1
|
Máthé C, Bóka K, Kónya Z, Erdődi F, Vasas G, Freytag C, Garda T. Microcystin-LR, a cyanotoxin, modulates division of higher plant chloroplasts through protein phosphatase inhibition and affects cyanobacterial division. CHEMOSPHERE 2024; 358:142125. [PMID: 38670509 DOI: 10.1016/j.chemosphere.2024.142125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Microcystin-LR (MC-LR) is a harmful cyanotoxin that inhibits 1 and 2A serine-threonine protein phosphatases. This study examines the influence of MC-LR on chloroplast division and the underlying mechanisms and consequences in Arabidopsis. MC-LR increased the frequency of dividing chloroplasts in hypocotyls in a time range of 1-96 h. At short-term exposures to MC-LR, small-sized chloroplasts (longitudinal diameters ≤6 μm) were more sensitive to these stimulatory effects, while both small and large chloroplasts showed stimulations at long-term exposure. After 48 h, the cyanotoxin increased the frequency of small-sized chloroplasts, indicating the stimulation of division. MC-LR inhibited protein phosphatases in whole hypocotyls and isolated chloroplasts, while it did not induce oxidative stress. We show for the first time that total cellular phosphatases play important roles in chloroplast division and that particular chloroplast phosphatases may be involved in these processes. Interestingly, MC-LR has a protective effect on cyanobacterial division during methyl-viologen (MV) treatments in Synechococcus PCC6301. MC-LR production has harmful effects on ecosystems and it may have an ancient cell division regulatory role in stressed cyanobacterial cells, the evolutionary ancestors of chloroplasts. We propose that cytoplasmic (eukaryotic) factors also contribute to the relevant effects of MC-LR in plants.
Collapse
Affiliation(s)
- Csaba Máthé
- Plant Cell and Developmental Biology Research Group, Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary.
| | - Károly Bóka
- Department of Plant Anatomy, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány P. s. 1/c, Budapest, H-1117, Hungary
| | - Zoltán Kónya
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary
| | - Gábor Vasas
- Plant and Algal Natural Product Research Group, Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary; Balaton Limnological Research Institute- HUN-REN, Klebelsberg str. 3, H-8237, Tihany, Hungary
| | - Csongor Freytag
- Plant Cell and Developmental Biology Research Group, Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary; One Health Institute, Faculty of Health Sciences, University of Debrecen, Nagyerdei krt. 98, H-4032, Debrecen, Hungary
| | - Tamás Garda
- Plant Cell and Developmental Biology Research Group, Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary
| |
Collapse
|
2
|
Hall MR, Kunjumon TK, Ghosh PP, Currie L, Mathur J. Organelle Interactions in Plant Cells. Results Probl Cell Differ 2024; 73:43-69. [PMID: 39242374 DOI: 10.1007/978-3-031-62036-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
The sequestration of enzymes and associated processes into sub-cellular domains, called organelles, is considered a defining feature of eukaryotic cells. However, what leads to specific outcomes and allows a eukaryotic cell to function singularly is the interactivity and exchanges between discrete organelles. Our ability to observe and assess sub-cellular interactions in living plant cells has expanded greatly following the creation of fluorescent fusion proteins targeted to different organelles. Notably, organelle interactivity changes quickly in response to stress and reverts to a normal less interactive state as homeostasis is re-established. Using key observations of some of the organelles present in a plant cell, this chapter provides a brief overview of our present understanding of organelle interactions in plant cells.
Collapse
Affiliation(s)
- Maya-Renee Hall
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Thomas Kadanthottu Kunjumon
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Puja Puspa Ghosh
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Laura Currie
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Jaideep Mathur
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
3
|
Microcystin-LR, a Cyanobacterial Toxin, Induces Changes in the Organization of Membrane Compartments in Arabidopsis. Microorganisms 2023; 11:microorganisms11030586. [PMID: 36985160 PMCID: PMC10051171 DOI: 10.3390/microorganisms11030586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
To evaluate the effects of the cyanobacterial toxin microcystin-LR (MCY-LR, a protein phosphatase inhibitor) and diquat (DQ, an oxidative stress inducer) on the organization of tonoplast, the effect of MCY-LR on plastid stromule formation and on mitochondria was investigated in wild-type Arabidopsis. Tonoplast was also studied in PP2A catalytic (c3c4) and regulatory subunit mutants (fass-5 and fass-15). These novel studies were performed by CLSM microscopy. MCY-LR is produced during cyanobacterial blooms. The organization of tonoplast of PP2A mutants of Arabidopsis is much more sensitive to MCY-LR and DQ treatments than that of wild type. In c3c4, fass-5 and fass-15, control and treated plants showed increased vacuole fragmentation that was the strongest when the fass-5 mutant was treated with MCY-LR. It is assumed that both PP2A/C and B” subunits play an important role in normal formation and function of the tonoplast. In wild-type plants, MCY-LR affects mitochondria. Under the influence of MCY-LR, small, round-shaped mitochondria appeared, while long/fused mitochondria were typical in control plants. Presumably, MCY-LR either inhibits the fusion of mitochondria or induces fission. Consequently, PP2A also plays an important role in the fusion of mitochondria. MCY-LR also increased the frequency of stromules appearing on chloroplasts after 1 h treatments. Along the stromules, signals can be transported between plastids and endoplasmic reticulum. It is probable that they promote a faster response to stress.
