1
|
Panstruga R, Spanu P. Transfer RNA and ribosomal RNA fragments - emerging players in plant-microbe interactions. THE NEW PHYTOLOGIST 2024; 241:567-577. [PMID: 37985402 DOI: 10.1111/nph.19409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
According to current textbooks, the principal task of transfer and ribosomal RNAs (tRNAs and rRNAs, respectively) is synthesizing proteins. During the last decade, additional cellular roles for precisely processed tRNA and rRNAs fragments have become evident in all kingdoms of life. These RNA fragments were originally overlooked in transcriptome datasets or regarded as unspecific degradation products. Upon closer inspection, they were found to engage in a variety of cellular processes, in particular the modulation of translation and the regulation of gene expression by sequence complementarity- and Argonaute protein-dependent gene silencing. More recently, the presence of tRNA and rRNA fragments has also been recognized in the context of plant-microbe interactions, both on the plant and the microbial side. While most of these fragments are likely to affect endogenous processes, there is increasing evidence for their transfer across kingdoms in the course of such interactions; these processes may involve mutual exchange in association with extracellular vesicles. Here, we summarize the state-of-the-art understanding of tRNA and rRNA fragment's roles in the context of plant-microbe interactions, their potential biogenesis, presumed delivery routes, and presumptive modes of action.
Collapse
Affiliation(s)
- Ralph Panstruga
- RWTH Aachen University, Worringerweg 1, Aachen, 52056, Germany
| | - Pietro Spanu
- Department of Life Sciences, Imperial College London, Imperial College Road, London, SW7 2AZ, UK
| |
Collapse
|
2
|
Asha S, Kattupalli D, Vijayanathan M, Soniya EV. Identification of nitric oxide mediated defense signaling and its microRNA mediated regulation during Phytophthora capsici infection in black pepper. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:33-47. [PMID: 38435849 PMCID: PMC10901764 DOI: 10.1007/s12298-024-01414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024]
Abstract
Nitric oxide plays a significant role in the defense signaling during pathogen interaction in plants. Quick wilt disease is a devastating disease of black pepper, and leads to sudden mortality of pepper vines in plantations. In this study, the role of nitric oxide was studied during Phytophthora capsici infection in black pepper variety Panniyur-1. Nitric oxide was detected from the different histological sections of P. capsici infected leaves. Furthermore, the genome-wide transcriptome analysis characterized typical domain architect and structural features of nitrate reductase (NR) and nitric oxide associated 1 (NOA1) gene that are involved in nitric oxide biosynthesis in black pepper. Despite the upregulation of nitrate reductase (Pn1_NR), a reduced expression of Pn1_NOA1 was detected in the P. capsici infected black pepper leaf. Subsequent sRNAome-assisted in silico analysis revealed possible microRNA mediated regulation of Pn1_NOA mRNAs. Furthermore, sRNA/miRNA mediated cleavage on Pn1_NOA1 mRNA was validated through modified 5' RLM RACE experiments. Several hormone-responsive cis-regulatory elements involved in stress response was detected from the promoter regions of Pn_NOA1, Pn_NR1 and Pn_NR2 genes. Our results revealed the role of nitric oxide during stress response of P. capsici infection in black pepper, and key genes involved in nitric oxide biosynthesis and their post-transcriptional regulatory mechanisms. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01414-z.
Collapse
Affiliation(s)
- Srinivasan Asha
- Transdisciplinary Biology, Plant Disease Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala India
- Present Address: Department of Molecular Biology and Biotechnology, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, India
| | - Divya Kattupalli
- Transdisciplinary Biology, Plant Disease Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala India
| | - Mallika Vijayanathan
- Transdisciplinary Biology, Plant Disease Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala India
- Present Address: Department of Plant and Environmental Sciences, University of Copenhagen, Capital Region, Denmark
| | - E. V. Soniya
- Transdisciplinary Biology, Plant Disease Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala India
| |
Collapse
|
3
|
U A, Viswam P, Kattupalli D, Eppurathu Vasudevan S. Elucidation of transfer RNAs as stress regulating agents and the experimental strategies to conceive the functional role of tRNA-derived fragments in plants. Crit Rev Biotechnol 2023; 43:275-292. [PMID: 35382663 DOI: 10.1080/07388551.2022.2026288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In plants, the transfer RNAs (tRNAs) exhibit their profound influence in orchestrating diverse physiological activities like cell growth, development, and response to several surrounding stimuli. The tRNAs, which were known to restrict their function solely in deciphering the codons, are now emerging as frontline defenders in stress biology. The plants that are constantly confronted with a huge panoply of stresses rely on tRNA-mediated stress regulation by altering the tRNA abundance, curbing the transport of tRNAs, fragmenting the mature tRNAs during stress. Among them, the studies on the generation of transfer RNA-derived fragments (tRFs) and their biological implication in stress response have attained huge interest. In plants, the tRFs hold stable expression patterns and regulate biological functions under diverse environmental conditions. In this review, we discuss the fate of plant tRNAs upon stress and thereafter how the tRFs are metamorphosed into sharp ammunition to wrestle with stress. We also address the various methods developed to date for uncovering the role of tRFs and their function in plants.
