the major plastics contributing to environmental pollution with its durability and resistance to natural biodegradation. Recent research showed that mealworms (Tenebrio molitor) and superworms (Zophobas morio) are naturally able to consume PS as a carbon food source and degrade them without observable toxic effects. In this study, we explored the effects of possible food additives and use of worm frass as potential plant fertilizers. We found that small amounts of sucrose and bran increased PS consumption and that the worm frass alone could support dragon fruit cacti (Hylocereus undatus) growth, with superworm frass in particular, supporting better growth and rooting than mealworm frass and control media over a fortnight. As known fish and poultry feed, these findings present worms as a natural solution to simultaneously tackle both the global plastic problem and urban farming issue in a zero-waste sustainable bioremediation cycle.
Collapse
Affiliation(s)
- Samuel Ken-En Gan
- APD SKEG Pte Ltd., Singapore 439444, Singapore
- Antibody & Product Development Lab, EDDC & BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (S.-X.P.); (J.Y.Y.); (Z.S.-L.H.)
- Correspondence: ; Tel.: +65-81137725
| | - Ser-Xian Phua
- Antibody & Product Development Lab, EDDC & BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (S.-X.P.); (J.Y.Y.); (Z.S.-L.H.)
| | - Joshua Yi Yeo
- Antibody & Product Development Lab, EDDC & BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (S.-X.P.); (J.Y.Y.); (Z.S.-L.H.)
| | - Zealyn Shi-Lin Heng
- Antibody & Product Development Lab, EDDC & BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (S.-X.P.); (J.Y.Y.); (Z.S.-L.H.)
| | - Zhenxiang Xing
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, #08-03, Singapore 138634, Singapore;
| |
Collapse
|
20
|
Shahrajabian MH, Chaski C, Polyzos N, Tzortzakis N, Petropoulos SA. Sustainable Agriculture Systems in Vegetable Production Using Chitin and Chitosan as Plant Biostimulants. Biomolecules 2021; 11:biom11060819. [PMID: 34072781 PMCID: PMC8226918 DOI: 10.3390/biom11060819] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Chitin and chitosan are natural compounds that are biodegradable and nontoxic and have gained noticeable attention due to their effective contribution to increased yield and agro-environmental sustainability. Several effects have been reported for chitosan application in plants. Particularly, it can be used in plant defense systems against biological and environmental stress conditions and as a plant growth promoter—it can increase stomatal conductance and reduce transpiration or be applied as a coating material in seeds. Moreover, it can be effective in promoting chitinolytic microorganisms and prolonging storage life through post-harvest treatments, or benefit nutrient delivery to plants since it may prevent leaching and improve slow release of nutrients in fertilizers. Finally, it can remediate polluted soils through the removal of cationic and anionic heavy metals and the improvement of soil properties. On the other hand, chitin also has many beneficial effects such as plant growth promotion, improved plant nutrition and ability to modulate and improve plants’ resistance to abiotic and biotic stressors. The present review presents a literature overview regarding the effects of chitin, chitosan and derivatives on horticultural crops, highlighting their important role in modern sustainable crop production; the main limitations as well as the future prospects of applications of this particular biostimulant category are also presented.
Collapse
Affiliation(s)
- Mohamad Hesam Shahrajabian
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece; (C.C.); (N.P.)
- Correspondence: (M.H.S.); (S.A.P.); Tel.: +30-24210-93196 (S.A.P.)
| | - Christina Chaski
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece; (C.C.); (N.P.)
| | - Nikolaos Polyzos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece; (C.C.); (N.P.)
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Limassol, Cyprus;
| | - Spyridon A. Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece; (C.C.); (N.P.)
- Correspondence: (M.H.S.); (S.A.P.); Tel.: +30-24210-93196 (S.A.P.)
