1
|
Li Z, Huang Y, Shen Z, Wu M, Huang M, Hong SB, Xu L, Zang Y. Advances in functional studies of plant MYC transcription factors. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:195. [PMID: 39103657 DOI: 10.1007/s00122-024-04697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Myelocytomatosis (MYC) transcription factors (TFs) belong to the basic helix-loop-helix (bHLH) family in plants and play a central role in governing a wide range of physiological processes. These processes encompass plant growth, development, adaptation to biotic and abiotic stresses, as well as secondary metabolism. In recent decades, significant strides have been made in comprehending the multifaceted regulatory functions of MYCs. This advancement has been achieved through the cloning of MYCs and the characterization of plants with MYC deficiencies or overexpression, employing comprehensive genome-wide 'omics' and protein-protein interaction technologies. MYCs act as pivotal components in integrating signals from various phytohormones' transcriptional regulators to orchestrate genome-wide transcriptional reprogramming. In this review, we have compiled current research on the role of MYCs as molecular switches that modulate signal transduction pathways mediated by phytohormones and phytochromes. This comprehensive overview allows us to address lingering questions regarding the interplay of signals in response to environmental cues and developmental shift. It also sheds light on the potential implications for enhancing plant resistance to diverse biotic and abiotic stresses through genetic improvements achieved by plant breeding and synthetic biology efforts.
Collapse
Affiliation(s)
- Zewei Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yunshuai Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zhiwei Shen
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Meifang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Mujun Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX, 77058-1098, USA
| | - Liai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
2
|
Jing H, Yang X, Emenecker RJ, Feng J, Zhang J, Figueiredo MRAD, Chaisupa P, Wright RC, Holehouse AS, Strader LC, Zuo J. Nitric oxide-mediated S-nitrosylation of IAA17 protein in intrinsically disordered region represses auxin signaling. J Genet Genomics 2023; 50:473-485. [PMID: 37187411 PMCID: PMC11070147 DOI: 10.1016/j.jgg.2023.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/17/2023]
Abstract
The phytohormone auxin plays crucial roles in nearly every aspect of plant growth and development. Auxin signaling is activated through the phytohormone-induced proteasomal degradation of the Auxin/INDOLE-3-ACETIC ACID (Aux/IAA) family of transcriptional repressors. Notably, many auxin-modulated physiological processes are also regulated by nitric oxide (NO) that executes its biological effects predominantly through protein S-nitrosylation at specific cysteine residues. However, little is known about the molecular mechanisms in regulating the interactive NO and auxin networks. Here, we show that NO represses auxin signaling by inhibiting IAA17 protein degradation. NO induces the S-nitrosylation of Cys-70 located in the intrinsically disordered region of IAA17, which inhibits the TIR1-IAA17 interaction and consequently the proteasomal degradation of IAA17. The accumulation of a higher level of IAA17 attenuates auxin response. Moreover, an IAA17C70W nitrosomimetic mutation renders the accumulation of a higher level of the mutated protein, thereby causing partial resistance to auxin and defective lateral root development. Taken together, these results suggest that S-nitrosylation of IAA17 at Cys-70 inhibits its interaction with TIR1, thereby negatively regulating auxin signaling. This study provides unique molecular insights into the redox-based auxin signaling in regulating plant growth and development.
Collapse
Affiliation(s)
- Hongwei Jing
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biology, Duke University, Durham, NC 27008, USA.
| | - Xiaolu Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ryan J Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jian Feng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Patarasuda Chaisupa
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA; The Translational Plant Sciences Center (TPSC), Virginia Tech, Blacksburg, VA 24061, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Mata-Pérez C, Sánchez-Vicente I, Arteaga N, Gómez-Jiménez S, Fuentes-Terrón A, Oulebsir CS, Calvo-Polanco M, Oliver C, Lorenzo Ó. Functions of nitric oxide-mediated post-translational modifications under abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1158184. [PMID: 37063215 PMCID: PMC10101340 DOI: 10.3389/fpls.2023.1158184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Environmental conditions greatly impact plant growth and development. In the current context of both global climate change and land degradation, abiotic stresses usually lead to growth restriction limiting crop production. Plants have evolved to sense and respond to maximize adaptation and survival; therefore, understanding the mechanisms involved in the different converging signaling networks becomes critical for improving plant tolerance. In the last few years, several studies have shown the plant responses against drought and salinity, high and low temperatures, mechanical wounding, heavy metals, hypoxia, UV radiation, or ozone stresses. These threats lead the plant to coordinate a crosstalk among different pathways, highlighting the role of phytohormones and reactive oxygen and nitrogen species (RONS). In particular, plants sense these reactive species through post-translational modification (PTM) of macromolecules such as nucleic acids, proteins, and fatty acids, hence triggering antioxidant responses with molecular implications in the plant welfare. Here, this review compiles the state of the art about how plant systems sense and transduce this crosstalk through PTMs of biological molecules, highlighting the S-nitrosylation of protein targets. These molecular mechanisms finally impact at a physiological level facing the abiotic stressful traits that could lead to establishing molecular patterns underlying stress responses and adaptation strategies.