Collapse
|
4
|
Yamagishi A, Egoshi Y, Fujiwara MT, Suzuki N, Taniguchi T, Itoh RD, Suzuki Y, Masuyama Y, Monde K, Usuki T. Total Synthesis, Absolute Configuration, and Phytotoxic Activity of Foeniculoxin. Chemistry 2023; 29:e202203396. [PMID: 36354746 DOI: 10.1002/chem.202203396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
Foeniculoxin is a major phytotoxin produced by Italian strains of Phomopsis foeniculi. The first total synthesis is described utilizing the ene reaction and Sonogashira cross-coupling reaction as key steps. The absolute configuration of the C6' was determined using chiral separation and an advanced Mosher's method. The phytotoxicity of the synthesized compound was demonstrated via syringe-based infiltration into Chenopodium album and Arabidopsis thaliana leaves. Synthetic foeniculoxin induced various defects in A. thaliana leaf cells before lesion formation, including protein leakage into the cytoplasm from both chloroplasts and mitochondria and mitochondrial rounding and swelling. Furthermore, foeniculoxin and the antibiotic hygromycin B caused similar agglomeration of mitochondria around chloroplasts, highlighting this event as a common component in the early stages of plant cell death.
Collapse
Affiliation(s)
- Akane Yamagishi
- Organic Chemistry Laboratory, Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Yuki Egoshi
- Organic Chemistry Laboratory, Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Makoto T Fujiwara
- Plant Functions Laboratory, Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Noriyuki Suzuki
- Synthetic Organic Chemistry Laboratory, Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Tohru Taniguchi
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, 001-0021, Japan
| | - Ryuuichi D Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Yumiko Suzuki
- Organic Chemistry Laboratory, Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Yoshiro Masuyama
- Synthetic Organic Chemistry Laboratory, Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Kenji Monde
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, 001-0021, Japan
| | - Toyonobu Usuki
- Organic Chemistry Laboratory, Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo, 102-8554, Japan
| |
Collapse
|
5
|
Prautsch J, Erickson JL, Özyürek S, Gormanns R, Franke L, Lu Y, Marx J, Niemeyer F, Parker JE, Stuttmann J, Schattat MH. Effector XopQ-induced stromule formation in Nicotiana benthamiana depends on ETI signaling components ADR1 and NRG1. PLANT PHYSIOLOGY 2023; 191:161-176. [PMID: 36259930 PMCID: PMC9806647 DOI: 10.1093/plphys/kiac481] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/22/2022] [Indexed: 05/28/2023]
Abstract
In Nicotiana benthamiana, the expression of the Xanthomonas effector XANTHOMONAS OUTER PROTEIN Q (XopQ) triggers RECOGNITION OF XOPQ1 (ROQ1)-dependent effector-triggered immunity (ETI) responses accompanied by the accumulation of plastids around the nucleus and the formation of stromules. Both plastid clustering and stromules were proposed to contribute to ETI-related hypersensitive cell death and thereby to plant immunity. Whether these reactions are directly connected to ETI signaling events has not been tested. Here, we utilized transient expression experiments to determine whether XopQ-triggered plastid reactions are a result of XopQ perception by the immune receptor ROQ1 or a consequence of XopQ virulence activity. We found that N. benthamiana mutants lacking ROQ1, ENHANCED DISEASE SUSCEPTIBILITY 1, or the helper NUCLEOTIDE-BINDING LEUCINE-RICH REPEAT IMMUNE RECEPTORS (NLRs) N-REQUIRED GENE 1 (NRG1) and ACTIVATED DISEASE RESISTANCE GENE 1 (ADR1), fail to elicit XopQ-dependent host cell death and stromule formation. Mutants lacking only NRG1 lost XopQ-dependent cell death but retained some stromule induction that was abolished in the nrg1_adr1 double mutant. This analysis aligns XopQ-triggered stromules with the ETI signaling cascade but not to host programmed cell death. Furthermore, data reveal that XopQ-triggered plastid clustering is not strictly linked to stromule formation during ETI. Our data suggest that stromule formation, in contrast to chloroplast perinuclear dynamics, is an integral part of the N. benthamiana ETI response and that both NRG1 and ADR1 hNLRs play a role in this ETI response.
Collapse
Affiliation(s)
- Jennifer Prautsch
- Biology, Plant Physiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Jessica Lee Erickson
- Biology, Plant Genetics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Leibniz-Institut for Plant Biochemistry, Halle, Germany
| | - Sedef Özyürek
- Biology, Plant Physiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Rahel Gormanns
- Biology, Plant Physiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Lars Franke
- Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Yang Lu
- Biology, Plant Physiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Jolina Marx
- Leibniz-Institut for Plant Biochemistry, Halle, Germany
| | - Frederik Niemeyer
- Biology, Plant Physiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Jane E Parker
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Johannes Stuttmann
- Biology, Plant Genetics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Institute for Biosafety in Plant Biotechnology, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Quedlinburg, Germany
| | | |
Collapse
|
6
|
Khoshravesh R, Hoffmann N, Hanson DT. Leaf microscopy applications in photosynthesis research: identifying the gaps. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1868-1893. [PMID: 34986250 DOI: 10.1093/jxb/erab548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Leaf imaging via microscopy has provided critical insights into research on photosynthesis at multiple junctures, from the early understanding of the role of stomata, through elucidating C4 photosynthesis via Kranz anatomy and chloroplast arrangement in single cells, to detailed explorations of diffusion pathways and light utilization gradients within leaves. In recent decades, the original two-dimensional (2D) explorations have begun to be visualized in three-dimensional (3D) space, revising our understanding of structure-function relationships between internal leaf anatomy and photosynthesis. In particular, advancing new technologies and analyses are providing fresh insight into the relationship between leaf cellular components and improving the ability to model net carbon fixation, water use efficiency, and metabolite turnover rate in leaves. While ground-breaking developments in imaging tools and techniques have expanded our knowledge of leaf 3D structure via high-resolution 3D and time-series images, there is a growing need for more in vivo imaging as well as metabolite imaging. However, these advances necessitate further improvement in microscopy sciences to overcome the unique challenges a green leaf poses. In this review, we discuss the available tools, techniques, challenges, and gaps for efficient in vivo leaf 3D imaging, as well as innovations to overcome these difficulties.