| |
Collapse
|
21
|
Cabrera-Barjas G, González C, Nesic A, Marrugo KP, Gómez O, Delattre C, Valdes O, Yin H, Bravo G, Cea J. Utilization of Marine Waste to Obtain β-Chitin Nanofibers and Films from Giant Humboldt Squid Dosidicus gigas. Mar Drugs 2021; 19:184. [PMID: 33810536 PMCID: PMC8065767 DOI: 10.3390/md19040184] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
β-chitin was isolated from marine waste, giant Humboldt squid Dosidicus gigas, and further converted to nanofibers by use of a collider machine under acidic conditions (pH 3). The FTIR, TGA, and NMR analysis confirmed the efficient extraction of β-chitin. The SEM, TEM, and XRD characterization results verified that β-chitin crystalline structure were maintained after mechanical treatment. The mean particle size of β-chitin nanofibers was in the range between 10 and 15 nm, according to the TEM analysis. In addition, the β-chitin nanofibers were converted into films by the simple solvent-casting and drying process at 60 °C. The obtained films had high lightness, which was evidenced by the CIELAB color test. Moreover, the films showed the medium swelling degree (250-290%) in aqueous solutions of different pH and good mechanical resistance in the range between 4 and 17 MPa, depending on film thickness. The results obtained in this work show that marine waste can be efficiently converted to biomaterial by use of mild extractive conditions and simple mechanical treatment, offering great potential for the future development of sustainable multifunctional materials for various industrial applications such as food packaging, agriculture, and/or wound dressing.
Collapse
Affiliation(s)
- Gustavo Cabrera-Barjas
- Unidad de Desarrollo Tecnológico, Parque Industrial Coronel, Universidad de Concepción, Concepción 3349001, Chile; (G.B.); (J.C.)
| | - Cristian González
- Facultad de Ingeniería, Universidad del Bío-Bío, Concepción 4051381, Chile;
| | - Aleksandra Nesic
- Unidad de Desarrollo Tecnológico, Parque Industrial Coronel, Universidad de Concepción, Concepción 3349001, Chile; (G.B.); (J.C.)
- Department of Chemical Dynamics and Permanent Education, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica-Alasa 12-14, 11000 Belgrade, Serbia
| | - Kelly P. Marrugo
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070371, Chile;
| | - Oscar Gómez
- Carbon and Catalysis Laboratory (CarboCat), Department of Chemical Engineering, University of Concepción, Concepción 4030000, Chile;
| | - Cédric Delattre
- Clermont Auvergne INP, Université Clermont Auvergne, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France;
- Institute Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Oscar Valdes
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile;
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| | - Gaston Bravo
- Unidad de Desarrollo Tecnológico, Parque Industrial Coronel, Universidad de Concepción, Concepción 3349001, Chile; (G.B.); (J.C.)
| | - Juan Cea
- Unidad de Desarrollo Tecnológico, Parque Industrial Coronel, Universidad de Concepción, Concepción 3349001, Chile; (G.B.); (J.C.)
| |
Collapse
|
22
|
Um-E-Aiman, Nisar N, Tsuzuki T, Lowe A, Rossiter JT, Javaid A, Powell G, Waseem R, Al-Mijalli SH, Iqbal M. Chitin nanofibers trigger membrane bound defense signaling and induce elicitor activity in plants. Int J Biol Macromol 2021; 178:253-262. [PMID: 33636267 DOI: 10.1016/j.ijbiomac.2021.02.164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/28/2021] [Accepted: 02/21/2021] [Indexed: 11/27/2022]
Abstract
The present study demonstrated that chitin-based nanofibers (CNFs) trigger the chitinase genes (PGIP1 and CaChi2), while elevating salicylic acid that can protect plants against pathogens. Cross-talk between this genetic induction and salicylic-acid-mediated immune response was also observed, which may arm a plant against multiple pathovars. Crab and mushroom based CNFs were synthesized by electrospinning and ball milling techniques. Plants (mung bean, Vigna radiata) (pepper, Capsicum annuum) were pre-inoculated with CNFs and treated with the pathogens Scrolotium rolfsii for pepper and Macrophomina phaseolina for mung bean and shrimp-based CNFs were used as a control. Treated plants had elevated levels of chitinase genes in response to CNFs at inoculation concentrations <10 mg/mL both in soil and media, to protect them against the pathogenic fungal disease. After 24 h of exposure to the pathogens, qRT-PCR showed genes class II chitinase gene (CaChi2) and polygalacturonase inhibitor protein 1 (PGIP1) to be up-regulated in both root and shoot at 0.1 and 1 mg/mL of inoculation, respectively. The ball milled mushroom CNFs were sufficient to trigger the membrane based enzymes with less diameter (≥15 nm) to be most efficient versus others. In vitro analysis showed IC50 of ball milled mushroom CNFs to be most efficient in limiting the growth of fungal biomass. Further trigger-like effects were prominent in reducing pathogenic fungal spread in both species.