Collapse
|
4
|
Abid M, Gu S, Zhang YJ, Sun S, Li Z, Bai DF, Sun L, Qi XJ, Zhong YP, Fang JB. Comparative transcriptome and metabolome analysis reveal key regulatory defense networks and genes involved in enhanced salt tolerance of Actinidia (kiwifruit). HORTICULTURE RESEARCH 2022; 9:uhac189. [PMID: 36338850 PMCID: PMC9630968 DOI: 10.1093/hr/uhac189] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/16/2022] [Indexed: 05/25/2023]
Abstract
The Actinidia (kiwifruit) is an emerging fruit plant that is severely affected by salt stress in northern China. Plants have evolved several signaling network mechanisms to cope with the detrimental effects of salt stress. To date, no reported work is available on metabolic and molecular mechanisms involved in kiwifruit salt tolerance. Therefore, the present study aims to decipher intricate adaptive responses of two contrasting salt tolerance kiwifruit species Actinidia valvata [ZMH (an important genotype), hereafter referred to as R] and Actinidia deliciosa ['Hayward' (an important green-fleshed cultivar), hereafter referred to as H] under 0.4% (w/w) salt stress for time courses of 0, 12, 24, and 72 hours (hereafter refered to as h) by combined transcriptome and metabolome analysis. Data revealed that kiwifruit displayed specific enrichment of differentially expressed genes (DEGs) under salt stress. Interestingly, roots of R plants showed a differential expression pattern for up-regulated genes. The KEGG pathway analysis revealed the enrichment of DEGs related to plant hormone signal transduction, glycine metabolism, serine and threonine metabolism, glutathione metabolism, and pyruvate metabolism in the roots of R under salt stress. The WGCNA resulted in the identification of five candidate genes related to glycine betaine (GB), pyruvate, total soluble sugars (TSS), and glutathione biosynthesis in kiwifruit. An integrated study of transcriptome and metabolome identified several genes encoding metabolites involved in pyruvate metabolism. Furthermore, several genes encoding transcription factors were mainly induced in R under salt stress. Functional validation results for overexpression of a candidate gene betaine aldehyde dehydrogenase (AvBADH, R_transcript_80484) from R showed significantly improved salt tolerance in Arabidopsis thaliana (hereafter referred to as At) and Actinidia chinensis ['Hongyang' (an important red-fleshed cultivar), hereafter referred to as Ac] transgenic plants than in WT plants. All in all, salt stress tolerance in kiwifruit roots is an intricate regulatory mechanism that consists of several genes encoding specific metabolites.
Collapse
Affiliation(s)
- Muhammad Abid
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Shichao Gu
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yong-Jie Zhang
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Shihang Sun
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Zhi Li
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Dan-Feng Bai
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Leiming Sun
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xiu-Juan Qi
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yun-Peng Zhong
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jin-Bao Fang
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| |
Collapse
|
5
|
Zafari S, Vanlerberghe GC, Igamberdiev AU. The Role of Alternative Oxidase in the Interplay between Nitric Oxide, Reactive Oxygen Species, and Ethylene in Tobacco ( Nicotiana tabacum L.) Plants Incubated under Normoxic and Hypoxic Conditions. Int J Mol Sci 2022; 23:7153. [PMID: 35806157 PMCID: PMC9266549 DOI: 10.3390/ijms23137153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
The transgenic tobacco (Nicotiana tabacum L.) plants with the modified levels of alternative oxidase (AOX) were used to evaluate the physiological roles of AOX in regulating nitro-oxidative stress and metabolic changes after exposing plants to hypoxia for 6 h. Under normoxia, AOX expression resulted in the decrease of nitric oxide (NO) levels and of the rate of protein S-nitrosylation, while under hypoxia, AOX overexpressors exhibited higher NO and S-nitrosylation levels than knockdowns. AOX expression was essential in avoiding hypoxia-induced superoxide and H2O2 levels, and this was achieved via higher activities of catalase and glutathione reductase and the reduced expression of respiratory burst oxidase homolog (Rboh) in overexpressors as compared to knockdowns. The AOX overexpressing lines accumulated less pyruvate and exhibited the increased transcript and activity levels of pyruvate decarboxylase and alcohol dehydrogenase under hypoxia. This suggests that AOX contributes to the energy state of hypoxic tissues by stimulating the increase of pyruvate flow into fermentation pathways. Ethylene biosynthesis genes encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, ACC oxidase, and ethylene-responsive factors (ERFs) were induced during hypoxia and correlated with AOX and NO levels. We conclude that AOX controls the interaction of NO, reactive oxygen species, and ethylene, triggering a coordinated downstream defensive response against hypoxia.