Collapse
Affiliation(s)
| | - Natalie Hoffmann
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - David T Hanson
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
7
|
Mathur J, Kroeker OF, Lobbezoo M, Mathur N. The ER Is a Common Mediator for the Behavior and Interactions of Other Organelles. FRONTIERS IN PLANT SCIENCE 2022; 13:846970. [PMID: 35401583 PMCID: PMC8990311 DOI: 10.3389/fpls.2022.846970] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/02/2022] [Indexed: 05/29/2023]
Abstract
Optimal functioning of a plant cell depends upon the efficient exchange of genetic information, ions, proteins and metabolites between the different organelles. Intuitively, increased proximity between organelles would be expected to play an important role in facilitating exchanges between them. However, it remains to be seen whether under normal, relatively non-stressed conditions organelles maintain close proximity at all. Moreover, does interactivity involve direct and frequent physical contact between the different organelles? Further, many organelles transition between spherical and tubular forms or sporadically produce thin tubular extensions, but it remains unclear whether changes in organelle morphology play a role in increasing their interactivity. Here, using targeted multicolored fluorescent fusion proteins, we report observations on the spatiotemporal relationship between plastids, mitochondria, peroxisomes and the endoplasmic reticulum in living plant cells. Under normal conditions of growth, we observe that the smaller organelles do not establish direct, physical contacts with each other but, irrespective of their individual form they all maintain intimate connectivity with the ER. Proximity between organelles does increase in response to stress through concomitant alterations in ER dynamics. Significantly, even under increased proximity the ER still remains sandwiched between the different organelles. Our observations provide strong live-imaging-based evidence for the ER acting as a common mediator in interactions between other organelles.
Collapse
|
8
|
Frusciante S, Demurtas OC, Sulli M, Mini P, Aprea G, Diretto G, Karcher D, Bock R, Giuliano G. Heterologous expression of Bixa orellana cleavage dioxygenase 4-3 drives crocin but not bixin biosynthesis. PLANT PHYSIOLOGY 2022; 188:1469-1482. [PMID: 34919714 PMCID: PMC8896647 DOI: 10.1093/plphys/kiab583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/01/2021] [Indexed: 06/07/2023]
Abstract
Annatto (Bixa orellana) is a perennial shrub native to the Americas, and bixin, derived from its seeds, is a methoxylated apocarotenoid used as a food and cosmetic colorant. Two previous reports claimed to have isolated the carotenoid cleavage dioxygenase (CCD) responsible for the production of the putative precursor of bixin, the C24 apocarotenal bixin dialdehyde. We re-assessed the activity of six Bixa CCDs and found that none of them produced substantial amounts of bixin dialdehyde in Escherichia coli. Unexpectedly, BoCCD4-3 cleaved different carotenoids (lycopene, β-carotene, and zeaxanthin) to yield the C20 apocarotenal crocetin dialdehyde, the known precursor of crocins, which are glycosylated apocarotenoids accumulated in saffron stigmas. BoCCD4-3 lacks a recognizable transit peptide but localized to plastids, the main site of carotenoid accumulation in plant cells. Expression of BoCCD4-3 in Nicotiana benthamiana leaves (transient expression), tobacco (Nicotiana tabacum) leaves (chloroplast transformation, under the control of a synthetic riboswitch), and in conjunction with a saffron crocetin glycosyl transferase, in tomato (Solanum lycopersicum) fruits (nuclear transformation) led to high levels of crocin accumulation, reaching the highest levels (>100 µg/g dry weight) in tomato fruits, which also showed a crocin profile similar to that found in saffron, with highly glycosylated crocins as major compounds. Thus, while the bixin biosynthesis pathway remains unresolved, BoCCD4-3 can be used for the metabolic engineering of crocins in a wide range of different plant tissues.