Collapse
Affiliation(s)
- Um-E-Aiman
- Department of Environmental Science, Lahore College for Women University, Lahore, Pakistan
| | - Numrah Nisar
- Department of Environmental Science, Lahore College for Women University, Lahore, Pakistan.
| | - Takuya Tsuzuki
- Department of Engineering, Australian National University, Australia
| | - Adrian Lowe
- Department of Engineering, Australian National University, Australia
| | | | - Arshad Javaid
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | | | | | - Samiah H Al-Mijalli
- Biology Department, College of Sciences, Princess Nourah bint Abdulrahman University (PNU), Riyadh 11671, Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry, The university of Lahore, Lahore, Pakistan.
| |
Collapse
|
23
|
Nanofibrillation Is an Effective Method to Produce Chitin Derivatives for Induction of Plant Responses in Soybean. PLANTS 2020; 9:plants9070810. [PMID: 32605205 PMCID: PMC7411678 DOI: 10.3390/plants9070810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 01/22/2023]
Abstract
Chitin, an N-acetylglucosamine polymer, is well-known to have unique biological functions, such as growth promotion and disease resistance induction in plants. Chitin has been expectedly used for improving crop yield using its functions; however, chitin derivatives, such as chitin oligosaccharide (CO) and chitosan, are widely used instead since chitin is difficult to handle because of its insolubility. Chitin nanofiber (CNF), produced from chitin through nanofibrillation, retains its polymeric structure and can be dispersed uniformly even in water. Here, the effects of CO and CNF on plant responses were directly compared in soybeans (Glycine max) to define the most effective method to produce chitin derivatives for plant response induction. The growth promotion of aerial parts was observed only in CNF-treated plants. The transcriptome analysis showed that the number of differentially expressed genes (DEGs) in CNF-treated soybeans was higher than in CO-treated soybeans. Notably, the expression patterns of DEGs were mostly similar but were strongly induced by CNF treatment as compared with the CO group. These results reveal that CNF can induce stronger plant response to chitin than CO in soybeans, suggesting nanofibrillation, rather than oligomerization, as a more effective method to produce chitin derivatives for plant response induction.
Collapse
|
24
|
Shahbaz U. Chitin, Characteristic, Sources, and Biomedical Application. Curr Pharm Biotechnol 2020; 21:1433-1443. [PMID: 32503407 DOI: 10.2174/1389201021666200605104939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/22/2020] [Accepted: 05/08/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Chitin stands at second, after cellulose, as the most abundant polysaccharide in the world. Chitin is found naturally in marine environments as it is a crucial structural component of various marine organisms. METHODS Different amounts of waste chitin and chitosan can be discovered in the environment. Chitinase producing microbes help to hydrolyze chitin waste to play an essential function for the removal of chitin pollution in the Marine Atmosphere. Chitin can be converted by using chemical and biological methods into prominent derivate chitosan. Numerous bacteria naturally have chitin degrading ability. RESULTS Chitin shows promise in terms of biocompatibility, low toxicity, complete biodegradability, nontoxicity, and film-forming capability. The application of these polymers in the different sectors of biomedical, food, agriculture, cosmetics, pharmaceuticals could be lucrative. Moreover, the most recent achievement in nanotechnology is based on chitin and chitosan-based materials. CONCLUSION In this review, we examine chitin in terms of its natural sources and different extraction methods, chitinase producing microbes and chitin, chitosan together with its derivatives for use in biomedical and agricultural applications.
Collapse
Affiliation(s)
- Umar Shahbaz
- Jiangnan University, School of Biotechnology, Jiangnan University Wuxi, Jiansu, China
| |
Collapse
|
25
|
López M, Miranda E, Ramos C, García H, Neira-Carrillo A. Activation of Early Defense Signals in Seedlings of Nicotiana benthamiana Treated with Chitin Nanoparticles. PLANTS 2020; 9:plants9050607. [PMID: 32397652 PMCID: PMC7284726 DOI: 10.3390/plants9050607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/27/2022]
Abstract
Chitin is an excellent material for the synthesis of nanoparticles because it is an elicitor and can form nanostructured materials. The application of chitin nanoparticles (CNPs) in plants can activate early defense responses associated with chitin. In this study, CNPs were synthesized by water in oil (W/O) emulsion using an aqueous chitin solution. The CNPs were characterized and used to evaluate the activation of genes related to early responses to chitin and the production of reactive oxygen species (ROS) on seedlings of Nicotiana benthamiana. The CNPs had an average size of 280 nm in diameter, a polydispersity of 0.299, a surface charge of 26.9 mV, and their chemical composition was corroborated by the disappearance of microaggregated CNPs treated with chitinases observed under a microscope. Seedlings treated with CNPs for one hour revealed increments in the expression of genes STZ, ATL2, and MAPK3, in contrast when they were treated with chitin oligomers, and no changes in gene CERK1 was detected in both conditions. Finally, the synthesis of ROS mediated by CNPs was detected in seedlings, which was higher than those generated by the treatment of chitin oligomers. These results demonstrated the capability to generate CNPs by emulsion, which are capable of triggering responses related to early defense in N. benthamiana more efficiently than chitin oligomers.