Collapse
Affiliation(s)
- Somaieh Zafari
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Greg C. Vanlerberghe
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
- Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
6
|
Identification and Analysis of the EIN3/EIL Gene Family in Populus × xiaohei T. S. Hwang et Liang: Expression Profiling during Stress. FORESTS 2022. [DOI: 10.3390/f13030382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The ethylene-insensitive 3-like (EIN3/EIL) gene family, as a transcriptional activator in plants, not only plays an important role in the ethylene-signaling pathway in regulating plant growth and development but also participates in the defense against various biotic and abiotic stresses. However, there are few studies on the functions of EIN3/EIL genes in woody plants. Populus × xiaohei is a kind of tree species with strong drought resistance and salt-alkali tolerance and, thus, is an ideal subject for studying abiotic stress mechanisms in trees. Eight EIN3/EIL genes were cloned from Populus × xiaohei. Bioinformatic analysis showed that the PsnEIN3/EIL gene contained a highly conserved EIN3 domain, N-terminal sites rich in proline and glutamine, and other EIN3/EIL family structural characteristics. The results of a multi-species phylogenetic analysis showed that the family EIN3/EIL proteins were divided into three groups (A, B, and C). EIL3 and EIL4 belonged to groups A and B, while EIL2 and EIN3 generally belonged to group C. Analysis of tissue expression characteristics showed that PsnEIN3/EIL was expressed in different tissues and was involved in the development of stem nodes and leaves. The response analysis of the expression of PsnEIN3/EIL under abscisic acid (ABA) and abiotic stresses (salts, heavy metals, alkaline conditions, and drought) showed changes in expression, suggesting that PsnEIN3/EIL may be involved in the processes of plant hormone responses to salts, heavy metals, alkaline conditions, and drought. This study provides a foundation for further elucidation of the functions of EIN3/EIL genes in forest growth and development and abiotic stress responses.
Collapse
|
7
|
Hasanuzzaman M, Inafuku M, Nahar K, Fujita M, Oku H. Nitric Oxide Regulates Plant Growth, Physiology, Antioxidant Defense, and Ion Homeostasis to Confer Salt Tolerance in the Mangrove Species, Kandelia obovata. Antioxidants (Basel) 2021; 10:611. [PMID: 33923816 PMCID: PMC8073094 DOI: 10.3390/antiox10040611] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/29/2023] Open
Abstract
Facultative halophyte Kandelia obovata plants were exposed to mild (1.5% NaCl) and severe (3% NaCl) salt stress with or without sodium nitroprusside (SNP; 100 µM; a NO donor), hemoglobin (Hb, 100 µM; a NO scavenger), or Nω-nitro-L-arginine methyl ester (L-NAME, 100 µM; a NO synthase inhibitor). The plants were significantly affected by severe salt stress. They showed decreases in seedling growth, stomatal conductance, intercellular CO2 concentration, SPAD value, photosynthetic rate, transpiration rate, water use efficiency, and disrupted antioxidant defense systems, overproduction of reactive oxygen species, and visible oxidative damage. Salt stress also induced ion toxicity and disrupted nutrient homeostasis, as indicated by elevated leaf and root Na+ contents, decreased K+ contents, lower K+/Na+ ratios, and decreased Ca contents while increasing osmolyte (proline) levels. Treatment of salt-stressed plants with SNP increased endogenous NO levels, reduced ion toxicity, and improved nutrient homeostasis while further increasing Pro levels to maintain osmotic balance. SNP treatment also improved gas exchange parameters and enhanced antioxidant enzymes' activities (catalase, ascorbate peroxidase, monodehydroascorbate reductase, and dehydroascorbate reductase). Treatment with Hb and l-NAME reversed these beneficial SNP effects and exacerbated salt damage, confirming that SNP promoted stress recovery and improved plant growth under salt stress.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Molecular Biotechnology Group, Center of Molecular Biosciences (COMB), Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan;
