1
|
Li MM, Meegahakumbura MK, Wambulwa MC, Burgess KS, Möller M, Shen ZF, Li DZ, Gao LM. Genetic analyses of ancient tea trees provide insights into the breeding history and dissemination of Chinese Assam tea ( Camellia sinensis var. assamica). PLANT DIVERSITY 2024; 46:229-237. [PMID: 38807909 PMCID: PMC11128837 DOI: 10.1016/j.pld.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 05/30/2024]
Abstract
Chinese Assam tea (Camellia sinensis var. assamica) is an important tea crop with a long history of cultivation in Yunnan, China. Despite its potential value as a genetic resource, its genetic diversity and domestication/breeding history remain unclear. To address this issue, we genotyped 469 ancient tea plant trees representing 26 C. sinensis var. assamica populations, plus two of its wild relatives (six and three populations of C. taliensis and C. crassicolumna, respectively) using 16 nuclear microsatellite loci. Results showed that Chinese Assam tea has a relatively high, but comparatively lower gene diversity (HS = 0.638) than the wild relative C. crassicolumna (HS = 0.658). Clustering in STRUCTURE indicated that Chinese Assam tea and its two wild relatives formed distinct genetic groups, with considerable interspecific introgression. The Chinese Assam tea accessions clustered into three gene pools, corresponding well with their geographic distribution. However, NewHybrids analysis indicated that 68.48% of ancient Chinese Assam tea plants from Xishuangbanna were genetic intermediates between the Puer and Lincang gene pools. In addition, 10% of the ancient Chinese Assam tea individuals were found to be hybrids between Chinese Assam tea and C. taliensis. Our results suggest that Chinese Assam tea was domesticated separately in three gene pools (Puer, Lincang and Xishuangbanna) in the Mekong River valley and that the hybrids were subsequently selected during the domestication process. Although the domestication history of Chinese Assam tea in southwestern Yunnan remains complex, our results will help to identify valuable genetic resources that may be useful in future tea breeding programs.
Collapse
Affiliation(s)
- Miao-Miao Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Muditha K. Meegahakumbura
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Department of Export Agriculture, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, 90000, Sri Lanka
| | - Moses C. Wambulwa
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Department of Life Sciences, School of Science and Computing, South Eastern Kenya University, 170-90200, Kitui, Kenya
| | - Kevin S. Burgess
- Department of Biology, Columbus State University, University System of Georgia, Columbus, GA, 31907-5645, USA
| | - Michael Möller
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, Scotland, UK
| | - Zong-Fang Shen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, Yunnan, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, Yunnan, China
| |
Collapse
|
2
|
Shahi Shavvon R, Qi HL, Mafakheri M, Fan PZ, Wu HY, Bazdid Vahdati F, Al-Shmgani HS, Wang YH, Liu J. Unravelling the genetic diversity and population structure of common walnut in the Iranian Plateau. BMC PLANT BIOLOGY 2023; 23:201. [PMID: 37072719 PMCID: PMC10111805 DOI: 10.1186/s12870-023-04190-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Common walnut (Juglans regia L.) has a long cultivation history, given its highly valuable wood and rich nutritious nuts. The Iranian Plateau has been considered as one of the last glaciation refugia and a centre of origin and domestication for the common walnut. However, a prerequisite to conserve or utilize the genetic resources of J. regia in the plateau is a comprehensive evaluation of the genetic diversity that is conspicuously lacking. In this regard, we used 31 polymorphic simple sequence repeat (SSR) markers to delineate the genetic variation and population structure of 508 J. regia individuals among 27 populations from the Iranian Plateau. RESULTS The SSR markers expressed a high level of genetic diversity (HO = 0.438, and HE = 0.437). Genetic differentiation among the populations was moderate (FST = 0.124), and genetic variation within the populations (79%) significantly surpassed among populations (21%). The gene flow (Nm = 1.840) may have remarkably influenced the population genetic structure of J. regia, which can be attributed to anthropological activities and wind dispersal of pollen. The STRUCTURE analysis divided the 27 populations into two main clusters. Comparing the neighbor-joining and principal coordinate analysis dendrograms and the Bayesian STRUCTURE analysis revealed the general agreement between the population subdivisions and the genetic relationships among the populations. However, a few geographically close populations dispersed into different clusters. Further, the low genetic diversity of the Sulaymaniyah (SMR) population of Iraq necessitates urgent conservation by propagation and seedling management or tissue culture methods; additionally, we recommend the indispensable preservation of the Gonabad (RGR) and Arak (AKR) populations in Iran. CONCLUSIONS These results reflected consistent high geographical affinity of the accession across the plateau. Our findings suggest that gene flow is a driving factor influencing the genetic structure of J. regia populations, whereas ecological and geological variables did not act as strong barriers. Moreover, the data reported herein provide new insights into the population structure of J. regia germplasm, which will help conserve genetic resources for the future, hence improving walnut breeding programs' efficiency.
Collapse
Affiliation(s)
| | - Hai-Ling Qi
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm of Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Mohammad Mafakheri
- Department of Plant Sciences, University of California - Davis, Davis, CA, 95616, USA
| | - Pen-Zheng Fan
- Germplasm of Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Yu Wu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Hanady S Al-Shmgani
- Department of Biology, College of Education for Pure Sciences (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq
| | - Yue-Hua Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Germplasm of Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
3
|
Li JW, Li H, Liu ZW, Wang YX, Chen Y, Yang N, Hu ZH, Li T, Zhuang J. Molecular markers in tea plant (Camellia sinensis): Applications to evolution, genetic identification, and molecular breeding. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107704. [PMID: 37086694 DOI: 10.1016/j.plaphy.2023.107704] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Tea plants have a long cultivation history in the world, and the beverage (tea) made from its leaves is well known in the world. Due to the characteristics of self-incompatibility, long-term natural and artificial hybridization, tea plants have a very complex genetic background, which make the classification of tea plants unclear. Molecular marker, one type of genetic markers, has the advantages of stable inheritance, large amount of information, and high reliability. The development of molecular marker has facilitated the understanding of complex tea germplasm resources. So far, molecular markers had played important roles in the study of the origin and evolution, the preservation and identification of tea germplasms, and the excellent cultivars breeding of tea plants. However, the information is scattered, making it difficult to understand the advance of molecular markers in tea plants. In this paper, we summarized the development process and types of molecular markers in tea plants. In addition, the application advance of these molecular markers in tea plants was reviewed. Perspectives of molecular markers in tea plants were also systematically provided and discussed. The elaboration of molecular markers in this paper should help us to renew understanding of its application in tea plants.