Collapse
Affiliation(s)
- Miguel López
- Department of Biological Animal Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, La Pintana, Santiago 8820808, Chile;
- Department of Molecular Biology, Laboratorios Diagnofruit Ltda., Ñuñoa, Santiago 7770273, Chile; (E.M.); (C.R.); (H.G.)
| | - Elisa Miranda
- Department of Molecular Biology, Laboratorios Diagnofruit Ltda., Ñuñoa, Santiago 7770273, Chile; (E.M.); (C.R.); (H.G.)
| | - Cecilia Ramos
- Department of Molecular Biology, Laboratorios Diagnofruit Ltda., Ñuñoa, Santiago 7770273, Chile; (E.M.); (C.R.); (H.G.)
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas (Nucleus of Applied Research in Veterinary and Agronomical Sciences), Universidad de las Americas, Campus Providencia, Santiago 7500972, Chile
| | - Héctor García
- Department of Molecular Biology, Laboratorios Diagnofruit Ltda., Ñuñoa, Santiago 7770273, Chile; (E.M.); (C.R.); (H.G.)
| | - Andrónico Neira-Carrillo
- Department of Biological Animal Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, La Pintana, Santiago 8820808, Chile;
- Correspondence:
| |
Collapse
|
26
|
Improving nitrogen uptake efficiency by chitin nanofiber promotes growth in tomato. Int J Biol Macromol 2019; 151:1322-1331. [PMID: 31751746 DOI: 10.1016/j.ijbiomac.2019.10.178] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 12/27/2022]
Abstract
Chitin, an N-acetyl-D-glucosamine polymer, has been known to enhance plant growth. However, this polysaccharide has not been used extensively in experimental work or agriculture practices because its hydrophobic nature makes it difficult to handle. Chitin nanofiber (CNF), which disperses well in water, can feasibly be used to evaluate the effect of chitin on the promotion of plant growth. In this study, we analysed the contents of inorganic elements and global gene expression to obtain an overview of the growth-promoting action of chitins in plants. Significant increases in the biomass of aerial parts and concentration of chlorophyll following treatment with CNF or short-chain chitin oligomers were observed in tomatoes that were hydroponically cultivated under ultralow nutrient concentrations. The results of the quantification of inorganic elements demonstrated that concentrations of nitrogen and carbon significantly increased in whole tomato plant under chitin treatment. Transcriptome analysis of CNF-treated tomatoes by RNA sequencing showed that the expression levels of genes related to nitrogen acquisition and assimilation, nutrient allocation and photosynthesis were altered. These results indicate that the growth-promoting action of chitin treatment is caused by an improvement in nitrogen uptake efficiency and that CNF could be a useful material for nutrient management in tomato production.
Collapse
|
27
|
Malerba M, Cerana R. Recent Applications of Chitin- and Chitosan-Based Polymers in Plants. Polymers (Basel) 2019; 11:polym11050839. [PMID: 31072059 PMCID: PMC6572233 DOI: 10.3390/polym11050839] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 12/30/2022] Open
Abstract
In recent years, the use of complex molecules based on the natural biopolymer chitin and/or on its deacetylated derivative chitosan has resulted in great advantages for many users. In particular, industries involved in the production of drugs, cosmetics, biotechnological items, and food have achieved better results using these particular molecules. In plants, chitin- and chitosan-based molecules are largely used as safe and environmental-friendly tools to ameliorate crop productivity and conservation of agronomic commodities. This review summarizes the results of the last two years on the application of chitin- and chitosan-based molecules on plant productivity. The open questions and future perspectives to overcome the present gaps and limitations are also discussed.