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Masashi Inafuku
- Molecular Biotechnology Group, Center of Molecular Biosciences (COMB), Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan;
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan;
| | - Hirosuke Oku
- Molecular Biotechnology Group, Center of Molecular Biosciences (COMB), Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan;
| |
Collapse
|
8
|
Tausta SL, Berbasova T, Peverelli M, Strobel SA. The fluoride transporter FLUORIDE EXPORTER (FEX) is the major mechanism of tolerance to fluoride toxicity in plants. PLANT PHYSIOLOGY 2021; 186:kiab131. [PMID: 33744970 PMCID: PMC8195535 DOI: 10.1093/plphys/kiab131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 05/13/2023]
Abstract
Fluoride is everywhere in the environment, yet it is toxic to living things. How biological organisms detoxify fluoride has been unknown until recently. Fluoride-specific ion transporters in both prokaryotes (Fluoride channel; Fluc) and fungi (Fluoride Exporter; FEX) efficiently export fluoride to the extracellular environment. FEX homologues have been identified throughout the plant kingdom. Understanding the function of FEX in a multicellular organism will reveal valuable knowledge about reducing toxic effects caused by fluoride. Here we demonstrate the conserved role of plant FEX (FLUORIDE EXPORTER) in conferring fluoride tolerance. Plant FEX facilitates the efflux of toxic fluoride ions from yeast cells and is required for fluoride tolerance in plants. A CRISPR/Cas9-generated mutation in Arabidopsis thaliana FEX renders the plant vulnerable to low concentrations (100 µM) of fluoride at every stage of development. Pollen is particularly affected, failing to develop even at extremely low levels of fluoride in the growth medium. The action of the FEX membrane transport protein is the major fluoride defense mechanism in plants.
Collapse
Affiliation(s)
- S. Lori Tausta
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| | - Tanya Berbasova
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| | - Martin Peverelli
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| | - Scott A Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| |
Collapse
|
9
|
Manrique-Gil I, Sánchez-Vicente I, Torres-Quezada I, Lorenzo O. Nitric oxide function during oxygen deprivation in physiological and stress processes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:904-916. [PMID: 32976588 PMCID: PMC7876777 DOI: 10.1093/jxb/eraa442] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/16/2020] [Indexed: 05/07/2023]
Abstract
Plants are aerobic organisms that have evolved to maintain specific requirements for oxygen (O2), leading to a correct respiratory energy supply during growth and development. There are certain plant developmental cues and biotic or abiotic stress responses where O2 is scarce. This O2 deprivation known as hypoxia may occur in hypoxic niches of plant-specific tissues and during adverse environmental cues such as pathogen attack and flooding. In general, plants respond to hypoxia through a complex reprogramming of their molecular activities with the aim of reducing the impact of stress on their physiological and cellular homeostasis. This review focuses on the fine-tuned regulation of hypoxia triggered by a network of gaseous compounds that includes O2, ethylene, and nitric oxide. In view of recent scientific advances, we summarize the molecular mechanisms mediated by phytoglobins and by the N-degron proteolytic pathway, focusing on embryogenesis, seed imbibition, and germination, and also specific structures, most notably root apical and shoot apical meristems. In addition, those biotic and abiotic stresses that comprise hypoxia are also highlighted.