Collapse
Affiliation(s)
- Jing-Wen Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Wei Liu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yong-Xin Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yi Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ni Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Hang Hu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tong Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
4
|
Metabolic Variations among Three New Tea Varieties Cultivated in Shandong, China. Foods 2023; 12:foods12061299. [PMID: 36981225 PMCID: PMC10048610 DOI: 10.3390/foods12061299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Cultivar identification is a necessary step in tea breeding programs. Rapid identification methods would greatly improve these breeding processes. To preliminarily identify the three new Lucha tea varieties (LC6, LC7, and LC17) cultivated in Shandong, we measured their main agronomic characters and biochemical components. Then, we analyzed the metabolic profiles of these tea varieties and Fuding Dabaicha (FD) using a UPLC-ESI-MS/MS system. Their biochemical components indicated that the Lucha varieties had excellent varietal characteristics, with higher amino acid contents. Furthermore, secondary metabolism changed a lot in the Lucha tea varieties compared with that in the FD, with their accumulations of flavonoids and phenolic acids showing significant differences. These differential flavonoids were dominated by flavones and flavanone, flavonols, flavonoid carbonosides, and flavanols monomer. Flavanols especially, including epicatechin glucoside, epicatechin-3-(3″-O-methyl)gallate, epigallocatechin-3-O-(3,5-O-dimethyl)gallate, and epitheaflavic acid-3-O-Gallate, showed higher levels in the Lucha varieties. The phenolic acids containing caffeoyl groups showed higher levels in the Lucha varieties than those in the FD, while those containing galloyl groups showed a reverse pattern. Nitrogen metabolism, including amino acids, also showed obvious differences between the Lucha varieties and FD. The differential amino acids were mainly higher in the Lucha varieties, including 5-L-glutamyl-L-amino acid, N-monomethyl-L-arginine, and N-α-acetyl-L-ornithine. By using these approaches, we found that LC6, LC7, and LC17 were excellent varieties with a high yield and high quality for making green teas in Shandong.
Collapse
|
5
|
D’Auria JC, Cohen SP, Leung J, Glockzin K, Glockzin KM, Gervay-Hague J, Zhang D, Meinhardt LW. United States tea: A synopsis of ongoing tea research and solutions to United States tea production issues. FRONTIERS IN PLANT SCIENCE 2022; 13:934651. [PMID: 36212324 PMCID: PMC9538180 DOI: 10.3389/fpls.2022.934651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/25/2022] [Indexed: 06/01/2023]
Abstract
Tea is a steeped beverage made from the leaves of Camellia sinensis. Globally, this healthy, caffeine-containing drink is one of the most widely consumed beverages. At least 50 countries produce tea and most of the production information and tea research is derived from international sources. Here, we discuss information related to tea production, genetics, and chemistry as well as production issues that affect or are likely to affect emerging tea production and research in the United States. With this review, we relay current knowledge on tea production, threats to tea production, and solutions to production problems to inform this emerging market in the United States.
Collapse
Affiliation(s)
- John C. D’Auria
- Metabolic Diversity Group, Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Stephen P. Cohen
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| | - Jason Leung
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| | - Kayla Glockzin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Kyle Mark Glockzin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Jacquelyn Gervay-Hague
- Department of Chemistry, University of California, University of California, Davis, Davis, CA, United States
| | - Dapeng Zhang
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| | - Lyndel W. Meinhardt
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| |
Collapse
|
6
|
Kubo N, Matsuda T, Yanagida C, Hotta Y, Mimura Y, Kanda M. Parentage analysis of tea cultivars in Japan based on simple sequence repeat markers. BREEDING SCIENCE 2021; 71:594-600. [PMID: 35087323 PMCID: PMC8784347 DOI: 10.1270/jsbbs.20156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/09/2021] [Indexed: 06/14/2023]
Abstract
Tea cultivars have been bred by individual selection of landraces and by crossbreeding, but the validation of the parentage is limited. In this study, we performed parentage analysis of 79 tea cultivars in Japan based on SSR markers to confirm or identify the parent-offspring relationships among them. The effectiveness of nine SSR markers for parentage analysis was validated by comparing them to the existing cleaved amplified polymorphic sequence markers. The former markers were detectable more alleles than the latter. Simulation of parentage analysis of the tea cultivars predicted biparental origins for 12 cultivars ('Houshun', 'Mie ryokuhou no. 1', 'Surugawase', 'Tenmyo', 'Yamanoibuki', 'Harumidori', 'Koushun', 'Minekaori', 'Okumusashi', 'Saemidori', 'Sofu', and 'Toyoka'), in the first five of which candidate parents of yet-to-be-defined pedigree were newly identified. Comparisons of a total of 41 SSR genotypes confirmed the newly-identified parentages of 'Asahi' for 'Tenmyo', 'Rokurou' for 'Houshun', 'Surugawase', and 'Yamanoibuki', and 'Yamatomidori' for 'Mie ryokuhou no. 1'. The maternity of seven cultivars out of the 12 was also confirmed with chloroplast DNA sequences. Uniparental origins were confirmed for 25 cultivars. This parentage analysis has improved our knowledge of tea pedigrees and will aid in the development of new cultivars.
Collapse
Affiliation(s)
- Nakao Kubo
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
- Biotechnology Research Department, Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Center, 74 Oji, Kitainayazuma, Seika-cho, Soraku-gun, Kyoto 619-0244, Japan
| | - Tomohiro Matsuda
- Tea Industry Research Division, Agriculture and Forestry Technology Department, Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Center, 1 Nakanosono, Shirakawa, Uji, Kyoto 611-0022, Japan
| | - Chisaki Yanagida
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Yuna Hotta
- Tea Industry Research Division, Agriculture and Forestry Technology Department, Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Center, 1 Nakanosono, Shirakawa, Uji, Kyoto 611-0022, Japan
| | - Yutaka Mimura
- Biotechnology Research Department, Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Center, 74 Oji, Kitainayazuma, Seika-cho, Soraku-gun, Kyoto 619-0244, Japan
| | - Maho Kanda
- Tea Industry Research Division, Agriculture and Forestry Technology Department, Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Center, 1 Nakanosono, Shirakawa, Uji, Kyoto 611-0022, Japan
| |
Collapse
|
7
|
Guo R, Xia X, Chen J, An Y, Mi X, Li R, Zhang C, Chen M, Wei C, Liu S. Genetic relationship analysis and molecular fingerprint identification of the tea germplasms from Guangxi Province, China. BREEDING SCIENCE 2021; 71:584-593. [PMID: 35087322 PMCID: PMC8784351 DOI: 10.1270/jsbbs.21007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/08/2021] [Indexed: 05/07/2023]
Abstract
The tea plant (Camellia sinensis) is an evergreen woody plant with a high economic value. Guangxi Province is adjacent to the origin center of the tea plant in southern China. It has abundant germplasm resources and is a historically important tea-producing province. However, there is little information about the genetic diversity, genetic introgression, and fingerprints of the tea germplasms from Guangxi Province. Here, we constructed a phylogenetic tree of 126 tea accessions from Guangxi Province using 20 SSR markers. This tree classified these tea accessions into three subgroups containing 19, 47, and 60 members, respectively. High genetic similarity was observed among the three subgroups, and the genetic diversity of the populations was ranked as follows: subgroup 3 > subgroup 2 > subgroup 1. Furthermore, we analyzed the genetic relationships among 168 tea accessions from Guangxi Province and neighboring provinces. The results of the population structure analysis were highly consistent with the clustering results, and genetic introgression was observed. We identified six SSRs as the core marker set, because they could sufficiently distinguish between all 126 tea accessions. The results provide a crucial theoretical basis for utilization and protection of tea germplasms from Guangxi Province, and will help improve the breeding and popularization of elite tea cultivars.