Collapse
Affiliation(s)
- Sarah Frusciante
- Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Casaccia Research Center, 00123 Roma, Italy
| | - Olivia Costantina Demurtas
- Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Casaccia Research Center, 00123 Roma, Italy
| | - Maria Sulli
- Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Casaccia Research Center, 00123 Roma, Italy
| | - Paola Mini
- Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Casaccia Research Center, 00123 Roma, Italy
| | - Giuseppe Aprea
- Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Casaccia Research Center, 00123 Roma, Italy
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Casaccia Research Center, 00123 Roma, Italy
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Casaccia Research Center, 00123 Roma, Italy
| |
Collapse
|
9
|
Koh E, Cohen D, Brandis A, Fluhr R. Attenuation of cytosolic translation by RNA oxidation is involved in singlet oxygen-mediated transcriptomic responses. PLANT, CELL & ENVIRONMENT 2021; 44:3597-3615. [PMID: 34370334 DOI: 10.1111/pce.14162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Singlet oxygen (1 O2 ) production is associated with stress signalling. Here, using Arabidopsis as a model system, we study the effects of the accumulation of 8-hydroxyguanosine (8-oxoG), a major product of 1 O2 -mediated RNA oxidation. We show that 8-oxoG can accumulate in vivo when 1 O2 is produced in the cytoplasm. Conditions for such production include the application of RB in the light, dark-to-light transitions in the flu mutant, or subjecting plants to combined dehydration/light exposure. Transcriptomes of these treatments displayed a significant overlap with transcripts stimulated by the cytosolic 80S ribosomal translation inhibitors, cycloheximide and homoharringtonine. We demonstrate that 8-oxoG accumulation correlates with a decrease in RNA translatability, resulting in the rapid decrease of the levels of labile gene repressor elements such as IAA1 and JAZ1 in a proteasome-dependent manner. Indeed, genes regulated by the labile repressors of the jasmonic acid signalling pathway were induced by cycloheximide, RB or dehydration/light treatment independently of the hormone. The results suggest that 1 O2 , by oxidizing RNA, attenuated cellular translatability and caused specific genes to be released from the repression of their cognate short half-life repressors. The findings here describe a novel means of gene regulation via the direct interaction of 1 O2 with RNA.
Collapse
Affiliation(s)
- Eugene Koh
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dekel Cohen
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Life Sciences Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Robert Fluhr
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Sanjaya A, Muramatsu R, Sato S, Suzuki M, Sasaki S, Ishikawa H, Fujii Y, Asano M, Itoh RD, Kanamaru K, Ohbu S, Abe T, Kazama Y, Fujiwara MT. Arabidopsis EGY1 Is Critical for Chloroplast Development in Leaf Epidermal Guard Cells. PLANTS (BASEL, SWITZERLAND) 2021; 10:1254. [PMID: 34205501 PMCID: PMC8235790 DOI: 10.3390/plants10061254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022]
Abstract
In Arabidopsis thaliana, the Ethylene-dependent Gravitropism-deficient and Yellow-green 1 (EGY1) gene encodes a thylakoid membrane-localized protease involved in chloroplast development in leaf mesophyll cells. Recently, EGY1 was also found to be crucial for the maintenance of grana in mesophyll chloroplasts. To further explore the function of EGY1 in leaf tissues, we examined the phenotype of chloroplasts in the leaf epidermal guard cells and pavement cells of two 40Ar17+ irradiation-derived mutants, Ar50-33-pg1 and egy1-4. Fluorescence microscopy revealed that fully expanded leaves of both egy1 mutants showed severe chlorophyll deficiency in both epidermal cell types. Guard cells in the egy1 mutant exhibited permanent defects in chloroplast formation during leaf expansion. Labeling of plastids with CaMV35S or Protodermal Factor1 (PDF1) promoter-driven stroma-targeted fluorescent proteins revealed that egy1 guard cells contained the normal number of plastids, but with moderately reduced size, compared with wild-type guard cells. Transmission electron microscopy further revealed that the development of thylakoids was impaired in the plastids of egy1 mutant guard mother cells, guard cells, and pavement cells. Collectively, these observations demonstrate that EGY1 is involved in chloroplast formation in the leaf epidermis and is particularly critical for chloroplast differentiation in guard cells.
Collapse
Affiliation(s)
- Alvin Sanjaya
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
| | - Ryohsuke Muramatsu
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
| | - Shiho Sato
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
| | - Mao Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
| | - Shun Sasaki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
| | - Hiroki Ishikawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
| | - Yuki Fujii
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
| | - Makoto Asano
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
| | - Ryuuichi D Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Kengo Kanamaru
- Faculty of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
| | - Sumie Ohbu
- RIKEN Nishina Center, Wako, Saitama 351-0198, Japan
| | - Tomoko Abe
- RIKEN Nishina Center, Wako, Saitama 351-0198, Japan
| | - Yusuke Kazama
- RIKEN Nishina Center, Wako, Saitama 351-0198, Japan
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Fukui 910-1195, Japan
| | - Makoto T Fujiwara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
- RIKEN Nishina Center, Wako, Saitama 351-0198, Japan
| |
Collapse
|
11
|
Mathur J. Organelle extensions in plant cells. PLANT PHYSIOLOGY 2021; 185:593-607. [PMID: 33793902 PMCID: PMC8133556 DOI: 10.1093/plphys/kiaa055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/15/2020] [Indexed: 05/03/2023]
Abstract
The life strategy of plants includes their ability to respond quickly at the cellular level to changes in their environment. The use of targeted fluorescent protein probes and imaging of living cells has revealed several rapidly induced organelle responses that create the efficient sub-cellular machinery for maintaining homeostasis in the plant cell. Several organelles, including plastids, mitochondria, and peroxisomes, extend and retract thin tubules that have been named stromules, matrixules, and peroxules, respectively. Here, I combine all these thin tubular forms under the common head of organelle extensions. All extensions change shape continuously and in their elongated form considerably increase organelle outreach into the surrounding cytoplasm. Their pleomorphy reflects their interactions with the dynamic endoplasmic reticulum and cytoskeletal elements. Here, using foundational images and time-lapse movies, and providing salient information on some molecular and biochemically characterized mutants with increased organelle extensions, I draw attention to their common role in maintaining homeostasis in plant cells.