Collapse
Affiliation(s)
- Aswathi U
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | - Pooja Viswam
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | - Divya Kattupalli
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | | |
Collapse
|
4
|
Wang C, Chen W, Aili M, Zhu L, Chen Y. tRNA-derived small RNAs in plant response to biotic and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1131977. [PMID: 36798699 PMCID: PMC9928184 DOI: 10.3389/fpls.2023.1131977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
tRNA-derived small RNAs (tsRNAs) represent a novel category of small non-coding RNAs and serve as a new regulator of gene expression at both transcriptional and post-transcriptional levels. Growing evidence indicates that tsRNAs can be induced by diverse stimuli and regulate stress-responsive target genes, allowing plants to adapt to unfavorable environments. Here, we discuss the latest developments about the biogenesis and classification of tsRNAs and highlight the expression regulation and potential function of tsRNAs in plant biotic and abiotic stress responses. Of note, we also collect useful bioinformatics tools and resources for tsRNAs study in plants. Finally, we propose current limitations and future directions for plant tsRNAs research. These recent discoveries have refined our understanding of whether and how tsRNAs enhance plant stress tolerance.
Collapse
Affiliation(s)
- Chaojun Wang
- Institute of Education Science, Leshan Normal University, Leshan, China
| | - Weiqiang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, China
| | - Maimaiti Aili
- Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, China
| | - Lei Zhu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Chen
- Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
5
|
George S, Rafi M, Aldarmaki M, ElSiddig M, Al Nuaimi M, Amiri KMA. tRNA derived small RNAs—Small players with big roles. Front Genet 2022; 13:997780. [PMID: 36199575 PMCID: PMC9527309 DOI: 10.3389/fgene.2022.997780] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
In the past 2 decades, small non-coding RNAs derived from tRNA (tsRNAs or tRNA derived fragments; tRFs) have emerged as new powerful players in the field of small RNA mediated regulation of gene expression, translation, and epigenetic control. tRFs have been identified from evolutionarily divergent organisms from Archaea, the higher plants, to humans. Recent studies have confirmed their roles in cancers and other metabolic disorders in humans and experimental models. They have been implicated in biotic and abiotic stress responses in plants as well. In this review, we summarize the current knowledge on tRFs including types of tRFs, their biogenesis, and mechanisms of action. The review also highlights recent studies involving differential expression profiling of tRFs and elucidation of specific functions of individual tRFs from various species. We also discuss potential considerations while designing experiments involving tRFs identification and characterization and list the available bioinformatics tools for this purpose.
Collapse
Affiliation(s)
- Suja George
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Rafi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maitha Aldarmaki
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed ElSiddig
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mariam Al Nuaimi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled M. A. Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- *Correspondence: Khaled M. A. Amiri,
| |
Collapse
|
6
|
Zahra S, Bhardwaj R, Sharma S, Singh A, Kumar S. PtncRNAdb: plant transfer RNA-derived non-coding RNAs (tncRNAs) database. 3 Biotech 2022; 12:105. [PMID: 35462956 PMCID: PMC8986922 DOI: 10.1007/s13205-022-03174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/21/2022] [Indexed: 11/24/2022] Open
Abstract
Specific endonucleolytic cleavage of tRNA molecules leads to the biogenesis of heterogeneously sized fragments called tRNA-derived non-coding RNAs (tncRNAs). The role of tncRNAs is well studied in human processes, and diseases including different types of cancers and other ailments. They are also generated under stress conditions in plants. Considering the potential role of tncRNAs in the plant system, we have developed a user-friendly, open-access web resource, PtncRNAdb (https://nipgr.ac.in/PtncRNAdb). PtncRNAdb consists of 4,809,503 tncRNA entries identified from ~ 2500 single-end small RNA-seq libraries from six plants, viz., Arabidopsis thaliana, Cicer arietinum, Zea mays, Oryza sativa, Medicago truncatula, and Solanum lycopersicum. It is provided with assorted options to search, browse, visualize, interpret, and download tncRNAs data. Users can perform query search using 'BLASTN' against PtncRNAdb entries. Highcharts have been included for better statistical PtncRNAdb data readability to the users. Additionally, PtncRNAdb includes 'DE tncRNAs' module for differentially expressed tncRNAs under various conditions. Their secondary structure, putative targets, interactive networks of target enrichment, and related publications are also incorporated for further interpretation of their biological functions. PtncRNAdb is an efficient, user-friendly, and exhaustive database, which will aid the ongoing research in plant tncRNAs as well as help in deciphering their role in gene regulation. We hope that it provides a promising platform for researchers to facilitate the understanding of tncRNAs, and their involvement in numerous pathways related to plant development and stress tolerance. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03174-7.
Collapse
Affiliation(s)
- Shafaque Zahra
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Rohan Bhardwaj
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Shikha Sharma
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Ajeet Singh
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Shailesh Kumar
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
7
|
Ding Y, Mao Y, Cen Y, Hu L, Su Y, Ma X, Long L, Hu H, Hao C, Luo J. Small RNA sequencing reveals various microRNAs involved in piperine biosynthesis in black pepper (Piper nigrum L.). BMC Genomics 2021; 22:838. [PMID: 34794378 PMCID: PMC8603596 DOI: 10.1186/s12864-021-08154-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
Background Black pepper (Piper nigrum L.), an important and long-cultivated spice crop, is native to South India and grown in the tropics. Piperine is the main pungent and bioactive alkaloid in the berries of black pepper, but the molecular mechanism for piperine biosynthesis has not been determined. MicroRNAs (miRNAs), which are classical endogenous noncoding small RNAs, play important roles in regulating secondary metabolism in many species, but less is known regarding black pepper or piperine biosynthesis. Results To dissect the functions of miRNAs in secondary metabolism especially in piperine biosynthesis, 110 known miRNAs, 18 novel miRNAs and 1007 individual targets were identified from different tissues of black pepper by small RNA sequencing. qRT-PCR and 5′-RLM-RACE experiments were conducted to validate the reliability of the sequencing data and predicted targets. We found 3 miRNAs along with their targets including miR166-4CL, miR396-PER and miR397-CCR modules that are involved in piperine biosynthesis. Conclusion MiRNA regulation of secondary metabolism is a common phenomenon in plants. Our study revealed new miRNAs that regulate piperine biosynthesis, which are special alkaloids in the piper genus, and they might be useful for future piperine genetic improvement of black pepper. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08154-4.