Collapse
Affiliation(s)
- Rui Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, People’s Republic of China, 230036
| | - Xiaobo Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, People’s Republic of China, 230036
| | - Jia Chen
- Guangxi Guilin Institute of Tea Science and Research, Guilin, People’s Republic of China, 541004
| | - Yanlin An
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, People’s Republic of China, 230036
| | - Xiaozeng Mi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, People’s Republic of China, 230036
| | - Rui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, People’s Republic of China, 230036
| | - Cao Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, People’s Republic of China, 230036
| | - Minyi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, People’s Republic of China, 230036
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, People’s Republic of China, 230036
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, People’s Republic of China, 230036
- Corresponding author (e-mail: )
| |
Collapse
|
8
|
Wambulwa MC, Meegahakumbura MK, Kamunya S, Wachira FN. From the Wild to the Cup: Tracking Footprints of the Tea Species in Time and Space. Front Nutr 2021; 8:706770. [PMID: 34422884 PMCID: PMC8377202 DOI: 10.3389/fnut.2021.706770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/15/2021] [Indexed: 01/22/2023] Open
Abstract
Tea is one of the world's most popular beverages, known for its cultural significance and numerous health benefits. A clear understanding of the origin and history of domestication of the tea species is a fundamental pre-requisite for effective germplasm conservation and improvement. Though there is a general consensus about the center of origin of the tea plant, the evolutionary origin and expansion history of the species remain shrouded in controversy, with studies often reporting conflicting findings. This mini review provides a concise summary of the current state of knowledge regarding the origin, domestication, and dissemination of the species around the world. We note that tea was domesticated around 3000 B.C. either from non-tea wild relatives (probably Camellia grandibracteata and/or C. leptophylla) or intra-specifically from the wild Camellia sinensis var. assamica trees, and that the genetic origins of the various tea varieties may need further inquiry. Moreover, we found that lineage divergence within the tea family was apparently largely driven by a combination of orogenic, climatic, and human-related forces, a fact that could have important implications for conservation of the contemporary tea germplasm. Finally, we demonstrate the robustness of an integrative approach involving linguistics, historical records, and genetics to identify the center of origin of the tea species, and to infer its history of expansion. Throughout the review, we identify areas of debate, and highlight potential research gaps, which lay a foundation for future explorations of the topic.
Collapse
Affiliation(s)
- Moses C. Wambulwa
- Department of Life Sciences, South Eastern Kenya University, Kitui, Kenya
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | | | - Samson Kamunya
- Kenya Agricultural and Livestock Research Organization, Tea Research Institute (KALRO-TRI), Kericho, Kenya
| | - Francis N. Wachira
- Department of Life Sciences, South Eastern Kenya University, Kitui, Kenya
| |
Collapse
|
9
|
Ovesná J, Hrbek V, Svoboda P, Pianta V, Kučera L, Hajšlová J, Milella L. Microsatellite fingerprinting and metabolite profiling for the geographical authentication of commercial green teas. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Karunarathna KHT, Mewan KM, Weerasena OVDSJ, Perera SACN, Edirisinghe ENU. A functional molecular marker for detecting blister blight disease resistance in tea (Camellia sinensis L.). PLANT CELL REPORTS 2021; 40:351-359. [PMID: 33247387 DOI: 10.1007/s00299-020-02637-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/10/2020] [Indexed: 05/27/2023]
Abstract
Identification of an EST-SSR molecular marker associated with Blister blight, a common fungal disease of tea, facilitating marker-assisted selection, marking a milestone in tea molecular breeding. lister blight (BB) leaf disease of tea, caused by the fungus Exobasidium vexans, results in 25-30% crop loss annually. BB is presently controlled by Cu based fungicides, but genetic resistance is the most viable option in disease management. Tea is a naturally out-crossing, woody perennial necessitating a long time for completion of a breeding programme. Marker-assisted selection (MAS) is vital to expedite breeding programmes and also for better accuracy in gene identification. The aim of the current research was to derive marker-trait associations using an F1 population segregating for BB. The population was genotyped at 11 expressed sequence tag simple sequence repeat loci followed by detecting the alleles by fragment analysis. The genotypic and phenotypic data were subjected to single-marker analysis resulting in the identification of EST-SSR073 as a diagnostic marker amplifying three alleles of the sizes, 168, 170 and 190 bp in F1. Of them, alleles 190 and 168 bp were confirmed to concur BB resistance and susceptibility, respectively. The alleles were validated in a panel of 64 tea cultivars, resulting in the amplification of 12 alleles at EST-SSR073. The EST-SSR073 allele sequences matched with Camellia sinensis photosystem-I reaction center subunit-II. The marker EST-SSR073 can be effectively used in breeding tea against BB, recording a milestone in MAS in tea.
Collapse
Affiliation(s)
- K H T Karunarathna
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - K M Mewan
- Department of Biotechnology, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
| | - O V D S J Weerasena
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - S A C N Perera
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| | - E N U Edirisinghe
- Biochemistry Division, Tea Research Institute of Sri Lanka, Talawakelle, Sri Lanka
| |
Collapse
|
11
|
Zhao XL, Zhu ZM. Comparative Genomics and Phylogenetic Analyses of Christia vespertilionis and Urariopsis brevissima in the Tribe Desmodieae (Fabaceae: Papilionoideae) Based on Complete Chloroplast Genomes. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9091116. [PMID: 32872316 PMCID: PMC7570174 DOI: 10.3390/plants9091116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 05/10/2023]
Abstract
Taxonomic and phylogenetic relationships of Christia, Urariopsis, Uraria and related genera within the tribe Desmodieae (Fabaceae: Papilionoideae) have long been controversial. Here, we report the complete chloroplast (cp) genomes of Christia vespertilionis and Urariopsis brevissima and perform comparative and phylogenetic analyses with Uraria lagopodioides and other relatives in the Desmodieae. The cp genomes of C. vespertilionis and U. brevissima are 149,656 and 149,930 bp long, with 128 unique genes (83 protein-coding genes, 37 tRNA genes and 8 rRNA genes), respectively. Comparative analyses revealed 95-129 simple sequence repeats (SSRs) and eleven highly variable regions (trnK-rbcL, rbcL-atpB, ndhJ-trnF, trnL-trnT, psbD-rpoB, accD-cemA, petA-psbL, psbE-petL, rps11-rps19, ndhF-ccsA, and rps15-ycf1) among six Desmodieae species. Phylogenetic analyses clearly resolved two subtribes (Desmodiinae and Lespedezinae) of Desmodieae as monophyletic, and the newly reported C. vespertilionis and U. brevissima clustered in subtribe Desmodiinae. A sister relationship of C. vespertilionis to U. lagopodioides was supported. Evidence was presented to support the treatment of Urariopsis as a distinct genus rather than in synonymy with Uraria. The results provide valuable information for further studies on species delimitation, phylogenetics, population genetics, and the evolutionary process of speciation in the Desmodieae.