Collapse
Affiliation(s)
- Jaideep Mathur
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular biology, University of Guelph, 50 Stone Road, Guelph, Ontario, N1G2W1 Canada
- Author for communication:
| |
Collapse
|
12
|
Klouwer FCC, Falkenberg KD, Ofman R, Koster J, van Gent D, Ferdinandusse S, Wanders RJA, Waterham HR. Autophagy Inhibitors Do Not Restore Peroxisomal Functions in Cells With the Most Common Peroxisome Biogenesis Defect. Front Cell Dev Biol 2021; 9:661298. [PMID: 33869228 PMCID: PMC8047214 DOI: 10.3389/fcell.2021.661298] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Peroxisome biogenesis disorders within the Zellweger spectrum (PBD-ZSDs) are most frequently associated with the c.2528G>A (p.G843D) mutation in the PEX1 gene (PEX1-G843D), which results in impaired import of peroxisomal matrix proteins and, consequently, defective peroxisomal functions. A recent study suggested that treatment with autophagy inhibitors, in particular hydroxychloroquine, would be a potential therapeutic option for PBD-ZSD patients carrying the PEX1-G843D mutation. Here, we studied whether autophagy inhibition by chloroquine, hydroxychloroquine and 3-methyladenine indeed can improve peroxisomal functions in four different cell types with the PEX1-G843D mutation, including primary patient cells. Furthermore, we studied whether autophagy inhibition may be the mechanism underlying the previously reported improvement of peroxisomal functions by L-arginine in PEX1-G843D cells. In contrast to L-arginine, we observed no improvement but a worsening of peroxisomal metabolic functions and peroxisomal matrix protein import by the autophagy inhibitors, while genetic knock-down of ATG5 and NBR1 in primary patient cells resulted in only a minimal improvement. Our results do not support the use of autophagy inhibitors as potential treatment for PBD-ZSD patients, whereas L-arginine remains a therapeutically promising compound.
Collapse
Affiliation(s)
- Femke C. C. Klouwer
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers – Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Neurology, Emma Children’s Hospital, Amsterdam University Medical Centers – Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Kim D. Falkenberg
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers – Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Rob Ofman
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers – Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Janet Koster
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers – Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Démi van Gent
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers – Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers – Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald J. A. Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers – Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans R. Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers – Location AMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
Sudianto E, Chaw SM. Two Independent Plastid accD Transfers to the Nuclear Genome of Gnetum and Other Insights on Acetyl-CoA Carboxylase Evolution in Gymnosperms. Genome Biol Evol 2019; 11:1691-1705. [PMID: 30924880 PMCID: PMC6595918 DOI: 10.1093/gbe/evz059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2019] [Indexed: 12/26/2022] Open
Abstract
Acetyl-CoA carboxylase (ACCase) is the key regulator of fatty acid biosynthesis. In most plants, ACCase exists in two locations (cytosol and plastids) and in two forms (homomeric and heteromeric). Heteromeric ACCase comprises four subunits, three of them (ACCA-C) are nuclear encoded (nr) and the fourth (ACCD) is usually plastid encoded. Homomeric ACCase is encoded by a single nr-gene (ACC). We investigated the ACCase gene evolution in gymnosperms by examining the transcriptomes of newly sequenced Gnetum ula, combined with 75 transcriptomes and 110 plastomes of other gymnosperms. AccD-coding sequences are elongated through the insertion of repetitive DNA in four out of five cupressophyte families (except Sciadopityaceae) and were functionally transferred to the nucleus of gnetophytes and Sciadopitys. We discovered that, among the three genera of gnetophytes, only Gnetum has two copies of nr-accD. Furthermore, using protoplast transient expression assays, we experimentally verified that the nr-accD precursor proteins in Gnetum and Sciadopitys can be delivered to the plastids. Of the two nr-accD copies of Gnetum, one dually targets plastids and mitochondria, whereas the other potentially targets plastoglobuli. The distinct transit peptides, gene architectures, and flanking sequences between the two Gnetum accDs suggest that they have independent origins. Our findings are the first account of two distinctly targeted nr-accDs of any green plants and the most comprehensive analyses of ACCase evolution in gymnosperms to date.
Collapse
Affiliation(s)
- Edi Sudianto
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.,Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Shu-Miaw Chaw
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.,Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
14
|
Dal-Pra S, Hodgkinson CP, Dzau VJ. Induced cardiomyocyte maturation: Cardiac transcription factors are necessary but not sufficient. PLoS One 2019; 14:e0223842. [PMID: 31622977 PMCID: PMC6797484 DOI: 10.1371/journal.pone.0223842] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/30/2019] [Indexed: 01/06/2023] Open
Abstract
The process by which fibroblasts are directly reprogrammed into cardiomyocytes involves two stages; initiation and maturation. Initiation represents the initial expression of factors that induce fibroblasts to transdifferentiate into cardiomyocytes. Following initiation, the cell undergoes a period of maturation before becoming a mature cardiomyocyte. We wanted to understand the role of cardiac development transcription factors in the maturation process. We directly reprogram fibroblasts into cardiomyocytes by a combination of miRNAs (miR combo). The ability of miR combo to induce cardiomyocyte-specific genes in fibroblasts was lost following the knockdown of the cardiac transcription factors Gata4, Mef2C, Tbx5 and Hand2 (GMTH). To further clarify the role of GMTH in miR combo reprogramming we utilized a modified CRISPR-Cas9 approach to activate endogenous GMTH genes. Importantly, both miR combo and the modified CRISPR-Cas9 approach induced comparable levels of GMTH expression. While miR combo was able to reprogram fibroblasts into cardiomyocyte-like cells, the modified CRISPR-Cas9 approach could not. Indeed, we found that cardiomyocyte maturation only occurred with very high levels of GMT expression. Taken together, our data indicates that while endogenous cardiac transcription factors are insufficient to reprogram fibroblasts into mature cardiomyocytes, endogenous cardiac transcription factors are necessary for expression of maturation genes.