Collapse
Affiliation(s)
- Yuanhao Ding
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yuyuan Mao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yi Cen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China.,Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China
| | - Lisong Hu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China.,Ministry of Agriculture Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Wanning, 571533, Hainan, China
| | - Yuefeng Su
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China.,Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China
| | - Xuemin Ma
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Lu Long
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475004, Henan, China
| | - Haiyan Hu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China.
| | - Chaoyun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China. .,Ministry of Agriculture Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Wanning, 571533, Hainan, China. .,Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, 571533, Hainan, China.
| | - Jie Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China.
| |
Collapse
|
8
|
Non-Targeted Metabolite Profiling Reveals Host Metabolomic Reprogramming during the Interaction of Black Pepper with Phytophthora capsici. Int J Mol Sci 2021; 22:ijms222111433. [PMID: 34768864 PMCID: PMC8583951 DOI: 10.3390/ijms222111433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 01/04/2023] Open
Abstract
Phytophthora capsici is one of the most destructive pathogens causing quick wilt (foot rot) disease in black pepper (Piper nigrum L.) to which no effective resistance has been defined. To better understand the P. nigrum-P. capsici pathosystem, we employed metabolomic approaches based on flow-infusion electrospray-high-resolution mass spectrometry. Changes in the leaf metabolome were assessed in infected and systemic tissues at 24 and 48 hpi. Principal Component Analysis of the derived data indicated that the infected leaves showed a rapid metabolic response by 24 hpi whereas the systemic leaves took 48 hpi to respond to the infection. The major sources of variations between infected leaf and systemic leaf were identified, and enrichment pathway analysis indicated, major shifts in amino acid, tricarboxylic acid cycle, nucleotide and vitamin B6 metabolism upon infection. Moreover, the individual metabolites involved in defensive phytohormone signalling were identified. RT-qPCR analysis of key salicylate and jasmonate biosynthetic genes indicated a transient reduction of expression at 24 hpi but this increased subsequently. Exogenous application of jasmonate and salicylate reduced P. capsici disease symptoms, but this effect was suppressed with the co-application of abscisic acid. The results are consistent with abscisic acid reprogramming, salicylate and jasmonate defences in infected leaves to facilitate the formation of disease. The augmentation of salicylate and jasmonate defences could represent an approach through which quick wilt disease could be controlled in black pepper.
Collapse
|
9
|
Zahra S, Singh A, Poddar N, Kumar S. Transfer RNA-derived non-coding RNAs (tncRNAs): Hidden regulation of plants' transcriptional regulatory circuits. Comput Struct Biotechnol J 2021; 19:5278-5291. [PMID: 34630945 PMCID: PMC8482286 DOI: 10.1016/j.csbj.2021.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022] Open
Abstract
The emergence of distinct classes of non-coding RNAs has led to better insights into the eukaryotic gene regulatory networks. Amongst them, the existence of transfer RNA (tRNA)-derived non-coding RNAs (tncRNAs) demands exploration in the plant kingdom. We have designed a methodology to uncover the entire perspective of tncRNAome in plants. Using this pipeline, we have identified diverse tncRNAs with a size ranging from 14 to 50 nucleotides (nt) by utilizing 2448 small RNA-seq samples from six angiosperms, and studied their various features, including length, codon-usage, cleavage pattern, and modified tRNA nucleosides. Codon-dependent generation of tncRNAs suggests that the tRNA cleavage is highly specific rather than random tRNA degradation. The nucleotide composition analysis of tncRNA cleavage positions indicates that they are generated through precise endoribonucleolytic cleavage machinery. Certain nucleoside modifications detected on tncRNAs were found to be conserved across the plants, and hence may influence tRNA cleavage, as well as tncRNA functions. Pathway enrichment analysis revealed that common tncRNA targets are majorly enriched during metabolic and developmental processes. Further distinct tissue-specific tncRNA clusters highlight their role in plant development. Significant number of tncRNAs differentially expressed under abiotic and biotic stresses highlights their potential role in stress resistance. In summary, this study has developed a platform that will help in the understanding of tncRNAs and their involvement in growth, development, and response to various stresses. The workflow, software package, and results are freely available at http://nipgr.ac.in/tncRNA.