Collapse
Affiliation(s)
- Massimo Malerba
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milan, Italy.
| | - Raffaella Cerana
- Dipartimento di Scienze dell'Ambiente e della Terra, Università degli Studi di Milano-Bicocca, 20126 Milan, Italy.
| |
Collapse
|
28
|
Egusa M, Parada R, Aklog YF, Ifuku S, Kaminaka H. Nanofibrillation enhances the protective effect of crab shells against Fusarium wilt disease in tomato. Int J Biol Macromol 2019; 128:22-27. [PMID: 30682468 DOI: 10.1016/j.ijbiomac.2019.01.088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/20/2018] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
Abstract
Chitin, a polymer of N‑acetyl‑d‑glucosamine, is a beneficial material for agriculture because it enhances plant growth and disease control. Although chitin utilization is limited by handling difficulties, chitin nanofiber (CNF) can be more feasibly used since it behaves as a water-soluble material. To broaden the utilization of chitin, protein/CaCO3/chitin nanofiber (P/Ca/CNF) and protein/chitin nanofiber (P/CNF) complexes were prepared from crab shells without using environmentally hazardous chemical in chitin purification processes. Chitin was disintegrated into nanofibers by grinder pretreatment and the subsequent use of a high-pressure water jet system. The nanofibrillation degree depended on the number of mechanical treatments applied. The addition of CNFs to soil slightly enhanced tomato growth relative to that of CNF-untreated or crushed crab shell-treated plants. Furthermore, CNFs treatment reduced the incidence of Fusarium wilt disease in tomato plants. Disease inhibition by P/Ca/CNF and P/CNF was more effective than that by crushed crab shells, and comparable to that by pure CNF. There was no significant relationship between disease reduction level and nanofibrillation degree. In conclusion, P/Ca/CNF prepared with the minimal number of steps was sufficiently able to inhibit Fusarium wilt disease in tomato, and could thus be an eco-friendly material to control plant diseases in sustainable agriculture.
Collapse
Affiliation(s)
- Mayumi Egusa
- Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - RoxanaYanira Parada
- Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Yihun Fantahun Aklog
- Department of Engineering, Graduate School of Sustainability Science, 680-8552, Japan
| | - Shinsuke Ifuku
- Department of Engineering, Graduate School of Sustainability Science, 680-8552, Japan
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan.
| |
Collapse
|
29
|
|
30
|
Liang R, Li X, Yuan W, Jin S, Hou S, Wang M, Wang H. Antifungal Activity of Nanochitin Whisker against Crown Rot Diseases of Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9907-9913. [PMID: 30111104 DOI: 10.1021/acs.jafc.8b02718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanochitin whisker (NC) is a rodlike particle with a cationic nature and high biological activities. Crown rot, caused by soil-borne fungal pathogens including Fusarium pseudograminearum( Fp) and Fusarium graminearum( Fg), is one of the most damaging diseases in wheat. To explore the antifungal activity of NC against wheat diseases, the effects of nanochitin whisker suspension (NCs) on fungal growth and conidial production of Fp and Fg were studied in vitro. NCs and its mixture with chemical fungicide as a seeds coating agent for crown rot disease control were also investigated using Fp as a model microorganism in a pot test. The results showed that NCs had significant inhibitory effects on mycelial growth and conidial production of Fp and Fg at concentrations of 30 and 300 ppm in the growth medium. Particularly, 300 ppm of NCs was capable of reducing conidial formation 89.25% and 82.28% for Fp and Fg, respectively. When seeds were treated with a mixture of NCs and tebuconazole, the disease control efficiencies increased to 79.30% and 90.02% for NCs at concentrations of 10 and 30 ppm, respectively. Greener and shorter seedlings were also observed in the pot experiment. This indicates that NCs have strong antifungal activity against the soil-borne pathogens of wheat and reduce use of chemical fungicide in wheat plantation.