Collapse
Affiliation(s)
- Sophie Dal-Pra
- Mandel Center for Hypertension and Atherosclerosis Research, Duke University, Durham, North Carolina, United States of America
- Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Conrad P. Hodgkinson
- Mandel Center for Hypertension and Atherosclerosis Research, Duke University, Durham, North Carolina, United States of America
- Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Victor J. Dzau
- Mandel Center for Hypertension and Atherosclerosis Research, Duke University, Durham, North Carolina, United States of America
- Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
15
|
Lee JS, Wilson ME, Richardson RA, Haswell ES. Genetic and physical interactions between the organellar mechanosensitive ion channel homologs MSL1, MSL2, and MSL3 reveal a role for inter-organellar communication in plant development. PLANT DIRECT 2019; 3:e00124. [PMID: 31245767 PMCID: PMC6508831 DOI: 10.1002/pld3.124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/24/2019] [Accepted: 02/11/2019] [Indexed: 05/31/2023]
Abstract
Plant development requires communication on many levels, including between cells and between organelles within a cell. For example, mitochondria and plastids have been proposed to be sensors of environmental stress and to coordinate their responses. Here we present evidence for communication between mitochondria and chloroplasts during leaf and root development, based on genetic and physical interactions between three Mechanosensitive channel of Small conductance-Like (MSL) proteins from Arabidopsis thaliana. MSL proteins are Arabidopsis homologs of the bacterial Mechanosensitive channel of Small conductance (MscS), which relieves cellular osmotic pressure to protect against lysis during hypoosmotic shock. MSL1 localizes to the inner mitochondrial membrane, while MSL2 and MSL3 localize to the inner plastid membrane and are required to maintain plastid osmotic homeostasis during normal growth and development. In this study, we characterized the phenotypic effect of a genetic lesion in MSL1, both in wild type and in msl2 msl3 mutant backgrounds. msl1 single mutants appear wild type for all phenotypes examined. The characteristic leaf rumpling in msl2 msl3 double mutants was exacerbated in the msl1 msl2 msl3 triple mutant. However, the introduction of the msl1 lesion into the msl2 msl3 mutant background suppressed other msl2 msl3 mutant phenotypes, including ectopic callus formation, accumulation of superoxide and hydrogen peroxide in the shoot apical meristem, decreased root length, and reduced number of lateral roots. All these phenotypes could be recovered by molecular complementation with a transgene containing a wild type version of MSL1. In yeast-based interaction studies, MSL1 interacted with itself, but not with MSL2 or MSL3. These results establish that the abnormalities observed in msl2 msl3 double mutants is partially dependent on the presence of functional MSL1 and suggest a possible role for communication between plastid and mitochondria in seedling development.
Collapse
Affiliation(s)
- Josephine S. Lee
- NSF Center for Engineering MechanoBiologyDepartment of BiologyWashington University in Saint LouisSaint LouisMissouri
- Present address:
Broad InstituteCambridgeMassachusetts
| | - Margaret E. Wilson
- NSF Center for Engineering MechanoBiologyDepartment of BiologyWashington University in Saint LouisSaint LouisMissouri
- Present address:
Donald Danforth Plant Science CenterSaint LouisMissouri
| | - Ryan A. Richardson
- NSF Center for Engineering MechanoBiologyDepartment of BiologyWashington University in Saint LouisSaint LouisMissouri
| | - Elizabeth S. Haswell
- NSF Center for Engineering MechanoBiologyDepartment of BiologyWashington University in Saint LouisSaint LouisMissouri
| |
Collapse
|
16
|
Ishikawa H, Yasuzawa M, Koike N, Sanjaya A, Moriyama S, Nishizawa A, Matsuoka K, Sasaki S, Kazama Y, Hayashi Y, Abe T, Fujiwara MT, Itoh RD. Arabidopsis PARC6 Is Critical for Plastid Morphogenesis in Pavement, Trichome, and Guard Cells in Leaf Epidermis. FRONTIERS IN PLANT SCIENCE 2019; 10:1665. [PMID: 32010156 PMCID: PMC6974557 DOI: 10.3389/fpls.2019.01665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/26/2019] [Indexed: 05/20/2023]
Abstract
Recently, a recessive Arabidopsis thaliana mutant with abundant stromules in leaf epidermal pavement cells was visually screened and isolated. The gene responsible for this mutant phenotype was identified as PARC6, a chloroplast division site regulator gene. The mutant allele parc6-5 carried two point mutations (G62R and W700stop) at the N- and C-terminal ends of the coding sequence, respectively. Here, we further characterized parc6-5 and other parc6 mutant alleles, and showed that PARC6 plays a critical role in plastid morphogenesis in all cell types of the leaf epidermis: pavement cells, trichome cells, and guard cells. Transient expression of PARC6 transit peptide (TP) fused to the green fluorescent protein (GFP) in plant cells showed that the G62R mutation has no or little effect on the TP activity of the PARC6 N-terminal region. Then, plastid morphology was microscopically analyzed in the leaf epidermis of wild-type (WT) and parc6 mutants (parc6-1, parc6-3, parc6-4 and parc6-5) with the aid of stroma-targeted fluorescent proteins. In parc6 pavement cells, plastids often assumed aberrant grape-like morphology, similar to those in severe plastid division mutants, atminE1, and arc6. In parc6 trichome cells, plastids exhibited extreme grape-like aggregations, without the production of giant plastids (>6 µm diameter), as a general phenotype. In parc6 guard cells, plastids exhibited a variety of abnormal phenotypes, including reduced number, enlarged size, and activated stromules, similar to those in atminE1 and arc6 guard cells. Nevertheless, unlike atminE1 and arc6, parc6 exhibited a low number of mini-chloroplasts (< 2 µm diameter) and rarely produced chloroplast-deficient guard cells. Importantly, unlike parc6, the chloroplast division site mutant arc11 exhibited WT-like plastid phenotypes in trichome and guard cells. Finally, observation of parc6 complementation lines expressing a functional PARC6-GFP protein indicated that PARC6-GFP formed a ring-like structure in both constricting and non-constricting chloroplasts, and that PARC6 dynamically changes its configuration during the process of chloroplast division.