Collapse
Affiliation(s)
- Xue-Li Zhao
- College of Forestry, Southwest Forestry University, Kunming 650224, China;
| | - Zhang-Ming Zhu
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650500, China
- Correspondence: ; Tel.: +86-0871-65033547
| |
Collapse
|
12
|
Gomes Pacheco T, Morais da Silva G, de Santana Lopes A, de Oliveira JD, Rogalski JM, Balsanelli E, Maltempi de Souza E, de Oliveira Pedrosa F, Rogalski M. Phylogenetic and evolutionary features of the plastome of Tropaeolum pentaphyllum Lam. (Tropaeolaceae). PLANTA 2020; 252:17. [PMID: 32666132 DOI: 10.1007/s00425-020-03427-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Complete plastome sequence of Tropaeolum pentaphyllum revealed molecular markers, hotspots of nucleotide polymorphism, RNA editing sites and phylogenetic aspects Tropaeolaceae Juss. ex DC. comprises approximately 95 species across North and South Americas. Tropaeolum pentaphyllum Lam. is an unconventional and endangered species with occurrence in some countries of South America. Although this species presents nutritional, medicinal and ornamental uses, genetic studies involving natural populations or promising genotypes are practically non-existent. Here, we report the nucleotide sequence of T. pentaphyllum plastome. It represents the first complete plastome sequence of the family Tropaeolaceae to be fully sequenced and analyzed in detail. The sequencing data revealed that the T. pentaphyllum plastome is highly similar to the plastomes of other Brassicales. Notwithstanding, our analyses detected some specific features concerning events of IR expansion and structural changes in some genes such as matK, rpoA, and rpoC2. We also detected 251 SSR loci, nine hotspots of nucleotide polymorphism, and two specific RNA editing sites in the plastome of T. pentaphyllum. Moreover, plastid phylogenomic inference indicated a closed relationship between the families Tropaeolaceae and Akaniaceae, which formed a sister group to Moringaceae-Caricaceae. Finally, our data bring new molecular markers and evolutionary features to be applied in the natural population, germplasm collection, and genotype selection aiming conservation, genetic diversity evaluation, and exploitation of this endangered species.
Collapse
Affiliation(s)
- Túlio Gomes Pacheco
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Gleyson Morais da Silva
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Amanda de Santana Lopes
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - José Daniel de Oliveira
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Juliana Marcia Rogalski
- Núcleo de Ciências Biológicas e Ambientais, Instituto Federal do Rio Grande do Sul, Distrito Engenheiro Luiz Englert, Sertão, RS, Brazil
| | - Eduardo Balsanelli
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Emanuel Maltempi de Souza
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Fábio de Oliveira Pedrosa
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcelo Rogalski
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
13
|
Niu S, Koiwa H, Song Q, Qiao D, Chen J, Zhao D, Chen Z, Wang Y, Zhang T. Development of core-collections for Guizhou tea genetic resources and GWAS of leaf size using SNP developed by genotyping-by-sequencing. PeerJ 2020; 8:e8572. [PMID: 32206447 PMCID: PMC7075365 DOI: 10.7717/peerj.8572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/15/2020] [Indexed: 11/20/2022] Open
Abstract
An accurate depiction of the genetic relationship, the development of core collection, and genome-wide association analysis (GWAS) are key for the effective exploitation and utilization of genetic resources. Here, genotyping-by-sequencing (GBS) was used to characterize 415 tea accessions mostly collected from the Guizhou region in China. A total of 30,282 high-quality SNPs was used to estimate the genetic relationships, develop core collections, and perform GWAS. We suggest 198 and 148 accessions to represent the core set and mini-core set, which consist of 47% and 37% of the whole collection, respectively, and contain 93–95% of the total SNPs. Furthermore, the frequencies of all alleles and genotypes in the whole set were very well retained in the core set and mini-core set. The 415 accessions were clustered into 14 groups and the core and the mini-core collections contain accessions from each group, species, cultivation status and growth habit. By analyzing the significant SNP markers associated with multiple traits, nine SNPs were found to be significantly associated with four leaf size traits, namely MLL, MLW, MLA and MLSI (P < 1.655E−06). This study characterized the genetic distance and relationship of tea collections, suggested the core collections, and established an efficient GWAS analysis of GBS result.
Collapse
Affiliation(s)
- Suzhen Niu
- Guiyang Station for DUS Testing Center of New Plant Varteties (MOA) / Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, China.,The Key Laboratory of Plant Resources Conservation and Germplasm Innovationin Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering / College of Tea Science, Guizhou University, Guiyang, China
| | - Hisashi Koiwa
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Molecular and Environmental Plant Sciences Program, Texas A&M University, College Station, Texas, USA
| | - Qinfei Song
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovationin Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering / College of Tea Science, Guizhou University, Guiyang, China
| | - Dahe Qiao
- Guiyang Station for DUS Testing Center of New Plant Varteties (MOA) / Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Juan Chen
- Guiyang Station for DUS Testing Center of New Plant Varteties (MOA) / Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Degang Zhao
- Guiyang Station for DUS Testing Center of New Plant Varteties (MOA) / Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhengwu Chen
- Guiyang Station for DUS Testing Center of New Plant Varteties (MOA) / Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Ying Wang
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Tianyuan Zhang
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| |
Collapse
|
14
|
Muoki CR, Maritim TK, Oluoch WA, Kamunya SM, Bore JK. Combating Climate Change in the Kenyan Tea Industry. FRONTIERS IN PLANT SCIENCE 2020; 11:339. [PMID: 32269583 PMCID: PMC7109314 DOI: 10.3389/fpls.2020.00339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/06/2020] [Indexed: 05/23/2023]
Abstract
Climate change triggered by global warming poses a major threat to agricultural systems globally. This phenomenon is characterized by emergence of pests and diseases, extreme weather events, such as prolonged drought, high intensity rains, hailstones and frosts, which are becoming more frequent ultimately impacting negatively to agricultural production including rain-fed tea cultivation. Kenya is predominantly an agricultural based economy, with the tea sector generating about 26% of the total export earnings and about 4% gross domestic product (GDP). In the recent years, however, the country has witnessed unstable trends in tea production associated with climate driven stresses. Toward mitigation and adaptation of climate change, multiple approaches for impact assessment, intensity prediction and adaptation have been advanced in the Kenyan tea sub-sector. Further, pressure on tea breeders to release improved climate-compatible cultivars for the rapidly deteriorating environment has resulted in the adoption of a multi-targeted approach seeking to understand the complex molecular regulatory networks associated with biotic and abiotic stresses adaptation and tolerance in tea. Genetic modeling, a powerful tool that assists in breeding process, has also been adopted for selection of tea cultivars for optimal performance under varying climatic conditions. A range of physiological and biochemical responses known to counteract the effects of environmental stresses in most plants that include lowering the rates of cellular growth and net photosynthesis, stomatal closure, and the accumulation of organic solutes such as sugar alcohols, or osmolytes have been used to support breeding programs through screening of new tea cultivars suitable for changing environment. This review describes simulation models combined with high resolution climate change scenarios required to quantify the relative importance of climate change on tea production. In addition, both biodiversity and ecosystem based approaches are described as a part of an overall adaptation strategy to mitigate adverse effects of climate change on tea in Kenya and gaps highlighted for urgent investigations.