Collapse
Affiliation(s)
- Shafaque Zahra
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ajeet Singh
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nikita Poddar
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shailesh Kumar
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
10
|
Werner BT, Koch A, Šečić E, Engelhardt J, Jelonek L, Steinbrenner J, Kogel KH. Fusarium graminearum DICER-like-dependent sRNAs are required for the suppression of host immune genes and full virulence. PLoS One 2021; 16:e0252365. [PMID: 34351929 PMCID: PMC8341482 DOI: 10.1371/journal.pone.0252365] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022] Open
Abstract
In filamentous fungi, gene silencing by RNA interference (RNAi) shapes many biological processes, including pathogenicity. Recently, fungal small RNAs (sRNAs) have been shown to act as effectors that disrupt gene activity in interacting plant hosts, thereby undermining their defence responses. We show here that the devastating mycotoxin-producing ascomycete Fusarium graminearum (Fg) utilizes DICER-like (DCL)-dependent sRNAs to target defence genes in two Poaceae hosts, barley (Hordeum vulgare, Hv) and Brachypodium distachyon (Bd). We identified 104 Fg-sRNAs with sequence homology to host genes that were repressed during interactions of Fg and Hv, while they accumulated in plants infected by the DCL double knock-out (dKO) mutant PH1-dcl1/2. The strength of target gene expression correlated with the abundance of the corresponding Fg-sRNA. Specifically, the abundance of three tRNA-derived fragments (tRFs) targeting immunity-related Ethylene overproducer 1-like 1 (HvEOL1) and three Poaceae orthologues of Arabidopsis thaliana BRI1-associated receptor kinase 1 (HvBAK1, HvSERK2 and BdSERK2) was dependent on fungal DCL. Additionally, RNA-ligase-mediated Rapid Amplification of cDNA Ends (RLM-RACE) identified infection-specific degradation products for the three barley gene transcripts, consistent with the possibility that tRFs contribute to fungal virulence via targeted gene silencing.
Collapse
Affiliation(s)
- Bernhard Timo Werner
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Aline Koch
- Institute for Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Ena Šečić
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Jonas Engelhardt
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Lukas Jelonek
- Institute of Bioinformatics and Systems Biology, Justus Liebig University, Giessen, Germany
| | - Jens Steinbrenner
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
- * E-mail:
| |
Collapse
|
11
|
Ma X, Liu C, Cao X. Plant transfer RNA-derived fragments: Biogenesis and functions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1399-1409. [PMID: 34114725 DOI: 10.1111/jipb.13143] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
Processing of mature transfer RNAs (tRNAs) produces complex populations of tRNA-derived fragments (tRFs). Emerging evidence shows that tRFs have important functions in bacteria, animals, and plants. Here, we review recent advances in understanding plant tRFs, focusing on their biological and cellular functions, such as regulating stress responses, mediating plant-pathogen interactions, and modulating post-transcriptional gene silencing and translation. We also review sequencing strategies and bioinformatics resources for studying tRFs in plants. Finally, we discuss future directions for plant tRF research, which will expand our knowledge of plant non-coding RNAs.
Collapse
Affiliation(s)
- Xuan Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Kattupalli D, Srinivasan A, Soniya EV. A Genome-Wide Analysis of Pathogenesis-Related Protein-1 ( PR-1) Genes from Piper nigrum Reveals Its Critical Role during Phytophthora capsici Infection. Genes (Basel) 2021; 12:1007. [PMID: 34208836 PMCID: PMC8303604 DOI: 10.3390/genes12071007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 11/25/2022] Open
Abstract
Black pepper (Piper nigrum L.) is a prominent spice that is an indispensable ingredient in cuisine and traditional medicine. Phytophthora capsici, the causative agent of footrot disease, causes a drastic constraint in P. nigrum cultivation and productivity. To counterattack various biotic and abiotic stresses, plants employ a broad array of mechanisms that includes the accumulation of pathogenesis-related (PR) proteins. Through a genome-wide survey, eleven PR-1 genes that belong to a CAP superfamily protein with a caveolin-binding motif (CBM) and a CAP-derived peptide (CAPE) were identified from P. nigrum. Despite the critical functional domains, PnPR-1 homologs differ in their signal peptide motifs and core amino acid composition in the functional protein domains. The conserved motifs of PnPR-1 proteins were identified using MEME. Most of the PnPR-1 proteins were basic in nature. Secondary and 3D structure analyses of the PnPR-1 proteins were also predicted, which may be linked to a functional role in P. nigrum. The GO and KEGG functional annotations predicted their function in the defense responses of plant-pathogen interactions. Furthermore, a transcriptome-assisted FPKM analysis revealed PnPR-1 genes mapped to the P. nigrum-P. capsici interaction pathway. An altered expression pattern was detected for PnPR-1 transcripts among which a significant upregulation was noted for basic PnPR-1 genes such as CL10113.C1 and Unigene17664. The drastic variation in the transcript levels of CL10113.C1 was further validated through qRT-PCR and it showed a significant upregulation in infected leaf samples compared with the control. A subsequent analysis revealed the structural details, phylogenetic relationships, conserved sequence motifs and critical cis-regulatory elements of PnPR-1 genes. This is the first genome-wide study that identified the role of PR-1 genes during P. nigrum-P. capsici interactions. The detailed in silico experimental analysis revealed the vital role of PnPR-1 genes in regulating the first layer of defense towards a P. capsici infection in Panniyur-1 plants.
Collapse
Affiliation(s)
| | | | - Eppurath Vasudevan Soniya
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; (D.K.); (A.S.)