Collapse
Affiliation(s)
- Isabel Manrique-Gil
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, Salamanca, Spain
| | - Inmaculada Sánchez-Vicente
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, Salamanca, Spain
| | - Isabel Torres-Quezada
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, Salamanca, Spain
| | - Oscar Lorenzo
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, Salamanca, Spain
- Correspondence:
| |
Collapse
|
10
|
Lopes-Oliveira PJ, Oliveira HC, Kolbert Z, Freschi L. The light and dark sides of nitric oxide: multifaceted roles of nitric oxide in plant responses to light. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:885-903. [PMID: 33245760 DOI: 10.1093/jxb/eraa504] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Light drives photosynthesis and informs plants about their surroundings. Regarded as a multifunctional signaling molecule in plants, nitric oxide (NO) has been repeatedly demonstrated to interact with light signaling cascades to control plant growth, development and metabolism. During early plant development, light-triggered NO accumulation counteracts negative regulators of photomorphogenesis and modulates the abundance of, and sensitivity to, plant hormones to promote seed germination and de-etiolation. In photosynthetically active tissues, NO is generated at distinct rates under light or dark conditions and acts at multiple target sites within chloroplasts to regulate photosynthetic reactions. Moreover, changes in NO concentrations in response to light stress promote plant defenses against oxidative stress under high light or ultraviolet-B radiation. Here we review the literature on the interaction of NO with the complicated light and hormonal signaling cascades controlling plant photomorphogenesis and light stress responses, focusing on the recently identified molecular partners and action mechanisms of NO in these events. We also discuss the versatile role of NO in regulating both photosynthesis and light-dependent stomatal movements, two key determinants of plant carbon gain. The regulation of nitrate reductase (NR) by light is highlighted as vital to adjust NO production in plants living under natural light conditions.
Collapse
Affiliation(s)
| | - Halley Caixeta Oliveira
- Department of Animal and Plant Biology, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | | | - Luciano Freschi
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Sao Paulo, Brazil
| |
Collapse
|
11
|
A Salt-Signaling Network Involving Ethylene, Extracellular ATP, Hydrogen Peroxide, and Calcium Mediates K +/Na + Homeostasis in Arabidopsis. Int J Mol Sci 2020; 21:ijms21228683. [PMID: 33213111 PMCID: PMC7698765 DOI: 10.3390/ijms21228683] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 02/04/2023] Open
Abstract
This work aimed at investigating the interactive effects of salt-signaling molecules, i.e., ethylene, extracellular ATP (eATP), H2O2, and cytosolic Ca2+ ([Ca2+]cyt), on the regulation of K+/Na+ homeostasis in Arabidopsisthaliana. The presence of eATP shortened Col-0 hypocotyl length under no-salt conditions. Moreover, eATP decreased relative electrolyte leakage and lengthened root length significantly in salt-treated Col-0 plants but had no obvious effects on the ethylene-insensitive mutants etr1-1 and ein3-1eil1-1. Steady-state ionic flux kinetics showed that exogenous 1-aminocyclopropane-1-carboxylic acid (ACC, an ethylene precursor) and eATP-Na2 (an eATP donor) significantly increased Na+ extrusion and suppressed K+ loss during short-term NaCl treatment. Moreover, ACC remarkably raised the fluorescence intensity of salt-elicited H2O2 and cytosolic Ca2+. Our qPCR data revealed that during 12 h of NaCl stress, application of ACC increased the expression of AtSOS1 and AtAHA1, which encode the plasma membrane (PM) Na+/H+ antiporters (SOS1) and H+-ATPase (H+ pumps), respectively. In addition, eATP markedly increased the transcription of AtEIN3, AtEIL1, and AtETR1, and ACC treatment of Col-0 roots under NaCl stress conditions caused upregulation of AtRbohF and AtSOS2/3, which directly contribute to the H2O2 and Ca2+ signaling pathways, respectively. Briefly, ethylene was triggered by eATP, a novel upstream signaling component, which then activated and strengthened the H2O2 and Ca2+ signaling pathways to maintain K+/Na+ homeostasis under salinity.
Collapse
|
12
|
Lechón T, Sanz L, Sánchez-Vicente I, Lorenzo O. Nitric Oxide Overproduction by cue1 Mutants Differs on Developmental Stages and Growth Conditions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1484. [PMID: 33158046 PMCID: PMC7692804 DOI: 10.3390/plants9111484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 01/26/2023]
Abstract
The cue1 nitric oxide (NO) overproducer mutants are impaired in a plastid phosphoenolpyruvate/phosphate translocator, mainly expressed in Arabidopsis thaliana roots. cue1 mutants present an increased content of arginine, a precursor of NO in oxidative synthesis processes. However, the pathways of plant NO biosynthesis and signaling have not yet been fully characterized, and the role of CUE1 in these processes is not clear. Here, in an attempt to advance our knowledge regarding NO homeostasis, we performed a deep characterization of the NO production of four different cue1 alleles (cue1-1, cue1-5, cue1-6 and nox1) during seed germination, primary root elongation, and salt stress resistance. Furthermore, we analyzed the production of NO in different carbon sources to improve our understanding of the interplay between carbon metabolism and NO homeostasis. After in vivo NO imaging and spectrofluorometric quantification of the endogenous NO levels of cue1 mutants, we demonstrate that CUE1 does not directly contribute to the rapid NO synthesis during seed imbibition. Although cue1 mutants do not overproduce NO during germination and early plant development, they are able to accumulate NO after the seedling is completely established. Thus, CUE1 regulates NO homeostasis during post-germinative growth to modulate root development in response to carbon metabolism, as different sugars modify root elongation and meristem organization in cue1 mutants. Therefore, cue1 mutants are a useful tool to study the physiological effects of NO in post-germinative growth.