Collapse
Affiliation(s)
- Chalo Richard Muoki
- Crop Improvement and Management Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, Kericho, Kenya
| | - Tony Kipkoech Maritim
- Crop Improvement and Management Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, Kericho, Kenya
| | - Wyclife Agumba Oluoch
- Sustainable Ecosystem Management and Conservation Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, Kericho, Kenya
| | - Samson Machohi Kamunya
- Crop Improvement and Management Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, Kericho, Kenya
| | - John Kipkoech Bore
- Sustainable Ecosystem Management and Conservation Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, Kericho, Kenya
| |
Collapse
|
15
|
Zhang Q, Li T, Wang Q, LeCompte J, Harkess RL, Bi G. Screening Tea Cultivars for Novel Climates: Plant Growth and Leaf Quality of Camellia sinensis Cultivars Grown in Mississippi, United States. FRONTIERS IN PLANT SCIENCE 2020; 11:280. [PMID: 32231677 PMCID: PMC7083152 DOI: 10.3389/fpls.2020.00280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/25/2020] [Indexed: 05/04/2023]
Abstract
The United States (U.S.) consumed over 80 billion servings of tea, approximately 3.8 billion gallons, in the year of 2018. With the vast majority of tea demand being met by importation, the United States became the third largest tea importer worldwide after Russia and Pakistan. As demand for domestically produced tea increases and growers expressing increasing interest in growing and producing tea, tea production became an emerging industry in the United States. Compared to major tea producing countries with centuries of growing history, tea production in the United States is limited and requires research support in many aspect of tea production including selecting suitable cultivars adapted to local climatic conditions. This study evaluated nine tea cultivars, including 'BL1,' 'BL2,' 'Black Sea,' 'Christine's Choice,' 'Dave's Fave,' 'Large Leaf,' 'Small Leaf,' 'Sochi,' and 'var. assamica,' for plant growth, leaf morphological characteristics, cold tolerance, and leaf biochemical compositions when grown in Mississippi United States with a subtropical climate. The nine tested cultivars had varying plant growth indices (PGI) and varying degrees of cold tolerance to freezing temperatures in winter, but resumed healthy growth the following spring. 'BL2' showed the highest PGI of 104.53 cm by February 2019, which might be helpful toward suppressing weed and early establishment of tea plantation. The nine cultivars also showed varying leaf characteristics in terms of leaf length, width, area, fresh and dry weights, and new shoot weight. There existed a diversity in leaf biochemical composition including soluble solids, carbohydrates, total polyphenols (TP), free amino acids (AA), L-theanine and caffeine among the nine cultivars and among different harvesting seasons of spring, summer, and fall within a certain cultivar. The nine cultivars in this study generally grow well in local environment. All tea samples collected from nine cultivars and three seasons were considered suitable for green tea processing with low TP/AA ratios ranging from 1.72 to 3.71 in this study.
Collapse
Affiliation(s)
- Qianwen Zhang
- Department of Plant and Soil Sciences, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Tongyin Li
- Department of Plant and Soil Sciences, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Qiushuang Wang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, China
| | - Judson LeCompte
- Department of Plant and Soil Sciences, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Richard L. Harkess
- Department of Plant and Soil Sciences, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Guihong Bi
- Department of Plant and Soil Sciences, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, United States
- *Correspondence: Guihong Bi,
| |
Collapse
|
16
|
Dubey H, Rawal HC, Rohilla M, Lama U, Kumar PM, Bandyopadhyay T, Gogoi M, Singh NK, Mondal TK. TeaMiD: a comprehensive database of simple sequence repeat markers of tea. Database (Oxford) 2020; 2020:baaa013. [PMID: 32159215 PMCID: PMC7065459 DOI: 10.1093/database/baaa013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/05/2020] [Accepted: 01/25/2020] [Indexed: 12/05/2022]
Abstract
Tea is a highly cross-pollinated, woody, perennial tree. High heterozygosity combined with a long gestational period makes conventional breeding a cumbersome process. Therefore, marker-assisted breeding is a better alternative approach when compared with conventional breeding. Considering the large genome size of tea (~3 Gb), information about simple sequence repeat (SSR) is scanty. Thus, we have taken advantage of the recently published tea genomes to identify large numbers of SSR markers in the tea. Besides the genomic sequences, we identified SSRs from the other publicly available sequences such as RNA-seq, GSS, ESTs and organelle genomes (chloroplasts and mitochondrial) and also searched published literature to catalog validated set of tea SSR markers. The complete exercise yielded a total of 935 547 SSRs. Out of the total, 82 SSRs were selected for validation among a diverse set of tea genotypes. Six primers (each with four to six alleles, an average of five alleles per locus) out of the total 27 polymorphic primers were used for a diversity analysis in 36 tea genotypes with mean polymorphic information content of 0.61-0.76. Finally, using all the information generated in this study, we have developed a user-friendly database (TeaMiD; http://indianteagenome.in:8080/teamid/) that hosts SSR from all the six resources including three nuclear genomes of tea and transcriptome sequences of 17 Camellia wild species. Database URL: http://indianteagenome.in:8080/teamid/.
Collapse
Affiliation(s)
- Himanshu Dubey
- Indian Council Agricultural Research-National Institute for Plant Biotechnology, Lal Bahadur Sashtri Centre, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Hukam C Rawal
- Indian Council Agricultural Research-National Institute for Plant Biotechnology, Lal Bahadur Sashtri Centre, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Megha Rohilla
- Indian Council Agricultural Research-National Institute for Plant Biotechnology, Lal Bahadur Sashtri Centre, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Urvashi Lama
- Darjeeling Tea Research and Development Centre, Tea Board, Ministry of Commerce, B.T.M. Sarani (Brabourne Road), Kolkata, West Bengal 700001, India
| | - P Mohan Kumar
- Darjeeling Tea Research and Development Centre, Tea Board, Ministry of Commerce, B.T.M. Sarani (Brabourne Road), Kolkata, West Bengal 700001, India
| | - Tanoy Bandyopadhyay
- Department of Biotechnology, Tocklai Experimental Station, Tea Research Association, Jorhat, Assam, India
| | - Madhurjya Gogoi
- Department of Biotechnology, Tocklai Experimental Station, Tea Research Association, Jorhat, Assam, India
| | - Nagendra Kumar Singh
- Indian Council Agricultural Research-National Institute for Plant Biotechnology, Lal Bahadur Sashtri Centre, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Tapan Kumar Mondal
- Indian Council Agricultural Research-National Institute for Plant Biotechnology, Lal Bahadur Sashtri Centre, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| |
Collapse
|
17
|
Xia EH, Tong W, Wu Q, Wei S, Zhao J, Zhang ZZ, Wei CL, Wan XC. Tea plant genomics: achievements, challenges and perspectives. HORTICULTURE RESEARCH 2020; 7:7. [PMID: 31908810 PMCID: PMC6938499 DOI: 10.1038/s41438-019-0225-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/17/2019] [Accepted: 11/03/2019] [Indexed: 05/18/2023]
Abstract
Tea is among the world's most widely consumed non-alcoholic beverages and possesses enormous economic, health, and cultural values. It is produced from the cured leaves of tea plants, which are important evergreen crops globally cultivated in over 50 countries. Along with recent innovations and advances in biotechnologies, great progress in tea plant genomics and genetics has been achieved, which has facilitated our understanding of the molecular mechanisms of tea quality and the evolution of the tea plant genome. In this review, we briefly summarize the achievements of the past two decades, which primarily include diverse genome and transcriptome sequencing projects, gene discovery and regulation studies, investigation of the epigenetics and noncoding RNAs, origin and domestication, phylogenetics and germplasm utilization of tea plant as well as newly developed tools/platforms. We also present perspectives and possible challenges for future functional genomic studies that will contribute to the acceleration of breeding programs in tea plants.