| |
Collapse
|
13
|
Mimulus sRNAs Are Wound Responsive and Associated with Transgenerationally Plastic Genes but Rarely Both. Int J Mol Sci 2020; 21:ijms21207552. [PMID: 33066159 PMCID: PMC7589798 DOI: 10.3390/ijms21207552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 12/25/2022] Open
Abstract
Organisms alter development in response to environmental cues. Recent studies demonstrate that they can transmit this plasticity to progeny. While the phenotypic and transcriptomic evidence for this “transgenerational plasticity” has accumulated, genetic and developmental mechanisms remain unclear. Plant defenses, gene expression and DNA methylation are modified as an outcome of parental wounding in Mimulus guttatus. Here, we sequenced M. guttatus small RNAs (sRNA) to test their possible role in mediating transgenerational plasticity. We sequenced sRNA populations of leaf-wounded and control plants at 1 h and 72 h after damage and from progeny of wounded and control parents. This allowed us to test three components of an a priori model of sRNA mediated transgenerational plasticity—(1) A subset of sRNAs will be differentially expressed in response to wounding, (2) these will be associated with previously identified differentially expressed genes and differentially methylated regions and (3) changes in sRNA abundance in wounded plants will be predictive of sRNA abundance, DNA methylation, and/or gene expression shifts in the following generation. Supporting (1) and (2), we found significantly different sRNA abundances in wounded leaves; the majority were associated with tRNA fragments (tRFs) rather than small-interfering RNAs (siRNA). However, siRNAs responding to leaf wounding point to Jasmonic Acid mediated responses in this system. We found that different sRNA classes were associated with regions of the genome previously found to be differentially expressed or methylated in progeny of wounded plants. Evidence for (3) was mixed. We found that non-dicer sRNAs with increased abundance in response to wounding tended to be nearby genes with decreased expression in the next generation. Counter to expectations, we did not find that siRNA responses to wounding were associated with gene expression or methylation changes in the next generation and within plant and transgenerational sRNA plasticity were negatively correlated.
Collapse
|
14
|
Singh NK, Paz E, Kutsher Y, Reuveni M, Lers A. Tomato T2 ribonuclease LE is involved in the response to pathogens. MOLECULAR PLANT PATHOLOGY 2020; 21:895-906. [PMID: 32352631 PMCID: PMC7280031 DOI: 10.1111/mpp.12928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 05/16/2023]
Abstract
T2 ribonucleases (RNases) are RNA-degrading enzymes that function in various cellular processes, mostly via RNA metabolism. T2 RNase-encoding genes have been identified in various organisms, from bacteria to mammals, and are most diverse in plants. The existence of T2 RNase genes in almost every organism suggests an important biological function that has been conserved through evolution. In plants, T2 RNases are suggested to be involved in phosphate scavenging and recycling, and are implicated in defence responses to pathogens. We investigated the function of the tomato T2 RNase LE, known to be induced by phosphate deficiency and wounding. The possible involvement of LE in pathogen responses was examined. Expression analysis showed LE induction during fungal infection and by stimuli known to be associated with pathogen inoculation, including oxalic acid and hydrogen peroxide. Analysis of LE-suppressed transgenic tomato lines revealed higher susceptibility to oxalic acid, a cell death-inducing factor, compared to the wild type. This elevated sensitivity of LE-suppressed lines was evidenced by visual signs of necrosis, and increased ion leakage and reactive oxygen species levels, indicating acceleration of cell death. Challenge of the LE-suppressed lines with the necrotrophic pathogen Botrytis cinerea resulted in accelerated development of disease symptoms compared to the wild type, associated with suppressed expression of pathogenesis-related marker genes. The results suggest a role for plant endogenous T2 RNases in antifungal activity.
Collapse
Affiliation(s)
- Naveen Kumar Singh
- Department of Postharvest Science, Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| | - Einat Paz
- Department of Postharvest Science, Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
- The Robert H. Smith Faculty of Agricultural, Food and Environment SciencesHebrew University of JerusalemRehovotIsrael
| | - Yaarit Kutsher
- Plant Science Institute, the Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| | - Moshe Reuveni
- Plant Science Institute, the Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| | - Amnon Lers
- Department of Postharvest Science, Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| |
Collapse
|
15
|
Byeon B, Bilichak A, Kovalchuk I. Transgenerational Response to Heat Stress in the Form of Differential Expression of Noncoding RNA Fragments in Brassica rapa Plants. THE PLANT GENOME 2019; 12. [PMID: 30951085 DOI: 10.3835/plantgenome2018.04.0022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Epigenetic regulations in the form of changes in differential expression of noncoding RNAs (ncRNAs) are an essential mechanism of stress response in plants. Previously we showed that heat treatment in L. results in the differential processing and accumulation of ncRNA fragments (ncRFs) stemming from transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), small nuclear RNAs (snRNAs), and small nucleolar RNAs (snoRNAs). In this work, we analyzed whether ncRFs are differentially expressed in the progeny of heat-stressed plants. We found significant changes in the size of tRF reads and a significant decrease in the percentage of tRFs mapping to tRNA-Ala, tRNA-Arg, and tRNA-Tyr and an increase in tRFs mapping to tRNA-Asp. The enrichment analysis showed significant differences in processing of tRFs from tRNA, tRNA, tRNA, tRNA, tRNA, and tRNA isoacceptors. Analysis of potential targets of tRFs showed that they regulate brassinosteroid metabolism, the proton pump ATPase activity, the antiporter activity, the mRNA decay activity as well as nucleosome positioning and the epigenetic regulation of transgenerational response. Gene ontology term analysis of potential targets demonstrated a significant enrichment in tRFs that potentially targeted a cellular component endoplasmic reticulum (ER) and in small nucleolar RNA fragments (snoRFs), the molecular function protein binding. To summarize, our work demonstrated that the progeny of heat-stressed plants exhibit changes in the expression of tRFs and snoRFs but not of small nuclear RNA fragments (snRFs) or ribosomal RNA fragments (rRFs) and these changes likely better prepare the progeny of stressed plants to future stress encounters.