Collapse
|
31
|
Parada RY, Egusa M, Aklog YF, Miura C, Ifuku S, Kaminaka H. Optimization of nanofibrillation degree of chitin for induction of plant disease resistance: Elicitor activity and systemic resistance induced by chitin nanofiber in cabbage and strawberry. Int J Biol Macromol 2018; 118:2185-2192. [PMID: 30021137 DOI: 10.1016/j.ijbiomac.2018.07.089] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/23/2018] [Accepted: 07/13/2018] [Indexed: 01/26/2023]
Abstract
Chitin has not been extensively used in agriculture owing to its handling difficulties despite its utilizable functions such as induction of disease resistance and growth promotion in plants. Chitin nanofiber (CNF), which has an elicitor activity to induce plant disease resistance, can be handled like a water-soluble material, because of its high dispersibility. To determine the potential use of CNF in agriculture, the nanofibrillation degree of chitin for elicitor activity and its effect on the disease resistance against pathogens were examined in cabbage and strawberry plants. The similarity in thickness and length of CNF to that of polymeric chitin was sufficient to induce elicitor activity in both plants. Cabbage and strawberry plants, which were grown in a mixture of soil and CNF with optimized specification, challenged with fungal pathogens showed a reduction in the number of spots caused by Alternaria brassicicola and lesion size by Colletotrichum fructicola, respectively. Gene expression analysis revealed that the defense-related genes in cabbage plant grown in CNF-containing soil were significantly upregulated before and after pathogen infection. These results indicate that CNF can systemically induce disease resistance in cabbage and strawberry plants and is a promising natural-based material to control diseases in cultivated plants.
Collapse
Affiliation(s)
- Roxana Y Parada
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | - Mayumi Egusa
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | - Yihum F Aklog
- Department of Engineering, Graduate School of Sustainable Science, Tottori University, 4-101 Koyama Minami, Tottori 680-8552, Japan
| | - Chihiro Miura
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | - Shinsuke Ifuku
- Department of Engineering, Graduate School of Sustainable Science, Tottori University, 4-101 Koyama Minami, Tottori 680-8552, Japan
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan.
| |
Collapse
|
32
|
Chaliha C, Rugen MD, Field RA, Kalita E. Glycans as Modulators of Plant Defense Against Filamentous Pathogens. FRONTIERS IN PLANT SCIENCE 2018; 9:928. [PMID: 30022987 PMCID: PMC6039678 DOI: 10.3389/fpls.2018.00928] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/11/2018] [Indexed: 05/25/2023]
Abstract
Plants and microbes utilize glycoconjugates as structural entities, energy reserves for cellular processes, and components of cellular recognition or binding events. The structural heterogeneity of carbohydrates in such systems is a result of the ability of the carbohydrate biosynthetic enzymes to reorient sugar monomers in a variety of forms, generating highly complex, linear, branched, or hierarchical structures. During the interaction between plants and their microbial pathogens, the microbial cell surface glycans, cell wall derived glycans, and glycoproteins stimulate the signaling cascades of plant immune responses, through a series of specific or broad spectrum recognition events. The microbial glycan-induced plant immune responses and the downstream modifications observed in host-plant glycan structures that combat the microbial attack have garnered immense interest among scientists in recent times. This has been enabled by technological advancements in the field of glycobiology, making it possible to study the ongoing co-evolution of the microbial and the corresponding host glycan structures, in greater detail. The new glycan analogs emerging in this evolutionary arms race brings about a fresh perspective to our understanding of plant-pathogen interactions. This review discusses the role of diverse classes of glycans and their derivatives including simple sugars, oligosaccharides, glycoproteins, and glycolipids in relation to the activation of classical Pattern-Triggered Immunity (PTI) and Effector-Triggered Immunity (ETI) defense responses in plants. While primarily encompassing the biological roles of glycans in modulating plant defense responses, this review categorizes glycans based on their structure, thereby enabling parallels to be drawn to other areas of glycobiology. Further, we examine how these molecules are currently being used to develop new bio-active molecules, potent as priming agents to stimulate plant defense response and as templates for designing environmentally friendly foliar sprays for plant protection.
Collapse
Affiliation(s)
- Chayanika Chaliha
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Michael D. Rugen
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Robert A. Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Eeshan Kalita
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
33
|
Abstract
Chitin nanofibers are the fundamental building blocks of numerous structural natural materials. From top-down to bottom-up, here we review engineering strategies to produce chitin nanofibers for engineered materials and their applications.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Department of Electrical Engineering
- University of California
- Santa Cruz
- USA
- Department of Materials Science and Engineering
| | - Marco Rolandi
- Department of Electrical Engineering
- University of California
- Santa Cruz
- USA
- Department of Materials Science and Engineering
| |
Collapse
|