Collapse
Affiliation(s)
| | | | | | - Oscar Lorenzo
- Department of Botany and Plant Physiology, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, 37185 Salamanca, Spain; (T.L.); (L.S.); (I.S.-V.)
| |
Collapse
|
13
|
Ikeya S, Aoyanagi T, Ishizuka I, Takeuchi A, Kozaki A. Nitrate Promotes Germination Under Inhibition by NaCl or High Concentration of Glucose. PLANTS 2020; 9:plants9060707. [PMID: 32498308 PMCID: PMC7355496 DOI: 10.3390/plants9060707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/16/2020] [Accepted: 05/29/2020] [Indexed: 11/16/2022]
Abstract
Seed germination, one of the most important stages in a plant’s life cycle, can be affected by abiotic stresses, such as salinity. The plant hormone abscisic acid (ABA) and high concentrations of glucose are also known to inhibit germination. In contrast, nitrate is known to stimulate germination in many plants. However, this stimulatory effect has not yet been investigated in the presence of inhibitory effects caused by abiotic stresses, ABA, and glucose. In this study, we show that nitrate can alleviate the inhibitory effects of sodium chloride (NaCl) or high concentrations of glucose on seed germination in Arabidopsis, while it was not able to promote germination that was inhibited by exogenous ABA and mannitol (an inducer of osmotic stress). An analysis of the gene expression involved in the regulation of germination showed that GA20ox1, encoding the gibberellin (GA) synthesis enzyme, SPATULA (SPT), encoding a bHLH transcription factor, and CYP707A2, encoding an ABA catabolic enzyme, were significantly upregulated by the addition of KNO3 in the presence of NaCl or glucose. Our results suggest the possibility that these genes are involved in the nitrate-mediated control of seed germination in the presence of NaCl or glucose.
Collapse
Affiliation(s)
- Shun Ikeya
- Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan; (S.I.); (T.A.)
| | - Takuya Aoyanagi
- Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan; (S.I.); (T.A.)
| | | | | | - Akiko Kozaki
- Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan; (S.I.); (T.A.)
- Correspondence: ; Tel.: +81-54-238-4957; Fax: +81-54-238-4957
| |
Collapse
|
14
|
Rai KK, Pandey N, Rai SP. Salicylic acid and nitric oxide signaling in plant heat stress. PHYSIOLOGIA PLANTARUM 2020; 168:241-255. [PMID: 30843232 DOI: 10.1111/ppl.12958] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/09/2019] [Accepted: 03/02/2019] [Indexed: 05/28/2023]
Abstract
In agriculture, heat stress (HS) has become one of the eminent abiotic threats to crop growth, productivity and nutritional security because of the continuous increase in global mean temperature. Studies have annotated that the heat stress response (HSR) in plants is highly conserved, involving complex regulatory networks of various signaling and sensor molecules. In this context, the ubiquitous-signaling molecules salicylic acid (SA) and nitric oxide (NO) have diverted the attention of the plant science community because of their putative roles in plant abiotic and biotic stress tolerance. However, their involvement in the transcriptional regulatory networks in plant HS tolerance is still poorly understood. In this review, we have conceptualized current knowledge concerning how SA and NO sense HS in plants and how they trigger the HSR leading to the activation of transcriptional-signaling cascades. Fundamentals of functional components and signaling networks associated with molecular mechanisms involved in SA/NO-mediated HSR in plants have also been discussed. Increasing evidences have suggested the involvement of epigenetic modifications in the development of a 'stress memory', thereby provoking the role of epigenetic mechanisms in the regulation of plant's innate immunity under HS. Thus, we have also explored the recent advancements regarding the biological mechanisms and the underlying significance of epigenetic regulations involved in the activation of HS responsive genes and transcription factors by providing conceptual frameworks for understanding molecular mechanisms behind the 'transcriptional stress memory' as potential memory tools in the regulation of plant HSR.