Collapse
|
16
|
Small Non-Coding RNAs Derived From Eukaryotic Ribosomal RNA. Noncoding RNA 2019; 5:ncrna5010016. [PMID: 30720712 PMCID: PMC6468398 DOI: 10.3390/ncrna5010016] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 12/13/2022] Open
Abstract
The advent of RNA-sequencing (RNA-Seq) technologies has markedly improved our knowledge and expanded the compendium of small non-coding RNAs, most of which derive from the processing of longer RNA precursors. In this review article, we will present a nonexhaustive list of referenced small non-coding RNAs (ncRNAs) derived from eukaryotic ribosomal RNA (rRNA), called rRNA fragments (rRFs). We will focus on the rRFs that are experimentally verified, and discuss their origin, length, structure, biogenesis, association with known regulatory proteins, and potential role(s) as regulator of gene expression. This relatively new class of ncRNAs remained poorly investigated and underappreciated until recently, due mainly to the a priori exclusion of rRNA sequences-because of their overabundance-from RNA-Seq datasets. The situation surrounding rRFs resembles that of microRNAs (miRNAs), which used to be readily discarded from further analyses, for more than five decades, because no one could believe that RNA of such a short length could bear biological significance. As if we had not yet learned our lesson not to restrain our investigative, scientific mind from challenging widely accepted beliefs or dogmas, and from looking for the hidden treasures in the most unexpected places.
Collapse
|
17
|
Gupta N, Singh A, Zahra S, Kumar S. PtRFdb: a database for plant transfer RNA-derived fragments. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:5043071. [PMID: 29939244 PMCID: PMC6016605 DOI: 10.1093/database/bay063] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/29/2018] [Indexed: 02/06/2023]
Abstract
Transfer RNA-derived fragments (tRFs) represent a novel class of small RNAs (sRNAs) generated through endonucleolytic cleavage of both mature and precursor transfer RNAs (tRNAs). These 14–28 nt length tRFs that have been extensively studied in animal kingdom are to be explored in plants. In this study, we introduce a database of plant tRFs named PtRFdb (www.nipgr.res.in/PtRFdb), for the scientific community. We analyzed a total of 1344 sRNA sequencing datasets of 10 different plant species and identified a total of 5607 unique tRFs (758 tRF-1, 2269 tRF-3 and 2580 tRF-5), represented by 487 765 entries. In PtRFdb, detailed and comprehensive information is available for each tRF entry. Apart from the core information consisting of the tRF type, anticodon, source organism, tissue, sequence and the genomic location; additional information like PubMed identifier (PMID), Sample accession number (GSM), sequence length and frequency relevant to the tRFs may be of high utility to the user. Two different types of search modules (Basic Search and Advanced Search), sequence similarity search (by BLAST) and Browse option with data download facility for each search is provided in this database. We believe that PtRFdb is a unique database of its kind and it will be beneficial in the validation and further characterization of plant tRFs. Database URL: http://www.nipgr.res.in/PtRFdb/
Collapse
Affiliation(s)
- Nikita Gupta
- Lab #202, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Ajeet Singh
- Lab #202, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Shafaque Zahra
- Lab #202, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Shailesh Kumar
- Lab #202, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
18
|
Byeon B, Bilichak A, Kovalchuk I. Tissue-specific heat-induced changes in the expression of ncRNA fragments in Brassica rapa plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Koter MD, Święcicka M, Matuszkiewicz M, Pacak A, Derebecka N, Filipecki M. The miRNAome dynamics during developmental and metabolic reprogramming of tomato root infected with potato cyst nematode. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 268:18-29. [PMID: 29362080 DOI: 10.1016/j.plantsci.2017.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/05/2017] [Accepted: 12/09/2017] [Indexed: 05/20/2023]
Abstract
Cyst-forming plant-parasitic nematodes are pests threatening many crops. By means of their secretions cyst nematodes induce the developmental and metabolic reprogramming of host cells that lead to the formation of a syncytium, which is the sole food source for growing nematodes. The in depth micro RNA (miRNA) dynamics in the syncytia induced by Globodera rostochiensis in tomato roots was studied. The miRNAomes were obtained from syncytia covering the early and intermediate developmental stages, and were the subject of differential expression analysis. The expression of 1235 miRNAs was monitored. The fold change (log2FC) ranged from -7.36 to 8.38, indicating that this transcriptome fraction was very variable. Moreover, we showed that the DE (differentially expressed) miRNAs do not fully overlap between the selected time points, suggesting infection stage specific regulation by miRNA. The correctness of RNA-seq expression profiling was confirmed by qRT-PCR (quantitative Real Time Polymerase Chain Reaction) for seven miRNA species. Down- and up-regulated miRNA species, including their isomiRs, were further used to identify their potential targets. Among them there are a large number of transcription factors linked to different aspects of plant development belonging to gene families, such as APETALA2 (AP2), SQUAMOSA (MADS-box), MYB, GRAS, and AUXIN RESPONSE FACTOR (ARF). The substantial portion of potential target genes belong to the NB-LRR and RLK (RECEPTOR-LIKE KINASE) families, indicating the involvement of miRNA mediated regulation in defense responses. We also collected the evidence for target cleavage in the case of 29 miRNAs using one of three alternative methods: 5' RACE (5' Rapid Amplification of cDNA Ends), a search of tasiRNA within our datasets, and the meta-analysis of tomato degradomes in the GEO (Gene Expression Omnibus) database. Eight target transcripts showed a negative correlation with their respective miRNAs at two or three time points. These results indicate a large regulatory potential for miRNAs in tuning the development and defense responses.