Collapse
Affiliation(s)
- Hiroki Ishikawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Mana Yasuzawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Nana Koike
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Alvin Sanjaya
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Shota Moriyama
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Aya Nishizawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Kanae Matsuoka
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Shun Sasaki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Yusuke Kazama
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | - Yoriko Hayashi
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | - Tomoko Abe
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | - Makoto T. Fujiwara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | - Ryuuichi D. Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
- *Correspondence: Ryuuichi D. Itoh,
| |
Collapse
|
17
|
LaBrant E, Barnes AC, Roston RL. Lipid transport required to make lipids of photosynthetic membranes. PHOTOSYNTHESIS RESEARCH 2018; 138:345-360. [PMID: 29961189 DOI: 10.1007/s11120-018-0545-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/20/2018] [Indexed: 05/21/2023]
Abstract
Photosynthetic membranes provide much of the usable energy for life on earth. To produce photosynthetic membrane lipids, multiple transport steps are required, including fatty acid export from the chloroplast stroma to the endoplasmic reticulum, and lipid transport from the endoplasmic reticulum to the chloroplast envelope membranes. Transport of hydrophobic molecules through aqueous space is energetically unfavorable and must be catalyzed by dedicated enzymes, frequently on specialized membrane structures. Here, we review photosynthetic membrane lipid transport to the chloroplast in the context of photosynthetic membrane lipid synthesis. We independently consider the identity of transported lipids, the proteinaceous transport components, and membrane structures which may allow efficient transport. Recent advances in lipid transport of chloroplasts, bacteria, and other systems strongly suggest that lipid transport is achieved by multiple mechanisms which include membrane contact sites with specialized protein machinery. This machinery is likely to include the TGD1, 2, 3 complex with the TGD5 and TGD4/LPTD1 systems, and may also include a number of proteins with domains similar to other membrane contact site lipid-binding proteins. Importantly, the likelihood of membrane contact sites does not preclude lipid transport by other mechanisms including vectorial acylation and vesicle transport. Substantial progress is needed to fully understand all photosynthetic membrane lipid transport processes and how they are integrated.
Collapse
Affiliation(s)
- Evan LaBrant
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA
| | - Allison C Barnes
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA
| | - Rebecca L Roston
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA.
| |
Collapse
|
18
|
Machado SR, Gregório EA, Rodrigues TM. Structural associations between organelle membranes in nectary parenchyma cells. PLANTA 2018; 247:1067-1076. [PMID: 29344723 DOI: 10.1007/s00425-018-2844-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/07/2018] [Indexed: 06/07/2023]
Abstract
The close association between membranes and organelles, and the intense chloroplast remodeling in parenchyma cells of extrafloral nectaries occurred only at the secretion time and suggest a relationship with the nectar secretion. Associations between membranes and organelles have been well documented in different tissues and cells of plants, but poorly explored in secretory cells. Here, we described the close physical juxtaposition between membranes and organelles, mainly with chloroplasts, in parenchyma cells of Citharexylum myrianthum (Verbenaeceae) extrafloral nectaries under transmission electron microscopy, using conventional and microwave fixation. At the time of nectar secretion, nectary parenchyma cells exhibit a multitude of different organelle and membrane associations as mitochondria-mitochondria, mitochondria-endoplasmic reticulum, mitochondria-chloroplast, chloroplast-nuclear envelope, mitochondria-nuclear envelope, chloroplast-plasmalemma, chloroplast-chloroplast, chloroplast-tonoplast, chloroplast-peroxisome, and mitochondria-peroxisome. These associations were visualized as amorphous electron-dense material, a network of dense fibrillar material and/or dense bridges. Chloroplasts exhibited protrusions variable in shape and extension, which bring them closer to each other and to plasmalemma, tonoplast, and nuclear envelope. Parenchyma cells in the pre- and post-secretory stages did not exhibit any association or juxtaposition of membranes and organelles, and chloroplast protrusions were absent. Chloroplasts had peripheral reticulum that was more developed in the secretory stage. We propose that such subcellular phenomena during the time of nectar secretion optimize the movement of signaling molecules and the exchange of metabolites. Our results open new avenues on the potential mechanisms of organelle contact in parenchyma nectary cells, and reveal new attributes of the secretory cells on the subcellular level.