Collapse
Affiliation(s)
- Krishna K Rai
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Neha Pandey
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- Department of Botany, CMP Degree College, University of Allahabad, Prayagraj, India
| | - Shashi P Rai
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
15
|
León J, Costa-Broseta Á. Present knowledge and controversies, deficiencies, and misconceptions on nitric oxide synthesis, sensing, and signaling in plants. PLANT, CELL & ENVIRONMENT 2020; 43. [PMID: 31323702 DOI: 10.1111/pce.13617] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/15/2019] [Indexed: 05/17/2023]
Abstract
After 30 years of intensive work, nitric oxide (NO) has just started to be characterized as a relevant regulatory molecule on plant development and responses to stress. Its reactivity as a free radical determines its mode of action as an inducer of posttranslational modifications of key target proteins through cysteine S-nitrosylation and tyrosine nitration. Many of the NO-triggered regulatory actions are exerted in tight coordination with phytohormone signaling. This review not only summarizes and updates the information accumulated on how NO is synthesized, sensed, and transduced in plants but also makes emphasis on controversies, deficiencies, and misconceptions that are hampering our present knowledge on the biology of NO in plants. The development of noninvasive accurate tools for the endogenous NO quantitation as well as the implementation of genetic approaches that overcome misleading pharmacological experiments will be critical for getting significant advances in better knowledge of NO homeostasis and regulatory actions in plants.
Collapse
Affiliation(s)
- José León
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | - Álvaro Costa-Broseta
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022, Valencia, Spain
| |
Collapse
|
16
|
Dou L, He K, Higaki T, Wang X, Mao T. Ethylene Signaling Modulates Cortical Microtubule Reassembly in Response to Salt Stress. PLANT PHYSIOLOGY 2018; 176:2071-2081. [PMID: 29431630 PMCID: PMC5841701 DOI: 10.1104/pp.17.01124] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/26/2018] [Indexed: 05/23/2023]
Abstract
Regulation of cortical microtubule reorganization is essential for plant cell survival under high salinity conditions. In response to salt stress, microtubules undergo rapid depolymerization followed by reassembly to form a new microtubule network that promotes cell survival; however, the upstream regulatory mechanisms for this recovery response are largely unknown. In this study, we demonstrate that ethylene signaling facilitates salt stress-induced reassembly of cortical microtubules in Arabidopsis (Arabidopsis thaliana). Microtubule depolymerization was not affected under salt stress following the suppression of ethylene signaling with Ag+ or in ethylene-insensitive mutants, whereas microtubule reassembly was significantly inhibited. ETHYLENE-INSENSITIVE3, a key transcription factor in the ethylene signaling pathway, was shown to play a central role in microtubule reassembly under salt stress. In addition, we performed functional characterization of the microtubule-stabilizing protein WAVE-DAMPENED2-LIKE5 (WDL5), which was found to promote ethylene-associated microtubule reassembly and plant salt stress tolerance. These findings indicate that ethylene signaling regulates microtubule reassembly by up-regulating WDL5 expression in response to salt stress, thereby implicating ethylene signaling in salt-stress tolerance in plants.