Collapse
Affiliation(s)
- Marek D Koter
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Święcicka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Andrzej Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Natalia Derebecka
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Marcin Filipecki
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland.
| |
Collapse
|
20
|
Thompson A, Zielezinski A, Plewka P, Szymanski M, Nuc P, Szweykowska-Kulinska Z, Jarmolowski A, Karlowski WM. tRex: A Web Portal for Exploration of tRNA-Derived Fragments in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2018; 59:e1. [PMID: 29145635 DOI: 10.1093/pcp/pcx173] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
tRNA-derived fragments (tRFs) constitute a new class of short regulatory RNAs that are a product of nascent or mature tRNA processing. tRF sequences have been identified in all domains of life; however, most published research pertains to human, yeast and some bacterial organisms. Despite growing interest in plant tRFs and accumulating evidence of their function in plant development and stress responses, no public, web-based repository dedicated to these molecules is currently available. Here, we introduce tRex (http://combio.pl/trex)-the first comprehensive data-driven online resource specifically dedicated to tRFs in the model plant Arabidopsis thaliana. The portal is based on verified Arabidopsis tRNA annotation and includes in-house-generated and publicly available small RNA sequencing experiments from various tissues, ecotypes, genotypes and stress conditions. The provided web-based tools are designed in a user-friendly manner and allow for seamless exploration of the data that are presented in the form of dynamic tables and cumulative coverage profiles. The tRex database is connected to external genomic and citation resources, which makes it a one-stop solution for Arabidopsis tRF-related research.
Collapse
Affiliation(s)
- Agnieszka Thompson
- Department of Computational Biology, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland
| | - Andrzej Zielezinski
- Department of Computational Biology, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland
| | - Patrycja Plewka
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland
| | - Maciej Szymanski
- Department of Computational Biology, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland
| | - Przemyslaw Nuc
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland
| | - Wojciech M Karlowski
- Department of Computational Biology, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland
| |
Collapse
|
21
|
Soprano AS, Smetana JHC, Benedetti CE. Regulation of tRNA biogenesis in plants and its link to plant growth and response to pathogens. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:344-353. [PMID: 29222070 DOI: 10.1016/j.bbagrm.2017.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/29/2017] [Accepted: 12/03/2017] [Indexed: 12/23/2022]
Abstract
The field of tRNA biology, encompassing the functional and structural complexity of tRNAs, has fascinated scientists over the years and is continuously growing. Besides their fundamental role in protein translation, new evidence indicates that tRNA-derived molecules also regulate gene expression and protein synthesis in all domains of life. This review highlights some of the recent findings linking tRNA transcription and modification with plant cell growth and response to pathogens. In fact, mutations in proteins directly involved in tRNA synthesis and modification most often lead to pleiotropic effects on plant growth and immunity. As plants need to optimize and balance their energy and nutrient resources towards growth and defense, regulatory pathways that play a central role in integrating tRNA transcription and protein translation with cell growth control and organ development, such as the auxin-TOR signaling pathway, also influence the plant immune response against pathogens. As a consequence, distinct pathogens employ an array of effector molecules including tRNA fragments to target such regulatory pathways to exploit the plant's translational capacity, gain access to nutrients and evade defenses. An example includes the RNA polymerase III repressor MAF1, a conserved component of the TOR signaling pathway that controls ribosome biogenesis and tRNA synthesis required for plant growth and which is targeted by a pathogen effector molecule to promote disease. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Adriana Santos Soprano
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Juliana Helena Costa Smetana
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Celso Eduardo Benedetti
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil.
| |
Collapse
|
22
|
Wang J, Meng X, Dobrovolskaya OB, Orlov YL, Chen M. Non-coding RNAs and Their Roles in Stress Response in Plants. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:301-312. [PMID: 29017967 PMCID: PMC5673675 DOI: 10.1016/j.gpb.2017.01.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/04/2017] [Accepted: 01/26/2017] [Indexed: 02/04/2023]
Abstract
Eukaryotic genomes encode thousands of non-coding RNAs (ncRNAs), which play crucial roles in transcriptional and post-transcriptional regulation of gene expression. Accumulating evidence indicates that ncRNAs, especially microRNAs (miRNAs) and long ncRNAs (lncRNAs), have emerged as key regulatory molecules in plant stress responses. In this review, we have summarized the current progress on the understanding of plant miRNA and lncRNA identification, characteristics, bioinformatics tools, and resources, and provided examples of mechanisms of miRNA- and lncRNA-mediated plant stress tolerance.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianwen Meng
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Oxana B Dobrovolskaya
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Yuriy L Orlov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Ming Chen
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
23
|
Sablok G, Yang K, Chen R, Wen X. tRNA Derived smallRNAs: smallRNAs Repertoire Has Yet to Be Decoded in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1167. [PMID: 28791028 PMCID: PMC5524738 DOI: 10.3389/fpls.2017.01167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/19/2017] [Indexed: 05/28/2023]
Abstract
Among several smallRNAs classes, microRNAs play an important role in controlling the post-transcriptional events. Next generation sequencing has played a major role in extending the landscape of miRNAs and revealing their spatio-temporal roles in development and abiotic stress. Lateral evolution of these smallRNAs classes have widely been seen with the recently emerging knowledge on tRNA derived smallRNAs. In the present perspective, we discussed classification, identification and roles of tRNA derived smallRNAs across plants and their potential involvement in abiotic and biotic stresses.