Collapse
Affiliation(s)
- Silvia Rodrigues Machado
- Department of Botany, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Elisa A Gregório
- Center of Electron Microscopy (CME), Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Tatiane M Rodrigues
- Department of Botany, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
19
|
Itoh RD, Ishikawa H, Nakajima KP, Moriyama S, Fujiwara MT. Isolation and analysis of a stromule-overproducing Arabidopsis mutant suggest the role of PARC6 in plastid morphology maintenance in the leaf epidermis. PHYSIOLOGIA PLANTARUM 2018; 162:479-494. [PMID: 28984364 DOI: 10.1111/ppl.12648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/24/2017] [Accepted: 10/02/2017] [Indexed: 05/10/2023]
Abstract
Stromules, or stroma-filled tubules, are thin extensions of the plastid envelope membrane that are most frequently observed in undifferentiated or non-mesophyll cells. The formation of stromules is developmentally regulated and responsive to biotic and abiotic stress; however, the physiological roles and molecular mechanisms of the stromule formation remain enigmatic. Accordingly, we attempted to obtain Arabidopsis thaliana mutants with aberrant stromule biogenesis in the leaf epidermis. Here, we characterize one of the obtained mutants. Plastids in the leaf epidermis of this mutant were giant and pleomorphic, typically having one or more constrictions that indicated arrested plastid division, and usually possessed one or more extremely long stromules, which indicated the deregulation of stromule formation. Genetic mapping, whole-genome resequencing-aided exome analysis, and gene complementation identified PARC6/CDP1/ARC6H, which encodes a vascular plant-specific, chloroplast division site-positioning factor, as the causal gene for the stromule phenotype. Yeast two-hybrid assay and double mutant analysis also identified a possible interaction between PARC6 and MinD1, another known chloroplast division site-positioning factor, during the morphogenesis of leaf epidermal plastids. To the best of our knowledge, PARC6 is the only known A. thaliana chloroplast division factor whose mutations more extensively affect the morphology of plastids in non-mesophyll tissue than in mesophyll tissue. Therefore, the present study demonstrates that PARC6 plays a pivotal role in the morphology maintenance and stromule regulation of non-mesophyll plastids.
Collapse
Affiliation(s)
- Ryuuichi D Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Hiroki Ishikawa
- Department of Biology, Graduate School of Science and Technology, Sophia University, Tokyo, Japan
| | - Kohdai P Nakajima
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Shota Moriyama
- Department of Biology, Graduate School of Science and Technology, Sophia University, Tokyo, Japan
| | - Makoto T Fujiwara
- Department of Biology, Graduate School of Science and Technology, Sophia University, Tokyo, Japan
| |
Collapse
|
20
|
Delfosse K, Wozny MR, Barton KA, Mathur N, Griffiths N, Mathur J. Plastid Envelope-Localized Proteins Exhibit a Stochastic Spatiotemporal Relationship to Stromules. FRONTIERS IN PLANT SCIENCE 2018; 9:754. [PMID: 29915611 PMCID: PMC5995270 DOI: 10.3389/fpls.2018.00754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/16/2018] [Indexed: 05/13/2023]
Abstract
UNLABELLED Plastids in the viridiplantae sporadically form thin tubules called stromules that increase the interactive surface between the plastid and the surrounding cytoplasm. Several recent publications that report observations of certain proteins localizing to the extensions have then used the observations to suggest stromule-specific functions. The mechanisms by which specific localizations on these transient and sporadically formed extensions might occur remain unclear. Previous studies have yet to address the spatiotemporal relationship between a particular protein localization pattern and its distribution on an extended stromules and/or the plastid body. Here, we have used discrete protein patches found in several transgenic plants as fiducial markers to investigate this relationship. While we consider the inner plastid envelope-membrane localized protein patches of the GLUCOSE 6-PHOSPHATE/PHOSPHATE TRANSLOCATOR1 and the TRIOSE-PHOSPHATE/ PHOSPHATE TRANSLOCATOR 1 as artifacts of fluorescent fusion protein over-expression, stromule formation is not compromised in the respective stable transgenic lines that maintain normal growth and development. Our analysis of chloroplasts in the transgenic lines in the Arabidopsis Columbia background, and in the arc6 mutant, under stromule-inducing conditions shows that the possibility of finding a particular protein-enriched domain on an extended stromule or on a region of the main plastid body is stochastic. Our observations provide insights on the behavior of chloroplasts, the relationship between stromules and the plastid-body and strongly challenge claims of stromule-specific functions based solely upon protein localization to plastid extensions. ONE SENTENCE SUMMARY Observations of the spatiotemporal relationship between plastid envelope localized fluorescent protein fusions of two sugar-phosphate transporters and stromules suggest a stochastic rather than specific localization pattern that questions the idea of independent functions for stromules.
Collapse
|