Collapse
Affiliation(s)
- Liru Dou
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - KaiKai He
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kurokami, Chuou-ku, Kumamoto 860-8555, Japan
| | - Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Oliveira HC, Gomes BC, Pelegrino MT, Seabra AB. Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide 2016; 61:10-19. [DOI: 10.1016/j.niox.2016.09.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/28/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022]
|
18
|
Pan J, Wang W, Li D, Shu Z, Ye X, Chang P, Wang Y. Gene expression profile indicates involvement of NO in Camellia sinensis pollen tube growth at low temperature. BMC Genomics 2016; 17:809. [PMID: 27756219 PMCID: PMC5070194 DOI: 10.1186/s12864-016-3158-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 10/12/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Nitric oxide (NO) functions as a critical signaling molecule in the low-temperature stress responses in plants, including polarized pollen tube growth in Camellia sinensis. Despite this, the potential mechanisms underlying the participation of NO in pollen tube responses to low temperature remain unclear. Here, we investigate alterations to gene expression in C. sinensis pollen tubes exposed to low-temperature stress and NO using RNA-Seq technology, in order to find the potential candidate genes related to the regulation of pollen tube elongation by NO under low-temperature stress. RESULTS Three libraries were generated from C. sinensis cv. 'Longjingchangye' pollen tubes cultured at 25 °C (CsPT-CK) and 4 °C (CsPT-LT) or with 25 μM DEA NONOate (CsPT-NO). The number of unigenes found for the three biological replications were 39,726, 40,440 and 41,626 for CsPT-CK; 36,993, 39,070 and 39,439 for CsPT-LT; and 39,514, 38,298 and 39,061 for CsPT-NO. A total of 36,097 unique assembled and annotated sequences from C. sinensis pollen tube reads were found in a BLAST search of the following databases: NCBI non-redundant nucleotide, Swiss-prot protein, Kyoto Encyclopedia of Genes and Genomes, Cluster of Orthologous Groups of proteins, and Gene Ontology. The absolute values of log2Ratio > 1 and probability > 0.7 were used as the thresholds for significantly differential gene expression, and 766, 497 and 929 differentially expressed genes (DEGs) were found from the comparison analyses of the CK-VS-LT, CK-VS-NO and LT-VS-NO libraries, respectively. Genes related to metabolism and signaling pathways of plant hormones, transcription factors (TFs), vesicle polarized trafficking, cell wall biosynthesis, the ubiquitination machinery of the ubiquitin system and species-specific secondary metabolite pathways were mainly observed in the CK-VS-LT and CK-VS-NO libraries. CONCLUSION Differentially expressed unigenes related to the inhibition of C. sinensis pollen tube growth under low temperature and NO are identified in this study. The transcriptomic gene expression profiles present a valuable genomic tool to improve studying the molecular mechanisms underlying low-temperature tolerance in pollen tube.
Collapse
Affiliation(s)
- Junting Pan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weidong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dongqin Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zaifa Shu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaoli Ye
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Pinpin Chang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
19
|
Pan YJ, Liu L, Lin YC, Zu YG, Li LP, Tang ZH. Ethylene Antagonizes Salt-Induced Growth Retardation and Cell Death Process via Transcriptional Controlling of Ethylene-, BAG- and Senescence-Associated Genes in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:696. [PMID: 27242886 PMCID: PMC4872043 DOI: 10.3389/fpls.2016.00696] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/06/2016] [Indexed: 05/26/2023]
Abstract
The existing question whether ethylene is involved in the modulation of salt-induced cell death to mediate plant salt tolerance is important for understanding the salt tolerance mechanisms. Here, we employed Arabidopsis plants to study the possible role of ethylene in salt-induced growth inhibition and programmed cell death (PCD) profiles. The root length, DNA ladder and cell death indicated by Evan's blue detection were measured by compared to the control or salt-stressed seedlings. Secondly, the protoplasts isolated from plant leaves and dyed with Annexin V-FITC were subjected to flow cytometric (FCM) assay. Our results showed that ethylene works effectively in seedling protoplasts, antagonizing salt-included root retardation and restraining cell death both in seedlings or protoplasts. Due to salinity, the entire or partial insensitivity of ethylene signaling resulted in an elevated levels of cell death in ein2-5 and ein3-1 plants and the event were amended in ctr1-1 plants after salt treatment. The subsequent experiment with exogenous ACC further corroborated that ethylene could modulate salt-induced PCD process actively. Plant Bcl-2-associated athanogene (BAG) family genes are recently identified to play an extensive role in plant PCD processes ranging from growth, development to stress responses and even cell death. Our result showed that salinity alone significantly suppressed the transcripts of BAG6, BAG7 and addition of ACC in the saline solution could obviously re-activate BAG6 and BAG7 expressions, which might play a key role to inhibit the salt-induced cell death. In summary, our research implies that ethylene and salinity antagonistically control BAG family-, ethylene-, and senescence-related genes to alleviate the salt-induced cell death.
Collapse
Affiliation(s)
- Ya-Jie Pan
- Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
| | - Ling Liu
- Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
| | - Ying-Chao Lin
- Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
- Guizhou Academy of Tobacco ResearchGuiyang, China
| | - Yuan-Gang Zu
- Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
| | - Lei-Peng Li
- Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
| | - Zhong-Hua Tang
- Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
| |
Collapse
|