Collapse
Affiliation(s)
- En-Hua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Qiong Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Shu Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Zheng-Zhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Chao-Ling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Xiao-Chun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| |
Collapse
|
18
|
de Santana Lopes A, Gomes Pacheco T, Nascimento da Silva O, Magalhães Cruz L, Balsanelli E, Maltempi de Souza E, de Oliveira Pedrosa F, Rogalski M. The plastomes of Astrocaryum aculeatum G. Mey. and A. murumuru Mart. show a flip-flop recombination between two short inverted repeats. PLANTA 2019; 250:1229-1246. [PMID: 31222493 DOI: 10.1007/s00425-019-03217-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
The plastomes of Astrocaryum murumuru and A. aculeatum revealed a lineage-specific structural feature originated by flip-flop recombination, non-synonymous substitutions in conserved genes and several molecular markers. Astrocaryum murumuru Mart. and A. aculeatum G.Mey. are two palm species of Amazon forest that are economically important as source of food, oil and raw material for several applications. Genetic studies aiming to establish strategies for conservation and domestication of both species are still in the beginning given that the exploitation is mostly by extractive activity. The identification and characterization of molecular markers are essential to assess the genetic diversity of natural populations of both species. Therefore, we sequenced and characterized in detail the plastome of both species. We compared both species and identified 32 polymorphic SSR loci, 150 SNPs, 46 indels and eight hotspots of nucleotide diversity. Additionally, we reported a specific RNA editing site found in the ccsA gene, which is exclusive to A. murumuru. Moreover, the structural analysis in the plastomes of both species revealed a 4.6-kb inversion encompassing a set of genes involved in chlororespiration and plastid translation. This 4.6-kb inversion is a lineage-specific structural feature of the genus Astrocaryum originated by flip-flop recombination between two short inverted repeats. Furthermore, our phylogenetic analysis using whole plastomes of 39 Arecaceae species placed the Astrocaryum species sister to Acrocomia within the tribe Cocoseae. Finally, our data indicated substantial changes in the plastome structure and sequence of both species of the genus Astrocaryum, bringing new molecular markers, several structural and evolving features, which can be applied in several areas such as genetic, evolution, breeding, phylogeny and conservation strategies for both species.
Collapse
Affiliation(s)
- Amanda de Santana Lopes
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Túlio Gomes Pacheco
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Odyone Nascimento da Silva
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Leonardo Magalhães Cruz
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Eduardo Balsanelli
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Emanuel Maltempi de Souza
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Fábio de Oliveira Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcelo Rogalski
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
19
|
Assessment of Genetic Diversity of Tea Germplasm for Its Management and Sustainable Use in Korea Genebank. FORESTS 2019. [DOI: 10.3390/f10090780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tea (Camellia sinensis (L.) O. Kuntze) is cultivated in many developing Asian, African, and South American countries, and is the most widely consumed beverage in the world. It is of critical importance to understand the genetic diversity and population structure of tea germplasm for effective collection, conservation, and utilization. In this study, 410 tea accessions collected from South Korea were analyzed using 21 simple sequence repeat (SSR) markers. Among 410 tea accessions, 85.4% (350 accessions) were collected from Jeollanam-do. A total of 286 alleles were observed, and the genetic diversity and evenness were estimated to be on average 0.79 and 0.61, respectively, across all the tested samples. Using discriminant analysis of principal components, four clusters were detected in 410 tea accessions. Among them, cluster 1 showed a higher frequency of rare alleles (less than 1%). Using the calculation of the index of association and rbaD value, each cluster showed a clonal mode of reproduction. The result of analysis of molecular variance (AMOVA) showed that most of the variation observed was within populations (99%) rather than among populations (1%). The present study revealed the presence of lower diversity and simpler population structure in Korean tea germplasms. Consequently, more attention should be focused on collecting and conserving the new tea individuals to broaden genetic variation of new cultivars in future breeding of the tea plant.
Collapse
|
20
|
Niu S, Song Q, Koiwa H, Qiao D, Zhao D, Chen Z, Liu X, Wen X. Genetic diversity, linkage disequilibrium, and population structure analysis of the tea plant (Camellia sinensis) from an origin center, Guizhou plateau, using genome-wide SNPs developed by genotyping-by-sequencing. BMC PLANT BIOLOGY 2019; 19:328. [PMID: 31337341 PMCID: PMC6652003 DOI: 10.1186/s12870-019-1917-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 07/02/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND To efficiently protect and exploit germplasm resources for marker development and breeding purposes, we must accurately depict the features of the tea populations. This study focuses on the Camellia sinensis (C. sinensis) population and aims to (i) identify single nucleotide polymorphisms (SNPs) on the genome level, (ii) investigate the genetic diversity and population structure, and (iii) characterize the linkage disequilibrium (LD) pattern to facilitate next genome-wide association mapping and marker-assisted selection. RESULTS We collected 415 tea accessions from the Origin Center and analyzed the genetic diversity, population structure and LD pattern using the genotyping-by-sequencing (GBS) approach. A total of 79,016 high-quality SNPs were identified; the polymorphism information content (PIC) and genetic diversity (GD) based on these SNPs showed a higher level of genetic diversity in cultivated type than in wild type. The 415 accessions were clustered into three groups by STRUCTURE software and confirmed using principal component analyses (PCA)-wild type, cultivated type, and admixed wild type. However, unweighted pair group method with arithmetic mean (UPGMA) trees indicated the accessions should be grouped into more clusters. Further analyses identified four groups, the Pure Wild Type, Admixed Wild Type, ancient landraces and modern landraces using STRUCTURE, and the results were confirmed by PCA and UPGMA tree method. A higher level of genetic diversity was detected in ancient landraces and Admixed Wild Type than that in the Pure Wild Type and modern landraces. The highest differentiation was between the Pure Wild Type and modern landraces. A relatively fast LD decay with a short range (kb) was observed, and the LD decays of four inferred populations were different. CONCLUSIONS This study is, to our knowledge, the first population genetic analysis of tea germplasm from the Origin Center, Guizhou Plateau, using GBS. The LD pattern, population structure and genetic differentiation of the tea population revealed by our study will benefit further genetic studies, germplasm protection, and breeding.