Collapse
Affiliation(s)
- Gaurav Sablok
- Finnish Museum of Natural HistoryHelsinki, Finland
- Department of Biosciences, Viikki Plant Science Center, University of HelsinkiHelsinki, Finland
| | - Kun Yang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering and College of Life Sciences, Guizhou UniversityGuiyang, China
| | - Rui Chen
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural SciencesTianjin, China
| | - Xiaopeng Wen
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering and College of Life Sciences, Guizhou UniversityGuiyang, China
| |
Collapse
|
24
|
Asha S, Soniya EV. The sRNAome mining revealed existence of unique signature small RNAs derived from 5.8SrRNA from Piper nigrum and other plant lineages. Sci Rep 2017; 7:41052. [PMID: 28145468 PMCID: PMC5286533 DOI: 10.1038/srep41052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 12/16/2016] [Indexed: 01/27/2023] Open
Abstract
Small RNAs derived from ribosomal RNAs (srRNAs) are rarely explored in the high-throughput data of plant systems. Here, we analyzed srRNAs from the deep-sequenced small RNA libraries of Piper nigrum, a unique magnoliid plant. The 5' end of the putative long form of 5.8S rRNA (5.8SLrRNA) was identified as the site for biogenesis of highly abundant srRNAs that are unique among the Piperaceae family of plants. A subsequent comparative analysis of the ninety-seven sRNAomes of diverse plants successfully uncovered the abundant existence and precise cleavage of unique rRF signature small RNAs upstream of a novel 5' consensus sequence of the 5.8S rRNA. The major cleavage process mapped identically among the different tissues of the same plant. The differential expression and cleavage of 5'5.8S srRNAs in Phytophthora capsici infected P. nigrum tissues indicated the critical biological functions of these srRNAs during stress response. The non-canonical short hairpin precursor structure, the association with Argonaute proteins, and the potential targets of 5'5.8S srRNAs reinforced their regulatory role in the RNAi pathway in plants. In addition, this novel lineage specific small RNAs may have tremendous biological potential in the taxonomic profiling of plants.
Collapse
Affiliation(s)
- Srinivasan Asha
- Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - E V Soniya
- Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| |
Collapse
|
25
|
Alves CS, Vicentini R, Duarte GT, Pinoti VF, Vincentz M, Nogueira FTS. Genome-wide identification and characterization of tRNA-derived RNA fragments in land plants. PLANT MOLECULAR BIOLOGY 2017; 93:35-48. [PMID: 27681945 DOI: 10.1007/s11103-016-0545-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/19/2016] [Indexed: 05/06/2023]
Abstract
The manuscript by Alves et al. entitled "Genome-wide identification and characterization of tRNA-derived RNA fragments in land plants" describes the identification and characterization of tRNAderived sRNA fragments in plants. By combining bioinformatic analysis and genetic and molecular approaches, we show that tRF biogenesis does not rely on canonical microRNA/siRNA processing machinery (i.e., independent of DICER-LIKE proteins). Moreover, we provide evidences that the Arabidopsis S-like Ribonuclease 1 (RNS1) might be involved in the biogenesis of tRFs. Detailed analyses showed that plant tRFs are sorted into different types of ARGONAUTE proteins and that they have potential target candidate genes. Our work advances the understanding of the tRF biology in plants by providing evidences that plant and animal tRFs shared common features and raising the hypothesis that an interplay between tRFs and other sRNAs might be important to fine-tune gene expression and protein biosynthesis in plant cells. Small RNA (sRNA) fragments derived from tRNAs (3'-loop, 5'-loop, anti-codon loop), named tRFs, have been reported in several organisms, including humans and plants. Although they may interfere with gene expression, their biogenesis and biological functions in plants remain poorly understood. Here, we capitalized on small RNA sequencing data from distinct species such as Arabidopsis thaliana, Oryza sativa, and Physcomitrella patens to examine the diversity of plant tRFs and provide insight into their properties. In silico analyzes of 19 to 25-nt tRFs derived from 5' (tRF-5s) and 3'CCA (tRF-3s) tRNA loops in these three evolutionary distant species showed that they are conserved and their abundance did not correlate with the number of genomic copies of the parental tRNAs. Moreover, tRF-5 is the most abundant variant in all three species. In silico and in vivo expression analyses unraveled differential accumulation of tRFs in Arabidopsis tissues/organs, suggesting that they are not byproducts of tRNA degradation. We also verified that the biogenesis of most Arabidopsis 19-25 nt tRF-5s and tRF-3s is not primarily dependent on DICER-LIKE proteins, though they seem to be associated with ARGONAUTE proteins and have few potential targets. Finally, we provide evidence that Arabidopsis ribonuclease RNS1 might be involved in the processing and/or degradation of tRFs. Our data support the notion that an interplay between tRFs and other sRNAs might be important to fine tune gene expression and protein biosynthesis in plant cells.
Collapse
Affiliation(s)
- Cristiane S Alves
- Departamento de Genetica, Instituto de Biociencias, Universidade Estadual Paulista (UNESP), Distrito de Rubião Jr., s/n, Botucatu, SP, 18618-970, Brazil
- Laboratorio de Genetica Molecular do Desenvolvimento Vegetal, Departamento de Ciencias Biologicas, ESALQ/USP, Avenida Pádua Dias s/n, 11, Piracicaba, SP, 13418-900, Brazil
| | - Renato Vicentini
- Laboratorio de Bioinformatica e Biologia de Sistemas, Departamento de Genetica, Evoluçao e Bioagentes, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| | - Gustavo T Duarte
- Centro de Biologia Molecular e Engenharia Genetica (CBMEG), Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| | - Vitor F Pinoti
- Departamento de Genetica, Instituto de Biociencias, Universidade Estadual Paulista (UNESP), Distrito de Rubião Jr., s/n, Botucatu, SP, 18618-970, Brazil
| | - Michel Vincentz
- Centro de Biologia Molecular e Engenharia Genetica (CBMEG), Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| | - Fabio T S Nogueira
- Laboratorio de Genetica Molecular do Desenvolvimento Vegetal, Departamento de Ciencias Biologicas, ESALQ/USP, Avenida Pádua Dias s/n, 11, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|