Collapse
Affiliation(s)
- Suzhen Niu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovationin Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering / College of Tea Science, Guizhou University, Guiyang, 550025 Guizhou Province People’s Republic of China
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Molecular and Environmental Plant Sciences Program, MS2133 Texas A&M University, College Station, TX 77843-2133 USA
- Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, 550006 Guizhou Province People’s Republic of China
| | - Qinfei Song
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovationin Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering / College of Tea Science, Guizhou University, Guiyang, 550025 Guizhou Province People’s Republic of China
| | - Hisashi Koiwa
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Molecular and Environmental Plant Sciences Program, MS2133 Texas A&M University, College Station, TX 77843-2133 USA
| | - Dahe Qiao
- Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, 550006 Guizhou Province People’s Republic of China
| | - Degang Zhao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovationin Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering / College of Tea Science, Guizhou University, Guiyang, 550025 Guizhou Province People’s Republic of China
- Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, 550006 Guizhou Province People’s Republic of China
| | - Zhengwu Chen
- Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, 550006 Guizhou Province People’s Republic of China
| | - Xia Liu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovationin Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering / College of Tea Science, Guizhou University, Guiyang, 550025 Guizhou Province People’s Republic of China
| | - Xiaopeng Wen
- Institute of Agro-bioengineering/College of Life Science, Guizhou University, Huaxi Avenue, Guiyang, 550025 Guizhou Province People’s Republic of China
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Xiahui Road, Huaxi, Guiyang, 550025 Guizhou Province People’s Republic of China
| |
Collapse
|
21
|
Gomes Pacheco T, de Santana Lopes A, Monteiro Viana GD, Nascimento da Silva O, Morais da Silva G, do Nascimento Vieira L, Guerra MP, Nodari RO, Maltempi de Souza E, de Oliveira Pedrosa F, Otoni WC, Rogalski M. Genetic, evolutionary and phylogenetic aspects of the plastome of annatto (Bixa orellana L.), the Amazonian commercial species of natural dyes. PLANTA 2019; 249:563-582. [PMID: 30310983 DOI: 10.1007/s00425-018-3023-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
The plastome of B. orellana reveals specific evolutionary features, unique RNA editing sites, molecular markers and the position of Bixaceae within Malvales. Annatto (Bixa orellana L.) is a native species of tropical Americas with center of origin in Brazilian Amazonia. Its seeds accumulate the apocarotenoids, bixin and norbixin, which are only found in high content in this species. The seeds of B. orellana are commercially valued by the food industry because its dyes replace synthetic ones from the market due to potential carcinogenic risks. The increasing consumption of B. orellana seeds for dye extraction makes necessary the increase of productivity, which is possible accessing the genetic basis and searching for elite genotypes. The identification and characterization of molecular markers are essential to analyse the genetic diversity of natural populations and to establish suitable strategies for conservation, domestication, germplasm characterization and genetic breeding. Therefore, we sequenced and characterized in detail the plastome of B. orellana. The plastome of B. orellana is a circular DNA molecule of 159,708 bp with a typical quadripartite structure and 112 unique genes. Additionally, a total of 312 SSR loci were identified in the plastome of B. orellana. Moreover, we predicted in 23 genes a total of 57 RNA-editing sites of which 11 are unique for B. orellana. Furthermore, our plastid phylogenomic analyses, using the plastome sequences available in the plastid database belonging to species of order Malvales, indicate a closed relationship between Bixaceae and Malvaceae, which formed a sister group to Thymelaeaceae. Finally, our study provided useful data to be employed in several genetic and biotechnological approaches in B. orellana and related species of the family Bixaceae.
Collapse
Affiliation(s)
- Túlio Gomes Pacheco
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Amanda de Santana Lopes
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Gélia Dinah Monteiro Viana
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Odyone Nascimento da Silva
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Gleyson Morais da Silva
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Leila do Nascimento Vieira
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Miguel Pedro Guerra
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rubens Onofre Nodari
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Emanuel Maltempi de Souza
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Fábio de Oliveira Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Wagner Campos Otoni
- Laboratório de Cultura de Tecidos Vegetais, Departamento de Biologia Vegetal, BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Marcelo Rogalski
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
22
|
Next generation crop improvement program: Progress and prospect in tea ( Camellia sinensis (L.) O. Kuntze). ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.aasci.2018.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
de Santana Lopes A, Gomes Pacheco T, Nimz T, do Nascimento Vieira L, Guerra MP, Nodari RO, de Souza EM, de Oliveira Pedrosa F, Rogalski M. The complete plastome of macaw palm [Acrocomia aculeata (Jacq.) Lodd. ex Mart.] and extensive molecular analyses of the evolution of plastid genes in Arecaceae. PLANTA 2018; 247:1011-1030. [PMID: 29340796 DOI: 10.1007/s00425-018-2841-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/10/2018] [Indexed: 05/08/2023]
Abstract
The plastome of macaw palm was sequenced allowing analyses of evolution and molecular markers. Additionally, we demonstrated that more than half of plastid protein-coding genes in Arecaceae underwent positive selection. Macaw palm is a native species from tropical and subtropical Americas. It shows high production of oil per hectare reaching up to 70% of oil content in fruits and an interesting plasticity to grow in different ecosystems. Its domestication and breeding are still in the beginning, which makes the development of molecular markers essential to assess natural populations and germplasm collections. Therefore, we sequenced and characterized in detail the plastome of macaw palm. A total of 221 SSR loci were identified in the plastome of macaw palm. Additionally, eight polymorphism hotspots were characterized at level of subfamily and tribe. Moreover, several events of gain and loss of RNA editing sites were found within the subfamily Arecoideae. Aiming to uncover evolutionary events in Arecaceae, we also analyzed extensively the evolution of plastid genes. The analyses show that highly divergent genes seem to evolve in a species-specific manner, suggesting that gene degeneration events may be occurring within Arecaceae at the level of genus or species. Unexpectedly, we found that more than half of plastid protein-coding genes are under positive selection, including genes for photosynthesis, gene expression machinery and other essential plastid functions. Furthermore, we performed a phylogenomic analysis using whole plastomes of 40 taxa, representing all subfamilies of Arecaceae, which placed the macaw palm within the tribe Cocoseae. Finally, the data showed here are important for genetic studies in macaw palm and provide new insights into the evolution of plastid genes and environmental adaptation in Arecaceae.
Collapse
Affiliation(s)
- Amanda de Santana Lopes
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Túlio Gomes Pacheco
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Tabea Nimz
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Leila do Nascimento Vieira
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-Graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Miguel P Guerra
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-Graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rubens O Nodari
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-Graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Emanuel Maltempi de Souza
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Fábio de Oliveira Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcelo Rogalski
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
24
|
Meegahakumbura MK, Wambulwa MC, Li MM, Thapa KK, Sun YS, Möller M, Xu JC, Yang JB, Liu J, Liu BY, Li DZ, Gao LM. Domestication Origin and Breeding History of the Tea Plant ( Camellia sinensis) in China and India Based on Nuclear Microsatellites and cpDNA Sequence Data. FRONTIERS IN PLANT SCIENCE 2018; 8:2270. [PMID: 29422908 PMCID: PMC5788969 DOI: 10.3389/fpls.2017.02270] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 12/27/2017] [Indexed: 05/19/2023]
Abstract
Although China and India are the two largest tea-producing countries, the domestication origin and breeding history of the tea plant in these two countries remain unclear. Our previous study suggested that the tea plant includes three distinct lineages (China type tea, Chinese Assam type tea and Indian Assam type tea), which were independently domesticated in China and India, respectively. To determine the origin and historical timeline of tea domestication in these two countries we used a combination of 23 nSSRs (402 samples) and three cpDNA regions (101 samples) to genotype domesticated tea plants and its wild relative. Based on a combination of demographic modeling, NewHybrids and Neighbour joining tree analyses, three independent domestication centers were found. In addition, two origins of Chinese Assam type tea were detected: Southern and Western Yunnan of China. Results from demographic modeling suggested that China type tea and Assam type tea first diverged 22,000 year ago during the last glacial maximum and subsequently split into the Chinese Assam type tea and Indian Assam type tea lineages 2770 year ago, corresponding well with the early record of tea usage in Yunnan, China. Furthermore, we found that the three tea types underwent different breeding histories where hybridization appears to have been the most important approach for tea cultivar breeding and improvements: a high proportion of the hybrid lineages were found to be F2 and BCs. Collectively, our results underscore the necessity for the conservation of Chinese Assam type tea germplasm and landraces as a valuable resource for future tea breeding.
Collapse
Affiliation(s)
- Muditha K. Meegahakumbura
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- College of Life Science, University of Chinese Academy of Sciences, Kunming, China
- Genetics and Plant Breeding Division, Coconut Research Institute of Sri Lanka, Lunuwila, Sri Lanka
| | - Moses C. Wambulwa
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- College of Life Science, University of Chinese Academy of Sciences, Kunming, China
- Biochemistry Department, South Eastern Kenya University, Kitui, Kenya
| | - Miao-Miao Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | | | - Yong-Shuai Sun
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Michael Möller
- Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
| | - Jian-Chu Xu
- Centre for Mountain Ecosystem Studies, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jie Liu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ben-Ying Liu
- Tea Research Institute of Yunnan Academy of Agricultural Sciences, Menghai, China
| | - De-Zhu Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Lian-Ming Gao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
25
|
Wambulwa MC, Meegahakumbura MK, Kamunya S, Muchugi A, Möller M, Liu J, Xu JC, Li DZ, Gao LM. Multiple origins and a narrow genepool characterise the African tea germplasm: concordant patterns revealed by nuclear and plastid DNA markers. Sci Rep 2017; 7:4053. [PMID: 28642589 PMCID: PMC5481375 DOI: 10.1038/s41598-017-04228-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/10/2017] [Indexed: 01/11/2023] Open
Abstract
Despite the highly economic value of tea in Africa, its genetic and geographic origins remain largely unexplored. Here we address this by collecting 439 samples across 11 countries in Africa and Asia to investigate the origin and genepool composition of African tea based on 23 nuclear microsatellites loci (nSSRs) and three cpDNA intergenic spacer regions. Our results indicated that the African tea represents a potpourri originating from multiple introductions over time. The nSSR analysis revealed that the majority (79%) of tea accessions collected in Africa belong to Indian Assam tea which have likely originated from India and/or Sri Lanka. The patterns of nSSR variation also showed that Chinese Assam tea is genetically distinct from Indian Assam tea, and has rarely been used in African tea breeding efforts since only 4% of the African tea accessions possessed this genotype. We found a total of 22 cpDNA haplotypes, which grouped into three main geographic clades that were concordant with the distribution of microsatellite genotypes. Several private cpDNA haplotypes were identified in Chinese Assam tea in Southern Yunnan province of China. Therefore Chinese Assam tea will be important for the enrichment of African tea gene pools. Our results is a useful guide in future tea breeding programmes in Africa.
Collapse
Affiliation(s)
- Moses Cheloti Wambulwa
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Genetic Resources Unit, World Agroforestry Centre, United Nations Avenue, P. O. Box, 30677, Nairobi, Kenya
| | - Muditha Kasun Meegahakumbura
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Genetic and Plant Breeding Division, Coconut Research Institute, Bandirippuwa Estate, 61150, Lunuwila, Sri Lanka
| | - Samson Kamunya
- Kenya Agricultural and Livestock Research Organization, Tea Research Institute (KALRO-TRI), Kericho, Kenya
| | - Alice Muchugi
- Genetic Resources Unit, World Agroforestry Centre, United Nations Avenue, P. O. Box, 30677, Nairobi, Kenya
| | - Michael Möller
- Department of Science, Royal Botanic Garden Edinburgh, Edinburgh, EH3 5LR, Scotland, UK
| | - Jie Liu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Jian-Chu Xu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- World Agroforestry Centre, East and Central Asia Office, Kunming, Yunnan, 650201, China
| | - De-Zhu Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
- College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| | - Lian-Ming Gao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| |
Collapse
|
26
|
Waugh DT, Godfrey M, Limeback H, Potter W. Black Tea Source, Production, and Consumption: Assessment of Health Risks of Fluoride Intake in New Zealand. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2017; 2017:5120504. [PMID: 28713433 PMCID: PMC5497633 DOI: 10.1155/2017/5120504] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/25/2017] [Accepted: 05/18/2017] [Indexed: 02/03/2023]
Abstract
In countries with fluoridation of public water, it is imperative to determine other dietary sources of fluoride intake to reduce the public health risk of chronic exposure. New Zealand has one of the highest per capita consumption rates of black tea internationally and is one of the few countries to artificially fluoridate public water; yet no information is available to consumers on the fluoride levels in tea products. In this study, we determined the contribution of black tea as a source of dietary fluoride intake by measuring the fluoride content in 18 brands of commercially available products in New Zealand. Fluoride concentrations were measured by potentiometric method with a fluoride ion-selective electrode and the contribution of black tea to Adequate Intake (AI) and Tolerable Upper Intake Level (UL) was calculated for a range of consumption scenarios. We examined factors that influence the fluoride content in manufactured tea and tea infusions, as well as temporal changes in fluoride exposure from black tea. We review the international evidence regarding chronic fluoride intake and its association with chronic pain, arthritic disease, and musculoskeletal disorders and provide insights into possible association between fluoride intake and the high prevalence of these disorders in New Zealand.
Collapse
Affiliation(s)
- Declan T. Waugh
- EnviroManagement Services, 11 Riverview, Dohertys Rd, Bandon, Co. Cork P72 YF10, Ireland
| | - Michael Godfrey
- Bay of Plenty Environmental Health Clinic, 1416A Cameron Road, Tauranga 3012, New Zealand
| | - Hardy Limeback
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, Canada M5G 1G6
| | - William Potter
- Department of Chemistry and Biochemistry, KEH M2225, University of Tulsa, Tulsa, OK, USA
| |
Collapse
|